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Abstraei. A nonlinear Hilbert-space-valued stochastic differe ntial equation where
L~ (L being the generator of the evolution semigroup) is not nuclear is investigated
in this paper. Under the assumption of nuclearity of L™, the existence of a unigue
solution Iying in the Hilbert space H has been shown by Dawson in an early paper.
When L' is not nuclear, a solution in most cases lies not in A but in a larger
Hilbert, Banach, or nuclear space. Part of the motivation of this paper is to prove
under suitable conditions that a unigue strong solution can still be found 1o lie in
the space H itself. Unigueness of the weak solution is proved withoul moment
assumptions on the mital random vanable.

A second problem considered is the asymptotic behavior of the sequence of
empirical measures detenmined by the solutions of an interacting system of H-
valued diffusions. It is shown that the sequence converges in probability 1o the unique
solution Ag of the martingale problem posed by the corresponding McKean—Vlasov
equation.
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1. Introduction

In his proneering paper on stochastic evolution equations, Dawson [ 3] considered equa-
tions of the type

dX, =—LX,dr + Bir, X;,) dW, + Alr, X, ) dt (1.1}

for an H-valued process, H being a separable Hilbert space, where W, is a cylindrical
Brownian motion and L is an unbounded operator such that L' is a nuclear operator.
The presence of L allowed him w consider coefficients B which take values in the space
of bounded operators {as opposed to the Hilbert-Schmidt operator) and sill have the
sollution as an H-valued process. The solution obtained in [3] was also shown o have
continuous sample paths. Such equations have also been investigated by other authors
[5], [8]. We are concerned with two problems in this paper. In Section 2 we study,
in some detail, the regularity properties of the unique H -valued solution of (1.1) under
stronger conditions on the coefficients A and B but without assuming that L~ is nuclear.
The principal results of this section, Theorem 2.6, as well as Theorems 2.9 and 2.10 in
which the martingale problem comesponding 1o (2.2) 15 shown o be well posed, may be
regarded as extensions or generalizations of previous results in [3] or [3]. That, however,
is not our main reason for presenting them here.

In a large class of stochastic partial differential equations (SPDEs) or H-valued
SDEs the equation can be writlen as a stochastic evolution equation in which L7 is
nuclear for some p = 1 but L~ is not. The examples that come to mind are the SPDEs
which can be formally written as H-valued SDEs where the order m of the elliptic
operator L does not exceed 1d, d being the number of spatial varables. (See [3].) In
such cases, only a generalized solution can be shown to exist. By the latter we mean a
stochastc process Llaking values in some larger Hilben space, H_ . say. where H_, isa
suitable space of distibutions.

The role played by the results of Section 2 is o provide a method of obtaining H
or C{[(, T'], H)-valued approximations 1o the distnbution valued, 1.e. C{[0, T|. H_,)-
valued solutions of more general SDEs. This problem is studied in Section 6 in which
a syslematic procedure is given for approximating many Lypes of SPDEs which only
have distnbution-valued solutions by “smoother™ SPDEs whose solutions are ordinary
random fields. An application to Walsh’s SDE for a two-dimensional neuron model is
given [11].

The second problem is addressed in Sections 3-5 which are devoted o interacting
H -valued SDEs. The main aim in these sections is 1o study the asymptotic behavior of
the sequence of empirical measures

1 N
.=— dyni,

where 4, is the Dirac measure at x and (XY} j = 1.2,..., N, is the unigue solu-
tion of the interacting system. As a first step, a law of large numbers (propagation of
chaos) is derived (Theorems 5.3 and 5.4) by showing that the above sequence of random
elements with values in the class P(C) of probability measures on C = C{[0, T|, H)
converges in probability 1o a nonrandom limit Ay € P(C), which is the unigue solution
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to the martingale problem corresponding to the McKean—Viasov SDE (4.3) introduced
in Section 4. The latter equation is central to the proof of the propagation of chaos result
in the H-valued context as it is in the case of finite-dimensional interacting diffusions.
Furthermore, in our discussion of the McKean—Vlasov equation the following interesting
fact emerges which may be of independent interest: 1f Ay is as described above and (17,)
is the coordinate process on C, then g, t= Ay o r;rj" satisfics the emarkable nonlinear
{and nonrandom) measure-valued equation (4.11), and under additional assumptions on
the coefficients, the nonlinear equation has a unigue solution.

