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Some New Indexes of Cluster Validity
James C. Bezdek,Fellow, IEEE, and Nikhil R. Pal

Abstract—We review two clustering algorithms (hard c-means
and single linkage) and three indexes of crisp cluster validity (Hu-
bert’s statistics, the Davies–Bouldin index, and Dunn’s index). We
illustrate two deficiencies of Dunn’s index which make it overly
sensitive to noisy clusters and propose several generalizations of
it that are not as brittle to outliers in the clusters. Our numerical
examples show that the standard measure of interset distance (the
minimum distance between points in a pair of sets) is theworst
(least reliable) measure upon which to base cluster validation
indexes when the clusters are expected to form volumetric clouds.
Experimental results also suggest that intercluster separation
plays a more important role in cluster validation than cluster
diameter. Our simulations show that while Dunn’s original index
has operational flaws, the concept it embodies provides a rich
paradigm for validation of partitions that have cloud-like clusters.
Five of our generalized Dunn’s indexes provide the best validation
results for the simulations presented.

Index Terms—Cluster validity, Davies–Bouldin index, general-
ized Dunn’s index, hardc-means, modified Hubert statistic, single
linkage.

I. INTRODUCTION

L ET be a set of fea-
ture vectors in -space. Suppose the vectors in have

crisp (or hard) labels that mark them as representatives of
nonemptyclasses of objects, say Let

be the crisp label for class

The label vectors associated with can be arrayed
as the columns of a partition matrix
The value is the membership of in class Letting

denote the th column of we have
is in class We denote the set of all hard

-partitions of as

for to

(1)

An equivalent characterization of in is in terms of
the subsets that are defined by the rows ofSpecifically, we
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Fig. 1. Exploratory data analysis.

may write where
whenever When no is associated with the data
areunlabeled. In this case, there are three questions about
as illustrated in blocks 1, 2, and 3 of Fig. 1.

is called assessment of clustering tendency. Tendency
assessment attempts to determine whether the data have struc-
ture in them or not without explicitly looking for clusters in
the data. The only crisp partition of at is represented
uniquely by the 1-partition which asserts

that all objects belong to a single cluster. At the other
extreme, is represented uniquely by the
identity matrix, up to a permutation of columns. In this case,
each object is in its own singleton cluster. Choosing or

rejects the hypothesis that contains clusters. See Jain
and Dubes [1] or Everitt [2] for formal and informal treatments
of assessment prior to clustering.

is called cluster analysis. There are many models
and algorithms for clustering based on crisp [3], fuzzy [4],
probabilistic [5], and possibilistic methods [6]. We use the
well known hard -means(HCM) and single linkage(SL)
models to generate crisp-partitions of unlabeled data sets
in our examples.

is called cluster validity. Once a -partition is found,
do we believe it? Should we use it? Is there a better one
we didn’t find? Our paper is about We will review
three well known validation methods, and then define several

1083–4419/98$10.00 1998 IEEE
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generalizations of an index due to Dunn [7]. The main purpose
of the paper is to propose generalizations of Dunn’s indexes,
and show via numerical experiments that they provide a more
accurate assessment of partition quality than the original index
does.

Clustering algorithms are functions where
is the range of . When the output of is just a crisp partition
(SL, for example), Many clustering algorithms
produce outputs besides partitions. The most common example
is a second set of parameters calledpoint prototypes(or cluster
centers) For example, HCM
is defined jointly in the paired variables and for these
cases,

Let denote different
partitions (with or without extra parameters such asof a
fixed data set that may arise as a result of: i) clustering
with one algorithm at various values of; ii) clustering
over other algorithmic parameters of; iii) applying different

to , each with various parameters; or iv) all of the
above. The general situation can be represented as follows:

(2)

where are the parameters of algorithm For
example, the parameter list for HCM is number of
clusters; maximum number of iterations; tolerance for
termination; norm for distance calculations;
norm for error calculations; initial centroids The
handful of partitions that you can feasibly generate for an
unlabeled data set is a function of the algorithms you
choose to use, each of which is itself a function of its
parameters.

The only guaranteed common denominator of the algorithms
is the parameter the number of clusters to choose.

Moreover, for a fixed is the most important parameter,
in the sense that other parameters of the algorithm really have
what might be called second order effects oncompared
to the effect of changing the number of clusters in the data.
That is, it is clearly more important to be looking in the right
solution space (within than it is to be comparing partitions
across because specifies the number of clusters to look
for, while the other parameters control the search for these
substructures. Thus, the most effective strategy for clustering is
to first decide what seems to be the most reasonable estimate of
the correct number of clusters by choosing oneand fixing
all of its parameters except This results in the problem most
often called cluster validity: given

(3)

find thebest valuefor by examining each in There
is little guidance in the literature about A rule of thumb
that many investigators use is But in many cases,
some auxiliary information may be available for fixing a better

estimate of For example, in an image of size
will be much smaller than

At first glance, it seems like the criterion that defines
clusters for any should be able to rank the partitions it
identifies. However, it is well known that even the global
extremum of objective functions such as for HCM can
lead to very unrealistic partitions of (see [3, p. 220] for an
example of this). Moreover, some of the intuitively desirable
properties that we want a partition to have may not be captured
by a functional that is easily optimized. These are the two
most compelling reasons for introducing crisp cluster validity
functionals.

