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Some New Indexes of Cluster Validity

James C. Bezdelgellow, IEEE and Nikhil R. Pal

Abstract—We review two clustering algorithms (hard ¢c-means - N
and single linkage) and three indexes of crisp cluster validity (Hu- Unlabeled Data Set
bert’s statistics, the Davies—Bouldin index, and Dunn’s index). We v

X = Lxl,xz,... ,xn}c%

illustrate two deficiencies of Dunn’s index which make it overly )
sensitive to noisy clusters and propose several generalizations of
it that are not as brittle to outliers in the clusters. Our numerical ‘
examples show that the standard measure of interset distance (the D
minimum distance between points in a pair of sets) is thavorst Tendency
(least reliable) measure upon which to base cluster validation X has clusters 2 — No : Stop
indexes when the clusters are expected to form volumetric clouds. J
Experimental results also suggest that intercluster separation ‘Yes
plays a more important role in cluster validation than cluster
diameter. Our simulations show that while Dunn’s original index @ ciustering )
has operational flaws, the concept it embodies provides a rich
paradigm for validation of partitions that have cloud-like clusters. UeM,
Five of our generalized Dunn’s indexes provide the best validation ~ —
results for the simulations presented. ‘
Index Terms—Cluster validity, Davies—Bouldin index, general- @ Validit N
ized Dunn’s index, hard c-means, modified Hubert statistic, single No ay
linkage. | usok? YT

Fig. 1. Exploratory data analysis.
|. INTRODUCTION

ET X = {z1,%2,---,2,} C 3? be a set ofn fea- _

ture vectors inp-space. Suppose the vectorsihhave Maywritel/ < X =X;U..- X;U--- X, whereX;nX; =0
crisp (or hard) labels that mark them as representatives ofvhenevet  j. When nol/(X) is associated wittX , the data
nonemptyclasses of objects, sa9 = {o1,02,---,0.}. Let areunlabeled In this case, there are three questions abbut
e; =(0,0,---, 1 ,---,0)T be the crisp label for clags1 < @as illustrated in blocks 1, 2, and 3 of Fig. 1.

\i” (), is called assessment of clustering tendendgndency

¢ < ¢. Then label vectors associated withi can be arrayed assessment attempts to determine whether the data have struc-
as the columns of ax » partition matrixU(X) = U = [u;]. ture in them or not without explicitly looking for clusters in
The valuew;;, is the membership of; in classi. Letting the data. The only crisp partition df atc = 1 is represented

Ui,1 < k < n, denote thekth column of U, we have uniquely by the 1-partition,, =[1 1 ---1], which asserts
Ui = e; & =z, is in classi. We denote the set of all hard 2 imes
c-partitions of X as that all n objects belong to a single cluster. At the other

extreme,c = n is represented uniquely by = I,,, then x n
identity matrix, up to a permutation of columns. In this case,
each object is in its own singleton cluster. Choosing 1 or

" ¢ = n rejects the hypothesis that contains clusters. See Jain
Z wi, > 0 VL} (1) and Dubes [1] or Everitt [2] for formal and informal treatments
P of assessment prior to clustering.

(), is called cluster analysis There are many models
and algorithms for clustering based on crisp [3], fuzzy [4],
probabilistic [5], and possibilistic methods [6]. We use the
well known hard ¢c-means(HCM) and single linkage(SL)
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generalizations of an index due to Dunn [7]. The main purposstimate ot:,,,x. For example, in an image of sizex n, cyax

of the paper is to propose generalizations of Dunn’s indexas)l be much smaller than/mn.

and show via numerical experiments that they provide a moreAt first glance, it seems like the criterion that defines

accurate assessment of partition quality than the original indelasters for anyC should be able to rank the partitions it

does. identifies. However, it is well known that even the global
Clustering algorithms are functiofs X — R, whereR  extremum of objective functions such as for HCM can

is the range o€. When the output of is justa crisp partition lead to very unrealistic partitions of (see [3, p. 220] for an

(SL, for example),R¢ = Mucn. Many clustering algorithms example of this). Moreover, some of the intuitively desirable

produce outputs besides partitions. The most common examjpteperties that we want a partition to have may not be captured

is a second set of parameters calp@int prototypegor cluster by a functional that is easily optimized. These are the two

centers)V = {wy, - -,v.},v; € R Vi. For example, HCM most compelling reasons for introducing crisp cluster validity
is defined jointly in the paired variablé#’, V), and for these functionals.
cases,R¢ = My X RP. Validity functionals V: Dy — R, Dy, denoting the domain

Let P = {U; € Myen: @ < i < N} denoteN different of V, are used to numerically rank; € P. Dy is usually (but
partitions (with or without extra parameters such¥@sof a not necessarily) chosen to match the rang€ Py = R¢.
fixed data setX that may arise as a result of: i) clustering When Dy, = M;.,, we call V a direct measurebecause it
with one algorithmC at various values of; ii) clustering X assesses properties of crisp (real) clusters or subsefs; in
over other algorithmic parameters @f iii) applying different otherwise, it isindirect
{C;} to X, each with various parameters; or iv) all of the There are two ways to view, and hence, two ways to

above. The general situation can be represented as follow@pproach the problem of how to define the best partition of
X. First, it is possible to regar@ as aparametric estimation

U=CA{X: (pir,piz,pix), i=12- M (2 methoq U anq any additic_)nal parameters su_chvasi;n HCM

are being estimated /using X. In this caseV is regarded as

a measure of goodness of fit of the estimated parameters (to a

true butunknownset). WhernD,, = M,,.,, x other parameters
N e’

C

where {p;;} are thek; parameters of algorithnC;. For

example, the parameter list for HCM i& = number of o e.g. VERP
clustersT = maximum number of iterations: = tolerance for the testV performs is still direct. The second interpretation of
termination;||«||.4 = norm for distance calculationt ||e;: = C is in the sense of exploratory data analysis in unlabeled data.

norm for error calculations¥, = initial centroidg.The When) assesses’ alone,V is interpreted as a measure of

handful of partitions that you can feasibly generate for dhe quality ofU in the sense of partitioning for substructure
unlabeled data set is a function of the algorithms you (€xploratory data analysis).
choose to use, each of which is itself a function of its
parameters.

Thg only guaranteed common denominator of the algorithms || The HARD -MEANS CLUSTERING ALGORITHM
{C.} is the parameter, the number of clusters to choose. . . )
Moreover, for a fixedX, ¢ is the most important parameter e Will use HCM to generate partitions ot in Mycx,

in the sense that other parameters of the algorithm really ha® We describe the batdard c-means(HCM) model and
what might be called second order effects Gncompared algorithm.Batchhardc (or k) means is the algorithm described

to the effect of changing the number of clusters in the datg. ToU and Gonzalez [8, p. 94], or by Bezdek [4, p. 55].

That is, it is clearly more important to be looking in the righ{“:OmcUSion sometimes aris'es both over the use _iufstead'of
solution space (withir) than it is to be comparing partitionsk* and because many writers refer to sequential versions of

acrossc becausec specifies the number of clusters to lookhis procedure simply as-means, dropping the word adaptive

for, while the other parameters control the search for theSgSeduential. The HCNhodelis the constrained optimization

substructures. Thus, the most effective strategy for clusterind’foPlem
to first decide what seems to be the most reasonable estimate of
the correct number of clusters by choosing @reand fixing {

all of its parameters except This results in the problem most min
AY)

JL(U,V: X):ZZuzk||:ck—vz||f21} 4)
often called cluster validity: given k=1 i=1

P ={Ui() € Myen: Uilc) = Ci (Xi(e:piaPik))i here 17 e Myen,V = (w1,v9,--+,v.) is a vector of
fixed

fixed (unknown) cluster centers (weights or prototypas),c R?
¢=2,3,"", Cmax} (3) for 1 < i < ¢, and||*||4 is any inner product norm
(||=||3 = =¥ Az, A positive definite). Optimal HCM partitions
find thebest valuefor ¢ by examining eaclt/;(c) in P. There of X are taken from optimal pairgU,V’) that solve (4).
is little guidance in the literature aboat,... A rule of thumb Approximate solutions of (4) can be often found by the HCM
that many investigators useds..x < +/n. But in many cases, algorithm which is based on first order necessary conditions
some auxiliary information may be available for fixing a betteior local extrema ofJ;.
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Fig. 2. Data setXso. Fig. 3. Terminal HCM clusters iX 3o for ¢ = 3 with two initializations.

