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20 R. BHATIA et al
1. INTRODUCTION

Lol H be a complex separable Hilbart spuce and let B{H) be the space
of bonnded linear operators on . This paper concerns bounding
vatious norms of A—B by those of AT— TBand of T~'d- BT ', where
A, B, angt T are in B{H). Often an expression like 4T-T'F is called a
generalised commutater, or simply a commutator.

Apart from the usual operator norm || - || oo B(H), we are interested
in other symmetric [unitarily invariant) rorms. We denocte such norms
by | - ||| Each such norm is defined on 8 porm ideal contained in B{M).
When we use the symbol |||T)|| we tacitly assume that T is in the
appropriate ideal. Specially interesting are the Schaiten p-norms

&
1711, % {fz.v;’{rj for 1< p < oo,
I

where »(T)> #{T)>--- are the singular values of the compact
operator T. In particular, |||, coincides with the operator norm |71,
For p=2, |:- |5, called the Hithere-Schmidt norm, will receive special
sttention. Another particularly usefud class of norms is the Ky Fan
k-norms:

i
||T!|[k}¥zéjf{?] for k=12 ..
=

For basic facts about unitanly invariant norms used below see [3, [¥]
or [14].

2. NORM INEQUALITIES INVOLVING COMMUTATORS

There is a4 wide body of élﬁking and useful inequakities that compare
norms of AT-T'B and those of A--8; see {3] lor some references. The
theorems below arc of this type,

TueEorREM 2.1 Let [ he a positive definite operator and let A and B be
Hermitian aperators. Then
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{4 ~ BY® < || 4T — TB|} [|T'4 - BUT], (21)

Jor every unitarily invarian norm.
Taeoprem 2.2 "Let T be a positive definite aperator and let A and B be
unitary operators. Then

4 - BII* < {ll4T ~T 8| |IT~' 4 - BTl (2.2}

Jor every unitarify invariant norm.

THEOREM 2.3  Lei T be a positive definite operator and let A and B be
normal operators. Then

id — B|3 < |l4T —TB|,||0"'4 - BT'|,. 2.3
2 2 2

Later in 54 we shall present a counterexample showing that
ingquality (2.3) may Fail for other Schattcn norms.

Crur proal will use three imegualities stated below. The first is an
operator version of the Cauchy-Schwarz inequality proved in [2]: for
all operators X and ¥

¥ A< Ix e, (2.4}

where |T| stands for the operator absolute value, |T|=(F*T)""
The other {wo inequalitics we need are related o each other, IT X
and ¥ are two operators such that the product XY is normal, then

X =< x|l (2.5)

This inequality has been used in earlier papers. Here is an outline of its
proof. Let r(T) denote the spectral radius of T2 Then /(T )<|| T, and
r(Fy=|F) if T is normal. Further, r(ST)=r(T§) for any two
operators 8 and T, So, if X¥ is normal, we have

IXF]| = r{XY) =¢(¥X) < [ ¥X|.

This proves (2.5 in the special case of the operator normi. It can be
exterided to other norms using a standard argument iovelving
attisymnmetric tensor products and majorisation; sze, e.g., [2]. By the
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same argument we can prove that if XY is a normal aperator then

1 |YX|1-'J2 |

E

< : (2.6}

]

=

Il XY is Hermitian, ineguality (2.5) can be sirengthened. In this cise
we have

I XF £ [ Re{ ¥ X[, (2.7)

where Re? =4 (7T + T*} {10, Lemmaz 1]

Proof of Theorem 2.1 Sinee 4 and B are Hermitian, we can write

[

12|t
| I

Using inequalities {2.6), (2.4} and (2.7) successively, we obtain from

this
“I

s

i - sty = |14 - 277 = [1ea - -2 - 5

- 3i < ||[r (4 - 5702
i

-

%

Now note that 8T—T& and ST 1-T'~' B are skew-Hermitian. Henes,

y -

< ([{Re (4~ B |Re [T (4 - B,

Re[(A - B)T) = Re[{d — B)T | (BI'—TB]] = Re(AT —TB},
Re[T7d B =Re|M{4—B)— (BT —T7'5)]
= fe([7'4 - BTN,