2.  Infinite-Dimensional DifTusions

Let H be a separable Hilbert space with inner product {-, -} and norm || - || £( H, H)
denotes the class of all continuous linear operators on H and Cs(H, H) the class of all
Hilbert-Schmidt operators. For an operator A, the Hilben—Schmidt nomm is denoted by
[l - llus. Let (£2, F, P) be a complete probability space with filuation (F,) assumed to
satisfy the usual conditions. Let {W,) be an (F))-cylindrcal Brownian motion on H.
Recall that, for a progressively measurable H-valued process | such lhul_,l?, I llFds <
oo a.s. for all ¢, the stochastic integral _,I:: { fi. dW,} is defined as follows. Let {g;} be
a CONSIn H. Let H-’f" = Wil ). Then Wf is a sequence of independent real-valued
Brownian motwons and

f (fondWo) =) f (for @)WY
] rriinli]

1t can be proved that the series appearing above converges uniformly in ¢ £ [0, oc) for
all e outside a null set.

The indefinite integral is a continuous local maringale with quadratic varation
process _;:: | £ ||2 ds. For a progressively measurable Ca( H, H )-valued process F, with
f(‘? | F. ||f_|5 ds = ocas forall r, the stochastic integral _,I:: F, dW, is defined and satisfies,
foree H,

I I
(f ﬂ-dW\-Jﬁ>=f (Fro.dW,). (2.1)
4] 1]

Here F denotes the adjoint of the operator F,. Indeed, (2.1) can be taken as the definition
of the stochastic integral

I
f F,dW,.
]

We need the following estimate, which is Burkholder's inequality in this context. It
is stated in a weaker form {without sup over 1), suitable for use later

Lemma 2.1. For2 = p <= oc, there exist constants C, depending only on p such that
Sfor a progressively measurable C4(H, H)-valued process F with

! 2
E[If ||ﬂ-||ﬁ_:,-rr--] ]mc
0
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one has

[ I i I : i
E["f F-"”“’*H E%E[U I|ﬂ.||;.5m-] ]
4] b

Outline of the Proof. Let g} be a CONS in H. Using Burkholder™s inequality (see,

e.g.,p. 117 of [9]), we get
o I 2
B f T s d] }
k=1 v

o 1 2y #/2
E Flyw, dW, = C,E
(B (Lmm)} |0l

The required inequality follows from this, using Fatou’s lemma. O

We consider the following SDE:
dX, =—LX, dr+ Bir, X,) dW, + A(r, X, ) dt, (2.2)

where Xy is independent of (W,). Here the operator L is assumed to satisfy the following
conditions:

frme is a contraction semigroup on M, (2.3)
L~ is a bounded self-adjoint operator with discrete spectrum. (2.4
Let {g ) be the eigenfunctions of L=, which constitutes a CONS in H and let {A;]

be the comesponding eizenvalues. We assume also that A: [00T] = H — H and
B: [0,T| = H— L{H, H)are continuous functions satisfying

HAG. h), @ < a1+ 181212, (2.5)
I1B*(r. kel < Be(1 + A1), (2.6)
WA, ) — Al ), @] < agllhy — hall, 27
I(B* (e, hy) — B*(t. hadge || < bn |y — ha| (2.8)

forallk = 1,¢ € [0, T], h, hy, hy € H, where B* is the adjoint of the operator B and
{apt, by} satisfy

=
Y i =Cay < oo, (2.9)
k=1

=
Dbk
k=1

Caa = o0, (2100
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Under these conditons the stochastic integral _,I:: Bis, X,)d W, may not be defined.
However, for any progressively measurable process (X)),

] q o
f 1T Bs, Xl ds = f D e TR 4 X, ds
0 0 =

=f falt — )1+ | X, %) ds, (2.11)
[{]

where
R
ft) = e by (2.12)
k=1

Since [ fe(u)du < Y= bii;' = Caa it follows that the stochastic integral referred
to above exists if

T
f 1X,%ds <00 as (2.13)
0
Similarly,
1 2 - )
[ f I T Als, X)) m-] P f Y e a1+ X, )P ds
] [
I
=f Falt = )1+ | X, ) ds, (2.14)
0
where
2 &
fa)=TY e a (2.15)
k=1

and again we have that JI:: fatwydu = TCa . Thus for every w such that (2.13) holds,
we also have that the integral

f T o Als. X)) ds (2.16)
]

15 well defined.