Batch Hardc-Means (HCM) Theorem [4]:(U, V) € Muen  contains both specifications; the convergence theory is the
x R may minimizeJ; only if same in either case. All our computational examples use the
protocols shown in Appendix A, and the initial prototypes

1 ||z —vil|la < ||l®k — vj||a, . !
[ la < Iz = sl V for each run are: randomly selected distinct data points

Uik = J:]-vcm]#L ) from X
0; otherwise )
’ Using HCM as just described, we illustrate the need for
1<1<e1<k<n; (5a) g ‘

cluster validation by a simple example. Fig. 2 scatterplots a
(wir )2k Z T data set named 3, with n = 30 points in 2.
! You may agree thakK 3o hasc = 3 compact, well-separated

NIE

= k=L = TulXs 1<i< 5b : !
Ui=""% =T a0 <i<e (5b) clusters of ten points each. We call these three visually
T . . .
E (i) attractive clustersX;, X5, and X3 in Fig. 3, where we have
k=1 marked the points in each cluster with a different symbol and

Singularities, manifested as ties in (5a), are resolved ar@eptured them with a crisp boundary. In other words, Fig. 3

. . . orresponds to the (visually) correct crisp labeling X%,.
trarily. Equation (5a) shows that HCM produces crisp parti- " ; L S .
tions of X by assigning all of the membership of eagh to Yhe partition of X 55 corresponding to the labeling in Fig. 3 is

classi when prototypey; is nearest to it. The second form 1.1 0.---0 0---0
for w; in (5b) emphasizes that it is simply the mean vector of . 0---0 1---1 0---0
the points currently in crisp clustér(n; = X7_, u; is the U'=10...0 0---0 1---1

number of points in théth row of U—that is, the number of
points in theith clusterX; in X).
Many validity indexes use the sample means of each subsetWe processed 3, with HCM six times using two initial-
in crisp partitions of the data, even when the clusteringations each for: = 2,3, and 4. Fig. 3 shows the terminal
algorithm does not explicitly produce them. For convenienadusters ofX 3, obtained by HCM at = 3 from two different
we shall refer to the construction of these vectors from (5b) aimdtializations. In both cases HCM quickly terminated at the
any U in My, asV(U). This notation indicates that the’s  visually correct partition, i.el/s1 = Us e = U* at (5). Here
from (5b) are cluster means, and that they can be compuiéd; is a c-partition obtained from initializatiory.
from (associated with) an¥/ in My, and not just the HCM  Fig. 4 shows terminal clusters obtained by HCM witk- 2
partition constructed from (5a). and 4 using two different initializations for the prototypes at
The HCM algorithm is based on iteration through theach of these values. For= 2, X, and X3 merge to form a
necessary conditions at (5). This is often callternating single cluster in partitiod/, ;. But in partition U/ » X; and
optimization (AO) as it simply loops through one cycle of X; are merged instead. Fer= 4, one initialization of HCM
estimates forV,_; — U, — V., and then checks$|V, — leads to splittingXs into two clusters with five points each in
Vi_iller < €. Equivalently, the entire procedure can beartitionl, ;, while the second initialization leads to splitting
shifted one half cycle, so that initialization is done 6@, X, into two five-point clusters iU/, ».
and the iterates beconié_, — V, — U,, with the alternate  Now imagine that, instead of being data®¥, unlabeled
termination criterion||U; — Ui—1]|ler < e. The literature data setX s is, say,four-dimensionalln this case you cannot

N S~ SN~
X1:1-10 X3:1-20 X3:21-30
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Fig. 5. Intercluster distance for single linkage.
Uz, Ugn

SL by computingd;; as the Euclidean distance between
andzxy, i.e., dj = |lz; — || = (/2T 2,1 < G, k < n. Next,
let the power set of? be denoted byP(R?), and leté denote

s g@ any positive semi-definite, symmetrise distanck function

o on P(R?) x P(R?). Different linkage models correspond to

* . - different choices fors. For single linkage, this measure of
. 2 A */)  the distance between two subsefsand 7' of X is the

standard distance between a pair of sets, Vig.(S,7T) =

Fig. 4. Terminal HCM clusters iX 39 with ¢ = 2, 4 for two initializations. .
min {d(z,y)}.

examine a scatterplot of the data, so there is no way to knc:&gf_ _ )

how many clusters to look for, or which points belong to which Fig. 5 illustratesssy. (S, T') for two sets of three points each.
group. This is true even if the data really have three compd€@k at the pointz in Fig. 5. If z is included in S or T,

and well-separated clusters. Suppose application of HCM (S, T") will be roughly halved. This should convince you
any other crisp clustering algorithm) to this hypothetical datRatds.(S,T) is not a reliable measure of the distance between
set led to five partitions like those in Figs. 3 and 4. How wilfets when clusters are being sought, because the insertion or
you choose “the best” one? The wrong choice from amorﬁ@letion of a Single pOint iR or T can radica”y alter its

the partitions shown in Figs. 3 and 4 would lead to a Ver\g,alue. This measure ignores central tendencies in the data,
bad interpretation of the data. This is the problem we attafgcognizing instead the extreme behavior of bridges (inliers)

in this paper. or outliers. This instability to what may be a very small number
of points in the data is one reason that Dunn’s index can give
lll. THE SINGLE LINKAGE CLUSTERING ALGORITHM misleading validity results.

Now we can describe the SL algorithm. To begin, put n

f X . . . so each data point starts out in its own clustér = I,.
a noniterative method called single linkage [1]. This method IS mputeD,, = [dji] = [d(z;, 1) = dsi(z;, 1)), then x n

based on a local cqnnectlvny criterion, an.d IS u-suallly regardg mmetric distance matrix for the vectors (which are clusters)
as a graph-theoretic model, in contrast with objective functh X. In steps beyond thisD, denotes the: x ¢ symmetric
. C

models such as HCM at (4). Instead of an object data ix for the cl . _ o
X, SL processes sets ¢h?) numerical relationships say S(ggtance matrix for the clusters i, D. = [ost.jx] =

] . ' 8s1.(X;, Xx)], where X; and X, are part (or clusters) of the

i;’r’;]]k’) et:?twfeenrziléi; f tﬁgjif(tt?ar:?t)c:eviﬁinctﬁ ?)L?')é ttha ?]:ZtZ;eTh urrentc-partition of X. Here are the steps that are repeated
"jk TP . n objeg X to termination atU; = 1, = X, i.e., when all points are in
related in the sense of some binary relationt is convenient
; . .~ one cluster.

to array the relational values as én x n) relation matrix i .
R = [ri] = [plo;, 01)]. We often call matrixR the relation, 1) SearchD. for. the nearest pair of clusters iN; find
even though functiop is the actual relation. Many functions (s,¢) = argmin {ésr.(X;, X))} Call the distance cor-
can convert object data into relational data. For example, CgEk o
every metric (distance measuré)on R x RP produces a responding to this palr-of indexeix.
(dis)-similarity relation matrixD = [d,] = [d(x;,;)]. For ~ 2) MergeX, and X, labeling the new clustex’s;.
dissimilarity relations, low values indicate similar objects, 3) Update D. by deleting the rows and columns corre-

The second method we use to generate crisp clusteYsiin

higher values more dissimilar ones. sponding toX, and X;, and adding a row and column
Single linkage is a special case of thequential agglomer- for the distancessy. (X, Xy ), ¢ # st, between the new
ative hierarchical neste¢SAHN) model, which is the general cluster X,; and the other(c — 2) clusters(X; U ..U

name for a family of crisp clustering methods based on  X¢) — (X5 U Xy) in X,

the following approach. Our description is limited to the 4) Repeatsteps 1-3 until=1,U; = 1,, and alln objects
case where similarity is defined by distance. Giv&n = belong to the single clusteX.