Since ||.Re T'|| = [T for any operator T, we have
Nl — B = (far —TH) i7" 4 - BT,

Thiy proves inequality (2.1]. ]
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Now suppose A and 8 arc any two operators. Comsider the
operators on HeM that correspond to the block matrices

0 Ad o 8 I n

A O i oy o0 ry
The first two are Hermitian and the third is positive definite. 5o using
the result already proved, we have

WeZs 7 e en 5N

(BT

T4 - BT g

ﬂ-
(2.8)

Proof af Theorem 2.2 Let 4(T) denote the vector whose coordinates
are the singular values of T arranged in deereasing order. IT 4 and 8
are unitary, we have

S{AT ~TB)=s{I"— ATB") = s(ATB* — ') = s{AT" - T B).
By the same argument
AUl — BT =o' 4 - BETY).

Inequality (2.2) for all Schatten g-norms (1= 5 = oo} and or all Ky
Fan k-norma (k=1, 2,...) now follows from (2.8}, This i3 what the
authors proved in the first version of this paper. For all unitarily
invariant notms, inequality (2.2) is a conseyuence of Proposition 2.1
given below. The proof given here is due o Referees Prolz. T, Ando
and F. Hiai. Ancther proof may be found in [11]. =

ProrosiTion 2.1 (Anpo, Hiai, Li, aND Mataias) Let X, ¥V, and
Z be finear aperators. Then

X < (20 (2.9)
Jor everv unitarily invariant nerm if and only if
ity < [ ¥l 121 (2.10)
(2¢

for every Ky Fan k-norm (E=1, 2,...).
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Progi’ It suffices to show that (2.10) implies (2.%). The following
proof is due to T. Ando and F. Hiai. For fixed nonnegative numbers y
and z, we have

= ]
nﬂu(—-—k}?—i_ A z) = (pn)",

] 2
Insqualily (2.10) is, therefore, equivalent to

1}' b £ A2l

||'_f_'| Y = 5 forail A =0,
ot, more explicitly,
! L As(¥) a7 's( 2 ;
Soslxyed . for all A= 0. (2.11)
=t i1 e

For fixed A>0, let sy 2 e ¥) +2-'4(2)]/2 for i=1, 2,... Since
S| = 524 = -, inequalities (2.11) mean that the sequence {5;{X’},
i=1,2,...) is weakly maforized by the sequence {5, 1=1, 2,...}; se¢,
.2, [3). This implies that for every symmetric gouge funcrion @,

@l:"zll:x-):l JE{XL e '} ':_: 'ﬁ{sl.lssl.}.:l =8, -}-
Since d Is convex and positively hhmogﬂneous, we have .

(5 (X)), 520X),. .0 = Adbin (¥), 52(Y), ) Zh_'fb{-'fl{z}:»?z{z];- D3

Taking minimum gver A= { on the right-hand side leads 1o

172
¥

Bl (X)), 5(X).. ) £ [En(¥Y)n(Y)... )} 2niZ),5(2Z),.. ]
as was to be shown. [
A generalisation of Propoesition 2.1 is given in 54

