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Abstract-- When temperature and strain rate remain constant the quartz ¢-axis fabric in deformed pure quartz
aggregates, is largely dependent on deformation kinematics. Asymmetry of the fabric, e.g. in type-1 asymmetric
crossed girdle pattern in natural quartz tectonites, simulated fabric or experimentally deformed quartz aggre-
gates is generally related to sense of vorticity for a non-coaxial flow. Natural quartz tectonites, however, often
contain micaceous impurities. Measurement on a sample of 59 quartz tectonites with mesoscopic LS fabric
and representing low T/T,, deformation under non-coaxial flow, from the Singhbhum Shear Zone and Dhan-
jori quartzites, Eastern India provides the basic data to quantitatively assess the influence of mica on (i) asym-
metry of quartz c-axis fabric and (ii) degree of crystallographic preferred orientation, i.c. fabric intensity,
taking c-axes of dynamically recrystallized quartz grains as a fabric element. A fabric intensity parameter (x)
1s defined as the ratio of the greatest eigenvalue to the least eigenvalue of the orientation tensor matrix corre-
sponding to c-axis orientations in each measured specimen. The modal percent of mica (u) in the sample varies
from 2 to 35; that of recrystallized quartz grains (v), as opposed to relict clasts. from 45 to 98. The asymmetry
of the fabrics in the above sample, measured either as the Am statistic or as the angle between the central
segment of the fabric skeleton and direction of mineral elongation lineation. is independent of mica con-
tent. Correlation-regression analysis of the variables w~, g, and v. demonstrate a negative correlation
between micaceous impurity and the fabric intensity paramcter. The regression cquation is of the form

ko= 0.3 vt 00T

INTRODUCTION

Observations on  naturally and  experimentally
deformed quartzites and simulation studies show that
the nature and pattern of quartz c¢-axis fabric is largely
dependent on temperature, strain rate and deformation
kinematics (Etchecopar, 1977; Lister, 1977; Tullis,
1977; Law, 1986, 1987; Schmid and Casey, 1986;
Jessell, 1988a.b; Jessell and Lister, 1990; Ralser et al.,
1991; Wenk and Christie, 1991). When temperature
and strain rate remain constant, the type of fabric (e.g.
symmetric or asymmetric) is determined by the sym-
metry of the causative flow. For example, a type I
asymmetric  crossed girdle pattern  (Lister, 1977;
Schmid and Casey, 1986) is often produced under a
simple shear type non-coaxial flow where the sense of
vorticity is correlatable with the sense of asymmetry in
the resultant fabric (e.g. Lister, 1977; Law. 1986).

The above generalizations are based on observations
of pure quartz aggregates where the impurity phase
has only insignificant volume proportion (<1%).
However, natural quartz tectonites often contain a sig-
nificant amount (=1%) of impurities in the form of
white mica or chlorite as in micaceous quartzite or
quartz—chlorite schists or similar rocks with defor-
mation induced fabric (crystallographic preferred
orientation, CPO).

Fifty-ninc oriented specimens of quartz tectonites
deformed under greenschist facies condition from the
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Singhbhum Shear Zone (SSZ) and underlying
Dhanjori Group outcrops from around Royam-
Jublatola—Rohinbera, Singhbhum district,  Bihar,

Eastern India have been collected and measured for
quartz c¢-axis orientation, volumetric proportion of
recrystallized and relict quartz grains, and volumetric
proportion of white mica (+chlorite). A majority of
the measured fabrics is of asymmetric type | crossed
girdle pattern where the acute angle (¢) between the
central segment of the fabric skeleton and X direction
of finite strain ellipsoid is a measure of external asym-
metry (Law., 1987). Another available measure of the
external asymmetry i1s the Am statistic based on the
intensity of c-axis pole distribution in different quad-
rants of the projection circle (Fernadez-Rodriguez et
al.. 1994). Fabric intensity (1) is defined as the ratio of
the maximum to minimum eigenvalues of the orien-
tation tensor matrix corresponding to quartz c-axis
orientations in a specimen (Scheidegger, 1965;
Woodcock, 1977; Saha, 1983: Woodcock and Naylor,
1983). An empirical-statistical approach is employed to
assess the dependence (or independence) of the fabric
asymmetry and fabric intensity as defined earlier on
the volumetric proportion of micaceous impurity (z) in
the studied sample of quartz tectonites.