Definition 2.1. A progressively measurable process (X)) is said to be a mifd solution
or evelfution sofution 1o (2.2} if (2.13) holds and, for every r,

I

X, = ?]Xtr‘i'f

!
T—sB(s, X, ) dW, +f TAls, Xy)ds as. (2.17)
0 0

Note that the progressive measurability of { X,) implies that Xy 15 independent of
{ W) Lt is easy to see that if (X, ) is a solution and (X}) is a progressively measurable
modification of (X,), ie.. P(X, = X}) = 1 for all 1, then { X}) is also a solution to (2.2).
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It is convenient to define a new probability measure P on F,
P(C) = f MP{—"XHHJ"IIP/! expi—||Xol} d F. (2.18)
C

Clearly, P and P are mutually absolutely continuous and the Radon-Nikodym deriva-
tive d P /d P is F, measurable. Hence (W) is again a eylindrical Brownian motion on
(QF. P).UM = [, FdW,on(Q,F, P)and M = |, F,dW, on (R, F, P) where
JI:: | 5, ||i|5d:.' = oo as. (P or P), then

P(M, = M forallt) = P(M, = M forallt) = 1.

Thus (X,) is asolution to (2.2) on (22, F, P)if and only if (X, ) is a solution to (2.2) on
(82, F, P). Further, we have, for all p < o,

I
E" | X" = oc.

Here is a version of Gronwall's lemma which will be used in proving existence and
uniqueness results for the solution.

Lemma 2.2. (i) Let f. g, and § be nonnegative functions on [(), T]. Let @ € [0, o)
such that _,I::‘e_"‘ fitydr = _% Suppose that either g is bounded or g is mtegrable and §
is bownded. If, forallt = T,

gl =c +f FilaMgit — ) +8(r —s)}ds, (2.19)
[

then there exists a nonnegative Borel measwre 0on [0, T| such that p[0,1] = ™' and
I
gl =c(l + &) +f S —a)plds). {2.20)
0

(i) Let [, g be nonnegative functions on {0, 1, .., nl. Let @ € [0, oc) such that
Y e f(i) < 3. If forall0 <i <n,

gy e+ flieli—J, (221)
=1
then
gli) = ell+&"). (2.22)

Pmoof.  Nlerating inequality (2.19), we get
|
gl =c +f Sl )i — 5 ) dyy (2.23)
]

1 £ —g
+f Sist) |:-=‘ +f Sl —5) — w20 + 80 — 5 —&'z}}dﬁz]dﬁl
(4] (1]
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= f‘+f fe+ 8t — s fils) dsy
0

+f f {glt — s —s2) + 800 — 5 — 52 L) flsa) Ly g sy dia
4] (]

| A

k 1
c+ Zf fo+ 8l — s} peids) —epp ([0, ) +f gt — &) (ds),
i=l ]

| A

]

where
w10, £ ) =f f FUs) - FUs0 o= dy - - - s
1] 4]

As

([0, 1]) = & L fw eTHNE ) Fig) - f(sg)dsy oo ds;
= (3,

nic) = Z:’;, pAC) C e B0, T is a well-defined nonnegative Borel measure on
[0, T] such that g [0, r] = ¢ . Letting & — oc on the rght-hand side of (2.23), we have

gty =c+ f {o+ 80 — s)helds) + Iikm inff gt — s)pplds)
0 e Jp

8t —s)pilds) + Iirn inff gt — 5 ) (ds). (2.24)
R

5:{1+e‘“}+f

]

If g is bounded, then liminfy_. .. j:: gt — s)pglds) = 0and hence (2.20) holds. If g is
integrable and § is bounded, then

r i T o
f lim inff gt — s lds) dr = lim inff f gt — s)pglds) de
0 = Jy """‘- o Jo

=
f gty de liminf g ([0, T]) =0,
i ko

| A

iLe., Iiminfk_.xﬁ:g{r —s)pplds) = 0forae r € [0, T, and hence, forae. r € [0, T,
glt) = ol + )+ || 8] ace™.
By (2.19), ¥t £ [0, T,
r
glt) = f‘+j(; fishds (e ||d]-) (1 +L’"TI} i
i.e., g is bounded and hence (2.20) holds. Inequality (2.22) can be proved similarly. O

