Welghted Moore-Penroge ihverse of a Boolean Matrix

H. B. Bapat

Darelivem Stadistical Tttt
Mot Delli, 110016, Mdia

5. K. Jain

Dreparrtereent uf Mathematios
Ohie Unitersity

Athens, (Min 457H-2079
and

5. Pati®

Dieefign Stativticel Mnstitute
News Dethi, THE, India

Smbmitked |l Rapncdra Thatia

ABSTRACT

I A s w beolean owtrix, then the weighted Moore-Peorose inverss of A {with
resprot to the given matdees M, M) is o matriv O which satishes AGA = A,
CAC =, und that MAC and CAN are symmetiic. Under certain conditions on
M.N it is shown that 1ler weighted Moore-Penruse inverse caists i and onbe if
ANATMA = A, in which case the inverse 15 NTATMY When ML N ac icleendity
matrices, this reduces o the well-lmown resalt that the hMoore-Penmos: inverse al 4

boolean matric. when it eaists, st be AT
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1. INTRODUOTION

The binary bonlean algebra & consists of the set {0, 1} equipped with the
operations of addition and multiphication defined as follows:

+ |0 1 o 1
oo 1 ofo o
L1t 1o 1

Bva hoalean matrix we mean 4 matrix over 59, We confing our attention
boolean matrices, The operations of matrix addidon, scalur leultip].imtiﬂu, and
watris multiplication are defined in the usual way, For cxample, if

b1 1 d I a
A=|1 0 1} B=|1 1 4l
a0 1 01 1

a1 1 | |
A+EB=(1 1 1| asad ap=|0 1 1/

L L o 1

then

The transpose of the matrix A is denoted by A™. The identily matris of
the appropriate order is denoted by I For atrices 4, B of the sane order,
A » B means a; 3 by, for all i, j (with the natural convention that 1 = ).

For busic properties of boolean mutrices we refer to [2]

Deirimion 10 Tet A, M, N be mawices of order m X n, m % m, and
n ¥ n respectively, The weighted Moore-Penrose inverse of A {with respect
to M, N, denoted by Ay x)is defined to be an # ¥ m matrix G sitisfyiny

{i) AGA =4,
{ii) GAG = (3,
{iii} (MAC)Y = MAG,
{iv} (GAN) = GAN.

In cuse M, N are identity matrices, then the matrix G satisfving {0)- (v} is
simply the Maore-Penrore inverse {donoted by A1) of A
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It is well known that if A is a boolean matrix then A admits a
Moore-Penrose inverse if and only if AATA = A in which case AT is the
Moore-Fenrose inverse; see for {-:xumple, [5]. In the next rexult we present
several chumwetedeations of matrices ndmil:ting the Moore-Penruse imverse.
Many of these characterizations are known, but the formulation of the result
perhaps has some novelty, We will indicate a proof of Theorem 1.1 i Section
2, where we disenss the more general case of a weighted Moore-Penvose
imverse.

THEGREM L1, et A be an m X n matriz. Then the follotving assertions
e Equ!lf."r'ifﬁﬂfi

(i} The Moore-Penrose inverse of A exists.
{ii} The Moore-Perrose tnverse of A exists ond equals AT
(i) AA'A = A
(iv) AATA < A
(v} Any two rows of A are either identical or digioint (i.e.. there is o
column with a 1 in Both the rows),
(vi} Any two columns of A are either identical or disjoint.
{vil} The number of ones in any 2 X 2 submatrix of A is not 3.
(viii) Angy 2 % 2 snbmatrix of A edmits o Moore-Penrise interse,
{ix} There exisl permutation matrices, P, () such thot

[j, 0 e 0D
0 f; = 00
mO=la & %5 &3
DI IR P
L UL (R {

where [, ..., f, are mafrices (not secessacily square) of all ones,
(x) There exist permutation matrices P, ) such thot

i C
PAQ = [” D{:]x

where C, Dsatlsfy CC" = 1, D'D = L
{xi) There exists g matriz (3 such thal GAAT = A7 and ATAG = AT

The main purpose of the present paper is to geucralize some aspeots of
Theoremn 1.1 to the weighted cuse. The proof techmique is new and may be
nsed ko ohtain vesilts for matrices aver more general structurcs, This most of
aur stutements are valid for matrees over o distribotive lutiice, whersas some
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require the structure of a completely ordercd sel, Such generalizations will be
clear from the pmnfs. Hermever, we have chosen o present the results unl}r in
the setting of binary buolean matrices. In the next scotion we eonsider the
imestion of the exdstence of a weighted Moore-Penrose inverse and fve a
forrmuly for it when it exists,