{x1,%2, -, 2} C RP. Choose a (metric) measure of dis- During this procedure ties are resolved arbitrarily. SL finds
similarity d: R®? x ®P — RT between pairs of points in at mostone partition ofX at each value of. U, and the level

P x RP. Each of the object data sets used in our numericaf similarity at which mergers occur is recorded at each step.
examples was converted to relational data for submissionRmom this information it is customary to construct a visual
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1 2 3 4 5 6 7 8 9 HCM and SL are known to work best on data structures that
o o6 0o 0o 06 0 0 0 o have very different properties. HCM with the Euclidean norm

performs well when clusters are roughly hyperspherical, well
0.50 separated, and have nearly equal subsample sizes. SL likes to
find well separated stringy clusters such as points along a pair
of parallel roads. This behavior is discussed in [3, ch. 6]. We
1.00 mention this to advertise the fact that our choice of clustering
1.60 algorithms was quite deliberate. The two algorithms chosen
* /) + may find very different partitions of the same data at the same
1.85 ¥y s value for¢. This is good when looking for ways to validate
2.06 {--------- \—’— partitions, since useful validity measures should also point to
bad partitions when an algorithm finds them.

v Set Distance dmin

Fig. 6. Single linkage dendogram of clustersRg (and Xyg).
IV. THREE CLUSTER VALIDITY METHODS

display of the results in the form of a dendogram such as theHow many validation methods for crisp partitions are there?
one in Fig. 6, which was made by applying SL to the dafBhirteen years ago Hubert and Arabie began a paper on this
set Ry listed in Appendix B. These relational data are thwpic by saying “We will not try to review this literature
Euclidean distances between pairs of points in the datXget comprehensively since that task would require the length of a
shown in Appendix B. Fig. 6 exhibits several features of Simonograph” [9, p. 193]. Since it is not feasible to attempt a
clustering. First, the clusters are nested—once merged, poicwsnprehensive comparison of our generalized Dunn’s indexes
are never split. Second, it is not necessarily the case thawith many others, we have instead chosen three of the better
unigue partition of the data will be produced at each valdaown indexes for this purpose. These three measures have
of ¢. In Fig. 6, for example, points 5, 6, and 7 are mergecther different properties and rationales, and should serve as
at the same time because their distances are all equal to dheadequate basis for evaluating our generalizations of Dunn’s
minimum (é,,;, = 0,50) at this step. Consequently, the firsindex.
merger apparently reducesfrom ¢ = 9 to ¢ = 7. In the Modified Hubert’s statistic (MH):Hubert's I" statistic [9]
implementation of SL, however, this will happen in two stepassesses the fit between the data and any crisp structure
at the same merger level, so there will be a partition &t8, imposed on it byU in My.,. Basically then, the rationale
but it is unique only up to the tie-breaking rule used. This is amderlying this measure is a statistical goodness-of-fit test.
important point for validity considerations, since the partitionset P = [p;;] be ann x n proximity matrix; p;; is the
of X atc = 8 andc = 7 are obviously different, but are equallyobserved proximity between objectsand j (for example,
valid from the point of view of the internal SL criterion.  p;; = ||z; — ;|| in any norm).Q) = [g;;] iS ann x n matrix

The cut line shown ab,,;,, = 1.6 illustrates the general defined in terms of any hardpartition U of X
situation at any value of the minimum set distance: 3 for
this value ofégy,. All clusters are merged at 2.06, terminating
SL atU; = 14. Since dendograms are useful only for fairly 1QUij = i = {0, Uki = Ukj = 13 class k } (6)
small values ofx, we will not show outputs from SL this way 7™, otherwise
in the numerical examples.

Now question()s; arises for the clusters associated with , o _ _ _ ,
Fig. 6: which partition of the nine objects is most valid? Hubert's I' statistic is the point serial correlation coeffi-

The internal method of validity associated with SL is t&i€nt between any two matrices. When the two matrices are
look for the largest jJUMpAS,;, in values of§,. This is Symmetric,I can be written in its raw form as

taken as an indicator that thgreviousvalue of ¢ is most

natural, on the presumption that SL works hardest to merge el n

clusters that cause the biggest jump. Note that the biggest _ o

jump can be severely influenced by the presence of a few I(E QW) Z Z Piittii- (7)
outliers. In Fig. 6, successive jumps are 0.50, 0.50, 0.85,
and 0.21. The largest jump, (0.85 from= 3 to ¢ = 2)
identifiesX = {1,2} U {3,4} U {5,6,7,8,9},c = 3 clusters In its normalized formI" becomes the sample correlation
atémin = 1.00, as the most natural ones. Fig. 11 in Appendixoefficient between the entries &f and @

B seems to confirm this visually, although a case can be made

that ¢ = 2 is just as natural. The real point is that, just as in

HCM, the criterion that helps find the clustefAd,.;, here, ) ]l
Jy for HCM) may or may not also indicate the best ones L'(2, Q(U)) = § 7~ S5 (pis — D)@ — D/ (srsq)
amongst various candidates generated by the algorithm. This i=1 j=i+1l

is the reason cluster validity is an important problem. (8)

i=1 j=i+1
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where M = n(n — 1)/2 is the total number of entries underclustering ofX at ¢ = n. Because of this, it is not thealue

the double summation, of Vmur or V- that is used to choose rather it is the
nel n nel n change in the valuas a function ofc that is examined. For
p= % Z pij; = % Z Z Gij; well separated clusters, a sharp knee (cf., Fig. 10) is expected
i=1 j=itl i=1 jeitl at the partitionU;(c) which contains the number of clusters
] nolo» that provide the best fit to the data as measured by this statistic.
sh=17 > > pi -7 and This strategy is like examination ahé,,;, as discussed in
i=1 j=i+1 Section Il in connection with validation of SL partitions.
;o Davies—Bouldin Index:This index is a function of the
3(21 = Z qu -7 ratio of the sum of within-cluster scatter to between-cluster

i=1 j=i+1 separation [10], and like Hubert's measure, it also uses both the
clusters and their sample meaW$l). Since scatter matrices

For the normalized index1 < I' < 1. If P and(@ are not o
. . . depend on the geometry of the clusters, this index has both a
symmetric then all summations are extended overh#ntries - . . , L
statistical and geometric rationale. Define tithin ith cluster

andM = n?. [ measures the degree of linear col reSIoonOIengceatterand thebetweenith and jth cluster distanceas
between the entries d? and (). A positive value ofl" close to J
1 indicates tha®’ and( are (more or less) linearly correlated.

For cluster validation we can ug@ or [* to test whether g - 1 1 Ha 11
the association betweeR and () is unusuallylarge under the e m Z I = vill2 (11)
random label hypothesiéRLH), which is: TeX;

RLH: All permutations of row (and column) labels@fare and 1t
equally likely = .

We want to test whethd? or I* can be obtained by a chance dijt = 221 |05 = s, =i —wille. - (12)

labeling. Although the value df or " gives some information
about the match betwedh and (), the distribution ofl" or I
under the RLH is needed to decide whettygl/) matches the
actual proximity matrix unusually well. The distribution bf
or I’ can be found by computing it for all! permutations and
then finding its histogram. But this method is computational

prohibitive. (For example, a data set with ten objects yiel 0t the vectors in class to the centroid of class. Si o Is the

