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Abstract—In this paper we present a morphologic edge detection methods using multi-scale approach for
detecting edges of various fineness under noisy condition. It is shown that the proposed edge detector has
the desirable properties that a good edge detector should have. Comparative study reveals its superiority
over other morphologic edge detectors. ( 1998 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved
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1. INTRODUCTION

Changes or discontinuities in image feature, such as
intensity, are called edges. Edges in an image are
formed due to variations of some of the physical
properties, like surface illumination and shadows,
geometry (orientation and depth) and reflectance of
objects in the scene. Hence, one can say that edge
points represent some features of a scene. The process
of extraction of these feature points is called edge
detection. More formally edge detection is a process
which transforms a gray-level image to an edge image.
In an edge image each pixel value indicates either the
presence or absence of an edge. Edge detection is
a fundamental step in computer vision.

One conventional approach to edge detection is
based on use of spatial operators. The spatial intensity
changes present in the image is enhanced by first-
order differential operators(1~3) or by Laplacian oper-
ator.(4, 5) A threshold is then applied to get edge
points at which intensity changes are significantly
large. Some other edge detectors try to fit a function
to the image intensity surface,(6~9) and then estimate
edge point locations from the best fitting surface.
These operators are computationally expensive than
differential operators. The performance of all the
above operators degrades with noise. To overcome
this problem posed by noise, recently two new edge
detectors were proposed.(10, 11) Canny(11) has shown
that his method is better than that of Marr and
Hildreth’s(10) if both positional accuracy and ampli-
tude sensitivity of the edge detector are considered.

*Author to whom correspondence should be addressed.

However, performance of most of the edge detectors
improve if we adopt multi-scale approach whose in-
formation at various scales are integrated.

A new approach to image analysis was proposed
using the theory of mathematical morphology.(12, 13)
This approach is based on set-theoretic concepts of
shape. In morphology objects present in an image are
treated as sets. As the identification of objects and
object features directly depend on their shape,
mathematical morphology is becoming an obvious
approach for various machine vision recognition
processes. Several machine vision hardware manu-
facturers have started including morphological
processors. These machines include Golay logic
processor,(14) Leitz Texture Analysis System TAS,(15)
the CLIP processor arrays,(16) and the Delft Image
Processor DIP.(17) Initially, morphology dealt with
binary image only, and basic operations were dilation
and erosion, also known as Minkowski addition and
subtraction.(18) Natural extension of morphologic
transformations from binary image processing to
gray-scale processing using max and min operations
is done by Sternberg(19) and Haralick et al.(20)

Morphologic techniques are being used in various
fields of Image processing. Peleg and Rosenfield(21)

use it to generalize medial axis transform, Peleg
et al.(22) use it to measure changes in texture proper-
ties as a function of resolution, Werman and Peleg(23)

use it for feature extraction, and Favre et al.(24) use it
for the detection of platelet thrombosis in cross sec-
tions of blood vessels. Lee et al.(25) have used gray
scale morphology for edge detection. In this paper
we present a morphologic edge detection methods
using multi-scale approach for detecting edges of
various fineness under noisy condition. The paper is
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organized as follows. Section 2 presents definitions of
morphologic operations that are used to describe the
algorithms. Existing morphologic edge detectors and
their properties are discussed in Section 3. Multi-scale
morphologic edge detector, proposed by us, and its
performance is presented in Section 4. Experimental
results obtained by applying the edge detectors on
a real image with and without noise are presented in
Section 6, and the results are evaluated qualitatively
for comparison purpose.

2. DEFINITIONS

The morphologic operations work with two images:
The original data to be processed and a structuring
element. Each structuring element has a shape which
can be thought of as a parameter to the operation.
Most fundamental morphological operations are
morphological dilation and morphological erosion.
Based on these, two compound operations named as
opening and closing are defined. We first give defini-
tions of binary morphologic operations and then that
related to gray-scale morphology. In the present work
the objects and operations we deal with are in the
two-dimensional discrete domain only.

Considering the case of binary image, let A be the
set of points representing the binary one pixels of the
original binary image and B be the set of points
representing binary one pixels of structuring element.

