THE APPLICABILITY OF LARGE SAMPLE TESTS FOR MOVING AVERAGE AND AUTOREGRESSIVE SCHEMES TO SERIES OF SHORT LENGTH—AN EXPERIMENTAL STUDY

CONTENTS

CONTENTS	
	Pages
Part 1 : Moving Averages. By Abraham Matthai & M. B. Kannun.	218
1. Introduction	
2. Selection of samples	
2.0. Construction of models	
2.1. Bias in serial coefficients	
3. Tests on correlograms with known models	
3.0. Wold's test	
3.1. Computational aspects of test	
3.2. Test results	
4. Fitting of models	
4.0. Estimation of parameters	
4.1. Fitting autoregressive schemes to moving averages	
5. Summary of conclusions	
Part 2: Autoregressive Series. By S. Raja Rao & Ranjan K. Som	239
1. Introduction	
2. Malels for study	
2.0. Construction of models	
2.1. Serial correlation coefficients	
2.2. Bias in the serial coefficients	
3. Test for goodness of fit of a priori known models	
4. Fitting of models	
4.0. Fitting of autoregressive models to time series	
4.1. Test for goodness of fit of fitted autoregressive models	
4.2. Fitting the moving average models to stationary	
time series of autoregressive type	
5. Summary of conclusions	
Part 3: The Discriminant Function Approach in the Classification	
of Timo Series. By C. Radhakrishna Rao.	257
I. Introduction	
2. Test for an a priori moving average model	
3. Test for a fitted moving average model	
4. Test for an a priori autoregressive model	
5. Test for a fitted autoregressive model	
6. The probability ratio test with an upper limit to the	number of
observations	
7. Some general comments on discriminatory analysis of time se	ries data

PART 1: MOVING AVERAGES

By ABRAHAM MATTHAI and M. B. KANNAN Statistical Laboratory, Calcutta

1. INTRODUCTION

In assigning a moving average scheme to a given time series $\xi_{(i)}$, the main problem is firstly of fitting and secondly of testing the goodness of fit of a model of the form:

$$\xi_{iij} = \eta_{i1} + a_1 \eta_{ii-1j} + ... + a_k \eta_{ii-1j}$$
 $(t = 0, \pm 1, \pm 2...)$

For fitting such a model no direct method is yet available of estimating the parameters a_1, a_2, \dots, a_n from the given values. A general procedure of fitting, applicable to stationary time series, however, is to identify the series as conforming to a particular scheme from a knowledge of the correlogram. This in other words means using the sample serial correlation coefficients to estimate the theoretical serial coefficients and hence to estimate the parameters a_1, a_2, \dots, a_n .

Thus for instance the first h sample coefficients $r_1, r_2, ..., r_b$ can be conveniently used to estimate the theoretical coefficient $i, \rho_1, \rho_2, ..., \rho_b$. For such a fitting a test for goodness of fit was suggested by Herman Wold (1949). It is a χ^2 test which uses any number of serial coefficients from the (h+1)th onwards and is a test of the large sample type.

This Part of the paper deals with a project taken up during the Research Seminars, with the main object of exploring the suitability of Wold's test for making averages, when applied to samples of small sizes. While it was the aim of this project to gain as much insight into this problem as possible, it was also its purpose to create exploratory material for further study. The plan of the project accordingly consisted primarily in constructing artificial series of different lengths corresponding to different moving average models known a priori; in obtaining sets of serial coefficients for the samples so constructed; and finally in arriving at test-results arising from tests of two kinds, namely one with the known correlograms and the other with fitted correlograms. Three models and two sample sizes were considered giving rise to 2100 serial coefficients and about 500 x*-values of goodness of fit for a total of 225 samples.

The large amount of numerical computation thus involved in this project a also in a similar project presented in Part 2) was rendered possible through farilities of punched-card and other mechanical calculations available at the Indian Statistical Institute. In view of the large-scaleness of the numerical work, special care was taken to impose suitable checks wherever possible and it is believed that

no systematic or other kind of error has crept in and that the figures presented in different tables in the following pages are of reliable accuracy.

In section 2 of this Part are given details of construction of the series, while section 3 deals with tests with a priori models and section 4 with fitting of correlograms. In the course of the study, certain incidental problems such as bins in small samples, methods of fitting correlograms, are also discussed.

2. SELECTION OF SAMPLES

2.0. Construction of models: The three moving average schemes chosen for the investigation are

$$\xi_{111} = \eta_{111} + \eta_{11-11}$$
 ... (A)
 $\xi_{111} = \eta_{111} + \frac{1}{2} \eta_{11-11}$... (B)

$$\xi_{11} = \eta_{11} + \eta_{11-11} + \eta_{11-11} + \eta_{12-11} + \eta_{12-11} = 0... (C)$$

Two sample sizes have been considered, namely, T=35 and T=15. In each of the schemes A, B and C, 25 samples for T=35 and 50 samples for T=15 have been constructed. All the series were constructed having the γ 's normally distributed with zero mean and unit standard deviation and satisfying $E(\eta_{ij}\gamma_{ij+1})=0$ for $k=+1,\pm2,\ldots$

The series were constructed from Wold's random normal deviates in Tracts for Computers No. 25. For scheme A deviates from pages 42 and 43, for scheme B from pages 12, 46 and 49, for scheme C from pages 22 and 26 of the Tracts were used. These deviates all satisfied tests of randomness referred to in the introduction of the Tracts. The deviates constituting each series were further tested for independence, on the basis of the first two circular correlation coefficients and the test was found to be satisfied without exception.

In each scheme the first 12 serial coefficients have been calculated for the 33-items series and the first 8 coefficients for the 15-items series. These coefficients are given in Tables 8.A.1 to 8.C.2 at the end of this Part.

The theoretical serial coefficients for schemes A to C work out respectively to

$$\begin{split} & \rho_1 = 0.5, & \rho_1 = \rho_2 = \dots = 0 \\ & \rho_1 = 0.4, & \rho_2 = \rho_2 = \dots = 0 \\ & \rho_1 = 0.75, & \rho_2 = 0.50, \rho_3 = 0.25, \rho_4 = \rho_4 = \dots = 0 \end{split}$$