Although other considerations demonstrate that the
overall kinematic framework of deformation and
ambient P-T conditions are similar for all the speci-
mens in the Singhbhum sample (Saha and Joy, 1995;
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Joy, 1996), the measured specimens show a variation
in the degree of dynamic recrystallization of quartz.
Some earlier works show that the degree of crystallo-
graphic preferred orientation is positively influenced by
the magnitude of strain (Etchecopar, 1977: Tullis,
1977, Saha, 1983, 1984; Wenk and Christie, 1991). As
dynamic recrystallization is strain induced. and a pro-
gressive change in the proportion of dynamically
recrystallized quartz grains has been reported from
zones of natural strain gradient (e.g. Marjoribanks,
1976; Compton, 1980: Saha, 1989), we take into
account the variable strain intensity while doing corre-
lation-regression analysis by introducing a third vari-
able, the proportion of recrystallized quartz grains as
opposed to relict grains.

GEOLOGICAL AND DEFORMATIONAL
BACKGROUND

Geology, deformation history and metamorphic minerals

The specimens belonging to the sample are collected
from an area of about 60 km” from the central part of
the SSZ. including a part of the hanging wall of the
SSZ and its footwall comprising the Dhanjort Group
(Fig. 1). The hanging wall outcrops of the study area
arc thought to represent the rocks of the Chaibasa
Formation (Dunn and Dey, 1942; Naha, 1961; Gaal,
1964). Singhbhum Granite batholith is outcropped
near the southern boundary of the study arca (Fig. 2).

The Dhanjori Group is separated from the Chaibasa
Formation by a tectonic dislocation zone namely the
Singhbhum Shear Zone. marked by intense mylonitiza-
tion and formation of a strong L-S fabric in the rock
units. The mesoscopic structures from the SSZ indicate
that the SSZ is a major northerly (or north-easterly)
dipping shear zone with a southward thrust movement
(Ghosh and Sengupta, 1987). Shortening across the
belt is accommodated partly by a number of additional
N(NE) dipping shear zones parallel to the SSZ and
occurring on its footwall (Fig. 2). One of these dislo-
cations (Jublatola Shear Zone) 1s internal to the
Dhanjori Group but separates strikingly different litho-
logical units (metabasic rocks vs quartzite). The lower-
most shear zone (Rohinbera Shear Zone) is placed
along the Singhbhum Granite—Dhanjori Group con-
tact (Fig. 2) (Joy. 1996). A layer parallel shortening
(LPS) strain (Geiser, 1988) affects the Dhanjori Group
in the footwail as well as the Chaibasa Formation
rocks of the hanging wall. The near parallelism of
schistosity in rocks below and immediately above the
SSZ suggests some degree of uniformity in orientation
of LPS strain across the Singhbhum Shear Zone (Joy,
1996). On the whole the observations from the present
study area show that the structures can be interpreted
to have developed in course of a single deformation
event by progressive non-coaxial flow (Naha, 1965;
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Ghosh  and  Sengupta, 1987; Joy. 1996. cf.
Mukhopadhyay er «l., 1975; Mukhopadhyay. 1984).

Rocks outcropped in the Garra Nala south of
Rakha Mines Railway Station (22" 40’ 26” N, 86" 21’
24" E) and lying above the SSZ show almandine-bio-
tite~muscovite -quartz as the prevailing metamorphic
mineral assemblage with retrogression of almandine to
chlorite. Pelitic rocks belonging to the Dhanjori Group
show chlorite—-muscovite biotite quartz as meta-
morphic minerals. Rocks in the SSZ usually have the
same paragenesis as the Dhanjori Group, except for
the local occurrence of kyanite. However, the kyanite--
garnet assemblage of the SSZ and its hanging wall is
considered to be pre-tectonic with respect to the shear-
ing in the SSZ (Naha, 1965; Sarkar, 1984). The latter
is considered (o represent the last phase in the defor-
mation history of the Singhbhum mobile belt (Sarkar
and Bhattacharyya, 1978; Sarkar, 1982). The P-T con-
dition accompanying the non-coaxial flow in the SSZ
and its immediate neighbourhood is therefore lower
greenschist facies. The quartz ¢-axis fabric in the ana-
lysed specimens is thus thought to have developed
under these conditions.