Definition. Dilation of a binary image A by binary
structuring element B, denoted by A =B, is defined as

A =B"Mb#a D for some b3B and a3AN.

Definition. Erosion of a binary image A by binary
structuring element B, denoted A >B, is defined as

A>B"Mp Db#p3A for every b3BN.

Definition. Opening of a binary image A by a binary
structuring element B, denoted by A lB, is defined as

A lB"(A> B)=B.

Definition. Closing of an image A by a structuring
element B, denoted by A f B, is defined as

A fB"(A= B)> B.

The term scale stands for the largest size of a shape
template that can fit inside an image region or ob-
ject.(26) Suppose B is a compact connected subset. If
we say that the base structuring element B has size
one then the finite set

nB"B=B=2=B , n'0 (1)
hg—igj
n~1 5*.%4

defines a pattern of size n. By convention,
nB"M(0, 0)N if n"0. Hence, for n"0, 1, 2,2 we
have a family of shape templates parametrized by the
discrete size parameter n.

A gray-scale image with a gray-level function f (r, c)
can be thought of a set of points p"(r, c, f (r, c)) in the
Euclidian three-dimensional space. So gray-scale
morphologic operations may be regarded as three-
dimensional binary morphology. Hence, in gray-scale
morphology, both the domain of the function M(r, c)N
and its value f (r, c) are changed.

Definition. The dilation of a gray-scale image f (r, c) by
a gray-scale structuring element b(r, c) is denoted by
( f = b) (r, c) and is defined as

( f= b) (r, c)"max
(i, j)

( f (r!i, c!j)#b(i, j)).

The domain of f = b is the dilation of the domain of
f by the domain of b.

Definition. The erosion of gray-scale image f (r, c) by
a gray-scale structuring element b(r, c) is denoted by
( f > b) (r, c) and is defined as

( f > b) (r, c)"min
(i,j)

( f (r#i, c#j )!b (i, j)).

The domain of f> b is the erosion of the domain of
f by the domain of b.

Definition. The opening of a gray-scale image f (r, c)
by a gray-scale structuring element b(r, c) is denoted
by ( fl b) (r, c) and is defined as

( f lb) (r, c)"( f> b) (r, c)= b(r, c)

Definition. The closing of a gray-scale image f (r, c) by
a gray-scale structuring element b(r, c) is denoted by
( f f b) (r, c) and is defined as

( f f b) (r, c)"( f= b) (r, c)> b(r, c).

3. MORPHOLOGIC EDGE DETECTION

A simple method of performing gray-scale edge
detection in morphology is to take the difference be-
tween an image and its erosion/dilation image by
a structuring element. This may be preceded by pre-
processing or followed by postprocessing or both. The
difference image is an image of edge strength. Most
popularly used structuring element for edge detection
is rod shaped with flat top. To define the gray-scale
rod structuring element having flat top and rod-
shaped domain, let (0, 0) denote center of local neigh-
borhood and a point by (r, c) at an offset of r along
row direction and c along column direction. Then the
domain of rod structuring element, say, of radius
1 (using city-block distance) is denoted by D

rod1
and is

defined as

D
rod1

"M(0, !1), (0, 1), (0, 0), (!1, 0), (1, 0)N
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Fig. 1. Illustrates edge orientation response of multi-scale morphologic edge detector: (a) model of step
edge with inclination h about vertical axis; (b) edge strength (e) versus orientation plot.

and its value is a mapping b :D
rod1

PM0,2 , 255N.
Since rod is flat on top the gray scale value of
b(r, c)"0, ∀(r, c)3D

rod1
. This is represented dia-

gramatically as

0
0 * 0

0

D
rod1

"Domain of rod structuring element of radius
one.
‘‘* ’’ indicates the origin. Hence, D

rod1
is nothing but

the 4-neighbour of the origin including it. Let us
denote it also by N

4
. Similarly, 8-neighbour of the

origin including it is denoted by N
8
.