2.1. Bias in serial coefficients: The serial coefficients calculated from our samples however will not exactly correspond with the above theoretical values, because a considerable element of bias will be present for small sample sizes. Denoting the rth serial coefficient as

$$r_{k} = \frac{\sum \xi_{i0} \xi_{i00} - \sum_{k=1}^{T_{i}} \xi_{i0} - \sum_{k=1}^{T_{i}} \xi_{i0} / (T - k)}{\sqrt{\binom{T_{i}}{2} \xi_{i0}^{2} - \binom{T_{i}}{2} \xi_{i0}}} / \frac{1}{\sqrt{T - k} \cdot \binom{T_{i}}{2} \xi_{i0}} / \frac{1}{\sqrt{T - k} \cdot \binom{T_{i}}{2} \xi_{i0}} / \frac{1}{\sqrt{T - k} \cdot \binom{T_{i}}{2} \xi_{i0}} + \frac{1}{\sqrt{T_{i}} \cdot \binom{T_{i}}{2} \xi_{i0}} / \frac{1}{\sqrt{T - k}}}$$

$$= N / \sqrt{D_{i} D_{i}}$$

Vol. 11] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [Parts 3 & 4 and putting

$$E(r_k) = \frac{E(N)}{E\sqrt{D_k}D_k} = \frac{E(N)}{E(D)}$$

the following approximate result can be had :

$$\begin{split} & \mathcal{E}(r_{i}) = \{(T-k)\rho_{i} - \frac{1}{2^{i}-k}((T-2k)\rho_{o} + 2(T-2k)\rho_{1} + 2(T-2k)\rho_{2} + \dots \\ & + 2(T-2k)\rho_{i+1} + 2(T-2k)\rho_{i} + 2(T-2k+1)\rho_{i+1} \\ & + \dots + 2(k+1)\rho_{r-m-1} + 2k\rho_{r-m} + (2k-1)\rho_{r-m-1} \\ & + \dots + 2(k+1)\rho_{r-m-1} + 2k\rho_{r-m} + (2k-1)\rho_{r-m-1} \\ & + (2k-2)\rho_{r-m-1} + \dots + \rho_{r-1}\}] \dot{=} (T-k - \frac{1}{2^{i}-k}((T-k)\rho_{o} + 2(T-k-1)\rho_{1} + \dots + 2(1)\rho_{r-m-1})) \\ \end{split}$$

The bias in the different serial coefficients calculated with this formula, for schemes A, B, and C and for both the sample sizes are also given in Tables 8.A.1 to 8.C.2. In the tests described in the subsequent section the serial coefficients have been corrected for bias. Figures 2.A.1 to 2.C.2 at the end of this Part show the average correlogram, with the expected correlogram for each scheme and sample size.

3. TESTS ON CORRELOGRAMS WITH KNOWN MODELS

3.0. Wold's test: Wold's test for moving averages is as follows. Suppose that the given series belongs to a moving average having $\rho_1, \rho_2, ..., \rho_k$ for serial coefficients, ρ_{k+1} (i=1, 2...) being zero. Then out of the observed serial coefficients $r_{k+1}, r_{k+2}, ...$, which for large sample size T would be following a known multivariate normal distribution, can be formed linear forms:

$$R_{k+1} = z_{11}r_{k+1} + z_{12}r_{k+2} + \dots + z_{11}r_{k+1}$$
 (i = 1, 2....)

that again for large T are distributed independently and normally with zero mean and variance $\frac{\cdot 1}{T-h-i}$.

A criterion for testing whether a series belongs to a moving average with prescribed values for the coefficients ρ_1 , ρ_2 ,..., ρ_k and with ρ_{k+1} (i=1, 2...)=0, is therefore provided by

$$\chi_{sb}^{\,0} = \sum_{i=1}^{n} \chi_{sb}^{\,0} = \sum_{sbbl}^{b\cdot n} (T-s)R_{s}^{i}$$

This follows a x^2 distribution with n degree of freedom and permits the use of any number n of the serial coefficients.

The above χ^{2} tests were performed for all the samples constructed, having for hypothetical values of $\rho_{1}, \rho_{2}, ..., \rho_{o}$, the known theoretical serial coefficients of the constructed models.

3.1. Computational aspects of test f The computational procedure (Wold 1949) consists in firstly forming the dispersion matrix X = (x_{ik}) of the observed serial coefficients x_{ik}. This is done by making use of Bartlett's (1947) formula for the

second moments of serial coefficients for stationary time series, which in the present case reduces to

$$\text{Cov } (r_{b\cdot j},\,r_{b\cdot k}) \sim \frac{1}{\sqrt{(T-h-i)(T-h-k)}} \sum_{r=-\infty}^{\infty} \rho_{r}\rho_{r+1-k} \quad (i,\,k=1,\,2,\ldots,n)$$

The next step is to split the matrix X into X=YY' where Y is a triangular matrix. Now Y^{-1} would give $Z=\{z_n\}$ providing the z_n coefficients for the linear forms

$$R_{k-1} = z_{11}r_{k-1} + z_{11}r_{k-2} + ... + z_{11}r_{k-1}$$

The matrix Z could be determined for each scheme and the test conducted by calculating R_* and x^2 values from sample to sample.

This procedure for testing has the advantage of enabling the test to be conducted step by step including every time additional serial coefficients, without requiring to have a predetermined number of coefficients to start with.

An alternate method for obtaining the χ^2 values would be through a process of sweep out of the dispersion matrix X along with an adjacent matrix formed of the r_{s-1} values for any number of samples together (Rao, 1949). For illustration, a set of calculations are reproduced below. On account of symmetry elements of the dispersion matrix below the diagonal are omitted.

n

		dispersion	on metrix		•	veluce (i = l	,2,.,5)	
Т					Sample 1	Sample 2	 -	
90	.2384	.1947	.1332	.0712	.7480	0584	••	
	.2750	.2635	.2166	.1494	.7483	. 1653		
		.3056	.2946	.2441	. 5858	1042		
			.3438	.3341	.2472	.5622	.,	
				.3929	7021	5193		
			1st X		(.7450×	(.0584×	::	- ::
			200 14(1)		2.9333)	.2220)	••	•••
	.9349	.7635	.5224	.2792	2.0333	2290		
	.0521	.0815	.0920	.0828	.0490	.2198		
		.1569	. 1929	.1897	.0147	0396		
			.2742	.2969	1435	.5927		- ::
			,,,,,,	.3730	0110	5030	::	- ::
			2nd X3	.0.00	(.0420×	(.2198×		
			2,22,411,4		.9403)	4.2188)	••	••
	1	1.5643	1.7658	1.5893	. 9405	4.2188		
	•	1.5043	1.1.00	1.0003		4.2100	• •	••
		.0294	.0490	COHO.	0620	-,4034		
			.1132	, 1505	2301	.2041		
				.2414	9889	8523	••	••
			3rdx1, =		(.0620×	(.4034×		
			***		2.1088)	13.7211)		
		ı	1.6667	2.0476	-2.1088	-13.7211		
			.0319	.0506	1272	.8737		
				.1181	8620	0263		
			fth X ₍₁₎ =		(.1272×	(.8737×		
					3.9573)	27.3587)		
			1	1,5862	-3.9875	27.3887		••
				.0382	6610	-1.4067		
			518 X (+, -		{.6610 ×	(1.4067 xx		
					17.3037)	36.8246)		
					-17.3037	-30.8240		

VOL. 11] SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS [PARTS 3 & 4

TABLE 1. DISTRIBUTION OF X* (ld.f.)