3628800 values!) e
. . L . ... square root of the mean square error of the points inithe
Other alternatives include approximation of the distribution . : .
luster with respect to the centroid of thth class, and so

of I' or I' by Monte Carlo .m(.athods, and computation 0on. d;;+ is the Minkowski distance of ordet between the
the mean and standard deviation under the RLH, assuming ™/ ) . i . .
that the underlying distribution is normal. For the secon%‘gntro'ds which characterize clusterand j. Next, define
method, of course, an explicit expression for the moments are Si (U + S, (1)
required. For these reasons, a more tractable form of Hubert's R; #(U, V(U)) = max { eV J:4 } (13)
statistic, called thenodified Hubert's statistiéMH) is usually B dij (V)
used for cluster validation. The modified statistic abandons ) ) ] )
the goodness of fit strategy, and replaces it with a geometrid\OW the Davies—Bouldin(DB) index can be defined as
method that is based on intuitively natural principles. .
Let L(s) = k if the ith object is in thekth cluster. Let %4 _1 ‘
|lv; — w;]|» be the Euclidean distance between the cluster VoB.t(U, VIU) = C;Rz’th)' (14)
centersy; andwv; in V(U) computed by (5b) for any/ in -
Mycn. Now define then x n matrix Q(U, V(U)) as It is geometrically plausible to seek clusters that have
QU VW)) =[q1 w0 ] minimum within-cluster scatter [the numerator in (13)] and
’ (LU, . maximum between-class separation [the denominator in (13)],
=lllvLey —vrllel, 67 =12,---n 9) 50 the number of clusters that minimizesVpg . is taken as
Using (9) instead of (6) in (7) and (8) yields the optimal value ofc. Vpp .+ is not defined onl,, when
_ _ - ¢ = 1. For well-separated cluster¥pg ., is expected to
WVaur (U, V(U)) =I(P,Q(U,V(U)) [Hubert's modified  gecrease monotonically asncreases until the correct number
raw statisti¢; and (10a) of clusters is achieved (howeveVpp 4¢(m) = 0). Vbp gt
Vut (U, V(U)) =I(P,Q(U,V(U)) [Hubert's modified Is easier to use thaniur or Vumr begause flndmg- the
normalized statistic (10b) minimum of (¢ax — 1) values is less ambiguous than finding
a knee or sharp change in slope in the piece wise linear graph
It is known from computational experience that these irthat connects them.
dexes tend to increase with an increasecofThey are not  Dunn’s Indexes: Dunn’s index (Di$ based on geometrical
defined onl,, whenc = 1 andV,;;;+(I,,) = 1 for the trivial considerations that have the same basic rationale as the DBI in

For a givenU in My,.,,v; is the vector at (5b)g, ¢ > 1,q is
an integer and, ¢t can be selected independently of each other.
Si.q 1s thegth root of thegth moment of the points in cluster
¢ with respect to their mean, and is a measure of dispersion of
e points in clustei. S; ; is the average Euclidean distance
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TABLE |
Four CRrisp CLUSTER VALIDITY INDEXES
Validity Index Name Variables Oon{2a3,.., cmax}
Modified Hubert Statistic (Raw) Vamr (X; U, V(U) Look for sharp knee
Modified Hubert Statistic (Norm.) VMHI" (X; U, V(U) Look for sharp knee
Davies-Bouldin VDB’qt (X;U.V(U)) Minimize
Dunn's CS Index V5 (X;0) Maximize

that they are both designed to identify sets of clusters that dodowing property is satisfied: for al}, ¢, and» with ¢ # r,
compact and well separated [7]. To understand this inde& letany pair of pointse, y with £ € X,y € conv (X;) are closer
and7 be non-empty subsets &, and letd: R x R — R*  together as measured bythan any paim, v with u € X, and
be any metric. The standard definitions of diameterA of v € conv (X,.), whereconv (S) is theconvex hullof S in R?.

S and theset distance betweenS and 1" are Dunn’s index for CWS clusters is obtained by replacikig
A in (17) with conv (X;) as
(s) = wa {d(z,9)} (15)
x.Yycs
6 (X, X;
and Vp(U) = max ¢ min (X, conv (X;))
. ~~ )] =~ max {A (X3)}
8(5,T) = win {d(z,y)} = bs.(5,T). (16) tgige | 1gyze |
5er 4o

In (16), we emphasize that the standard distance between Dunn proved that{’ can be partitioned into CWS clusters
and 7 is just the distance illustrated in Fig. 5 in connectiofelative tod if and only if max {Vj(U)} > 1. Vy, sets very

with our discussion on the SL algorithm. For any partition ) _ U€Myen
Ues X=X, U - X;U-- X,, Dunn defined theseparation attractive geometrical requirements for good CWS clusters.
index of U as However, estimation ofonv (X;) for evenp = 2 is very

difficult computationally, sd/, finds little use in practice and
will not be considered further here. Table | summarizes the

Vp(U) = min min M (17) indexes discussed in this section.
1\<Y</ 1<5< &£ (AL}
St Sysc
J# 1<kze V. GENERALIZATION OF DUNN'S INDEX

The quantityé(X;, X;) in the numerator o is analogous ~ The numerator and denominator %, are both overly
to d;;. in the denominator ofVpp 4; the former measures sensitive to changes in cluster structure. We have already
the distance between clusters directly on the points in thkistrated the problem fowgr, in Fig. 5: this measure of
clusters, whereas the latter uses the distance between tidgrset distance can be dramatically altered by the addition or
cluster centers iV (U) for the same purpose. The use ofleletion of a single point in eithe§ or 7. The denominator
A(X}) in the denominator of (17) is analogousdg,, in the suffers from the same problem—for example, adding one
numerator of¥pg ,;; both are measures of scatter volume fapoint to S can easily scale\(S) by an order of magnitude.
clusterXy. Thus, extrema obp andVpg 4+ Share roughly the Consequently)’, can be greatly influenced by a few noisy
same geometric objective: maximizing intercluster distancpsints (that is, outliers or inliers to the main cluster structure)
whilst minimizing intracluster distances. Since the measuré#s X, and is thus very sensitive to what can be a very small
of separation and compactness in (17) occur “upside dowfiinority in the data. However, (17) provides a very general
from their appearance in (133rge values ofY’p correspond to paradigm for defining cluster validity indexes. Appropriate
good clusters. Hence, the number of clustérthatmaximizes definitions of 6 and A lead to validity indexes suitable for
Vp is taken as the optimal value ef Vp is not defined on different types (e.g., clouds or shells) of clusters.
1, whenc¢ =1 or oni, whenc¢ = n. Our objective in formulating generalizations of Dunn’s

Dunn calledU compact and separate(CS) relative tod index here is to ameliorate its sensitivity to aberrant data
if and only if the following property is satisfied: for af, ¢, for the case when clusters are expected to form volumetric
and » with ¢ # r, any pair of pointsz,y € X, are closer clouds (as opposed to boundaries, shells or surfaces) in the
together (with respect td) than any pairu, v with w € X, feature space. There are several principles that can be used as
andv € X,. Dunn proved thatX can be clustered into aguides. Firstall of the datashould be explicitly involved in
compact and separatedpartition with respect tal if and the computation of the index. And second, most of the better
only if max {Vp(U)}>1. Dunn defined a second indexindexes also use the cluster me&f(@/) in their definition (cf.,

LB\Z/ Table I—only Dunn’s index does not). Usifg(U) implicitly

of separation focompact and well separatd(CWS) clusters. involves all of X, and further insulates indexes from being
He called a partition CWS with respect #af and only if the brittle to a few points in the data.
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Vp can be generalized by using other definitions for theses the average afl interpoint distances betweehand T
diameter of a set at (15) or the distance between setst@tbe more effective than eithdis, A or Vs, a.
(16). Let P(R?*) denote the power set dk?,§; denote any &, depends implicitly on every point if and7” throughws
positive semi-definite, symmetricsét distanck function on andwy, so the effect of adding or deleting points to or frgin
P(RP) x P(R?), andA; be any positive semi-definiteliam- or 7" is ameliorated by averaging. As the number of point§'in
eter) function on P(R?). The general form ofp using é; or T increases, averaging will decrease the sensitivit§,db
and A; is a few aberrant data. Moreovef, has a lower computational

. overhead tham; — 8. &5 is a set distance that combines the
Vap(U) =V, (U) averaging concept af; with the prototype idea of..
61 — b5 can be used as set distance functions, but none are

~ min ¢ min (SZ‘(XZ X;{) . (19 metrics onP(X). The sixth. set distance we propose is the
ol Ihwafil UGS {A4;(Xw)} well known Hausdorff metric [12]
t#s 1<k<e

66(57 T) = 6Hausd0rff(57 T)

Let .S andT be finite non empty elements #f(%?), and let — max {8(S,T), 8(T, S)}

d: ®P x R? — Rt be any metric. Five set distance functions

that can be used in (19) are where
) 8(S,T) =max {min {d(z,y)}}
= 6o = = ~ S~
61(S,T) =b6min(S,T) musl {d(z,y)} = 6s.(5,T) pagdin s
xe .
Yer 8(T,S) =max {min {d(z,y)}}. (25)
(20) pregpned