Validity functionals, denoting the domain
of are used to numerically rank is usually (but
not necessarily) chosen to match the range of
When we call a direct measurebecause it
assesses properties of crisp (real) clusters or subsets in
otherwise, it isindirect.

There are two ways to view and hence, two ways to
approach the problem of how to define the best partition of

First, it is possible to regard as aparametric estimation
method: and any additional parameters such asin HCM
are being estimated byusing In this case is regarded as
a measure of goodness of fit of the estimated parameters (to a
true butunknownset). When other parameters

the test performs is still direct. The second interpretation of
is in the sense of exploratory data analysis in unlabeled data.

When assesses alone, is interpreted as a measure of
the quality of in the sense of partitioning for substructure
(exploratory data analysis).

II. THE HARD -MEANS CLUSTERING ALGORITHM

We will use HCM to generate partitions of in ,
so we describe the batchhard -means(HCM) model and
algorithm.Batchhard (or ) means is the algorithm described
in Tou and Gonzalez [8, p. 94], or by Bezdek [4, p. 55].
Confusion sometimes arises both over the use ofinstead of
, and because many writers refer to sequential versions of

this procedure simply as-means, dropping the word adaptive
or sequential. The HCMmodelis the constrained optimization
problem

(4)

where is a vector of
(unknown) cluster centers (weights or prototypes),
for and is any inner product norm

positive definite). Optimal HCM partitions
of are taken from optimal pairs that solve (4).
Approximate solutions of (4) can be often found by the HCM
algorithm, which is based on first order necessary conditions
for local extrema of .
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Fig. 2. Data setXXX30:

Batch Hard -Means (HCM) Theorem [4]:
may minimize only if

otherwise
(5a)

(5b)

Singularities, manifested as ties in (5a), are resolved arbi-
trarily. Equation (5a) shows that HCM produces crisp parti-
tions of by assigning all of the membership of each to
class when prototype is nearest to it. The second form
for in (5b) emphasizes that it is simply the mean vector of
the points currently in crisp cluster is the
number of points in theth row of —that is, the number of
points in the th cluster in .

Many validity indexes use the sample means of each subset
in crisp partitions of the data, even when the clustering
algorithm does not explicitly produce them. For convenience
we shall refer to the construction of these vectors from (5b) and
any in as This notation indicates that the’s
from (5b) are cluster means, and that they can be computed
from (associated with) any in , and not just the HCM
partition constructed from (5a).

The HCM algorithm is based on iteration through the
necessary conditions at (5). This is often calledalternating
optimization (AO) as it simply loops through one cycle of
estimates for and then checks

Equivalently, the entire procedure can be
shifted one half cycle, so that initialization is done on,
and the iterates become , with the alternate
termination criterion The literature

Fig. 3. Terminal HCM clusters inXXX30 for c = 3 with two initializations.

contains both specifications; the convergence theory is the
same in either case. All our computational examples use the
protocols shown in Appendix A, and the initial prototypes

for each run are randomly selected distinct data points
from .

Using HCM as just described, we illustrate the need for
cluster validation by a simple example. Fig. 2 scatterplots a
data set named with points in .

You may agree that has compact, well-separated
clusters of ten points each. We call these three visually
attractive clusters and in Fig. 3, where we have
marked the points in each cluster with a different symbol and
captured them with a crisp boundary. In other words, Fig. 3
corresponds to the (visually) correct crisp labeling of
The partition of corresponding to the labeling in Fig. 3 is

We processed with HCM six times using two initial-
izations each for and . Fig. 3 shows the terminal
clusters of obtained by HCM at from two different
initializations. In both cases HCM quickly terminated at the
visually correct partition, i.e., at (5). Here

is a -partition obtained from initialization.
Fig. 4 shows terminal clusters obtained by HCM with

and using two different initializations for the prototypes at
each of these values. For and merge to form a
single cluster in partition But in partition and

are merged instead. For , one initialization of HCM
leads to splitting into two clusters with five points each in
partition , while the second initialization leads to splitting

into two five-point clusters in
Now imagine that, instead of being data in unlabeled

data set is, say,four-dimensional. In this case you cannot
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Fig. 4. Terminal HCM clusters inXXX30 with c = 2; 4 for two initializations.

examine a scatterplot of the data, so there is no way to know
how many clusters to look for, or which points belong to which
group. This is true even if the data really have three compact
and well-separated clusters. Suppose application of HCM (or
any other crisp clustering algorithm) to this hypothetical data
set led to five partitions like those in Figs. 3 and 4. How will
you choose “the best” one? The wrong choice from among
the partitions shown in Figs. 3 and 4 would lead to a very
bad interpretation of the data. This is the problem we attack
in this paper.

III. T HE SINGLE LINKAGE CLUSTERING ALGORITHM

The second method we use to generate crisp clusters inis
a noniterative method called single linkage [1]. This method is
based on a local connectivity criterion, and is usually regarded
as a graph-theoretic model, in contrast with objective function
models such as HCM at (4). Instead of an object data set

, SL processes sets of numerical relationships, say
, betweenpairs of objects represented by the data. The

number represents the extent to which objectsand are
related in the sense of some binary relation. It is convenient
to array the relational values as an relation matrix

We often call matrix the relation,
even though function is the actual relation. Many functions
can convert object data into relational data. For example,
every metric (distance measure)on produces a
(dis)-similarity relation matrix For
dissimilarity relations, low values indicate similar objects,
higher values more dissimilar ones.