expected frequency percent	χι upperelnan limit	achemo A aizo 35	erhomo B size 35	achome C aize 33	acheme A sizo 15	scheme B size 15	mhenie (nizo 15
(1)	(2)	(3)	(4)	(5	(6)	(7)	(8)
	,600157	3	6	5	4		5
1	.000628	0	0	0	0	0	Ü
3	.00393	7	7	4	7	12	6
5	.0158	7	15	16	12	13	12
10	.0142	30	13	10	27	24	01
10	,148	34	25	25	33	39	23
20	,455	45	48	46	63	66	49
20	1.074	85	52	28	74	73	35
10	1.642	23	24	25	29	42	22
10	2.706	24	29	22	34	35	21
5	5.841	11	12	16	22	15	16
3	5.412	5	8	8	12	14	10
ĩ	6.035	2	7	6	4	3	3
i	_	5	4	14	29	12	38
100		250	250	225	350	350	250

TABLE 2. DISTRIBUTION OF TOTAL X3

expected frequency percent	(LO d.f.) upper rinss limit	achomo A size 35	achoino B aizo 35	(7.d.f.) upper class limit	scheme A size 15	scheme B size 15	(0,d,f,) upper class limit	scheme C sixe 35	(5.d.f.) upper class limit	schem C size 15
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(×)	(9)	(10)	(11)
1	2.558	1	1	1.230	2	0	2,088		-534	0
1	3.059	0	0	1.564	0	1	2.532	0	.752	0
3	3.040	1	1	2.167	2	0	3.325	1	1,145	0
5	4.865	4	2	2.833	2	3	4.168	0	010.1	1
10	6.179	1	2	3.822	2	5	5.3H0	3	2.343	2
10	7.267	4	2	4.671	3	4	6.393	2	3.000	0
20	9.342	8	8	6.346	6	01	8.343	3	4.351	9
20	11.781	4	5	8.383	6	9	10.656	3	6.064	4
10	13.442	1	2	D.803	6	5	12.242	0	7.289	2
10	15.987	2	2	12.017	6	5	14.684	1	0.230	8
8	18.307	0	0	14.007	5	3	16.010	4	11.070	6
3	21,161	0	2	16.662	2	1	19.679	2	13.388	2
1	23.200	0	1	18.475	1	0	21.666	0	15.086	4
1	_	2	0	_	7	4	_	0	_	12
100		26	25		50	50		25		80

TABLE 3. DISTRIBUTION ACCORDING TO LAG NUMBER OF SIGNIFICANT X2 VALUES (14.1.).

			a bet ce	nt						l pur	cont		
		Ls	scheme C size 35	A	15	scheme C aizo 15			В	c		ncheuro 13 eizo 15	C
expected frequency per cell:	(1,25)	(1.25)	(1.25)	(2.5)	(2.5)	(2.5)	(.23	5)	(.25)	(.25)	(.5)	(.8)	(.5)
teg no.									<u></u>				
2	0	3	••	6	e			0	0	••	0	0	
3	0	2	•:	1	3			0	1	• • •	0	0	
4	3	1	0	•		. 0		!		0	:	:	0
				8 10		13		:	0	0	6	. !	5
6		•	2	10				ř	v		7		8
7	ņ		3	10				,		- 7	1	2	10
8		3	- 1		-			:	,		7	5	14
10	- 1	2			•			ò	Ÿ	- 3		• • •	••
11		•		•••	•			õ		:	••	••	••
12		.:	8	::	:					2	::	::	::
total frequency	, 12	19	28	45	2	9 8		. 8	4	13	29	12	37
total no. of values	250	250	225	350	35	0 25	 • :	50	250	221	350	350	250

In this investigation the former procedure has been adopted for schemes A and B and the latter for scheme C. The elements $z_{\rm A}$ for schemes A and B are given in Tables 7.A and 7.B at the end.

3.2. Test results: The results of the \(\chi^2\) test performed for the samples constructed are summarised in Tables 1 and 2. Of the individual \(\chi^2\) values with 1 degree of freedom (Table 1) about 5 to 12 percent for sample size 35 and 8 to 20 percent for size 15 are seen to be significant as against an expected 5 percent.

With regard to the sample overall χ^4 values (Table 2) while the percentages of significant values vary between 8 and 12 percent for schemes A and B for both the sample sizes, scheme C reveals 32 and 36 percent significant values respectively for sizes 35 and 15.

These rather high percentages are not very encouraging. But before final conclusions are made it will be worthwhile to make certain other observations regarding the test results. Table 3 which gives the distribution of significant $\chi_{i,j}^{*}$, values against lag numbers shows a tendency for the frequency to increase with lag number. This is against expectation. One possible explanation is that the variance of R_{*} might have been getting under-estimated and it may be that the variance 1(T-s) requires further correction.

Another interesting feature about the test results was that significant values in most cases were found to occur together, giving an indication that the independence of the $\chi_{1,2}^{*}$ values has not been fully achieved.

Another investigation made in connection with the test is as to whether correction for bias is necessary or not in making the above tests. For this pur-

Vot., 11] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [Pasts 3 & 4] pose tests with the average correlogram with and without correction for bias have been made and the results are given in Table 4.

TABLE 4. X' VALUES OF TESTS FOR AVERAGE CORRELOGRAMS
WITH AND WITHOUT BIAS

	corrected for	bina		ted for bian
lag no.	x _i ,	ΣΧ¦.,	X2,	Σx*,,
(1)	(2)	(3)	(4)	(5)
		schemo A (si	zo 35)	
1	.8800	.8800	,2310	.2319
3	.0008	.8806	.3520	.5839
8 6	1.8756	2.7504	5.8590°	6.4429
5	.3015	3.0577	.0139	6.4568
6	5.0682°	8.1259 9.7799	10.0265**	16.4833**
7	1.6540	to, 8997	9761	20.4978**
9	.8879	12.9074	.2751 2.3580	22.8558**
10	8.7527**	21.6601*	5.1246*	27.8804**
.11	.0122	21.6723*	.1513	28.1317**
		schemo A (si	ze (5)	
1 2	.8197	.8197	17.3252**	17.3252**
á	1.4198	2,2395	.7472	18.0724**
3 4 5 6 7	2.7420	4.9815	25.2249**	43.2973**
8	3.2142	8.1957	.0789	43.3762**
6	19.4037**	27.5994**	36.1428**	79.5190
7	0.8757**	34.4751**	6.2726**	85.7916**
8	2,6608	37.1449**	3.7778	89.5094**
		schome B (s	ize 35)	
1 2 3 4 5	,0000	,0000	1.8497	1.8107
•	1.0133	1.0133	.1238	1.0735
4	1.8065	2.8198	5.3390*	7.3125
6	.0078	2.8276	.4065	7.7190
6	1.0119	3.8395	.3065	8,0255
7	.0003	3.8308	.0753	8.1008
8	3.1553 .4118	6.1951	6.4104**	14.5122
LU	1.3549	7.4049 8.7418	.0058 3.2113	14.5170 17.7283
ii	,0002	8.7020	.0385	17.7668
		scheme B (e	izo 13)	
1	_			
2	.8843	CIKS.	14.7443**	14.7443**
3	.4651	1.3494	2.2118	10.9561**
4 6	14.9714**	14.3208**	47.0801**	64.0362**
6	6.9235**	24.1721**	1,4070	67.0346**
7	.9182	25.0003**	.6340	67.6706**
8	5.6687*	30.7590**	7.9647**	75.0353**
		scheme C (si	za 35)	
1	_	_		
2		_		
4	3,2925	3.2025	.1150	1150
3 4 5	.0325	3.3250	.0275	.1150
4	5.9550*	9.2800	12.0625**	12,2050
ï	.0825	9.3625	1.4650	13.67(K)
8	.3225	0,6850	.0325	13,7025
9 10	1,5050	11.1900	,7900	14,4925
íí	7.5775** .2900	18,7675 19,0575	12,0300**	26.8225
12	6.1825*	25,2400**	4.2850	27.85m 31.1350**
			*. =	44300

TABLE 4-contd.