62(5,T) = bnax(9,T) = I\@{d(x’ Y)} = éer(S, 1) We expectds to be relatively insensitive to noisy points. It
zcs

yer is easy to see that when the same maeifriis used in (20),
(21) (21), and (25)6; < ¢ < 6-. Notice also that each of these
functions can use any metrik so there are an infinite number

63(S,T) = bavg (S, T) |S||T| > dlz,y) of realizations for each one.
Zg; A(S) at (15) used by Dunn is the standard diameter of
— 5aL(S,T) 22) the setS. As previously mentioned, this makes(S) very
AL sensitive to noisy points. We repeat (15) as (26), now indexed
64(8,T) = d(vs,vr) for convenience, and then give two additional definitions
where for functions related to diameters that are useful in defining
v :% Z z measures of cluster validity
q lies Ay(S) =diam (5) = wax {d(z,y)} (26)
an 1 Z (23) Z.Yycs
VT =5 )
s Aa(8) = G ST =Ty 5| 5 > d@y) 27)

TYes
65(S,T d( d( w#y
S T) = 575 77 |T| D dzvr)+ ) diy.vs) S d(z.)

xes yeT
(24) A?’(S) =2 $€S|S|
In (23) and (24),vs and vy are computed with (5b).
Functioné; at (20) is the same as (16). Functiofsand §; where
correspond, respectively, to the set distance functions used in ol :L Z .
thecomplete linkag€CL) andaverage linkag€AL) clustering |5] TS
algorithms [1]. WhenVsa uses eitheré; or 6, it may be (28)

strongly affected by noisy points because neithemor é

uses all the points itf and7’. Although single and complete Fig. 7 depicts the geometric meaning of these three set
linkage share this property, complete linkage is often preferrddnctions on the set of five data points i the coordinates
Sneath and Sokal [11] assert that complete linkage generafywhich arex; = (0,1),z2 = (2,0),2z3 = (3,0.5),24 =
finds tight, hyperspherical, clusters that join others only wit{2.5,0.75), andz; = (3.5,5). Distances in this example are
difficulty and at relatively low overall similarity values. JainEuclidean. Fig. 7(a) shows the distanke = 5.31 from z; to
and Dubes [1] state that complete linkage produces maee. This is traditionally called the diameter of the set of points,
useful hierarchies in many applications than the single linkaget it is not clear what circle it would be the diameter of, for
method. These remarks encourage us to speculatéthat there is no “centering” concept attached to the calculation in
will be more useful for validation thas, o when clusters (26). A circle of radius A; centered at any point ik will
form volumetric clouds. Moreover, we expebk,a, which capture all of its points. The circle of diametay centered at
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(a) lllustration of the set function&; and Az. (b) lllustration of

that solve (26) may not contain any other pointin
Also shown in Fig. 7(a) ig\; = 3.79, theaveragediameter s 1 \ve can expect about 68.2% of each 200 samples to be

of the five circles centered at the mean veater (2.20,1.45)
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Fig. 8. Schematic illustration dlormal 4 x 4.

Fig. 7(b) shows the ten circles that are associated with the
ten distanceqd(x,y)} in (27), which is the average of the
ten diametersdefined by circles centered at the midpoint of
the vectors{(z — y)}. Division by 2 to correct for symmetry
in d(x,y) in (27) is not doneso that the ten radii computed
in the numerator are diameters instead. As with (26), this set
function does not have a centering concept, so it is difficult to
draw the circle with diametea, = 2.90 on Fig. 7(b).

Of the three measures of set si2g is probably the most
reliable for cluster validation because it is the average of the
diameters of the smallest hyperspheres (centered) dahat
include the points in the cluster. As seen in Fig. 7(a), the
hypersphere of diameteh; centered aw may not contain
all points in the clusterA; and A, do not use the cluster
centroidz. Of the two, we expectA; to work better when
7 is near the middldm in Fig. 7(a)] of the line joining the
two farthest points in the set. In this case the hypersphere with
diameterA; centered at may contain most of the points in
the set. However, in the presence of outliers (noisy points) this
is not likely to happen and\, and A3 will be more stable than
A; because averaging has a smoothing effect on both of these

measures of dispersion. Our intuition based on the geometry
of Fig. 7 is thatAz will provide the best performance, for
tight, well formed clouds of points; and for this cagk, will
probably be the least effective measure of set size.

VI. DATA SETS AND COMPUTATIONAL PrROTOCOLS

Data sets: Six data sets are used in our examples. First we
considerX 5, plotted in Fig. 2. Second, we will udes, the
ubiquitousn = 150 points inR* that are divided inta: = 3
(physically labelel clusters of 50 points each [13]. Our third
data set contains = 800 points consisting of 200 points each
drawn from the four components of a mixture«wf 4,p = 4-
variate normal distributions. The population mean vector and
covariance matrix for each component of the normal mixture
were 11; = 3¢; andX; = Iy, = 1,2,3,4. We call this data
setNormal 4 x 4. Fig. 8 depicts whaNormal 4 x 4 might
look like if it could be seen in three dimensions and if the
sampling of each component produced very compact clusters.
Because the standard deviation of each population component

within one unit of their mean.

that pass through these five pOintS with radii as in the numer-To Study the efﬁcacy of validation with these indexes, we
ator of (28). The multiplier of 2 in (28) is used to convertransformedNormal 4 x 4 three times, creating data sets
each radius to a diameter. Fig. 7(a) should convince you tiyl, X, and X4 from it by subtracting, respectively, 1, 2,

A; = Ag only if the data are symmetric with respect to ther 2.5 from every value ifNormal 4 x 4. This moves the

mean vectory.

clusters inNormal 4 x 4 successively closer together, creating
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TABLE I Av AV
T T MHT MHT
VALIDITY INDEXES FORUsrcm PARTITIONS OF X3¢ "
e 1.00
i:U 5 3 7 ] 9 1 621
I 4.1 o 60 | 0.95
63.70 163.75|63.76] 63.82 63.83 | 63.84 | 63.85 58 [
2 0.90
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 56 !
048 10631079087 082) 088/ 082 54 + : 0.85
052 | 0.12 0.041 004 0041 004! 0.04 52 [ 0.80 -
50
1.24 1049 ] 0.28 | 0.28 | 0.28 | 0.21 | 0.21
48 v } —»c 0.75 . A . .
0.89 103110171017 017 0.161] 0.16 2%}4 5 6 7 8 9 10 2{}}4 5 6 7 8 9 10
0.79 1029]0.15]0.15] 015+ 0.11 | 0.11
0.84 1030 0.16| 016 0.16 | 0.14 | 0.14 Fig. 9. Plot of Vyinr and Vy e for Unem of Xao.

1.01 0.36 | 0.22 1 0.22 | 0.22 | 0.21 | 0.21

1.14 0.26 | 0.09 1 0.09 | 0.09 | 0.09 | 0.09

2.72 1109|063 063 063 0.47 | 0.47 TABLE 1l
. = : : . : . VALIDITY INDEXES FOR Uy, PARTITIONS OF X 30
1.95 | 0.69 | 0.38 | 0.38 | 0.38 | 0.34 | 0.34
1.74 {063 | 032|032 032 025} 025 c |2:U 1:Usa| B 6| 7 8 9 | 10
53.77 6370 | 63.70]63.86| 63.86| 63.02| 63.04| 6304
1.85 | 0.66] 036|036 036 0.32 | 0.32 Vur
085 706 100|100 | 1,00 | T.00 100 1.0
2.23 | 079! 048] 048] 048 | 0.47 | 0.47 Varr ©
035 6,48 036 1031 [0.27 [0.25 00T 1014
095 1022 008|008 008 0,08/ 008 s
PYMEYIN VYT 053 069 7081 1055 1053 1045 [037
226 | 090 052 052 | 0.52 | 0.39 | 0.39 u="p
by AN 200 194 143 095 001 [0.87 1050 044
162 | 057|032 032 032 028 0.28 21
by 172 T 0,85 103 [6.05 |068 | 068 | 048 041
145 | 053 | 0.27 | 0.27 | 0.27 | 0.21 | 0.21 31
IR T ) 103 7005 1067 1067 1046 10
154 | 0.55 | 0.30 | 0.30 | 0.30 | 0.26 | 0.26 Va 6 o4l
17511 8e 084 1037655 10.68 |0.68 1047 |0.
1.85 | 0.66 | 0.40 | 0.40 | 0.40 | 0.39 | 0.39 V51 0-41
Ve, 95 192 101 14376551091 |0.87 | 050 |04
by T14 112 148 [1.00 [1.20 [1T05 T086