The edge strength image due to dilation residue edge
detector is given by

G
d
(r, c)"( f= b) (r, c)!f (r, c)

" max
(i, j4)|D30$1

( f (r!i, c!j))!f (r, c) (2)

" max
(i, j)|N4(r,c)

( f (i, j )!f (r, c))

The edge strength image due to erosion residue edge
detector is given by

G
e
(r, c)"f (r, c)!( f> b) (r, c)

"f (r, c)! min
(i,j)|D30$1

( f (r!i, c!j) ) (3)

" max
(i, j)|N4(r,#)

( f (r, c)!f (i, j ))

Both dilation residue edge detector and erosion resi-
due edge detector are noise sensitive. Moreover these
are biased in the sense that the former gives the edge
strength to that side of an edge which has low value
while the latter gives to the high value side. A position
unbiased operator can be obtained by the combina-
tion of the operators G

d
(r, c) and G

e
(r, c). Three

such combinations are defined using pixelwise
minimum, maximum and sum. They are denoted by
G

.*/
(r, c), G

.!9
(r, c) and G

46.
(r, c), respectively, and

are defined as

G
.*/

(r, c)"min MG
d
(r, c), G

e
(r, c)N, (4)

G
.!9

(r, c)"max MG
d
(r, c), g

e
(r, c)N, (5)

G
46.

(r, c)"G
d
(r, c)#G

e
(r, c). (6)

G
.!9

and G
46.

are still sensitive to noise. G
.!9

is same
as the 4-neighbour compass gradient in max sense.(27)
G

46.
results in thick edges and strength of detected

edge is less than actual edge strength. G
.*/

(r, c) is less
sensitive to noise but cannot detect ideal step edges.

Lee et al.(25) suggested the following improved edge
detectors which are less sensitive to noise but yet can
detect ideal step edge. Before describing these oper-
ators we need to define the structuring elements. Con-
sider four structuring elements which have flat top
and have domains denoted by D

1
, D

2
, D

3
, D

4
and

D and are defined as

D
1
"M(!1, 0), (0, 0), (0, 1)N.

D
2
"M(0, !1), (0, 0), (1, 0)N.

D
3
"M(!1, 0), (0, 0), (0, !1)N. (7)

D
4
"M(0, 1), (0, 0), (1, 0)N.

D"M(!1, !1), (!1, 1), (0, 0), (1, !1), (1, 1)N.

Diagramatically,

0 0
0 * * 0 0 * * 0

0 0

D
1

D
2

D
3

D
4

and

0 0
*

0 0
D

Hence, D
1
XD

2
XD

3
XD

4
"N

4
and D"

N
8
/N

4
X(0, 0), where the binary operator ‘‘/’’ represents

set subtraction such that A/B"Mx Dx3A and xNBN.
Suppose dilation and erosion of f (r, c) by the flat

top structuring element whose domain is a is denoted
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Fig. 2. Illustrates edge displacement response of multi-scale morphologic edge detector for vertical
edge: (a) model of step edge with horizontal displacement d

H
from vertical axis; (b) edge strength

(e) versus horizontal displacement plot.

Fig. 3. Illustrates edge displacement response of multi-scale morphologic edge detector for diagonal
edge: (a) model of step edge with diagonal displacement d

D
from the centre; (b) edge strength (e) versus

diagonal displacement plot.

by dilation
a
(r, c) and erosion

a
(r, c), respectively. Then

the improved dilation residue operator is defined as

G@
d
(r, c)"minMdilation

Drod1
(r, c)!f (r, c),

dilation
D
(r, c)!f (r, c), G@@

d
(r, c)N, (8)

where GA
d
(r, c) is defined as

GA@
d
(r, c)"maxMDdilation

D1
(r, c)!dilation

D2
(r, c) D ,

Ddilation
D3

(r, c)!dilation
D4

(r, c) DN

and the improved erosion residue operator is defined as

G@
e
(r, c)"min M f (r, c)!erosion

Drod1
(r, c),

f (r, c)!erosion
D
(r, c), GA

e
(r, c)N, (9)

where GA
e
(r, c) is defined by

GA
e
(r, c)"maxMDerosion

D1
(r, c)!erosion

D2
(r, c) D ,

Derosion
D3

(r, c)!erosion
D4

(r, c) DN.