(1)	(2)	(3)	(4)	(5)
		erherne C (ize 15)	
1		_		
2	_			_
3	_			
ā	2,6000	2,6000	9.9050**	9.9350**
5	U. H.5(X)**	12.4500**	12.0(28)**	22.0550**
6	63.2h54**	75.7350**	61.01ma**	83.0550**
7	.2568	75.541***	5. 2700°	88.3350**
i	16.5350**	02.0708**	18 -7550**	107.0900**

From the above results, obviously correction for bias is an improvement. However, the effect of bias may not be so pronounced in tests with individual correlegrams as it is in the above case of average correlegrams.

4. FITTING OF MODELS

4.0. Estimation of parameters: The problem of estimation of parameters in time series schemes does not appear to have been satisfactorily solved yet. What lies nearest at hand is to determine the parameters, say h in number, by the condition that the h first coefficients should be the same in the theoretical as in the empirical correlogram. For autoregressive series this method was suggested by Yule in the classical paper (1927) where such series were first introduced. It was pointed out by Wold (1938) that the parameters given by this method may require correction, for two reasons, viz. (i) the parameters must fulfill a certain condition in order to define a genuine autoregressive series (ii) a correction may result in a better fit to the correlogram as a whole. Turning to moving averages, the same method was used by Wold (1938) in a study where such schemes were first treated systematically. Again it was shown by Wold that the parameters may need correction for the same reason as under (i) above. Further he pointed out that corresponding to an assigned correlogram ρ₁, ρ₂...ρ₄ there may exist several, at most 2* solutions for the parameters in the moving average scheme.

Even in fitting a moving average scheme to a given series by means of the correlogram, instead of estimating ρ_1 , ρ_2 ρ_k by r_1 , r_1 , ..., r_k , it will be possible to get improved estimates of the theoretical correlogram. For instance the maximum likelihood estimates of ρ_1 , ρ_2 , ..., ρ_k , obtained on the assumption that the r's follow a multivariate normal distribution in which r_1 , r_2 , ..., r_k have expectations ρ_1 , ρ_2 , ..., ρ_k and r_{k+1} (i=1,2,...), have expectations =0, are more accurate than the estimates r_k for ρ_k . A discussion of this and other methods of fitting is given in Part 3.

In the present investigation, fitting of both moving average and autoregresive models to some of the constructed samples have been attempted. To six of the samples, (size 35) in scheme C moving average models of three constants each have been fitted.

The χ^2 test for fit was made by ferming the dispersion matrix in each case and then by the process of sweep out described in section 3. The fit is found to be excellent in each case, as revealed by the resulting χ^2 values reproduced in Table 6.

Vol. 11] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [PARTS 8 & 4

TABLE 5. X VALUES IN FITTING A THREE CONSTANTS MOVING AVERAGE SCHEME TO SCHEME C (4 samples only)

	sample	a no. 2	Memb	lo no. 3	Many	le no. 4	⊷mpl	e no. 10		no. 17	==ampl	e no. 18
lag no	x;	Σx ³ ,	X!	¥X**	X****	2x1,,	x*,,,	xx;,,	X, (1)	ΣXI	X,,	ZX,
	.37×9	.3789	1.5183	1.5183	.2314	.2314	,8725	, 8725	.0140	.0140	. 5089	. 50×0
5	6058	0415	.2760	1,7949	.2327	. 4441	.2711	1.1436	. 2024	.2164	.1145	6254
6	1.2370	2,2215	.0133	1.8084	. 9414	1.4055	. 7479	1.9115	1180,	.2975	DINH)	6260
7		2.7658		2.0141	ECKIN).	1,4058	, 2337	2.1472	1.0050	1.9025	.2610	. RN70
×		3.8402		2.1196	.0291	1.4349	.0985	2.2437	, N5N3	2,8208	.0451	. 93:2
Ä	.1444	3.7010	1.7321	3.8517	.0408	1.4757	.0163	2.2600	1.0901	3.9199	.1203	1.0524
to		3.8917		3.0822	1.0435	2.5192	. 6406	2.0006	.1803	4,1002	2.1010	3,1543
ii		4.091x	.32×2	4.3104	.4521	2.0713	1500.	2.9637	.0590	4.1592	2,6111	5.765
12		4.3136	.6014	4.9118	.0017	2.0730	.3051	3.2688	3.9213*	8.0805	.8895	6.854

4.1. Fitting autoregressive schemes to moving averages: To the samples, size
35, constructed for scheme C, also have been fitted autoregressive schemes with two
constants of the type

$$\eta_{ii} = \xi_{ii} + a\xi_{ii-1} + b\xi_{ii-1}$$

Different methods of estimating the parameters a and b in such a scheme and the appropriateness in small camples of the test available for testing fit, namely Quenouille's (1947) have been investigated in detail in Part 2 of this paper.

The method used for estimating a and b in the present case of 25 samples of scheme C is by least squares from equations provided by the recurrence relationship.

$$r_a + ar_{a-1} + br_{a-2} = 0$$

and making use of all the calculated sample serial co-efficients i.e. up to rig.

The χ^2 values resulting from Quenouillo's test for these 25 samples are distributed as in Table 6.

TABLE 6. DISTRIBUTION OF X⁵ IN FITTING AN AUTOREGRESSIVE SCHEME WITH 2 CONSTANTS TO SCHEME C (Aixo 35)

expectori	obser	vod froquency	
per cent	Xº (1.il.f)	total X1 (10.d.f.)	
1	2	:	
1	3		
3	1		
5	3		
10 20 20 10 10 10 5	×		
	8		
	29		
	22	**	
	15		
	18	2	
	10	ı	
	18	2	
	13	ı	
1	102	10	
100	250	25	

From Table 8, about 43% of the individual x² values and about 80% of the total x² values are seen to be significant at 1% level. The fit therefore, of a two-constants autoregressive scheme to scheme C (a three-constants moving average) has not at all been good.

Apparently contradicting this finding, a moving average scheme with three constants fitted to samples belonging to an autoregreesive scheme with two constants was found to give very good fit in the investigations in Part 2. One has in the first instance to doubt whether this is due to difference in power between Wold's and Quenouille's tests, Wold's test having a low power of discrimination between autoregressive and moving average schemes. Perhaps an alternate explanation would be that it will be always possible to find a correlogram of the moving average type to align with any given correlogram of the autoregressive type, the agreement becoming closer, the larger the number of constants in the moving average, whereas for a given correlogram of a moving average it may not be always possible to find an aligning correlogram of the autoregressive type.