Specimen collection

Oriented quartz tectonite specimens were collected
from the SSZ. quartzites of the Dhanjori Group south
of the SSZ. and from the Chaibasa Formation immedi-
ately north of the SSZ (Fig. 2). All collected specimens
contain the mesoscopic foliation, either a mylonitic fo-
liation or a weak schistose grain shape fabric, and a
mineral/clast elongation lineation or stretching linca-
tion (L S tectonites: Passchier and Trouw, 1996). In
some of the specimens there is a segregation of the
phyllosilicates into bands a few grains wide (Fig. 3a).
In other cases fine grained muscovite and chlorite are
present as a dispersed phase cither as inclusions in
quartz or at grain boundarics (Fig. 3b).

Microstructures

Quartz tectonites analysed from the study area are
generally bimodal aggregates with relatively small
dynamically recrystallized (40-120 ym) and larger relict
quartz grains (110 425 jan). The relative proportion of
recrystallized to relict quartz grains varies across the
sample. As dynamic recrystallization 1s strain induced,
specimens with higher proportions of recrystallized
quartz grains represent higher strain intensity. The
relict quartz grains in general show undulose extinc-
tion, either as wavy extinction, or as patchy extinction.
Other common microstructures observed in the relict
quartz grains are deformation famellae (Fig. 3¢). defor-
mation bands. subgrain structures, creep polygoniza-
tion textures and core and mantle structure (Fig. 3d)
(Carter er al., 1964; Christie ¢r al., 1964; Nicolas and
Poirier, 1976; White, 1976: Groshong, 1988). The
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Fig. 1. The geological map of the Singhbhum region, Eastern India (after Dunn and Dey, 1942). The study area is
oullined. SSZ = Singhbhum Shear Zone. The Singhbhum Shear Zone and the Dalma thrust are marked with thick
tooth-marked lines.

recrystallized quartz grains generally show serrated or
sutured grain boundaries. Some of the specimens show
castellate microstructure, and rarely dragging micro-
structure as described by Jessell (1987) in the recrystal-
lized quartz grains. The mesoscopic and microscopic
structures including quartz c-axis fabric analysed from
the SSZ, from the Chaibasa Formation rocks immedi-
ately north of it, and from the Dhanjori Group (foot-
wall of the SSZ) are comparable. Therefore, the
deformation in the footwall of the SSZ is considered

to be kinematically related to the general deformation
in the SSZ (Joy, 1996).

Flow stress

The reported flow stress measurement using the
recrystallized quartz grain size from the SSZ is 23-49
MPa (Sen Gupta, 1995) using the relationship of Twiss
(1977). Mean recrystallized quartz grain size in 15 of
the analysed specimens is shown in Fig. 4. The chart
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indicates that the mean recrystallized quartz grain size,
an indicator of the flow stress (White, 1979), is com-
parable in different specimens collected from the study
area. Thus the sample represents specimens of quartz
tectonites with comparable geological background,
kinematic history, ambient P-T condition, and differ-
ential stress.

ASYMMETRY OF THE FABRIC

Measurement of quartz c-axis orientation and represen-
tation of fabric asymmetry

In each specimen of quartz tectonite collected from
the Singhbhum region 200 or more quartz c-axis
(Fernandez-Rodriguez et «l., 1994) orientations are
measured using a Federov universal stage fitted to an
optical microscope. A reference co-ordinate frame is
defined by the mesoscopic foliation plane, its normal,

and the clast elongation lineation (x X direction of

finite strain ellipsoid) lying on foliation. The c-axis
orientations are plotted on a lower hemisphere equal
area projection and contoured using a computer pro-
gram (Kutty and Joy, 1997). The c-axis fabric can be
characterized by their skeletal outline by constructing
a sct of straight lines connecting the ridges and crests
on the contoured fabric diagram (fig. 1 of Lister and
Willhlams, 1979; Lister and Hobbs, 1980; Vissers,
1993). Representative patterns of the contoured c-axis
fabric diagrams from the study area are shown in
Fig. 5.