2.72 232 11.75 {168 12.01 {1.15 {1.00
1.95 1.68 {1.75 {1.24 {1.55 {1.09 [0.93
1.74 1.67 {1.75 {123 {154 {1.06 [0.93

difficulty in finding good clusters as we move frof; to X.
This in turn provides a successively more difficult test for the
validation indexes.
Computing Protocols:The metric used in all our algorithms -
wherever a vector distance is called for is Euclidean distancg;
d(z,y) = ||z — y|| = /(x — y)T(z — y). Other protocols for
FCM are given in Appendix A. Single linkage was executed dy
specified in Section lll. Fobpp, 4, we usedy = 2 andt = 2 Vss 506
in all computations. Each column of Tables [I-VIl is computed;__ 235
by applying the 21 indexes to the same crigpartition of X.
A very important point to remember in the examples that
follow is that we show validity function outputs rounded to
only two significant digits to keep the tables to a reportablou again, did not have ties at six digit accuracy. For example,
size. Consequently, many comparisons we draw seem to ign@k# roundoff policy renders the values fo+ from ¢ = 4
what look like ties. Howeverthere were NO TIES in the to ¢ = 10 identical in Table IlI; there were slight differences
outputs at six significant digitso when we report an optimalat six-digit accuracy.
value for some index, it is always with respect to the original Vyar andV, ;¢ are expected to show sharp knees at 3,
values, not their rounded-off equivalents that appear in thad Fig. 9 shows that they both do. Téealeof a Hubert plot
tables below. is very importantin the assessment of Hubert knees. Almost
any set of values will have “well defined” knees as long as the
VII. NUMERICAL EXAMPLES vertical scale has sufficient resolution to show it. This visual
Example 7.1AX 3, with HCM: Table Il shows values of Subjectivity makes Hubert's method somewhat unrepeatable.

the 21 validity indexes for HCM partitions X3, at each ~ Vbs22 clearly indicatesc = 3, having a strong mini-
value of ¢ for ¢ = 2 to ¢ = 10. The partitions for columns at mum value of 0.18. Of the 18 generalized Dunn’s indexes

c = 2,3, and4 in Table Il are those identified d%; », Uz ; = {Vs,a, }—each of which is to be maximized—ten indicate
Uso = U*, and Uy in Figs. 3 and 4. the correct valuec = 3 while the remaining eight favor

In Table Il and others to follow the highlightethqld and ¢ = 2 (partition U5 » in Fig. 4). This happens even though
shaded entries correspond to optimal values of the indexethe visually correct partitiod/* of X3¢ shown in Figs. 2 and
The optimal values highlighted in the tables are determin&dis found by HCM atc = 3. In other words, these indexes
using theunroundedvalues of the indexes, which, to remindfail to solve the problem indicated by Figs. 3 and 4.

1.85 1.68 {1.75 11.24 {1.55 |1.08 ;0.93

3.44 2.23 2.32 [1.75 11.68 {2.01 {1.I5 }1.00

0.95 093 ;1.19 {081 {0.86 | 0.74 |0.61

2.26 1.93 j1.41 {1.35 {1.43 1082 {0.72

1.62 1.40 {1.41 {1.00 {1.11 {0.78 |0.66
1 1.45 1.40 | 1.41 1099 [1.10 0.76 [0.66
1.54 1.40 {1.41 {1.00 {1.11 }0.77 {0.66
1.85 1.93 {1.41 {1.35 |1.43 [0.82 {0.72
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TABLE IV

8.80

0.98

311

VALIDITY INDEXES FORUtrcsvi PARTITIONS OF Iris 8.60 VMI]f"
8.40
c 2 3 4 5 6 7 8 9 10 8.90 ! 094
v 72271 822 [ ®BO T 857 | 8.60 | 8.65 | 8.65 | 8.66 | 8.66 5.00 \ -
MHI - 10b
L 5 | 0.90
| 08308271685 055095 096 | 0.96 ] 096 | 0.56 7.80 ‘ Iris-HCM Iris-HCM
G471 0.73 h.84 08971 1.00 1 0.96 | 1.09 | 1257 1.23 7.60 (Table 4) (Table 4)
DB.22 i 7.40 4 ! — 0.86 . ‘
v, -V, | 008 g 008 T 0.06 [ 0.09 [ 0.10 7008 ] 0.06] 0.06 7.20 4 . \ ¢
7 1507 181 115 7070636637050 0.417635 7.00 ‘ 0.82 ‘
21 ; | 23{}}5678910 23{235678910
Va1 G857 0387033033024 031 0.19
Vy 050 034 0280287017 [ 0.14 ] 0.13 () (b)
Ver 054 10.36 1 0.30 | 030 | 021 [ 018 0.16
by 070 058 [ 037 | 0.37 | 0.28 | 094|090 95y 094, 4
6l MHT MHF
Via 0.20 | 0.14 ] 020 023 [ 0.17 | 0.14 | 0.14 9.0
7 SETS A T T4 T 143 T 1367054 | 665 a5 0.92
= 1.4 75 7! Iris-SL Iris-SL
Vag A0TT08ET0. 075 10557770477 0.44 co (rable 5) (Table 5)
Via 1793770781064 | 064 [ 040 | 0.32 | 0.30 . ’ 0.86 ) -
Veg 131 | 0.83 ] 0.70 | 0.70 | 0.48 | 0.40 | 0.37 75 v
- - ¢ c
Vs 17271347084 084 [ 0.63 | 0.54|0.45 7.0 . B 0.82 ‘
2{%45678910 23456%8 9 10
Vi G147 0.107T0.14 ] 0.16 [ 0.12 1 0.1077 0,10
300 {1741 1.01 ] 1.01 ] 096 | 0.66 | 0.46
Va3 (c) (d)
Vg 0897063 083705571 0.3570.34 | 0.31 Fia. 10. Pl . dv for T U i
3¢ ig. 10. ots ofV an i for Uncwm andUsg, of lris.
Vs 087 055045 | 045 | 0.28 | 0.23 | 021 9 M MHIL oM ST
Vs 0.93710597701497] 049710347 03871036
Vs 123 1004 059 | 050 | 0.45 | 0.38 | 0.32

that ¢ = 3. Consequently, the best value feris debatable.
Since clusters are defined by mathematical properties within
models that depend on data representations that agree with the
model, we take: = 2 as the correct choice fdris, because
what matters to an algorithm is how much cluster information
sequently, the minimum of, for ¢ = 2 (let us call it is captured by the numeric repre_sentation of opjects. Table IV
mab,) is much larger than the minimum & for ¢ = 3, shows that 16 of the 19 algebraic indexes indicate 2 for

say m38,. On the other hand, although the maximum ofiCM partitions of Iris, which in our opinion is the preferred