Or in other words a correlogram of the autoregressive type which always would have form as in Fig. 1(a) can adequately be replaced by one of a moving average having the form in Fig. 1(m₂) and vice versa, while a moving average of the type in Fig. 1(m₂) may not be replaced by that of the autoregressive type having form in 1(a). Our scheme C has form 1(m₂).

VOL. 11] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [PARTS 3 & 4

5. SUMMARY OF CONCLUSIONS

- Currection for bias in serial correlations of moving averages of short length is desirable. In making tests on correlogram the effect of bias may not be as much with individual correlograms as with average correlograms.
- The large rample test for moving averages when applied to small samples real a considerable reduction in power. The test, therefore cannot be expected to give very exact results when applied to small samples, but it can nevertheless be used for a rough survey of the situation.
- Possibilities of improvement of the test for application to small samples scent to be in the direction of achieving better orthogonalisation and better estimation of variances of the serial coefficients.
- The method of fitting moving averages by means of sample correlograms is found to be satisfactory.
- 5. In the matter of fitting correlograms, (i) Wold's test, as it is to be expected, seems to reveal lesser power in discrimination between autoregressive and moving average types; (ii) also this discrimination appears to depend on whether the correlogram of the moving average is of the non-oscillatory type or not.

Devenue

BARTLETT, M. S. (1946): On the theoretical specification and sampling properties of autocorrelated timeseries. J. Roy. Smt. Soc. Suppl. 8, 27.

QUENOULLE, M. H. (1947): A large sample test for the goodness of fit of autoregressive schemes. J. Roy. Stat. Soc. 110, 123.

RAO, C. R. (1949): Some problems arising out of discrimination with multiple characters. SankhyJ, 9, 343.

WOLD, H. (1938): A study in the analysis of stationary time series. (Dissertation, Stockholm), Upgrala.

(1948): Random Normal Devintes, Tracts for Computers, No. 25.

____ (1949): A large sample test for moving averages. J. Roy. Stat. Soc. 11, 297.

YCLE, U. (1927): On a method of invostigating periodicities in disturbed series with special reference to Wolfer's supepot numbers. Trans. Roy. Soc. (A) 226.

.....

				TA.	BLE 7	- ZIR TALU	Es				
í	10::11	104217	10:10	10+2 ,	10*2**	101210	104:,,	10*z ₁₄	101:19	10*2.1	
				Table	7.A:P.	= 0.5; a.	-1.0				
1	8165										1
2	-7303	10954									2
3	63:25	- 12649	15615								3
4	-5621	12421	-16562	13801							ă
5	4880	-11711	17546	-1951A	14639						5
6	-4304	10911	-17458	218-2-2	-21822	15275					6
7	3944	-10142	16903	-9453N	23555	-23664	15776				7
Ř	-3500	9439	-101x1	22474	26068	28317	-25170	16181			8
9	3303	- 8808	15414	-22020	27524	-30827	30827	-26423	16314		9
10	-3054	8245	-14057	21375	-27482	32062	-34200		-27482	16794	10
				m 11		• • •					
				1 11010	7.B: #, •	• 0.4; a,	= 0.5				
ř	8704										
2	-6632	10013									
3	4920 -3954	- 9000	11878								3
:		7311	-11512	12204							:
- 6	1031	- 4904	BARK	-12135	12415						
	-1177		- 6741	DO113 -	-12372	12471					
7	697	— 1870	3003 -	- 6070		-12457	12490				- 6
8	- 4ng	1099	2171	3301 -	- 61×0	9342 -	-12485	12496			
	220	- #31	1270 -	- 22R3	3870 -	- 0227	9361 -	-12491	15100	11100	10
10	128	357	— 727	1333 -	- 2722	3891 -	- 6238	D364 -	-12492	12498	10

TABLES 8.A.1 to 8.C.2; -SERIAL CORRELATION COEFFICIENTS
TABLE 8.A.1-Schemo A (#,=0.5, #,...=0), MARLE 81EE: 35

mample no.	ē		·	ŗ.	c					3		4
-										:	-	•
-	*	Outo.	- 0308	1.1883	1.1340	1043	1360	4054	0.345	273	1103	
51	4:4:	10:01	3	ODON.	1017	101.	2	1408	0201	-		
•	2869	0749	1045	2774	2369	0110			1			1.3233
,	4.5.5						1070.		KC:O.	1 2 2	1	0220
••		1	2	1	0378	3437	3204	1.1515	- 3149	1.003	4000	"Pallerin
•	200	1	- 11/87	0000.1	1820	1.0105	- 0402	7000.	.1592	DOM:	.0782	1016
•	0.75	*10"	9	1								
•	100	0105.	L'SOK	0710-	1070	91110	. 1312	.0043	- 1038	.0311	1806	.0564
- 1				100	.1340	50%0	0740	1377	1336	1.3356	1.3627	2.23X4
10	9220	1014	.1773	. 1160	- 63	1194	- 3265	0x12	- 1555	1 CM 18	2016	1220
	4.538	1.0405	1788	1.004X	- 2595	- 1713	1364	2673	1500	- 1117	0.10	
97	1119	onco.	- · lu92	1005-	4272	5×58	14307	0176	1777	1715	4696	5518
:	-											
=:	4917	1.1210	1.2553	1.37419	3676	- 45K5	1339	1015.	2739	2478	CHT	1719
2 :	0710	9500	1.0721	1337	- 1810	2073	1.2553	- 2016	0680	1050.	.1070	E050
2:	. 0483	1010	1.3062	1.3945	0000	-,0565	-, 1032	1.1072	1345	0disd	135	1000
= :	1001	1.07:77	. 627	37.19	405	.0870	- 1307	1,1666	0000	3430	17.57	2530
18	.4033	.1675	*015.	1.0200	1393	1431	9020	CRNO.	0847	1,2240	- 1703	1281.
:	1029	1081										
2:	1000	101	1810	0443	- 33HG	6035	4244	0779	1.3266	.0013	3336	2488
= :	2000		. 1610	3	TAKT.	190.	- 2147	- 2138	1713	l. Ixeo	1,1930	1717
2 :		erco.	1.000	~ 240	1,195	1335	6814.1	1 22	.0458	2013	3573.	KINT.
2 :	133	1 265	0.000	133	1,0035	.0477	0.00.1	1002	1,004	2.0656	- 14	. 133
20	3243	1.34	5751	-,1003	1.2335	- 1508	8610.	2118	3290	0211	-,1112	1.1084
=	.6750	12x2	0220	1.0741	~.0217	0319	23.5	1010	1631	- 0656	6851. 1	1907
ĉi	12138	HKNG. I	.0182	085.5	- P074	0110	7000	1	150	- 01119	-	1740
e:	21	6690	10203	100	1,0433	- 6330	1697	25.76	. 5039	1020	9700	14953
7	1117	1,010×	02:5	1	1.1547	111:0	KEE.	- C×2	0.43.5	CHANG	SKX C	2706
52	0810	. 317x	1812.	.0573	2703	0457	7th/3	1.6591	-, 3901	1.3867	1.2780	.0573
everage	.4815	0203	0329	0314	0914	1120	141	1148	1630	0047	.0539	1550.
bias	0298	0005	0004	0000	0505	0587	9750	0582	0514	1250	1050	0455