2. TIIE MAIN RESULT

We begin by showing that under some conditions ou M, N the imerse
Ay x owhen i oxists, s unique. We denote the row space of the malrix A by
S A) and the column space Ty #0A),

THEORFM 2.1, fat A, M. N be matrices of order m X o, m % m, and
n ¥ n respectively, ond suppose Ay o exivty, Further suppose
B AY = MA), #F{A) = F(AN),
i.e., there exist matrices X, Y snuch Hhe
XMA = A, ANY = AL
flien
(a) ANTAY = ANAT ATArT4 = ATM4,
thy Ay, . s unigue.
Proof. (ak Let O = AL, east. Then
ANTAT = ANTATGIAT {since AGA - A}
= AGANAT  (sinec GAN is symmetric)
= ANAT {since AGA = A},
The: pn;ruf of the retining part af {a) is similur to the above,
{(L): Let, il possible, 6. G; be two candidates for Ay .. Then
(o AN = 02 Al-; AN [sinoe A — Al A}
= G ANTAYGD (sinee €2, AN is symetric)
= ) ANATCT [using {u}]
= NIANGT AT {since C; AN @5 symunelric)
NIATGY  (sinee AGLA = A)

L AN {sinco €20 AN is symmetric] .
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Thos € ARY = G, ANY, and hence ()& = €, 4 {since ANY = 4A) D
tollows that Gy AG, = Gy Al amd theretore

G, = G, AG,. {n
Now
MAG, - MAG, AG, (sinec A AG, A)
= T ATM A (since MAG, is symmetric)
= GIATMAG, [usig [a}]
= CTATGTA™MY  (since MAC, is symmetrie)

GraA'™MT {since AG. A = A}

MAC, {since MAC, s ;ymmetrc).

It tollows that XMAG, - XMAG; and henee AG| = AG, (since XMA = A),
Therefore €2, AC, = €, AG,, and this

0L Ak, = Gy, {2)
It [allonws from (13, (2) that G = &y, and the proof is complete. |

Examrie, Lot

11 . _ (1 o
s [{} ::]' (”_11 H]‘ GE_[{: n]'

Take M = [ and N wobe the 2 2 2 vero mutrx. Then it ean be verified that
buth €. &, satisty all conditions in Definifion 1. and therefore the weighted
Moore-Penrose inverse i3 not waigue in this example. Observe that here the
corliion of Theorem 2.1 is not satisfied.

The next reandt will be wsed in the scquel.
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Livata 1. let A B onm > nomatrie. Then A = AATA,

Proof. let B = AATA. Weo must show that @, = &, for all i, §. This is
obvions it 2, = 0, Now assume that a,, = 1. We have

7l rm

hf_;i = Z Z”’ikamﬂ't_f' (3)

k=11-1

It we set Kk =j =i then G dpp iy = a.:':"l =g, It follows from {3) that
b,; = 1, and the proot'is compleie., ]

The ﬁﬂ[m&-‘ing is the muin resnlt of this section.

Tineored 2.2, Let A M, N be matrices of order m X n. m X m, and
X e vespectively, and suppose

{a} B AY =P MA), FA) = ¥ AN),
by M=FL Nz L

Then the following assertions are equivalent:

{i) Ay, , exists.

(i} Aty one of the following holds':
(1) ANA'MA = A,
(2} AN'ATMA = 4
(3} ANATMTA = A
{4) ANTATMTA = A,
and fhus Ay o= NTATMY,

(i} Any twe rows of A are cither identical or disjoint. and ANAT = AT,
ATMA = ATA,

(v} Any fwe columns of A are either identical or disjvint, and ANAT =
A4Y ATMA = A'A

Proaf. {i) = (i} Suppuse G = A, ,; existy. Sinee the number of boslean
matrices of a given order is fnite, there exist integers k=1 5= s that

[ ANA M) = f ANATMT)H. (4)

''The eqnalitics in (1), (2), (3% {4) wun be coplaced by &
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Without loss we can assome 5 > 1 for if & = |, then (4) clearly holds for

s = 2 us well Now, left nultiplying Equation (4} by G and then using the
fact thut GAN is svinmetric, we get

NTATCTATM T ( ANATMTY' T = NATCRATM T f ana™M D) 71

Left multiply the above equation by ¥ and then use ACA = A, ANT = A
to ool

ATMT{ANATMTY T = TMT ARATMTY T

Ledt multipl}r the abne equation by T and then use the facts that MAC is
symmelic amd thut AGA = A w get

M{ANATMT Y = M{ANATMT)
Tinally, lefi multiply the ahove equation by X and use AMA = A o gat
(ANATM1Y' T o (anaT )T