The degree of external fabric asymmetry (of fabric
skeleton) can be expressed as (a) ¢;~c», where ¢ is the
obliquity of the leading edge with respect to Z (foli-
ation normal) and ¢» is the obliquity of the trailing

edge with respect to Z (Law, 1987); (b) obliquity, ¢, of

central segment with respect to X (measured anti-
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Fig. 4. Column chart showing average recrystallized quartz grain size

(in microns) in specimens from the Singhbhum Shear Zone and its

footwall. The specimen numbers are indicated within cach bar.
Number of grains considered in cach specimen is 100.
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clockwise) (Law, 1987) and (c) the Am statistic of
Fernandez-Rodriguez et al. (1994). The angle defining
the obliquity in each of the above cases is measured on
the XZ plane, a plane perpendicular to foliation but
conlaining X (mineral/clast elongation lineation) (Platt
and Behrmann, 1986; table 1 of Law, 1987).

In the measured Singhbhum specimens, ¢ and Am
are utilized as a measure of fabric asymmetry. The
measure (¢;~¢;) 18 not utilized as a number of
measured fabrics lack a trailing edge. As shown in
Table 1, the quartz c-axis fabric is distinctly asym-
metric with ¢ values in the range 54-90°. Other fea-
tures attesting to the asymmetry of the fabric are listed
in Table 1. Scatter diagrams of ¢ vs volume percent of
micaceous impurity (u) and Am vs u provide a graphic
demonstration of the independence of ¢ and Am from
i (Fig. 6). Statistical evaluation also shows that there
is not enough evidence to reject the hypothesis of inde-
pendence between the fabric asymmetry and g
(Appendix A).

FABRIC INTENSITY AND MICACEOUS
IMPURITY CONTENT

As described earlier, the sample from the
Singhbhum region represents asymmetric type |
crossed girdle or asymmetric kinked single girdle c-axis
fabric with variable intensity. For each (f{abric
measured the fabric intensity parameter (k) was com-
puted by considering the orientation tensor matrix cor-
responding to the c-axis orientations. In order to test
whether the fabric intensity is influenced by mica con-
tent (¢) in the quartz tectonite sample a regression
analysis is performed using a bivariate approach, 1.¢c. p
as the only independent variable and x as the depen-
dent variable. Although the sample includes specimens
with similar kinematic history the actual deformation
intensity across the belt varies. As strain magnitude is
known to affect the quartz c-axis fabric (Etchecopar.
1977: Tullis, 1977; Saha, 1983, 1984; Wenk and
Christic, 1991), a part of the variation in ~ in the
Singhbhum sample may be related to strain intensity.
The influence of the latter factor is assessed through a
consideration of the effect of variation in volumetric
proportion of recrystallized quartz grains (v) on x in a
trivariate regression analysis where both g and v are
considered to be independent variables.

Bivariate approach

Results of regression analysis attempting to fit an
intrinsically linear model (Draper and Smith, 1981) to
the relationship between dependent variable xk and the
independent variable g are summarized in Table 2.
The best among the analysed models is the multiplica-
tive model (Fig. 7) with an R’ value of 0.3970
(39.7%). Statistical tests for the correlation coeflicient
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Appendix B) show that the null hypothesis of zero
( pPp ) yp K =17.99 Iu—o‘elx. (1)

correlation between x and p has to be rejected. A lin-

ear negative correlation between In (k) and In (u) is
upheld by the test. Similarly, analysis of variance

(ANOVA) test for the significance of the regression

Trivariate approach

coeflicient () shows that f is significantly different

form zero (Appendix B). The regression equation

between x and u can be written as

Volumetric fraction of recrystallized quartz grains

relative to relict grains quartz grains varies within the
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Table 1. Data for the measurement of symmetry of quartz c-axis fabric in specimens from the Singhbhum Shear Zone