These improved operators are biased for ideal step
edges and a natural resolution is to consider their
sum. This leads to a new edge detector G@

46.
defined as

G@
46.

(r, c)"G@
d
(r, c)#G@

e
(r, c) (10)

The shortcoming of this is that its capability to reduce
effects of noise is limited.

Now recall that minimum of dilation residue and
erosion residue as given by equation (4) is a good de-

tector of ramp edge and is less sensitive to noise, but it
cannot detect step edge. So before applying this operator
if we blur the image by, say, simple mean filter our
achievement is twofold: Effect of noise is further reduced
and step edges are converted to ramp edges which can
now be detected by the said operator. The resultant
operator is what we call blur-minimum edge detector.(25)

Even though Blur-minimum operator is less sensi-
tive to noise, the edge strength assigned to the edge
pixel is less than edge contrast. This is due to the
blurring of input image which diffuses the edge peaks
over the blur neighborhood area. Hence, weak edge
points may be undetected. Secondly, the thickness of
the edge detected by blur-minimum operator in-
creases as the slope of ramp edge decreases. This
decreases the ability of the blur-minimum operator to
localize edges correctly. To overcome these problems,
Song and Neuvo(28) have proposed a new edge de-
tector, named as alternating sequential filter (ASF)
edge detector. This is basically an erosion residue edge
detector using a rod structuring element preceded by
noise suppression. Here noise is suppressed by alter-
nating application of opening and closing mor-
phological filters. So is the name of the edge detector.

4. MULTI-SCALE MORPHOLOGIC EDGE DETECTOR

The goal of edge detection is to detect and localize
edge points even under noisy condition. Not all edges

1472 B. CHANDA et al.



Fig. 4. Illustrates the study of noise sensitivity of the multi-
scale morphologic edge detector: (a) original noise-free image
of octagon; (b) noisy image of octagon (SNR"30); and (c)
noisy image of octagon (SNR"10). (i) Gray-scale image,
and (ii) edge map due to multi-scale morphologic edge

detector.

with various fineness regarding spectral contrast and
spatial geometry can be detected by a single operator.
In fact, some detail that seem to be freak and noisy in
one scale may become relevant in other scale. Hence,
edges of different fineness are detected using operator
at different scale, and then they are judiciously
combined to produce all the edges of interest in an
image.

The multi-scale morphological edge detector is able
to differentiate these fine variations of gray-level sur-
face, and yet can remove noise. As the name implies
this is based on multi-scaling approach. Structuring
elements of different sizes are used to extract features
at different scale. The smaller the size of structuring
element, lesser is the noise removing capacity and
more the ability to detect fine edges. By using large
size structuring element one can remove more noise
but at the same time the thickness of edge increases
causing smearing of closely spaced edges. Hence, to
overcome these problems, one can combine judiciously
different edge maps obtained with different size struc-
turing elements. True edge points are extracted from
this combined edge map. The following are the differ-
ent steps involved.

1. Obtain edge strength maps using structuring ele-
mens of different size.

2. Combine edge strength maps/images obtained in
Step 1.

3. Extract the edge points lying on the ridge of the
edge strength surface using non-maximal sup-
pression technique.

The following paragraphs give a detailed descrip-
tion of each of the three steps of multi-scale mor-
phologic edge detection method.

Step 1: Obtain edge maps. Consider four flat top
structuring elements whose domains are nD

1
, nD

2
,

nD
3

and nD
4

that are same as D
1
, D

2
, D

3
and D

4
,

respectively [defined by equation (7)] but have size
n and nD"nN

8
/nN

4
u (0, 0). Similarly, the domain of

a flat top rod structuring element of radius n, denoted
by D

rodn
, is defined as D

rodn
"nD

rod1
. Thus, the edge

strength map at scale n may be given as

Gn
d
(r, c)"min Mdilation

nDrod1
(r, c)!f (r, c),

dilation
nD

(r, c)!f (r, c), Gn@
d
(r, c)N,

(11)

where Gn@
d
(r, c) is defined as

Gn@
d
(r, c)"maxMDdilation

nD1
(r, c)!dilation

nD2
(r, c) D ,

Ddilation
nD3

(r, c)!dilation
nD4

(r, c) DN.