A, for ¢ = 2 (say m2A,) is greater than the maximumchoice. B o
of Ay for ¢ = 3(p3A,), their numerical values are such Both modnfled Hubert statistics in Tab!e IV have knee_s at
that(;m282/11200) > (m3da/amsly). Finally, note that the five ¢ = 4 (see_Flg. 10).. These are the only mdex-es that point to
indexesVy, — Vg, have fairly strong pointers to the incorrect ¢ = 4 in this experiment. Only two of the 21 indexes prefer
value forc. This illustrates that indexes can lead to the wrong = 3, the physically correct number of clustersliis . And
conclusion even for data sets SUCh)é.ﬁ) that have compact, all but two of the 21 indexes |dent|fy either= 2 (beSt choice,
well-separated clusters, and even when the preferred solutfdifl Perhaps the geometrically correct answerg er3 (next
is among the candidates iR. best choice, and the physically correct answer).
Example 7.1BX 5, with SL: Table lll shows values of the Example 7.2B: Iris with SL:Table V lists the values of the
21 validity indexes for SL partitions aK s, at each value of 21 validity indexes on Sle-partitions oflris. HCM and SL
cfore=2toc = 10. find slightly different partitions of Iris at every value of
Columns in Tables Il and Il for = 2,3, and4 are identical ~ Vuur in Table V points toc = 3, but its normalized form
because HCM and SL find the same partitions at these vall@ints toc = 7 (see Fig. 10). Of the 19 algebraic indexes,
for ¢. For ¢ > 3, the two algorithms find different partitions,only Dunn’s index does not point te = 2 or 3; instead, it
so the values of the indexes are in many cases quite differéfo chooses = 7. Values ofV, 1 acrossc are so close to
too. Examples 7.1A and 7.1B allow us to conclude that HC®ach other for alt’s exceptc = 2 that we might well call this
and SL often find the same (correct) partitions 6fwhen test inconclusive (the same holds fgp). Of the 21 indexes
its clusters are relatively compact and well-separated. Andg the HCM and SL partitions in Tables 1V and V, there are 15
further, that nearly half of th&’s, o s fail to indicate this.  votes forc = 2 in matched cells. Agreement of many indexes
Example 7.2A: Iris with HCM: Table IV lists the values of across several rather different clustering models can be taken
our 21 validity indexes on HCM-partitions oflris . as a good sign that the structure of the data is being clustered
Although Iris contains observations from three physicaknd assessed correctly.
classes, classes 2 and 3 are known to overlap in their numeri€ig. 10 shows the Hubert plots for the HCM and SL par-
representations, while the 50 points from class 1 are very witlons of Iris. This figure illustrates the difficulty in choosing
separated from the remaining 100. Geometrically, the primaitye distinguished value efby observing a “sharp knee.” View
structure inris is probablyc = 2, but the physical labels insist 10a is a pretty smooth curve, but does seem to have a knee

Examining the geometry of partitiod/; », for example,
consider indexVs;; = min {6}/ max {A,}. For ¢ = 2,
clustersX; and X, are merged inl/; » (see Fig. 4). Con-
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TABLE V TABLE VI
VALIDITY INDEXES FORUst, PARTITIONS OF Iris VALIDITY INDEXES FORUtrcm PARTITIONS OF Normal 4 x 4

5 6 7 8 9 10 c 2 7 8 9 10
8.63 (897 [9.04 [9.13 [9.12 |9.15 Vo 7.27 16.86| 16.93]17.41]17.49
092 1093 [0/94 {094 094 [0.94 v 0.3 0.68 069 1071 [ 0.71
0.85 1.30 }‘172’?; 129 11.38 132 Vr:; 181 166 | 1.45] 1.6871.53
0.06 ]0.06 0067 10.07 [0.07 [0.07 Vv, =V, | 003 0.0470.0477 0.02]0.03
0.65 [0.68 [0.79 [0.827[0.72 [0.67 Vy, 1.04 0.76 | 0.78 7075 1075
0.34 [0.36[0.42°70.43 |0.41 |0.38 Vg, 046 0351 0.31 ] 0.34 1 0.32
0.56 [0.36 0.42 [0.43 [0.37 ]0.37 y, 550 0.93 [ 021035 009
0.49 10.52 {0.60 [0.56 }0.51 [0.46 Ve, 0.3 0.30 1 0.27 1029|027
0.43 {0.45 {0.53 {0.55 {0.43 [0.49 Vel 0.48 03977 0.41 1 036 0.33
0.14 70.15 [0.15 70.16770.16 [0.16 Vi, 0.08 0.1370.13770.08 [ 0.11
163 1177 |1.77 [1.89 [1.66 |1.54 Von 582 952 2497 253256
0.85 10.93 [0.93 [0.997[0.92 |0.86 Vo 198 T16771.00 | 1.16 | 1.09
135 7083 [0.93 [0.99 [0.86 10.86 Vio 080 07517067 | 0.73 | 077
124 71347134 {1.29 [117 |1.08 Ve {756 0.8 086 098 1064
T08 [1.1§ [1.18 |1.25 |0.98 |1.14 Vg 131 T30 T 131 135 11,15
0.08 ]0.09 [0.09 [0.09 [0.00 [0.09 006 7606 T 01¢ ; 0.0570.10 7 0.06 T 0.08
092 1.027|1.02 [1.07 [0.93 {0.87 1 19577 182 ama 1. 1787 1.76 | TR 183
048 [0.53 |0.53 |0.56 |0.53 |0.49 ')/zz 0.87770.90 ) 08277 0.71 { 08370.77
078 [0.53 [053 [0.56 | 0.48 |0.48 Vs 0.55 | 0.67 |1, ; 053 1 0.47 | 0.52 | 055
0.70 [0.77 [0.77 [0.73 ]0.66 |0.59 0.73710.80 {1} 7" 0.69 | 0.60 | 0.70 | 0.67
0.61 |0.67 [0.67 |0.71 {0.55 |0.64 VZZ 0.90 092 | 0.92 087 | 0.2

at ¢ = 4. View 10b has a “strong knee” at = 4 and a 4 has essentially compact clusteores but the sampling
weaker knee at = 7; panel 10c shows the same type oprocess undoubtedly produces a few bridge points between
graph, pointing first t& = 3, and then ta: = 6. Finally, view clusters. This enables SL to (mistakenly) leap across the
10d seems to have the most pronounced knee=at7. Our neck between the Gaussian clusters, and partitions produced
analysis of this figure, however, is obviously subjective. If they it are predictably bad. We can’t see this data set, so
largest change in valuds used (like the internal SL criterion) this speculation is based on our knowledge of the clustering
instead, all four of these graphs would point to either 2 algorithm. The worrisome thing here is, of course, that if you
or ¢ = 3 depending on your interpretation of the meanindidn’t know the right answer, Table VII would lead you to
underlying this strategy. Another point worth noting is thadtrongly consider = 2 as the best choice for this data set.
Vuvur and V4 do not always lead to the same value foAnd this would be a misleading inference about the (unknown)
¢. This is seen in Fig. 10(c) and 10(d), and we also observstfucture possessed by the data.

this in other tests as well. The failure of all but one index to pick the riglktis not

Example 7.3A: Normal 4« 4 with HCM: Table VI  lists due to the incapability of the indexes. Rather, we attribute this
the validity indexes on HCM c-partitions dformal 4 x4. All  to the bad partitions generated by the SL clustering algorithm.
indexes excep¥;;, V12, andV;s indicatec = 4, the preferred The most compelling evidence for rejecting the suggestion
choice for this data set. The three failures dge= és1. (20) presented by Table VIl is to put Tables VI and VII side by
as the interset distance. However, the optimal values for thessge. In this case, one set of values points largely. te 4,
three indexes, shown at= 5 (they look identical toc = 4, while the other set points ta = 2. Here we know why,
but remember our roundoff policy), are very close to thebut if X were unlabeled, what you should conclude from a
values for the correat. Vyur andV, ;¢ both point nicely to  comparison of the two tables is that (unlike Tables IV and
¢ = 4. The structure oNormal 4 x 4 should be fairly well V, which showed good consistency fdris) something is
defined since~95% of the 200 samples in each cluster in ibadly amiss in algorithmic interpretations of this data. Neither
are captured in spheres of radius 2 about their centers, whadnclusion(c = 2 or ¢ = 4) should be given a lot of weight
are three units from the origin di*. without further study.