Angle with X" in degrees Angle with X in degrees

Specimien Central Specimen Central
number segment  Leading edge Traihng edge Am statistic number segment  Leading edge Trailing edge Am statistic
re()2 86 60 15 31493 70 145 —14.0*
rel0 90 70 130 31793 90 S5 135 -2.0
red() 82 70 332093 87 68 —23.7
rml0 82 05 110 re3s 88 60 110 11.8%
rml | 82 45 105 rc3 88 50 37.8%
rmiS 85 63 rc06 50 130 —4.2
rm22 54 34 120 re0)7 60 I8 —9.0%
km193 84 55 126 re32 85 70 (kS ~12.5%
p393 60 64 re3s 84 50 105
11393 86 55 re36 60 140
11693 55 150 re37 R4 60 12
13093 88 70 3593 89 50 IS
Tml 89 65 115 3693 70 117
Tm4 76 74 124 4293 90 65 120
7m8 89 70 130 4393 84 60) 110
Tm10 &5 65 20 4993 72 60 105
®¥m3 70 125 22293 88 65 120
K4 75 70 26893 70 70 145
rel4 82 60 re08 90 55 113
rp2- 78 65 120 re(9 85 70 130
re0] 80 70 120 rel3 82 70 125
rc0S 85 62 110 rm99a 85 70 17
rcl9 88 70 rm 100 82 55 120
re20 80 50 105 21093 %4 64 120
re24 86 70 3m3 70 135
4493 80 60 120 4193 62 124 9. 14+
7193 78 55 4m?2 60 120 -2.71
9293 60 64 8mo 70 62 40.77%
19393 RO 65 125 rell 80 65 120) 15.685%
23093 90 o0 120

= Matrix ol Rakha conglomerate; gff Pebble of Rakha conglomerate. X. ¥ and Z arc the principal axes of the finite strain ellipsoid. The
foliation planc 1s considered as the XY plane. The mineral clongation lineation is taken as the X direction. All angles are measured
anticlockwise from X on XZ section. The asterisk over Am statistic values indicate fabric asymmetry at a significance level of 0.05.

sample. As dynamic recrystallization 1s strain induced,
the proportion of recrystallized grains increases with
increasing strain intensity. Therefore, we consider the
cffect of the volume proportion of recrystallized quartz
grains (v) in the regression analysis as a third variable.
(v in the present case varies from 44.9% 1o 98.4%.)
Here also only intrinsically linear models are con-
sidered. i.e. models which could be transformed into
linear form (Draper and Smith, 1981). The results are
given in Table 3. The multiplicative model with mul-
tiple R7=0.455 (45.5%) is the best of all the analysed
regressions (Table 3). through which 45.5% total vari-

Table 2. Results of regression between k and ., see text for details

No Model Estimated values R

I Lincar [0 =10.000 19.9%,
K= fot bt e fr= —0.3180

2 Quadratic (second order) Bo=13.400 26.2%
N Pot Bt Bl e fi= —0.9170

3 Exponential In % = 2.1300 34.5%
po= el f - —0.0515
Inw = Inz+ fin

4 Logarithmic transformation  fi, -~ 15.300 24.9%
Ke=fotfilnute f1= —4.0800

5 Reciprocal transformation Sy 3.5800 19.5%
K= Botf o e £ =18.300

6 Multiplicative Model In % - 2.8900 39.7%
wo= 7% fi = —0.6180

Inwk=Ino+ flngilne

ation in the dependent variable is explained. ANOVA
test for significance of the regression relation is given
in Appendix C (Table 4). The regression equation
relating the three variables can be written as

]\.:0.131}].“’“70.617‘ (2)

Table 3. Results of the trivariate regression ol x. g and v, sce text
for details

No Model Estimated values  Multiple R?
1 Linear fo - 1.6300 23.6%
Koo Pot Bt e boa 1 =0.0983
fi-— —0.3065
2 Second order fiy=2.0000 33.8%
Ko Bat iy L Bt Byt By 00610
Ffan gt By + ok B —0.4820
£11=0.0009
fi>- ~0.0188
fi-=0.0058
3 Exponential S 1.0600 38.5%
Kooy £ 00126
) Inw - fotfivi fatine o= —0.0500
4 Logarithmic transformation fo= —21.300 31.1%
Ko fotpriny b falng+ e - 82700
By = 4.0700
5 Multiplicative Model In 2 = —2.0300 45.5%
Koo B L1100
Inw=1Inx: flnv i yin wo=—0.6170

it ne
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Fig. 6. Scatter plots showing independence of quartz ¢-axis fabric asymmetry from mica impurity. (a) ¢ vs mica percent

(). ¢ is the ungle between the central segment of fabric skeleton and the X direction (mineral elongation lineation

direction) measured anti-clockwise from X. (b) Am vs . ¢ and Am are the mean of ¢ and Am values. respectively; o,
is the standard deviation of each.