Vol. 11] SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS [PARTS 3 & 4

Table 8.A.2—Scheme Λ (ρ,=0.5, ρ,....=0), simple size: 15

semple no. ٠. ٠, 7. .2729 -.3243 -.1828 -.2179 -.3575 -.2483 . 4367 .3541 .1910 -.6121 --- 497× -,1252 .4318 23012 .1787 - . 1290 -.1752 - . 2531 .2811 -.2413 -.0x02 -.1947 -.0525-.6812 2524 -. 1741 -.0113-.1913 -.2716- . 5231 -.2043.0827 5 .3110 -.0130 .4832 . 2:27 -.1568 -.0490 -.3592 -.1752 .3028 -.eset ,3352 -.6553-.52976 -.7191 . 1487 , 2000 .8832 7 -.1354 -.6828-.37VI -.5478-.4589-.3241-.2007Ň .2701 -.2954 -.4212-.2149 .4062 -.0631 -,7011 -.5813 o 4917 -.4404- . ALOO -.8733 -,4003 - 1054 1208 -.3763 10 .4215 -.0411 -.0048 - . 2007 -.4282-.7132 - . GG87 .0051 " .5689 .1298 -.2573 -.6046-.5891 -.4724 .2402 . GMIG .1527 .1512 .1874 12 - . (H) 37 -.0015 ,0840 -,1700 -.052413 ,5088 -.2209 -.5180 -.4549 -.0271 .3449 . 6030 - . 237H .4221 .0259 .4272 .4278 4349 .3424 . 2956 -.0647 15 .4007 .1393 .2362 -.4810 -.7036 -.4130-.7453 -.401716 .3472 -.4003 -.4960-.0229 .1303 -.1970 - .2938 -.2432.0710 -.0727 -.2112 -.2269 17 .5418 -.2406 -.3505 18 .4711 -.3311 -.1814 -.0138 -.1678 -.2467-.0937-.3509-.0872 19 .3810 -.0720 -.1125 -.0×73 -.3018 -.4162 .0320 20 .3304 -.5004 -.0017 .3473 -.1203 -.3761 .2233 .8339 -.3369 21 .3751 -,5009 -.0922. 6709 .6320 -.0027 .0959 22 .0948 .2×67 -.4780.3100 .1437 -. 7680 . 2517 23 .4591 -.2111 - .388A -.4290,0880 .5340 -.2918 -.7mp3 . 657% .2485 .0464 -.2406 -.3678 -.5022-.749725 .5349 .1181 .2805 .2019 - ,1295 -,6310 -.8171 .0889 -.3842-.1947 26 .4158 .0640 -.1538-.0725-.1512.0539 27 -.5457 -.3×29 -,09x9 .4194 .0650 -.0228-.2041.2674 .2734 -.2499.0166 -.4902 -.5167 ,3013 . 6940 .1014 -.3223 -. 1473 20 .3039 ~ . dong -.2988 .5793 .3065 ← .4775 30 .3147 -.6544 -.6013 -.0184.1000 .0331 .2760 .5313 31 .2671 -.5942.45×3 .4032 -.4403 -. 7035 .1243 .0X76 32 .1545 .2077 ,1156 .6714 .3512 . 5522 .1291 .1335 4032 33 6566 .4798 . 2962 INGG .5125 .5052 -.6738 -.8447 .3211 34 2625 -.4665-.0320- 2117 - . 3087 35 .5496 -.2300 -.5101 -.6260 -.5712 .1645 -.0081-.4780 .4057 -.3032-.4601 -.0327 .0409 -.1205 . 1595 .7100 34 -,613x 37 .7834 .4247 -.0273-.7736 -.7742 -.7066-.4069.0372 - .8667 -.1372 . 3767 3× . 85%5 -,2009 -.4493 -.1728-,2524 - .2797 .4007 -.1590 .4085 . 05 13 39 -.2350 -.7602 .1270 - .2175 -.2236 -.1457 -.0317 -.1782 .3578 -.1351 40 .36:0 .3885 .0598 .0537 -.4711-. 0493 -.3828-.4910 42 .5334 .0256 .1502 .1550 .3734 . 4879 -.1801-.403843 .3432 .0274 -.2224-.5516← .2040 - . 5××0 -.3184 . 7030 .4513 -.308: -.4299-.1722.0167 -.0031-.2892 -.8255 -.1250.1503 .2527 -,2076 .0312 .4322 -.7056-.0395-.1765-,4541 -,4104-.363n -.2104-.3059.3815 .COx7 ,5198 47 .2178 -.4880-.2505-.3307 , (HK(t) .0827 -.2998-.0371 .4977 31x1 -.1344 .2360.1522 -.4287-. 2041 - 1027 -.1876-.159849 .4459 -.21m3 -.2673- .2809 ~.1144 \$n .7451 3939 .2026 .0319 -, 4370 -.9150- .8194 - 3262 .4030 -.1235 -.1031 -.1415 -.1217 -.1413 -.1920-.1010 average .0000 -.0740 -.1528 -.1488-.1100-.1235-.0937 -.0408

Table 8.13.1—Schomo 13 (P. = 0.4. P. . . . = 0), Rangle Bien: 33

жетрю по.	-				٠		ŭ	•	c	į	ē	ē
-	1517	8060.	1.1460	1.4015	-3107	2.1	11177	1580	0171		9.91	1
?)	X X 1	1.2360	0.070	1000	1671	0.550					1	
m	0110	1,4550	1023	1344			1		1	120	1.07.3X	1781
•	70.00	0.00	1			000	1010	1.0180	. 4 K7	. 5255	1.41	10%
, ,		1	1	3	2.1	1.6588	10:14	3133	190	1007	2.0.0	10.1
•	10101	1	1	. 1965	\$119O.	1010	.2170	.0313	1758	P022.	MINO.	¥167.1
-	OFLY	9100	9000				:					
					007	1.037		C+C1.	. 1355	1 430	1340	1406
٠,	2	1	1	1	1	177	***	2000	GANO.	0.00	1.53000	14303
c :		OKINO.	1,007	1.0615	91:1	133	9510.1	- 4173	1007	K760 -	CHING	1
2 ;	.344	3	1.2076	1.2400	013x	0114	1324	1204	(0506.2	1749	0410	1
2	3.34	- 0558	-,1418	1927	.0433	HE71.	0611.	-,0755	1210	1000	18:1	0.40
=	46529	2707	1115	3	1	10000						
:	100	7				1021	1.0348	1	1.144	37	1 2 4	1,3093
::				100	- 29×7	0327	1 Dig. 1	1.3420	1.0708	1.0	1.49x1	1.1×36
2:			TOUR.	7117	20.57	100.	100:1	133	- 373	- 2003	1,535	137xx
::	. 4080	1.00	1000	-	- 1905	1.1	COCO.	100.1	13400	- 2137	00100	144
9	.3703	1385	2007	21003	SIKE.	.3279	1821.	0032	5050	. 1503	5010	1718
9	4103	0000	100		-			1	1			
2					1	1370	5.5	1.3240	1 28	1.1535	3 S.	77.
:2		1	0110	1.135	1.385	.0508	UN 10.	1926	1.2186	CE # 1	1430	CHEO.
		- 1917	1.01%	SUND,	- 1305	I lox	15x0.	1007	0110	.0443	1100.	- 03/89
2	Ohio .	CONT.	1.07XS	. 1779	-	×023x	1872		0340	1	707	CXO.
0		0714	2030	2440	1947	1.3104	1016	1,2061	14778	- 1819	EDET.	.0036
5	.2470	- 464x	1012	01-00	0201	6	9100	*000	*02	9	9	100
71	4250	1		13333					2			
ç	44110	0.710					í	200		9	2	
71	25117			1	1			1		Ž.		9
*	7727	1			9000	1	- 01		CKKE -	1 20×	1	1
			1015	#507.1	1.00K7	. 2463	1120	- : 2050	3022	- USRO	. 1437	3.75
evoraço	1468.	0244	0.0216	€0990. →	-,0x24	0167	.6056	8080	8070	0773	1100	0793
bian	1.6355	0542	0.0540	0334	0531	1.0024	0515	1.0502	04B0	7,0465	0437	0405
				1,000.1		1	1.0110	-	2017	- 1	1,400	-0463