Continuing Lhis way. wo may assume, k = 1, withoat Joss of genenalily, amd
theretore,

ANATMT = (ANATMTY'T .
Sturting with the abune equation, we get the following chain of implications:

5 GAN ATMY = GAN ATM'{ ANATM "Y'

=  NOATCTAT MY = NT ATCHA! M7 ANATMYY
=  NTATMT = NTATMT{ ANATMTY

= YTNTATMT = Y'NTA'MT(ANATMTY

= ATMY = ATMT{ANATMTY
= ATMIXY = ATMY{ ANATMT) X7

= AT = ATMT(ANATMT) % ARKAT
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and therchre
A= [ ANTATM) A, (5)
By Lemmu 1, A < AATA, und so, since M = 1. N = I, we have
A5 ANTATMA, {8)
and hence, postmultplyving by & TATMA  we et
ANTATMA < (ANTATHY A (7)
Repeated postmultiplication of {7) by ¥ A MA gives
A= ANTATMA = ( ANTATM) 4
£ (ANTATM) A g o < (ANTATM) A = 4,
where: the last squality tollows in view of (3). Therelore
A=ANTATMA = ANATMA = ANATMTA = ANTA'M A, (3}

where the lagt three equalitics follow in view of Theorem 2.1 (ak
Kow we show G = A, = N¥"ATM7. We luve shown ACA = A, But
CAC = N TATMTANTATMY = N2ATMY [in view of (8)], and

MAG = MANTAT MY
= MANATMT fusing Theorem 2. 1(4) ]
— ( MANTA™MY = (MAG)T,
S0 MAG is symmetric. Showing GAN symmetric is similur. S0 Ay =
NTATMT
(i) = (ix Let ANATMA = A By Lemma 1, A= AATA, As M =1,

Nzl wehove A4 = AATA £ ANATA = ANA"MA = A, Thus

AATA = A = ANATAL (%)



MUHIRE-PENROSE INVERSE 975

The second purt of lhe sbove equation gives

AAT = ANATAAT
= ANAT [nsingr thes first part of {57]
= ANTAY  (sinec AA' is syometric).

Similary it con be showm thut A7MA = ATMTA = A"A. Now using these
fucls, Equation {8}, and the assnmption, one can easily see thal AL =
NTATMT

(i} = {iii): Withont loss we take ANA"MA = A, Suppose Lwo raws ol 4.
say, the ith and the jth are not disjoint. Then there exists & such thar
) =0y = 1 Now il a, =1 Forsome r, then wi hove

t F gty thge, =1,

anid hemee a, = 1. Thus the ith vow of A §s entrvwise dominated by the jth
rove, Simifarly we can show that the jth row of A is entnewise dominated by
the ith rosw. and hemoo the two rows must be identical.

The proat of the remaining parl s cssentially contained in the prool of
(i) = ().

{iii) = (i Let B = 44A, and suppose h_.‘, = 1. S0 there exist [, {, such
that

@i sl el

B oy abwerve that the Lith colimn of 4 is nonzers, So hy hypothesis we have
thal the fth row of A is equal to the foth row of A0 Bt we alzo have
;L S0 a, =1 and therefore AA'A < A Tt fullows by Lemoia 1 thad
A= A4 Since ANAT = 44T, ATMA = ATA then

ANAYMA = A4TMA = A8%A = &

uned (i} is pm'-'ed. The equivulenu—: of (iv) and (i) is proved similarly. That
completes the peont of the theorem. [ ]

An examination of the proet of Theorem 2.2 ceveals thad condition {h)
Ty b rep|au:d b}' the weaker condition ANATMA = A
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We now provide a proof of Theorcm 1.1

Progf of Theorem LI The equivalence of (i)—{vi} of the theorem
essentally follows from Theorem 2.2 by setting M = N = [ The equivalence
of (v) und {vif) is easy to prove, and so is the equivalence of (i) and GAdid).
The implications {} = (ix) and (ix} = (@) ure easy to provie. Thus we have
shown that assertions (i}{ix) arc equivalent,

It i casy to see that (ix) = (x). if (x) holds, then it can be venfied that AT
is 1l Moore-Penrose inverse of A und thas (i} holds,

We [inally show the egnivalence of (xi) with the remaining conditions. It
(i} holds, then (i) holds, and setding & = A we see that (x) holds ux well.
Conversely, suppose {xd) is true, Then GL&TGT = ATCT ={GAY, and thus
GA is symmetric. Now from GAAT = A" is follows thal AGA = A, Similarly,
using ATAG = A'. we conclude that AG is svmmetric. Now it can be
verfied that C2AG must be the Moore-Penrose inverse of A4 and thas {{)
holds. That completes the proaf. [ ]