DISCUSSION AND CONCLUSIONS

Within the studied range of variation of micaceous
impurity (white mica plus chlorite, 2-35 vol.%) in the
guartz tectonites from the Singhbhum regions Eastern
India, the asymmetry of the quartz c¢-axis fabric is
independent of the impurity content. Although the
actual values of ¢ and Am, measures of the external

asymmetry of the fabric, vary from specimen to speci-
men they are uncorrelated with g, the volume percent
of micaceous impurity (Fig. 6). Therefore, the sense of
asymmetry in the deformation induced fabric can be
utitized in deducing the sense of vorticity associated
with deformation, irrespective of whether the L-S tec-
tonite is a pure quartzite, a micaceous quartzite or a
mica—chlorite—quartz schist.
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Fig. 7. Influence of micaccous impurity () content on quartz ¢-axis fabric intensity (x). Regression lines corresponding
to a linear model and & quadratic model are shown as dashed lines and the regression line corresponding to a multipli-
cative model is shown as a continuous hne.

The addition of mica and chlorite into quartz aggre-
gates (sensu lato quartzites) has a general effect of
weakening the fabric intensity (Starkey and
Cutforth, 1978. Kronenberg, 1981; Boullier, 1986;
Wenk and Christie, 1991}. It has been suggested that
grain boundary sliding between quartz and matrix
mineral grains may be a causative factor for such fab-
ric dispersion. But the importance of grain boundary
shding at low temperatures (as in greenschist facies)
and in the grain size range 40-120 ym (Singhbhum
examples) is not very marked even under higher fluid
pressure. As increased fluid pressure at low tempera-
ture factlitates intracrystalline glide (Paterson. 1989)
rather than grain boundary sliding, and mica is known
to have a well developed [001] glide system. The weak-
ening of quartz c-axis fabric with increase in mica—
chlorite content may be related to partitioning of
strain in a manner so that a significant part of the

bulk strain i1s accommodated by intracrystalline glde
in mica, and thus relative lowering of grain scale strain
in quartz. It has been shown that the degree of strain
partitioning in a deforming rock depends strongly on
proportion, shape and distribution of the mineral
phases (Handy. 1994). However, one has to take into
account the influence of variation in strain intensity.
At lower strain the intensity of quartz c-axis fabric is
low even in pure quartz aggregates (Marjoribanks,
1976; Bouchez. 1977; Tullis. 1977: Compton, 1980:
Miller and Christie, 1981; Saha, 1983, 1989: Wenk and
Christie. 1991).

A linear correlation between quartz content and the
degree of quartz c-axis preferred orientation in quartz-
ite specimens with biotite and feldspar as impurity
phases has been proposed (Starkey and Cutforth,
1978). The present correlation-regression analysis
shows that a multiplicative model (Stoodley et «f..

Table 4. Analysis of variance (ANOVA) table for testing the significance. (a) The (bivariate) regression coefficient. (b) The trivariate re-
gression relation

Source of variation Degrees of freedom Sum of Square Mecan Square F ratio
Regression | 12.709 12.709 37.51
Residual 57 19.312 0.339

Total 38 32.021

Regression 2 14.5819 07.2910 23.41
Residual 56 17.4394 0.3114

Total 58 320213
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1980) of the form x = cx;z/f, provides a better fit as far
as the relationship between fabric intensity and impur-
ity content is concerned. The exponent f has a nega-
tive value (—0.618) and « = 17.99 for the studied
sample. As earlier works (e.g. Saha, 1983) demonstrate
the influence of strain on fabric intensity, the present
regression analysis also takes into account the vari-
ation in the proportion of recrystallized (or relict)
quartz grains in the sample. It should be noted that
with increasing strain the proportion of relict grains
decreases and that of dynamically recrystallized grains
(v) increases. A regression equation of the form
w = o’y explains the sample variation in a better
manner (x = 0.13, f = 1.11, v = —0.617). The above
relationship 1s valid for quartz aggregates deformed
under low greenschist facies condition, the ambient
condition of fabric development in the Singhbhum
region, Eastern India.
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APPENDIX

Appendix A: Test for dependence of asynunetry of fubric and p

Correlation coefficient test for dependence ¢ on .