Proaf of Theerem 2.3 If 4 and B arc normal, then by the Fuglede-
Putnam Theorem modulo the Hilbert-Schmidt eperators [17), we have

|AX - XBlly = |l4'X — X8}, and XA - BX], = [|X4" — £X,

for all X, Using this we can detive inequality (2.3} from (2.8). [ |
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In [5] it was proved that if A and £ are Hermitian then
ll4— Bl < |0~ |1}40 — LB
From this we get
4 — By < ITIIT Y| |§AT — T B [fAT~" - T~ B,

an inequality weaker than (2.1 above,

3. BOUNDS FOR EVGENVALUE VARIATICN

Let A and B be #xn Hermitian matrices with eigenvalues o, > -+ >,
and B, - -2 3,, respectively. Let Figl{A) and Fig!(B) be the diagonal
matrices with diagonal entries o, . . ., o, and J1, .. S, tespectively, A
celebrated theorem of Lidskil, Wielandt and Mirsky says thai

|IEig' {(4) — Eig-(8)]| < [|l4 — Bl (3.12)
for every unitanly invariant norm; see [1, p.43], [3, p.101]. [15, p.204].
This inequality has been a model for olher spectral variation bounds
and has been generalised in various dirsctions.

Suppose 4 and B are two diagonalisable matrices, i.e., there exist
invertible matrices X and ¥ and diagonal matrices A and €2 such that

A=XAXT and B=Y0¥ (3.13}
For such 4 and &, we have
A—B= XA — ¥RV = YAxy'y-xtvinr
Hence for any untianly invarant norm J|| - ||

MAXTTY — X ¥ = |1X (A - BTl < X4 ~ B . -
(3.14)

We could also write A—B8=H¥ ' ¥A-0Y 5y " to get

iy~ xA — ¥ x| < BYUHI4 — Biix. {3.13)
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Let X' ¥ have the singular value decomposition ¥~' ¥= ITF*, Then

iAYT'Y — X 'F| = JJAUTK — T 0|
= |[LmAUT — FF*0v|
= ||lAT - T},

where
A= AU and 8= 17O (3.16)
Note that ¥ 'X¥= ¥I~'0'* So, by the same argument
Iy~ xa—a¥ x| = |74 - 50|,
From (3.14) and {3.15), we have

AL — T < [|X 1§71 fi4 - BII. {3.17)

fr=t4 — BT < Ly il — Bl (3.18)
which imply
lAL —T& [T~ 4 — Br ™" < e(Xe( 114 — B, {3.19)
where ¢ X) 15 the spectral condition mumber of X defined as
e[X) = X 11X,

In [3] it was proved that if 4 and X are diagonalizable and have real
eigenvalues then

I|Eig {4} — Eig (8}l = e(X)e( T4 — B (3.20}

Note that when 4 and & are Hermitian this reduces to (3.12). Our next
theorem improves upon this inequality.

TeeoreMm 3.1 Let 4 and B be diagonalisable matrices ar in (3.13).
Supnse A and B have onfy real eizenvalues. Then, for every unitarily
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invariani norm
Big!{4) — Eig" (B}l < [e(X)e( )21 4 — Bl. (3.21)
Proof Using Theorem 2.1, we have by (3.19
14~ Bll < [cO0)o(T )4 - Bl (3.22)

Motice that in the present case both A and B defined by (3.16) are
Hermitian, and have the same eigenvalues as those of A and B,
respectively. Inequality £3.21) now follows from (.12}, [

For the operator normm zlone inequality {3.21) has been proved
tecently by Lu [3]. Thia paper has motivated our work.
Theorems 2.2 and 2.3 lead to two more results of this type.

TuecoreM 3.2 Let 4 and B be digronalisable matrices ar in (3.13)
Suppose the eigenvalues of A and B le on the unit circle. Then. there
exisis a permuiafion matrix P such that

Il - PPt < Zle(Xe(¥) R4 Bl (3.23)

Proof Using Theorem 22 we obtain inequality (3.22) now with
unitary A and B. Inequality (3.23) now follows from known results on
slgenvalue variabon of ynitary matrices [8]. [1, p.71L 3. p.178]. R

The factor 3 in inequality {(3.22) can be replaced by | in two special
cases. For the operator notm this is a consequence of results in [4), For
the Hilbert-Schmidt norm this is subsumed in the fellowing more
peneral theorem.,

Tusorew 3.3 Let A and B be diagonalisable matrices as fn {3.13),
Then there exisis a permutaiion maivix P such that

|4 = PP, < [e(X)e( ¥))V2)| 4 — Bi,. (3.24)