Single linkage is a special case of thesequential agglomer-
ative hierarchical nested(SAHN) model, which is the general
name for a family of crisp clustering methods based on
the following approach. Our description is limited to the
case where similarity is defined by distance. Given

Choose a (metric) measure of dis-
similarity between pairs of points in

Each of the object data sets used in our numerical
examples was converted to relational data for submission to

Fig. 5. Intercluster distance for single linkage.

SL by computing as the Euclidean distance between

and , i.e., Next,

let the power set of be denoted by and let denote
any positive semi-definite, symmetric (set distance) function
on Different linkage models correspond to
different choices for For single linkage, this measure of
the distance between two subsets and of is the
standard distance between a pair of sets, viz.,

Fig. 5 illustrates for two sets of three points each.
Look at the point in Fig. 5. If is included in or ,

will be roughly halved. This should convince you
that is not a reliable measure of the distance between
sets when clusters are being sought, because the insertion or
deletion of a single point in or can radically alter its
value. This measure ignores central tendencies in the data,
recognizing instead the extreme behavior of bridges (inliers)
or outliers. This instability to what may be a very small number
of points in the data is one reason that Dunn’s index can give
misleading validity results.

Now we can describe the SL algorithm. To begin, put
so each data point starts out in its own cluster .
Compute , the
symmetric distance matrix for the vectors (which are clusters)
in . In steps beyond this, denotes the symmetric
distance matrix for the clusters in

where and are part (or clusters) of the
current -partition of . Here are the steps that are repeated
to termination at , i.e., when all points are in
one cluster.

1) Search for the nearest pair of clusters in ; find
Call the distance cor-

responding to this pair of indexes
2) Merge and labeling the new cluster
3) Update by deleting the rows and columns corre-

sponding to and and adding a row and column
for the distances between the new
cluster and the other clusters

in
4) Repeat steps 1–3 until and all objects

belong to the single cluster

During this procedure ties are resolved arbitrarily. SL finds
at mostone partition of at each value of and the level
of similarity at which mergers occur is recorded at each step.
From this information it is customary to construct a visual
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Fig. 6. Single linkage dendogram of clusters inR9 (andX9).

display of the results in the form of a dendogram such as the
one in Fig. 6, which was made by applying SL to the data
set listed in Appendix B. These relational data are the
Euclidean distances between pairs of points in the data set
shown in Appendix B. Fig. 6 exhibits several features of SL
clustering. First, the clusters are nested—once merged, points
are never split. Second, it is not necessarily the case that a
unique partition of the data will be produced at each value
of In Fig. 6, for example, points 5, 6, and 7 are merged
at the same time because their distances are all equal to the
minimum at this step. Consequently, the first
merger apparently reducesfrom to In the
implementation of SL, however, this will happen in two steps
at the same merger level, so there will be a partition at ,
but it is unique only up to the tie-breaking rule used. This is an
important point for validity considerations, since the partitions
of at and are obviously different, but are equally
valid from the point of view of the internal SL criterion.

The cut line shown at illustrates the general
situation at any value of the minimum set distance: for
this value of All clusters are merged at 2.06, terminating
SL at Since dendograms are useful only for fairly
small values of , we will not show outputs from SL this way
in the numerical examples.

Now question arises for the clusters associated with
Fig. 6: which partition of the nine objects is most valid?
The internal method of validity associated with SL is to
look for the largest jump in values of This is
taken as an indicator that theprevious value of is most
natural, on the presumption that SL works hardest to merge
clusters that cause the biggest jump. Note that the biggest
jump can be severely influenced by the presence of a few
outliers. In Fig. 6, successive jumps are 0.50, 0.50, 0.85,
and 0.21. The largest jump, (0.85 from to )
identifies clusters
at as the most natural ones. Fig. 11 in Appendix
B seems to confirm this visually, although a case can be made
that is just as natural. The real point is that, just as in
HCM, the criterion that helps find the clusters here,

for HCM) may or may not also indicate the best ones
amongst various candidates generated by the algorithm. This
is the reason cluster validity is an important problem.

HCM and SL are known to work best on data structures that
have very different properties. HCM with the Euclidean norm
performs well when clusters are roughly hyperspherical, well
separated, and have nearly equal subsample sizes. SL likes to
find well separated stringy clusters such as points along a pair
of parallel roads. This behavior is discussed in [3, ch. 6]. We
mention this to advertise the fact that our choice of clustering
algorithms was quite deliberate. The two algorithms chosen
may find very different partitions of the same data at the same
value for . This is good when looking for ways to validate
partitions, since useful validity measures should also point to
bad partitions when an algorithm finds them.

IV. THREE CLUSTER VALIDITY METHODS

How many validation methods for crisp partitions are there?
Thirteen years ago Hubert and Arabie began a paper on this
topic by saying “We will not try to review this literature
comprehensively since that task would require the length of a
monograph” [9, p. 193]. Since it is not feasible to attempt a
comprehensive comparison of our generalized Dunn’s indexes
with many others, we have instead chosen three of the better
known indexes for this purpose. These three measures have
rather different properties and rationales, and should serve as
an adequate basis for evaluating our generalizations of Dunn’s
index.