A close examination of equation (11) reveals that this
is similar to improved dilation residue operator [as
defined in equation (8)] at scale n. So we may also
define the edge strength by an operator similar to
improved erosion residue operator or by sum of them.

Step 2: Combining edge strength. Suppose edge
strength at scale n due to an image f (r, c) is denoted by
f @
n
(r, c). Thus, according to the operator presented in

the step 1, f @
n
(r, c)"Gn

d
(r, c). Now we combine these

edge strengths of different scale, most naturally, by
simple pixelwise summation, i.e.

f @ (r, c)"
l
+
n/k

w
n
f @
n
(r, c),

where [k, l] represents the range of scale that explicit
the edges of interest and w

i
’s are respective weights
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Fig. 5. Illustrates the study of performance of edge detectors on real image: (a) original noise-free image
of Lena, edge map due to (b) dilation residue edge detector, (c) erosion residue edge detector,
(d) blur-minimum edge detector, (e) ASF edge detector, (f ) multi-scale morphologic edge detector, and

(g) Canny’s edge detector.

that are supplied by the user. Note that other kinds of
combination are also possible. Secondly, the edge
strength map f @(r, c) appears to contain long range of
mountains and true edge lies along its ridge.
Step 3: Non-maximal suppression. As stated earlier
true edge corresponds to the ridges of hilly terrain of
the result of step 2. Therefore, to get the edge points
and subsequently the edges we employ non-maxima
suppression technique. The method is as follows. Let
a
1
, 2 , a

8
be the values of pixels in the 3]3 neigh-

bourhood of a pixel ‘a’, i.e.

a
1

a
2

a
3

a
4

a a
5

a
6

a
7

a
8

The pixel point ‘‘a’’ is said to be on the local ridge if
any one of the following four conditions is true.

1. a
1
#a

4
#a

6
( a

2
#a#a

7
' a

3
#a

5
#a

8
(corresponding to vertical ridge).

2. a
1
#a

2
#a

3
( a

4
#a#a

5
' a

6
#a

7
#a

8
(corresponding to horizontal ridge).

3. a
1
#a

2
#a

4
( a

3
#a#a

6
' a

5
#a

7
#a

8
(corresponding to 45° ridge).

4. a
2
#a

3
#a

5
( a

1
#a#a

8
' a

4
#a

6
#a

7
(corresponding to 135° ridge).

If ‘‘a’’ is not a ridge point then it is replaced with the
min Ma, a

1
, 2 , a

8
N. To emphasize ridge points one

may employ gray-scale thinning method too.(29)

5. EDGE DETECTOR PERFORMANCE

For evaluating performance of edge detector we
need to distinguish variation in its response due to
variation in orientation and location of edge; edge
type, such as step or ramp or other; and its noise
sensitivity.

5.1. Edge orientation response

Conventional operators, like Prewitt and Sobel op-
erators, are directional sensitive. For example, Prewitt
operator(2) is better for vertical edges, while Sobel
operator(3) is for diagonal one. Because of rotational
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Fig. 5. (Continued.)

symmetry, the proposed morphological edge detector
is not sensitive to edge direction. The curve shown in
Fig. 1 illustrates these characteristics.

5.2. Edge position response

An important property of an edge detector is its
ability to localize an edge. The proposed morphologi-
cal edge detector exhibits a desirable sharp monotonic
decreasing response as the edge moves away from the
centre of the neighbourhood. The edge amplitude
response curves for the displacement of the horizontal
and the diagonal edges are given in Figs 2 and 3,
respectively.

Ramp edges of extended width usually cause difficul-
ties in localizing the edges. But proposed edge detector
performs better than other morphological operators due
to summation and non-maximal suppression. Com-
bined edge strength image is expected to have a roof
edge surface. Hence, non-maximal suppression results in
thin edges. Even edges of small contrast can be detected
and localized as shown in the experimental results.