Vol. 11] SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS [PARTS 3 & 4

Table 8.B.2-Schene B (p.=0.4, p.,...=0), sample size; 15

25									
2	mmple no.	r,_	71	r _b	r,	r _A	r.	r,	r _b
1. 1. 1. 1. 1. 1. 1. 1.	1	,5709	.1421	.0219	3603		-14751		-,4004
\$451117290593	2	.3001	4447	- · 1 HH2			1015	5471	5177
5494117290903 .39460552 .3123 .29052121 6	3		2418	. 4070	4191		.2995	8573	.2062
6	à		1729						
7	-		-11125	-,0000		-,000			
8 3235 0685 - 1.0390 - 4.2310622846700414292	6	.3348	.1410			6230			
9	7			3662	,5660	1414			
10									
11									
12	10	.0270	1550	-,0073	0103		.2404	.4080	.0117
12	11					.4867		.1602	3860
14		1087	5590		0271	2147			→ , 2551
15		. 4082	. 2702						.1022
16	!!								3165
17	15	.3411	0701	0749	0170	,5008	.4834	4182	8860
17	14	.4495	0150.	.0013	. 1629	2137	3396	- 2678	- 0713
131		.6832	.2475	.0833					
19	18			0201	.1621	1712			
20								1997	
22	20	.3901	.1438	.4302	.2477	1384	15 33	.1317	
23	41	****		- Swal	03.14				
23	44								
24	23						4791		
25	21								
27	25						4385		6526
27									
28	26								1704
1					- 4750				
30		7104			23.0	4298			
31									
32								.0.714	
32	31			1341	3008	6:13 1	5388	6016	- 5829
33		.1816		.1656			1535		
34								1114	7383
10								.5838	.1566
27	33	1000.	2233	— .0680	329F	2622	.0897	.3483	.4640
27	24	.0867	2130	.0117	0000	- 0201	- 4541	****	4
384 -2031 -2748 1518 -1018 -3002 -3004 -4005 -3005 -3033 -3043 -1184 -3710 -3474 -3229 -218 -1012 -3011 -4011			1258						
39									
41 .3705 .0804 .3227 .03873 .0112 .1323 .1308 .0509 .3333 .2503 41 .3705 .0804 .3227 .0383 .0112 .1532 .3215 .4400 42 .1147 .4158 .1830 .5262 .4218 .5815 .3338 .0788 43 .8716 .2153 .4929 .3133 .6542 .0013 .801 .877 44 .4792 .3041 .6801 .3587 .2544 .1677 .1001 .870 45 .1004 .8020 .2711 .3587 .2598 .0103 .873 46 .310 .0004 .313 .214 .2009 .0004 47 .6168 .1170 .3821 .4169 .7138 .3034 .1079 .6004 48 .3160 .1170 .3821 .4169 .7138 .3034 .1079 .6004 49 .3760 .0370 .0842 .1175 .4034 .1233 .2023 .2023 .4036 60 .1003 .27984 .0006 .1809 .7163 .7273 .2023 .433									
42	40	5463	.2831	.0181				3633	. 2503
42		****	0.00.0						
43									
44									
4510640326 .2211 .42242599 .51894308 .0008 44 .34654444 .6325 .1139 .1057 .4379 .1323 .5304 47 .6169 .1170 .32451599 .1057 .4379 .1324 .5304 48 .6441 .1341 .13324137 .5343 .5131 .325 .0084 49 .3760 .6373 .6445 .1137 .4343 .232 .2393 .2393 .6393 50 .10832988 .0075 .0561 .5397 .3521 .4781 .6797 erage .293510860008 .18091031 .0253 +.00360386									
44 3465 - 4144 - 6345 - 1039 1057 1379 1823 - 5200 47 6168 1170 - 3261 - 8169 - 7438 - 3131 - 3121 0079 6090 48 5841 1314 - 1832 - 4137 - 5343 - 5131 - 3212 0090 49 3769 0370 0842 1175 6403 1233 - 2053 - 4335 60 1033 - 2794 0975 - 5561 - 5377 3521 4781 0782 678ge 2835 - 1086 - 0090 - 1809 - 1831 - 6255 4 0036 - 5366									
47									1000-
44									5200
40 .3760 .0370 .0842 .1175 .4034 .123329834832 60 .10832988 .097505615397 .3521 .4781 .0797 erage .283510860098189918310253 +.00360586									
50 .10432064 .097505615397 .3521 .4781 .0797 erage .203510860088189918310253 +.00260586					4137	5543		3121	
erage .26351086000.4180916310255 +.0030386						- 5397	.1233		
09870795135213151235108708230357	rerage	.2635	10×6	000A	1899	1631	0255	+.0038	0589
	**	0795	1352	1315	1235	· 10×7	0823	0357	.,,,,,