Modified Hubert’s statistic (MH):Hubert’s statistic [9]
assesses the fit between the data and any crisp structure
imposed on it by in Basically then, the rationale
underlying this measure is a statistical goodness-of-fit test.
Let be an proximity matrix; is the
observed proximity between objectsand (for example,

in any norm). is an matrix
defined in terms of any hard-partition of

otherwise
(6)

Hubert’s statistic is the point serial correlation coeffi-
cient between any two matrices. When the two matrices are
symmetric, can be written in its raw form as

(7)

In its normalized form, becomes the sample correlation
coefficient between the entries of and

(8)
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where is the total number of entries under
the double summation,

and

For the normalized index If and are not
symmetric then all summations are extended over allentries
and measures the degree of linear correspondence
between the entries of and A positive value of close to
1 indicates that and are (more or less) linearly correlated.

For cluster validation we can use or to test whether
the association between and is unusuallylarge under the
random label hypothesis(RLH), which is:

RLH: All permutations of row (and column) labels ofare
equally likely.

We want to test whether or can be obtained by a chance
labeling. Although the value of or gives some information
about the match between and the distribution of or
under the RLH is needed to decide whether matches the
actual proximity matrix unusually well. The distribution of
or can be found by computing it for all permutations and
then finding its histogram. But this method is computationally
prohibitive. (For example, a data set with ten objects yields
3 628 800 values!)

Other alternatives include approximation of the distribution
of or by Monte Carlo methods, and computation of
the mean and standard deviation under the RLH, assuming
that the underlying distribution is normal. For the second
method, of course, an explicit expression for the moments are
required. For these reasons, a more tractable form of Hubert’s
statistic, called themodified Hubert’s statistic(MH) is usually
used for cluster validation. The modified statistic abandons
the goodness of fit strategy, and replaces it with a geometric
method that is based on intuitively natural principles.

Let if the th object is in the th cluster. Let
be the Euclidean distance between the cluster

centers and in computed by (5b) for any in
Now define the matrix as

(9)

Using (9) instead of (6) in (7) and (8) yields

Hubert’s modified

raw statistic and (10a)

Hubert’s modified

normalized statistic (10b)

It is known from computational experience that these in-
dexes tend to increase with an increase of. They are not
defined on when and for the trivial

clustering of at Because of this, it is not thevalue
of or that is used to choose; rather it is the
change in the valueas a function of that is examined. For
well separated clusters, a sharp knee (cf., Fig. 10) is expected
at the partition which contains the number of clusters
that provide the best fit to the data as measured by this statistic.
This strategy is like examination of as discussed in
Section III in connection with validation of SL partitions.

Davies–Bouldin Index:This index is a function of the
ratio of the sum of within-cluster scatter to between-cluster
separation [10], and like Hubert’s measure, it also uses both the
clusters and their sample means Since scatter matrices
depend on the geometry of the clusters, this index has both a
statistical and geometric rationale. Define thewithin th cluster
scatterand thebetween th and th cluster distanceas

(11)

and

(12)

For a given in is the vector at (5b), is
an integer and can be selected independently of each other.

is the th root of the th moment of the points in cluster
with respect to their mean, and is a measure of dispersion of

the points in cluster is the average Euclidean distance
of the vectors in class to the centroid of class is the
square root of the mean square error of the points in theth
cluster with respect to the centroid of theth class, and so
on. is the Minkowski distance of order between the
centroids which characterize clustersand . Next, define

(13)

Now theDavies–Bouldin(DB) index can be defined as

(14)

It is geometrically plausible to seek clusters that have
minimum within-cluster scatter [the numerator in (13)] and
maximum between-class separation [the denominator in (13)],
so the number of clusters that minimizes is taken as
the optimal value of is not defined on when

For well-separated clusters is expected to
decrease monotonically asincreases until the correct number
of clusters is achieved (however,
is easier to use than or because finding the
minimum of values is less ambiguous than finding
a knee or sharp change in slope in the piece wise linear graph
that connects them.

Dunn’s Indexes: Dunn’s index (DI)is based on geometrical
considerations that have the same basic rationale as the DBI in
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TABLE I
FOUR CRISP CLUSTER VALIDITY INDEXES

that they are both designed to identify sets of clusters that are
compact and well separated [7]. To understand this index let
and be non-empty subsets of and let
be any metric. The standard definitions of thediameter of

and theset distance between and are

(15)

and

(16)

In (16), we emphasize that the standard distance between
and is just the distance illustrated in Fig. 5 in connection
with our discussion on the SL algorithm. For any partition

Dunn defined theseparation
index of as

(17)