5.3. Noise sensitivity

The three types of errors associated with edge de-
tection are missing valid edge points, classification of

noise fluctuations as edge points and failure to local-
ize edge points. Pratt(30) has introduced a figure of
merit defined as

R"

1

I
m

Ia
+
i/1

1

1#wd2
,

where I
i
is the number of ideal edge map points, I

a
the

number of actual edge map points, I
m
"max MI

i
, I

a
N,

w the scaling constant, adjusted to penalize edge
points that are detected but offset from true position
and d the separation distance of an actual edge point
along a line normal to a line of ideal edge points.

The proposed edge detector is evaluated by a coin-
cidence comparison of ideal edge map with the actual
detected edge map. For studying the noise sensitivity
we have considered a 256]256 size image containing
an octagon that has edges with four different slopes:
0, 45, 90 and 135°. To this image white Gaussian noise
of different standard deviations are added. The images
of different signal-to-noise ratio are given in
Fig. 4(a)—(c) (i) and corresponding edge maps due to
the multi-scale morphologic edge detector are shown
in Fig. 4(a)—(c) (ii). Finally, Fig. 4(a) (ii) is used as the
ideal edge map, and Fig. 4(b) (ii) and Fig. 4(c) (ii) are
used as actual edge map for the performance
study. Value of the figure of merit is close to 1 as

A multi-scale morphologic edge detector 1475



Fig. 6. Illustrates the study of performance of edge detectors on real image: (a) noisy image of Lena
(SNR"30), edge map due to (b) dilation residue edge detector, (c) erosion residue edge detector,
(d) blur-minimum edge detector, (e) ASF edge detector, (f ) multi-scale morphologic edge detector, and

(g) Canny’s edge detector.

desired, and decreases with the decrease of signal-to-
noise ratio.

6. EXPERIMENTAL RESULTS AND DISCUSSION

To study the performance of proposed multi-scale
morphologic edge detector and to compare its perfor-
mance with that of other morphologic edge detectors
as well as Canny’s edge detector, we have applied the
edge detectors on the well known image of Lena (size
256]256) with and without noise. We have taken
w
n
"1 for all n. Results are shown in Figs 5 and 6, and

are evaluated qualitatively.
It can be observed that the proposed multi-scale

morphological edge detector performs better than di-
lation residue and erosion residue edge detection
methods under noisy conditions. The edges obtained
by blur-minimum operator are not continuous and
some edge points are missing. This is the point where
ASF edge detector performs better than blur-min-
imum operator. This is due to initial morphological
filtering (ASF) to remove noise. In fact, morphological
opening and closing operations in ASF edge detector

selectively remove some of the noisy features without
disturbing the others. However, ASF edge detector
cannot detect small and quick variations on gray-level
surface. Multi-scale edge detector performs better
than ASF edge detector for these cases. At the same
time it performs better than the improved methods
under noise conditions. It is possible to obtain thin
edges or object boundaries with multi-scale operator
which may not be detected with other morphological
methods. This method detects weak edge points lying
next to strong edge points without sacrificing the over-
all quality. Results obtained with Canny’s method are
comparable. But Canny’s method is computationally
expensive as it involves Gaussian convolution. Mor-
phological edge detectors involve simple addition/
subtraction operations and max/min operations.
Finally, though Canny’s edge detector perform best in
the sense of robustness to noise (because of smoothing
by Gaussian function), its result is inferior to mor-
phologic edge detectors in terms of edge localization.
Thus, the proposed edge detector is found to perform
well considering both the robustness to noise and the
edge localization.
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Fig. 6. (Continued.)

7. SUMMARY

Edge detection is an important task in any image
analysis system. The response of the conventional
edge detectors are largely dependent on the size of
spatial filter (area of support) and the threshold(cut off
level) used. The choice of those parameters remain
heuristic due to the absence of proper image model.
This problem is greatly reduced when a multi-scale
approach for integrations of edge information, ob-
tained from various size of filters, is used. The present
work proposed one such multi-scale edge detector
based on the theory of mathematical morphology. It
is shown that the proposed detector has better noise
immunity and orientational and positional response
compared to most of the conventional morphologic
edge detectors. This is computationally less expensive
than sophisticated edge detectors like Canny etc., with
comparable result.
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