Under the assumption of bivariate normal distribution of two vari-
ables x and r. let their population correlation coefficicnt be p, under
an Hyp - 0. The statistic 7 (17— 2)"%(1 = 2)* is shown to be dis-
tributed as a 1" with n—2 degrees of freedom. r being the sample
correlation coeflicient and » the sample size, (Goon ¢r «l.. 1993). Out
of the 59 measured specimens only 49 are showing a distinct central
segment of asymmetric type | crossed girdle or kinked single girdle
quartz c-axis fabric. Hence, ¢ was measured in only these fabrics
and therefore the sample size is 49, Let our alternative hypothesis be
Hy:p # 0. The correlation coefficient (r) between ¢ and o is 0.118.

2,05

t=r(n— Z)M/(l - )
0.8089672/0.9930136 = 0.814659.

i

(A1)

The tabulated value for two tailed Hrhs. 47) = 1.6795. The
observed value (0.814659) is insignificant at a test level of 0.05 prob-
ability and. therefore. there is not enough evidence in the data to
reject the null hypothesis at this test level.

Correlation cocfficient test for dependence An on p

The null hypothesis (and the alternative hypothesis) being similar
to those in the previous test, the correlation cocfficient (r) between
Am and g is —0.1922. Here the sample size (1) being 59 the 1 stat-
istic 1s obtained using equation (Al) as 1 = — 1.478646. The tabu-
lated value for two-tailed 1(¢ s 57) = 1.67295. The observed value of
H(—1.466691) is msignificant at this test level and therefore. the null
hypothesis cannot be rejected. In other words the test does not show
any evidence to reject the hypothesis that Am and g are independent
of cach other.

Appendix B: Bivariate regression
Test for the corvelution cocfficient between In (k) and In ()

The null hypothesis (and the alternative hypothesis) is similar to
those in the previous tests (Appendix A). The correlation coefficient
(1) between In (x) and In (;0) 1s —0.630. The sample size (1) being 59.
the ¢ statistic is obtained using equation (Al) as 1 = — 6.124679. The
tabulated value of two-tailed 7 is (1, s7) = 2.39497. The observed
value (—6.124679) is significant at 0.01 probability level of testing
and therefore, the null hypothesis has to be rejected. and concluded
that there is a strong negative correlation between In (k) and In ().

ANOV A test for the significance of regression coefficient

Consider a simple regression model In vy = in o + fln x ¢ In e
then let the null hypothesis Hy:f = 0 and the alternative hypothesis
H,:f8 £ 0 (Stoodley er al.. 1980). The F ratio which is obtained as the
mean square due to regression,residual mean square (Table 4a) fol-
lows an F distribution with | and » —2 degrees of freedom under
Hy, where i1 is the sample size (Stoodley ¢r «f.. 1980). The tabulated
value of F (Fg . sn) — 7.1145. The observed value of 37.5
(Table 4a) is significant at 99% confidence levels and therefore Hy is
rejected. in other words fi significantly differs from 0.

Appendix C: Trivariate regression

Test for the significance of the regression relation

Consider a regression model Inw = Inx + fflnv+ 7 Inp 4 Ine
then let the null hypothesis Iy ff or 7 = 0 and the alternative hy-
pothesis Hy: at least one of ff or v # 0 (Stoodley et «l.. 1980). The F
ratio (Table 4b) follows an F distribution with 2 and # — 3 degrees of
frecedom under H,. where i1 is the sample size (Stoodley er al., 1980).
The tabulated value of Fis Fyy > se) ~5.112. The observed value of
23.41 (Table 4b) is significant at 0.01 level of significance and there-
fore the null hypothesis has to be rejected.