The quantity in the numerator of is analogous
to in the denominator of ; the former measures
the distance between clusters directly on the points in the
clusters, whereas the latter uses the distance between their
cluster centers in for the same purpose. The use of

in the denominator of (17) is analogous to in the
numerator of both are measures of scatter volume for
cluster . Thus, extrema of and share roughly the
same geometric objective: maximizing intercluster distances
whilst minimizing intracluster distances. Since the measures
of separation and compactness in (17) occur “upside down”
from their appearance in (13),largevalues of correspond to
good clusters. Hence, the number of clustersthatmaximizes

is taken as the optimal value of is not defined on
when or on when

Dunn called compact and separated(CS) relative to
if and only if the following property is satisfied: for all
and with any pair of points are closer
together (with respect to than any pair with
and Dunn proved that can be clustered into a
compact and separated-partition with respect to if and
only if Dunn defined a second index

of separation forcompact and well separated(CWS) clusters.
He called a partition CWS with respect toif and only if the

following property is satisfied: for all and with
any pair of points with are closer
together as measured bythan any pair with and

where is theconvex hullof in
Dunn’s index for CWS clusters is obtained by replacing
in (17) with as

(18)

Dunn proved that can be partitioned into CWS clusters
relative to if and only if sets very

attractive geometrical requirements for good CWS clusters.
However, estimation of for even is very
difficult computationally, so finds little use in practice and
will not be considered further here. Table I summarizes the
indexes discussed in this section.

V. GENERALIZATION OF DUNN’S INDEX

The numerator and denominator of are both overly
sensitive to changes in cluster structure. We have already
illustrated the problem for in Fig. 5: this measure of
interset distance can be dramatically altered by the addition or
deletion of a single point in either or . The denominator
suffers from the same problem—for example, adding one
point to can easily scale by an order of magnitude.
Consequently, can be greatly influenced by a few noisy
points (that is, outliers or inliers to the main cluster structure)
in , and is thus very sensitive to what can be a very small
minority in the data. However, (17) provides a very general
paradigm for defining cluster validity indexes. Appropriate
definitions of and lead to validity indexes suitable for
different types (e.g., clouds or shells) of clusters.

Our objective in formulating generalizations of Dunn’s
index here is to ameliorate its sensitivity to aberrant data
for the case when clusters are expected to form volumetric
clouds (as opposed to boundaries, shells or surfaces) in the
feature space. There are several principles that can be used as
guides. First,all of the datashould be explicitly involved in
the computation of the index. And second, most of the better
indexes also use the cluster means in their definition (cf.,
Table I—only Dunn’s index does not). Using implicitly
involves all of and further insulates indexes from being
brittle to a few points in the data.
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can be generalized by using other definitions for the
diameter of a set at (15) or the distance between sets at
(16). Let denote the power set of denote any
positive semi-definite, symmetric (set distance) function on

and be any positive semi-definite (diam-
eter) function on The general form of using
and is

(19)

Let and be finite non empty elements of and let
be any metric. Five set distance functions

that can be used in (19) are

(20)

(21)

(22)

where

and

(23)

(24)

In (23) and (24), and are computed with (5b).
Function at (20) is the same as (16). Functionsand
correspond, respectively, to the set distance functions used in
thecomplete linkage(CL) andaverage linkage(AL) clustering
algorithms [1]. When uses either or it may be
strongly affected by noisy points because neithernor
uses all the points in and Although single and complete
linkage share this property, complete linkage is often preferred.
Sneath and Sokal [11] assert that complete linkage generally
finds tight, hyperspherical, clusters that join others only with
difficulty and at relatively low overall similarity values. Jain
and Dubes [1] state that complete linkage produces more
useful hierarchies in many applications than the single linkage
method. These remarks encourage us to speculate that
will be more useful for validation than when clusters
form volumetric clouds. Moreover, we expect , which

uses the average ofall interpoint distances between and
to be more effective than either or

depends implicitly on every point in and through
and so the effect of adding or deleting points to or from
or is ameliorated by averaging. As the number of points in
or increases, averaging will decrease the sensitivity ofto
a few aberrant data. Moreover, has a lower computational
overhead than is a set distance that combines the
averaging concept of with the prototype idea of

can be used as set distance functions, but none are
metrics on The sixth set distance we propose is the
well known Hausdorff metric [12]

where

(25)

We expect to be relatively insensitive to noisy points. It
is easy to see that when the same metricis used in (20),
(21), and (25), Notice also that each of these
functions can use any metric so there are an infinite number
of realizations for each one.

at (15) used by Dunn is the standard diameter of
the set . As previously mentioned, this makes very
sensitive to noisy points. We repeat (15) as (26), now indexed
for convenience, and then give two additional definitions
for functions related to diameters that are useful in defining
measures of cluster validity

(26)

(27)

where

(28)

Fig. 7 depicts the geometric meaning of these three set
functions on the set of five data points in the coordinates
of which are

and Distances in this example are
Euclidean. Fig. 7(a) shows the distance from to

This is traditionally called the diameter of the set of points,
but it is not clear what circle it would be the diameter of, for
there is no “centering” concept attached to the calculation in
(26). A circle of radius centered at any point in will
capture all of its points. The circle of diameter centered at
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(a)

(b)

Fig. 7. (a) Illustration of the set functions�1 and�3: (b) Illustration of
the set function�2:

the midpoint of the vector connecting the pointsand
that solve (26) may not contain any other point in.