Example 7.3B: Normal 4« 4 with SL: Table VIl lists the Example 7.4: Table VIII summarizes the values of sug-
validity indexes on SLe-partitions of Normal 4 x 4. The gested by the 21 indexes on HCM partitions of each of six
values of the indexes in Table VII are vastly different frondata sets. In the table, “inc.” foVyur and V,,;; means
those in Table VI, implying that SL has found very differeninconclusive The last column of Table VIII shows the number
partitions of this data set than HCM. Moreover, of the 2f times in six tries that agrees with the preferred value @f
indexes,only V,; points toc = 4! The failures represented calledé¢ in the table. Table VIl indicates that the three indexes
by Table VII can be understood by remembering the typés A, that used; as the interset distance fail to point to good
of data structures that HCM and SL prefédormal 4 x partitions, irrespective of the diameteh,;) definition used.
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TABLE VII
VALIDITY INDEXES FORU/sy, PARTITIONS OF Normal 4 x 4

3 7 8 9 10
4.93 13.89| 15.05] 15.42 | 15.92
023 0.41 10.437]0.44 ]0.46
5T [1.57 [1.85 |1.85

0.03 10.03 [0.0370.03

0.80 078 [0.78 [0.63

0.40 T0.3810.38 [0.30

031 {033 0941024

04271043 [0.41 [0.39

0.48 [0/44 [0.44770.35

0.08"[0.08 T0.08 0.08

5.01 |[1.88 7180 ]1.585

700 1081 [0.92 [0.74

0.79 |0.80 [0.59 1060

1.04 | 1.04"T100 |0.97

150 [1.07 |1.08 [0.87

0.05 ]0.05 [0.05 [0.08

197 [1.16 [1.16 |0.9%

0.63 |0.5670586 045

0.50 [0.80 10.36 ]0.36

066 064 [0.61 |0.50

0.76 | 0.66 |0.66 |0.53

Not surprisingly, the correct number of clusteis = 4)
is neverindicated for X (V,,; had a very weak Hubert
knee here, which we decided to label as inconclusive). Recall
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TABLE VIII
VALUES OF ¢ SUGGESTED BY THE 21 INDEXES
ON HCM PARTITIONS OF SIx DATA SETS

é 3 2 4 4 4 4
Data X30 Iris X3 X4 X5 XG # Corr‘ect
Normal 4x4 in 6 trics
Yo 3 3 4 4 inc. | inc. 3
v 3 3 4 4 inc. inc. 3
MILL
VI)B,ZZ 3 2 4 4 9 7 4
Y=Y 3 3 5 8 10 7 1
Yo, 2 3 4 3 4 5 2
Vg, 3 2 4 4 4 5 5
Val 3 2 4 4 4 5 5
Vs, 3 2 4 4 4 5 5
Vs e 2 2 i 4 1 47 4 5 4
Vi 3 3 5 8 10 10 1
Voo 2 2 4 4 2 2 3
Vg 2 2 4 4 4 7 4
Vo 2 2 4 4 4 7 4
Vo 2 2 4 4 4 7 4
Voo 2 2 4 4 2 5 3
Vig 3 2 5 8 10 10 2
Vs 2 2 4 4 2 2 3
Vas 3 2 4 4 4 7 5
Vs 3 2 4 4 9 7 4
Vs 3 2 4 4 4 7 5
Ves 3 2 4 4 2 7 4

that X is derived fromX3; = Normal 4 x 4 by subtracting
2.5 from every coordinate oX 3. Since the means ok,
were three units from the origin of*, it is very likely

that cluster structure has more or less disappeared under this
transformation.

VIII. DIscussiON AND CONCLUSIONS

We have reviewed three crisp indexes of cluster validity: the
modified Hubert Statistic, Davies—Bouldin, and Dunn’s index.
We then proposed five new set distance and two new set diam-
eter functions, and used them to define a family of 18 cluster
validity indexes that generalize Dunn’s index. Computational 3)
examples on six data sets were used to compare the 21 indexes
described in this paper. Here are our conclusions, which we

emphasize again, are specialized to the case where clusters are

expected to form volumetric clouds as follows.

1)

2)

The modified Hubert Statistidg,;yr andV,,;+ and the
Davies—Bouldin index/pg 22 produced either three or
four successes in six tries (cf., Table VIII). We conclude
that they are more or less equally effective. Visual
identification of Hubert knees is very subjective and
scale dependent. We think the DB index is preferable 4)
to Wymr and V- because of this.

The three generalized Dunn’s indexes usindnave the
worst records in these trials. Table VIl supports the
assertion that the standard measure of interset distance,
515, T) = bpin (S, T) = @{d(z,y)}, is the worst

Tes
Yer

among the family{é; }. Dunn’s index, which also uses
Ay, is the least successful index among the 21 indexes
tested. The performance of the three GDI's usinglso

is pretty bad. This is becauge, like §;, depends only

on the distance between a pair of points. We conclude
that intraset distances should use all the data points.
A1, although sensitive to noisy points, produces good
performance when used withs, 64, and é;. This is
because the data used in our study possess relatively
compact clusters the mea® of which are close to the
vectors(m) as shown in Fig. 7(a). Moreover, we believe
that interclass separation plays a more significant role in
cluster validation than within cluster dispersion (size or
diameter of the cluster).

Five of the 18 GDI's produced five successes in six
tries on HCM partitions:Va1, Va1, Vi1, Vaz, and Vss.
From this study we conclude thag and 6; provide

the most reliable measures of intercluster distance. In
other studiesds has also been very effective [14]. Not
surprisingly, A> gives the least reliable measure of set
diameter [cf., Fig. 7(b)]. We think our simulations show
that some of the GDI's are better than any of the crisp
validity functions to which they were compared in this
study.

The indexes discussed here may not be good for chain or
shell type of clusters because the definitions (particularly
the set diameters discussed in Section V) implicitly
characterize cloud type clusters. However, Dunn’s index
can be suitably generalized in a slightly different way
than the method presented here so that it is applicable to
chain or shell type clusters. For example Pal and Biswas
[15] used graph theoretic concepts (minimal spanning
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trees, relative neighborhood graphs and Gabriel graphs)
to define the diameter of clusters.

In summary, Dunn’s index in its original form is not very (
suitable for cluster validation because of its sensitivity to
noisy points. But it provides a rich and very general structure
for defining cluster validity indexes for different types of
clusters. With suitable interset distances and set diameters
generalizations of Dunn’s index can be used to validate
hyperspherical/cloud and shell type clusters.

Finally, we add some comments for practitioners. Clustering
is a very useful tool that has many well documented and
important applications: to name a few, data mining, image
segmentation and extraction of rules for fuzzy controllers. The
problem of validation for truly unlabeled data is an important
consideration in all of these applications, each of which
has developed its own set of partially successful validation
schemes. Our experience is that no one index is likely to
provide consistent results across different clustering algorithms
and data structures. One popular approach to overcoming this
dilemma is to use many validation indexes, and conduct some
sort of vote among them about the best value doMany
votes for the same value tend to increase your confidence, but
even this does not prevent mistakes (cf., Tables VI and VII).
We feel that the best strategy is to use several very different
clustering models (such as HCM and SL), vary the parameters
of each, and collect many votes from various indexes. If the
results across various trials are consistent (as in Tables IV and
V), the user may assume that meaningful structure in the data
is being found. But if the results are inconsistent (Tables VI
and VII), more simulations are needed before much confidence
in algorithmically suggested substructure is warranted.

APPENDIX A

THE BATCH HARD ¢-MEANS (HCM) ALGORITHM [4] 25

Store Unlabeled Object Data

X ={x1,%2,- -, T} ¢ NP

el<c<n

e T = iteration limit= 100

e ¢ =0.00001

e Euclidean norm for clustering
criterionJy: ||z||2 = V&Tx

e Norm for termination error
Ey =V, =Vill2

VIV V)TV = V1)

Vo= (v1,0,92,0, ", Vc0) € RP

Fort=1toT:
Calculatel/; with V;_; and(
CalculateV,; with U; and(5b
If E, < e, stopElse

Next ¢

(U7 V) - (Utv Vt)

Prototypes/ and/or Labeld/

Pick
Fig.

(1]
(2]
(3]
(4]
(5]
6]

Guess

5a)
Iterate )

Use

1.5 +

0.5 1
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APPENDIX B
RELATIONAL DATA FOR THE SL EXAMPLE

See Tables IX and X and Fig. 11.)

TABLE IX
COORDINATES OF X9

*g
Featurce 1 1 2 2 1 4 5 [45] b5 4
Feature 2 | 1 | 1 1 3 7 3 JT5715] 1512595
TABLE X
RELATIONAL DATA Rg CREATED FROM Xo: 7 = ||2; — 2|2

1
2 11.00] ©
3.4224,200] 0O
4 12001224]11.00] 0
5 13041206,250/335] 0
6.14.03!3.04]335{42711.00] 0O
7 13541225{2923811050}050] 0
8 142713.35]3.04,4.0311.41}1.00}{1.12} 0O
4 1335/250{206)!3.0411.00}1.41{1.12}1.00] ©
x4 XS
X9 Xs
+ L | L}
B - L | n
X5 XG x7
- ] ]
X X5
0 1 2 3 4 5
11 Data setXy.
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