TABLE S.C.1—SCHEME C (P. = 0.75, P. = 0.50, P. = 0.25,....P.... = 0), BANTER SIZE: 35

nainplo no.	-	-				-	-		ċ	,,	711	ž
_	TX75.	. 64.67	3548	.0535	1.004	1135	1.2622	2075	~ . 3843	1433	0500	יו
-,	7700	1009	.476.1	2000	. 0743	=======================================	1,3133	61:27	50,00	XE S	4827	
es	1340	÷160.	.8585	43E	. 47117	1007	7.	3240	107			i
•	6947	3574	5751	1	1	7777	M.L	1	1			
- 10	XIII	16.73	-	100	1		0.070		1		1	ź.
,						2	1	10011	1.00	1.1312	1	
9	.7710	. 5521	.2559	0000	0050	- 0974	0000	HGT0. 1	- 1613	9.50	1	135
-	6230	2046	1,2034	- 6x0.2	- 5415	- 4107	- 1017	1		200		1
×	2710	ulec.	2003	1	1	1123	4000	1	100		1000	
o	6745	31154	1070	- 1053	0.10	1730	100	1			1	
2	5387	6953	3234	1425	0816	- 0085	.0703	6910	0.1	10.	1.0033	1
=	7013	2007	2616	1500						1	- 1	
::					7	1		1000	F. 1	311411	1.050	GO.
1:		2		1.1203	1.000	1	×1.01	1.4525	1.4333	× E	1.33	CME.
2:	CK.NO.	100	?	1.23%	1.35KD	665	1.5704	1,5247	1 3465	5000	5777	275
=:	ASE.	MINKU.	. 4471	3000	. 1207	1,40,67	1.0774	1.1525	-, 1023	1.1590	1 . 1	1.190
2	. 7238	6190	5034	1917	2340	.0174	1850	1.2037	1715	1.35×3	1.5035	1.3158
10	6368	3780	1654	444	1459	1001	1	146.0		Of the last	***	
11	7610	1913	9110	1		1	1	1			2000	
: 2				10.1		9110	23167	1505	SOUP.	1692	CHIG	-
			. 480	1	1830	. 1247	GHHO.	3,1	=	1.3533	1070	75K7
14		1700		707	3413	1174	130	0350	7.1	353	SKK7	- 4978
2	2000	4300	3794	.0159	.0188	1186	1.3178	- 2429	- 1706	1536	L.1863	.0573
77	. 7077	0515.	2170	0110	10516	96.10	1966	97	47.58	4740	4305	7K47
71	3855	PKG.	****	7	-							
F2	. 707.	303	-		1000	2			1	i		
7	36007	TOWL	200	1	1		100	CKOE.		1000	1	1
52	. 6003	3.	23.4N	1.053	- 2146	1.3x36	1.1996	1 2 2	1 1 1 1	16163	14530	4113
avorage	, 7054	.4485	.2653	0202	0220	0842	- 1480	1121	- 1036	1.1043	- 1679	1237
DIBM	0310	1.0624	0946	1283	1274	1,1260	1341	1214	-,1179	1133	1072	0995

Vol. 11] SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS [PARTS 3 & 4

TABLE	S.C.2-SCHEME	C (P. = 0.75,	$\rho_1 = 0.50, \rho_1$	-,25 P0)	PAMPLE SIZE: 15

							- ·	
sample no.			r,	· · · · · · · · · · · · · · · · · · ·	r,	<u>, , , , , , , , , , , , , , , , , , , </u>		'
	.5013	. 9132	1238	— . L 460	,4929	.7596	. 55:20	,1197
2	.7937	.7114	. 8289	. 4070	.4403	.2158	.1392	7021
3	.1159	.1313	0471	3199 4	1427	3142	. 1542	6193
3 4 5	. 6248	.0723	2722	6805	6799	4107	0105	.3083
5	.7437	.6012	. 3533	.1274	.0116	.0142	1308	.021
6	.4724	.3141	0206	4397	3236	8271	1636	.2513
7	,4870	.1796	2504	3926	- ,0532	— ,035s	2741	- , KON
8	.4867	0117	3125	3598	— , 353K	2814	2178	4.0
9	.7698	, 5226	.2812	3105	4842	2272	4756	~.419
10	.6170	.3604	0043	4475	4060	-,0307	-,7185	815
11	.6548	.2209	.0092	1995	27×8	.0202	.2283	072
12	. 5958	.0793	2520	4474	3986	3962	— . 4895	734
12	.2433	.0952	. 4098	2041	. 1003	. 6339	614x	315
14	.7184	. 5 4 5 0	.2827	085s	— . 2560	— . 8200	, 68mi	705
15	. 6335	.4647	.1448	1004	3219	5715	4133	702
16	,3215	.1868	.0957	6120	2452	2880	5770	550
17	.0028	.0000	-, 40BA	7426	7091	4735	.0978	.632
ii	.8200	.6494	.3777	2015	3085	7175	8884	833
19	.3359	.1370	2632	5854	0100	0591	.1498	038
211	.6131	.3086	.0089	3472	3783	819 2	— ,8374	701
21	.4411	0405	0000	.0804	0527	2518	.1815	.409
22	.4758	.1805	.5859	6172	,2530	. 2203	.6863	.619
23	.8579	.7374	.6165	.0015	\$1180.	.4487	.4173	.642
24	,4442	.4311	. 5065	1293	.0830	6585	4076	.303
25	.8345	.6920	.5928	. 2538	.1146	2015	8399	342
26	.8416	.6535	.3829	0279	4105	7522	9517	744
27	.5256	. 2527	.0384	3566	1693	4597	4720	6×4
28	.6662	.4178	.0160	1973	.1510	.5022	.7GHO	.714
29	.8636	.8347	.7316	.5970	.6710	,1297	090R	203
30	.6792	.4650	.3474	.1718	.6085	.5142	.2878	.134
31	.6201	.1589	3105	6854	Go30	4432	1701	. 585
32	.7737	.3350	.2480	. 5259	. 5932	.7264	. 6869	.787
33	. 6525	.4582	.3018	0723	.0538	1730	1048	,515
34	.3406	.0267	.1594	.1205	.4396	2919	3954	.613
33	.6394	0035	5345	5682	1999	1696	2558	863
36	.8002	,6990	.0674	,5054	. 2993	0864	1041	324
37	.4428	.1144	-,1804	5194	,1331	,3027	.4753	.643
38	.7044	.5005	.0211	3413	6091	8334	8878	580
19	.7826	.4341	0387	5×18	80198	8088	5K10	40
40	.6681	.7200	.0002	.2803	.5022	0078	. 1958	.08
41	.6138	.6220	.3016	0574	3243	3425	7353	26
12	.6677	.3711	1000	0101	7591	7732	5333	100
45	.6171	.3811	0005	6985	4853	2900	. 1194	.54
44	,6330	.3858	.0770	3352	3082	~.6027	5108	6K
45	.3832	.2770	.4818	2088	3257	.0865	-,7020	489
46	.0315	.2890	1680	290 i	1833	0700	2062	486
47	0383	.0751	.1424	5496	- 1019	3434	3232	.649
48	.7242	.4376	0785	6618	2593	.1470	.75%1	.811
49	.7254	.4522	.1250	-,3001	-,4935	7326	-,4071	.anı
80	. 0760	.3713	.1072	2024	2007	1210	.3320	.72
vernge	. 4040	.3494	.1215	2258	0090	1861	1701	060
oias .	0810	1839	2500	3415	3077	2400	1081	.000

MOVING AVERAGES AVERAGE AND EXPECTED CORRELCORAMS—Figs. 2. A. 1 to 2. C. 2

Fig. 2. A. 1: Scheme A, T=35

Fig. 2, A. 2: __ Scheme A, . T=15 ...

Fig. 2. B. 1: Scheme B. T=3:

Fig. 2. B. 2; Scheme B. T=15 2:6

238