Proaf - Use Theorem 2.3. The proof is exactly as above. Now matrices
A nd F in (3.22) are normal, and for such pairs we have the Hoffman-
Wielandt inequality {1, p.74], (3, p.165]. |

Inequality (3.24) improves upon a result of Sun [16] and Zhang [18].
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4, CONCLULHMG REMARKS

Remark ! In [8] and [12] it was shown how the perturbation theory
for diagenalisable matrix pencils with real spectra can be reduced to
the one for matrices similar to unitary matrices. Theorem 3.2 would
lead to improvements of the inequalities in [8] and [12].

Remark 2 Thete 15 another way of proving the bounds in Theotems
3.1-3.3. Thiz does not use the new commuiator inequalites of §2, but
exploitz the ones in [5]. Let us show this for Theorem 3.1, Let a=
| X=Y | ¥ and 3=||¥~| || X]. Since both A and & are Hermitian and T'
iz real diagonal,

T4 =BTt = W(r~'4 ~ BT} i = WA~ — £ 3.

MNow from {3.17} and (3.18),

vl 2L oo 5-5 o

2 [iG+57) -Gl

Since [(D)" (L)) = 0, we have L+ = Z=i, where £ is the

= Jon
identity matrix. So, using [5, Theorem 1] we obtain

From this inaquality (3.21) follows as before.

Remark 3 When 4 and B are arbitrary normal matrices inequality
(2.3) of Theorem 2.3 need not be valid for other p-nonms. This is
illustrated by the following example borrowed from [7]. Let

0.6384 0 0
r=| 0 0684 0

] 0 [RLELY
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and let A and B be the normal matrices'

~0.5205 —0.1642f  (.1042 — 03618 —0.1326 — 0.0260{
A= —-0.129% 4+ 0.170% 04218 +0.4685f —0.5692 —0.3178f |,
(2550 — D.1808; —0.3850 — 04257 —0.2973 -~ 01715

—0.6040 +~ 0.1760i  0.5128 - 0.2865i  0.1306 + D.0154
B=| 00382402850 00134 + 04497  —0.500] — 0.283%
04081 — 03333 00721 — 0.2545 —0.2686 L Q.0247]

Then | A — B> = 05378 and ||AT --TB|| T4 — 80| = 0.4132.
Remark 4 Proposition 2.1 has a generalisation. This is given below,

ProrosiTion 4.1 Let XY, ... Y, be linear operators and let pp,

Pa.- -« , P De positive mumbers such that 3 1/p; = 1. Then we have
NI < QF 2 ] Pl

Jor every unitarily inmvariant norm if and ondy if

XMy < IFLI - W Fonii 5

Jor every Ky Fan k-norm k= 1,2, ..,

'Rigorously, they arc ot nermal, but ¢lose to. In fact, | 447 — A% =~ 2393E — 4
and FBE" -~ B 8| = 1480E — 4, Better A and & could be obtzined by deing, e.g.
A = FOF! {cigen-decomposition), F= QR (QR decomposition) and then updating
A=0D0" in MATLAB notation;

[V, D] = eig{d):"Q B = qe{¥hd = (4 Do ', [V, B} = wig(8); [0, R] = qr{¥;
B=0:D+{;

Then new 4 and A are muoch ¢loser te marmal, In FEcl, this time
[|AA* — A A o= TA2OE — 16 and |FET — 55| =~ 540K — 16. Fortupately, both
(4 — B end 44T ~TBY [T~14 — BT with new and old 4 and B agree up to 4
decimal digits,
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Froof Let yi,....%, be nonnsgative numbers. Then using the
weighted arithmetic-geomettic mean inequality one can see that

1p i % M

SRS o 1 L . e —

Py = g Sl Ty
=1

The rest of the arpument iz similar to the one used in proving
Proposition 2.1 =
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