Also shown in Fig. 7(a) is theaveragediameter
of the five circles centered at the mean vector
that pass through these five points with radii as in the numer-
ator of (28). The multiplier of 2 in (28) is used to convert
each radius to a diameter. Fig. 7(a) should convince you that

only if the data are symmetric with respect to the
mean vector

Fig. 8. Schematic illustration ofNormal 4 � 4:

Fig. 7(b) shows the ten circles that are associated with the
ten distances in (27), which is the average of the
ten diametersdefined by circles centered at the midpoint of
the vectors Division by 2 to correct for symmetry
in in (27) is not doneso that the ten radii computed
in the numerator are diameters instead. As with (26), this set
function does not have a centering concept, so it is difficult to
draw the circle with diameter on Fig. 7(b).

Of the three measures of set size is probably the most
reliable for cluster validation because it is the average of the
diameters of the smallest hyperspheres (centered at) that
include the points in the cluster. As seen in Fig. 7(a), the
hypersphere of diameter centered at may not contain
all points in the cluster. and do not use the cluster
centroid Of the two, we expect to work better when

is near the middle in Fig. 7(a)] of the line joining the
two farthest points in the set. In this case the hypersphere with
diameter centered at may contain most of the points in
the set. However, in the presence of outliers (noisy points) this
is not likely to happen and and will be more stable than

because averaging has a smoothing effect on both of these
measures of dispersion. Our intuition based on the geometry
of Fig. 7 is that will provide the best performance, for
tight, well formed clouds of points; and for this case, will
probably be the least effective measure of set size.

VI. DATA SETS AND COMPUTATIONAL PROTOCOLS

Data sets: Six data sets are used in our examples. First we
consider plotted in Fig. 2. Second, we will useIris , the
ubiquitous points in that are divided into
(physically labeled) clusters of 50 points each [13]. Our third
data set contains points consisting of 200 points each
drawn from the four components of a mixture of -
variate normal distributions. The population mean vector and
covariance matrix for each component of the normal mixture
were and We call this data
set Normal Fig. 8 depicts whatNormal might
look like if it could be seen in three dimensions and if the
sampling of each component produced very compact clusters.
Because the standard deviation of each population component
is 1, we can expect about 68.2% of each 200 samples to be
within one unit of their mean.

To study the efficacy of validation with these indexes, we
transformedNormal three times, creating data sets

and from it by subtracting, respectively, 1, 2,
or 2.5 from every value inNormal This moves the
clusters inNormal successively closer together, creating
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TABLE II
VALIDITY INDEXES FORUHCM PARTITIONS OF XXX30

more and more overlap as the clusters become less and less
well separated. HCM and SL will encounter more and more
difficulty in finding good clusters as we move from to
This in turn provides a successively more difficult test for the
validation indexes.

Computing Protocols:The metric used in all our algorithms
wherever a vector distance is called for is Euclidean distance,

Other protocols for
FCM are given in Appendix A. Single linkage was executed as
specified in Section III. For we used and
in all computations. Each column of Tables II–VII is computed
by applying the 21 indexes to the same crisp-partition of

A very important point to remember in the examples that
follow is that we show validity function outputs rounded to
only two significant digits to keep the tables to a reportable
size. Consequently, many comparisons we draw seem to ignore
what look like ties. However,there were NO TIES in the
outputs at six significant digits, so when we report an optimal
value for some index, it is always with respect to the original
values, not their rounded-off equivalents that appear in the
tables below.

VII. N UMERICAL EXAMPLES

Example 7.1A: with HCM: Table II shows values of
the 21 validity indexes for HCM partitions of at each
value of for to The partitions for columns at

and in Table II are those identified as
and in Figs. 3 and 4.

In Table II and others to follow the highlighted (bold and
shaded) entries correspond to optimal values of the indexes.
The optimal values highlighted in the tables are determined
using theunroundedvalues of the indexes, which, to remind

Fig. 9. Plot ofVMH� andV
MH�̂

for UHCM of XXX30:

TABLE III
VALIDITY INDEXES FORUSL PARTITIONS OF XXX30

you again, did not have ties at six digit accuracy. For example,
our roundoff policy renders the values for from
to identical in Table II; there were slight differences
at six-digit accuracy.

and are expected to show sharp knees at ,
and Fig. 9 shows that they both do. Thescaleof a Hubert plot
is very importantin the assessment of Hubert knees. Almost
any set of values will have “well defined” knees as long as the
vertical scale has sufficient resolution to show it. This visual
subjectivity makes Hubert’s method somewhat unrepeatable.

clearly indicates , having a strong mini-
mum value of 0.18. Of the 18 generalized Dunn’s indexes

—each of which is to be maximized—ten indicate
the correct value while the remaining eight favor

(partition in Fig. 4). This happens even though
the visually correct partition of shown in Figs. 2 and
3 is found by HCM at In other words, these indexes
fail to solve the problem indicated by Figs. 3 and 4.
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TABLE IV
VALIDITY INDEXES FORUHCM PARTITIONS OF Iris

Examining the geometry of partition for example,
consider index For
clusters and are merged in (see Fig. 4). Con-
sequently, the minimum of for (let us call it

) is much larger than the minimum of for
say On the other hand, although the maximum of

for (say is greater than the maximum
of for their numerical values are such
that Finally, note that the five
indexes have fairlystrongpointers to the incorrect
value for This illustrates that indexes can lead to the wrong
conclusion even for data sets such as that have compact,
well-separated clusters, and even when the preferred solution
is among the candidates in

Example 7.1B: with SL: Table III shows values of the
21 validity indexes for SL partitions of at each value of

for to
Columns in Tables II and III for and are identical

because HCM and SL find the same partitions at these values
for For the two algorithms find different partitions,
so the values of the indexes are in many cases quite different
too. Examples 7.1A and 7.1B allow us to conclude that HCM
and SL often find the same (correct) partitions of when
its clusters are relatively compact and well-separated. And
further, that nearly half of the s fail to indicate this.