We remark that all the assertions in Theovem 11 cxeept (i), (il are
essentially contained in the literature; sec [2.4, 3] Hiwever, we have given
proofs for completeness,

As shown in Theorem 1.1, il A admils a Moore-Penrose inverse, then it
mst he AL Sometimes it happens that the weighted Moore-Penrose inverse
AL v =47, the tivisl cuse being M = & = 1. S0 the uhuuu\ yuestion is
whether we can previsely point out the vases when A, o = A", To apswer
this gnestion we need the {allowing vesull,

Tueoues 2.3, Let A M, N, be v in Theorem 2.2, Then the follncing
are equitalent:

i) Ay . exists,
(#) There exiet prertrentation ruol rcey F cered ¢ weech tht

I, 0 e 0D
L

4 0 g0
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where f1,..., J, are matrices {nof necessarily square) of all ones,

My 4] {} M e 1
0 My 0 M ias
M=pMpT=| : : :
il 0 M, MJ.._*H
[ My Mean 0 Mg Moo |

where e rows fmd_ eofternny .:{f M are pﬂrﬁrivﬂed ucmnfing ter the preriitivm-
ng af the vows of A, and

Ny 0 o i Ntk
0 Na 0 Niis
Vel ¢ 2 B :
1 it o N N ien
_Nnu.l L Na—l.ﬁ—l_

where the rotes wned r::uiumus r{f N are gmn‘it:'rmﬁd f.r-c'c'urri'iﬂg tio the prartitio-
tng of the eolurns of A,

Further, in the cave that (1} and (i) fold, :‘:ﬁ_ g iy piven by

! JT 0 0 f 1r-'1"’fﬁr- L1
0 Ji 0 JEMl s
G- : ; : : :
4 )] H' _}'EM;:'_L;C
_Nﬁ...l: I 14” NJ#—JJI NJ.T;-—JL-T. Ef—IATiTl-+1 q?IMJ;rH_:_

Proof. (i) = (i{} First supposc that Ay y caists. In view of Theorem
2.2 and Theorem 1MW, one can see thal there exist permutation matrices

Ii,[;_) such that A = PALY is of the form given in i) let M = PMPT and
L Q"'NQ.

Note that by using (4), we have

ANATA = A and AATMA - A, {10
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mettng

a contormal pariition, and then using {10), we see that all the Blooks ."u =1},
si jakt ?‘_,r uned that N = 0.1 <1 £ £ We have u similar r:_nnLlu-
sion reparding M.
It is casy to sov thal G =N"ATM" is the weighted Moore-Penvase
inverse af A wilh respeet to M. N. But

G- (QINTOW QA P PMTEYY = QU NTATM Y PT = QTOrT. (1)

I ooy LaITying ok the bilock muiﬁp].it:utiuu in the equation G=NATM" we
soe that €7 is of the foem given in the statement,

tonv by (113, the proot of () = (i} is complete.

C{}m’erst—:l}', SUEPIESE (i) holds. D:—*ﬁning C us in the statement of
the thegrem, it is eusy to check that AGA = A, Sinee G = ﬁlfl'ﬂ_fl'. w
lve ANTATMTA = A, This ioplics  PANTATMAQ = PAQ. Theretore
ANTATMTA = A und thas Ay, exists, by Theorem 2.2, [ |

As oo simpfr.-: Dum].!uz}f we stuke He f{:-ﬂmving cresult without Prt:mf.

ConoLLaey 1. Let A, M, N Be as in Theorern 2.2, Then AL .= AT f
and only if condition (i) of Theorem 2.3 is satisfied with the additional
proviso that M and N gre block diagonal.

We also huve the ﬂllluwing.

CoROTTARY 2. Let A, M, N be as in Theorem 2.2, and fierther suppose A
hes e zere row or sere colunm, Then, i AL o addsts. # equads AY

frovf.  Observe that A hes no diagronul zero bluck, Hence by Theorem

23 M N arc bluck disgonal. Furthennore, that AL, exists implies that G
existy, The result now follows by Corollary 1. [ |
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We conclude with an Exa‘mp]e which shows that the condibon that A has
no zero tow ot zero column {5 necessary in Cnmll.'ir}' a.

FxawmPME. Lat

I R e 12 5 -
f’i—[ﬂ {1]’ .-\-—[l l]x M=

Then ANATAMA = A bt NATM = H g] + A

We sincerely thank the veferee for a carefid reading of the manuseript and
fow sugmesting Theoren 2.3,
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