Example 7.2A: Iris with HCM:Table IV lists the values of
our 21 validity indexes on HCM-partitions ofIris .

Although Iris contains observations from three physical
classes, classes 2 and 3 are known to overlap in their numeric
representations, while the 50 points from class 1 are very well
separated from the remaining 100. Geometrically, the primary
structure inIris is probably but the physical labels insist

(a) (b)

(c) (d)

Fig. 10. Plots ofVMH� andV
MH�̂

for UHCM andUSL of Iris .

that Consequently, the best value foris debatable.
Since clusters are defined by mathematical properties within
models that depend on data representations that agree with the
model, we take as the correct choice forIris , because
what matters to an algorithm is how much cluster information
is captured by the numeric representation of objects. Table IV
shows that 16 of the 19 algebraic indexes indicate for
HCM partitions of Iris, which in our opinion is the preferred
choice.

Both modified Hubert statistics in Table IV have knees at
(see Fig. 10). These are the only indexes that point to
in this experiment. Only two of the 21 indexes prefer
the physically correct number of clusters inIris . And

all but two of the 21 indexes identify either (best choice,
and perhaps the geometrically correct answer) or (next
best choice, and the physically correct answer).

Example 7.2B: Iris with SL:Table V lists the values of the
21 validity indexes on SL -partitions of Iris . HCM and SL
find slightly different partitions of Iris at every value of.

in Table V points to but its normalized form
points to (see Fig. 10). Of the 19 algebraic indexes,
only Dunn’s index does not point to or 3; instead, it
also chooses Values of across are so close to
each other for all ’s except that we might well call this
test inconclusive (the same holds for ). Of the 21 indexes
on the HCM and SL partitions in Tables IV and V, there are 15
votes for in matched cells. Agreement of many indexes
across several rather different clustering models can be taken
as a good sign that the structure of the data is being clustered
and assessed correctly.

Fig. 10 shows the Hubert plots for the HCM and SL par-
titions of Iris. This figure illustrates the difficulty in choosing
the distinguished value ofby observing a “sharp knee.” View
10a is a pretty smooth curve, but does seem to have a knee



312 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 3, JUNE 1998

TABLE V
VALIDITY INDEXES FORUSL PARTITIONS OF Iris

at View 10b has a “strong knee” at and a
weaker knee at ; panel 10c shows the same type of
graph, pointing first to and then to . Finally, view
10d seems to have the most pronounced knee at Our
analysis of this figure, however, is obviously subjective. If the
largest change in valuesis used (like the internal SL criterion)
instead, all four of these graphs would point to either
or depending on your interpretation of the meaning
underlying this strategy. Another point worth noting is that

and do not always lead to the same value for
This is seen in Fig. 10(c) and 10(d), and we also observed

this in other tests as well.
Example 7.3A: Normal 4 4 with HCM: Table VI lists

the validity indexes on HCM c-partitions ofNormal All
indexes except and indicate the preferred
choice for this data set. The three failures use (20)
as the interset distance. However, the optimal values for these
three indexes, shown at (they look identical to ,
but remember our roundoff policy), are very close to their
values for the correct and both point nicely to

The structure ofNormal should be fairly well
defined since 95% of the 200 samples in each cluster in it
are captured in spheres of radius 2 about their centers, which
are three units from the origin of

Example 7.3B: Normal 4 4 with SL: Table VII lists the
validity indexes on SL -partitions of Normal The
values of the indexes in Table VII are vastly different from
those in Table VI, implying that SL has found very different
partitions of this data set than HCM. Moreover, of the 21
indexes,only points to ! The failures represented
by Table VII can be understood by remembering the type
of data structures that HCM and SL prefer.Normal

TABLE VI
VALIDITY INDEXES FORUHCM PARTITIONS OF Normal 4 � 4

has essentially compact clustercores, but the sampling
process undoubtedly produces a few bridge points between
clusters. This enables SL to (mistakenly) leap across the
neck between the Gaussian clusters, and partitions produced
by it are predictably bad. We can’t see this data set, so
this speculation is based on our knowledge of the clustering
algorithm. The worrisome thing here is, of course, that if you
didn’t know the right answer, Table VII would lead you to
strongly consider as the best choice for this data set.
And this would be a misleading inference about the (unknown)
structure possessed by the data.

The failure of all but one index to pick the right is not
due to the incapability of the indexes. Rather, we attribute this
to the bad partitions generated by the SL clustering algorithm.
The most compelling evidence for rejecting the suggestion
presented by Table VII is to put Tables VI and VII side by
side. In this case, one set of values points largely to
while the other set points to Here we know why,
but if were unlabeled, what you should conclude from a
comparison of the two tables is that (unlike Tables IV and
V, which showed good consistency forIris ) something is
badly amiss in algorithmic interpretations of this data. Neither
conclusion or should be given a lot of weight
without further study.

Example 7.4:Table VIII summarizes the values of sug-
gested by the 21 indexes on HCM partitions of each of six
data sets. In the table, “inc.” for and means
inconclusive. The last column of Table VIII shows the number
of times in six tries that agrees with the preferred value of
called in the table. Table VIII indicates that the three indexes

that use as the interset distance fail to point to good
partitions, irrespective of the diameter definition used.
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TABLE VII
VALIDITY INDEXES FORUSL PARTITIONS OF Normal 4 � 4

Not surprisingly, the correct number of clusters
is never indicated for had a very weak Hubert
knee here, which we decided to label as inconclusive). Recall
that is derived from Normal by subtracting
2.5 from every coordinate of Since the means of
were three units from the origin of , it is very likely
that cluster structure has more or less disappeared under this
transformation.

VIII. D ISCUSSION AND CONCLUSIONS

We have reviewed three crisp indexes of cluster validity: the
modified Hubert Statistic, Davies–Bouldin, and Dunn’s index.
We then proposed five new set distance and two new set diam-
eter functions, and used them to define a family of 18 cluster
validity indexes that generalize Dunn’s index. Computational
examples on six data sets were used to compare the 21 indexes
described in this paper. Here are our conclusions, which we
emphasize again, are specialized to the case where clusters are
expected to form volumetric clouds as follows.

1) The modified Hubert Statistics and and the
Davies–Bouldin index produced either three or
four successes in six tries (cf., Table VIII). We conclude
that they are more or less equally effective. Visual
identification of Hubert knees is very subjective and
scale dependent. We think the DB index is preferable
to and because of this.

2) The three generalized Dunn’s indexes usinghave the
worst records in these trials. Table VIII supports the
assertion that the standard measure of interset distance,

is the worst

TABLE VIII
VALUES OF c SUGGESTED BY THE 21 INDEXES

ON HCM PARTITIONS OF SIX DATA SETS

among the family Dunn’s index, which also uses
is the least successful index among the 21 indexes

tested. The performance of the three GDI’s usingalso
is pretty bad. This is because like depends only
on the distance between a pair of points. We conclude
that intraset distances should use all the data points.

although sensitive to noisy points, produces good
performance when used with and This is
because the data used in our study possess relatively
compact clusters the means of which are close to the
vectors as shown in Fig. 7(a). Moreover, we believe
that interclass separation plays a more significant role in
cluster validation than within cluster dispersion (size or
diameter of the cluster).

3) Five of the 18 GDI’s produced five successes in six
tries on HCM partitions: and
From this study we conclude that and provide
the most reliable measures of intercluster distance. In
other studies, has also been very effective [14]. Not
surprisingly, gives the least reliable measure of set
diameter [cf., Fig. 7(b)]. We think our simulations show
that some of the GDI’s are better than any of the crisp
validity functions to which they were compared in this
study.

4) The indexes discussed here may not be good for chain or
shell type of clusters because the definitions (particularly
the set diameters discussed in Section V) implicitly
characterize cloud type clusters. However, Dunn’s index
can be suitably generalized in a slightly different way
than the method presented here so that it is applicable to
chain or shell type clusters. For example Pal and Biswas
[15] used graph theoretic concepts (minimal spanning
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trees, relative neighborhood graphs and Gabriel graphs)
to define the diameter of clusters.

In summary, Dunn’s index in its original form is not very
suitable for cluster validation because of its sensitivity to
noisy points. But it provides a rich and very general structure
for defining cluster validity indexes for different types of
clusters. With suitable interset distances and set diameters
generalizations of Dunn’s index can be used to validate
hyperspherical/cloud and shell type clusters.

Finally, we add some comments for practitioners. Clustering
is a very useful tool that has many well documented and
important applications: to name a few, data mining, image
segmentation and extraction of rules for fuzzy controllers. The
problem of validation for truly unlabeled data is an important
consideration in all of these applications, each of which
has developed its own set of partially successful validation
schemes. Our experience is that no one index is likely to
provide consistent results across different clustering algorithms
and data structures. One popular approach to overcoming this
dilemma is to use many validation indexes, and conduct some
sort of vote among them about the best value for. Many
votes for the same value tend to increase your confidence, but
even this does not prevent mistakes (cf., Tables VI and VII).
We feel that the best strategy is to use several very different
clustering models (such as HCM and SL), vary the parameters
of each, and collect many votes from various indexes. If the
results across various trials are consistent (as in Tables IV and
V), the user may assume that meaningful structure in the data
is being found. But if the results are inconsistent (Tables VI
and VII), more simulations are needed before much confidence
in algorithmically suggested substructure is warranted.

APPENDIX A
THE BATCH HARD -MEANS (HCM) ALGORITHM [4]

Unlabeled Object Data

iteration limit

Euclidean norm for clustering
criterion
Norm for termination error

For to
Calculate with and a
Calculate with and b
If stop Else

Next

Prototypes and/or Labels

APPENDIX B
RELATIONAL DATA FOR THE SL EXAMPLE

(See Tables IX and X and Fig. 11.)

TABLE IX
COORDINATES OFXXX9

TABLE X
RELATIONAL DATA RRR9 CREATED FROMXXX9: rjk = jjxxxj � xxxkjj2

Fig. 11 Data setX9:
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