We now oblain an estimale on the second moment of a solution.
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Theorem 23. [f (X,) is a sofution to (2.2) satisfving E | Xp||* < oc, then

sup E||X, I* < Caall + E[ X)), (225)

=
where Ca 3 is a constant,
Proaf.  Let (X,) be a solution to (2.2) satisfying (2.13). Then it follows that

;
(Xro @) = ™ (Xo, 1) + L (e B (s, X ), dW,)
+ f ‘ e U A (s, X)), u) ds (2.26)
0

and hence that

d{X, @) = (B X, dWo 4+ (A, X)) — A XL . (2.27)
Fix n and define a stopping time 7, by
Ty= inflf =k f‘ ||X_.|.||!.r!:.' > nl AT (2.28)
0
and let
& =" Xine, ).
Note that 7, — T since (X,) is assumed to satisfy (2.13). 1t is easy 1o see that

14T,

g | B s X, dW,) + f T e As, X,). @i)ds
(1] (1]

and hence that

1AL,
EE'EIJ:EE = IE |:F~";'(f|2 +f L,_’-u.'-'llﬂth,‘ X.T}@kllz dx
0

IAT,
+rf e-EJ-.':.-.-{A{:.', X, 1"'}&}2 I!'.T]
0
)
&3 [E;&’;F s f (b7 + Ta ) E{(1 + | X)) 1gee, }d:.'].

0

Using that E[|| X, |*1, ., 1 = 3, e 2 EJE* P we get

)
E[1 X)Lz, 1<3 [E||xu||3+f Y e HUNB A Ta) E{(1+ | X)) 1.\-‘-.,"}:13}
0

7]
<3 [E||xu||3+rc1 1+Caa+ f folt —s)E{]| X, |? 1.“-.,"}:#«].
4]

where fylu) = fglu) 4+ filuw) is an integrable function (see (2.12) and (2.15)).
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Let g(f) = E[|X,|*Li<s,]. £(1) = ?fn{f}sf = 3[1'5'"-3{:::” + TG +£n] and
§(t) =0, % & [0, T|. Then (2.19) holds. AH_II:. gl de = f E[|| X, I? lice lds = n
by the choice of 1, g is integrable. 1t is clear that § is bounded. Since

I I
f e fi)dt =3 f e folt) dt
0 [}

o Tﬂi+bﬁ
EZ—E+2)‘* — 0

| A

as o —= o0, there exists o such that

X Tai+b 1
3 i, Sl S (2.29
Z ﬂ‘!+2)‘.k il }

Therefore, all conditions in Lemma 2.201) are satisfied and, hence,
-E[”XI”_J]-J-.rnI =gl = 3[E||Xi:"2 +TCa1 + Caa)(1 + 7).

Now the result follows from Fatou's lemma by letling n — oo, O
The next resull proves the existence and uniqueness of the solution 1o (2.2).
Theorem 2.4.  Suppose that L A, and Byarisfv(2.3)-(2.10) . Let X be an Fy-measurable

H-valued random variable and let (W) be an ( F,)-cvlindrical Brownian motion. Then:

(i) There exists a solution (X,) of (2.2) satisfving (2.13) with Xy = X,.
(i) If1 X, } and {U,} are solwtions to (2.2) satisfving (2.13) such thar Xy = Uy, then

PiX,=U)=1 Jorallt. (2.30)

Proof. (i) Let P be defined by (2.18). It suffices to construet a solution on (€2, F, P).

Forn = 1, let ' = (i/n)T, 0=<i=nlLle Xy = Xy and define (X1 =r = r:'+,}

i = 0,inductively as follows. For ' <1 =1, ;. let
I I
X! = E_j:‘X:I" + f Ty Biu, X dW, + f Ty A, X0 du. (2.31)
¢ n ¢ I ¢

Similar 0 (2.11) and (2.14), ¥1' <t = 17! ;. we have

I
E|X}|* < 3[EI|X:} I+ f D e U bE + Ta)E( + | X, ||?}m}
[ ‘
=314+ TC + Caa( 1+ E| X5, (2.32)

Let ¥ = X% for® <t <. Then

I

)
X! =T Xy +f T Blu, Y dW, +f T A, ¥ du. (2.33)
4] (1]
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Proceeding as in (2.11) and (2.14), it follows that

I
E|x|* =3 [Euxnlﬁ +TC, +Cra+ f folt =) E| Y} ||3:r.-], (2.34)
0
where fo = f4 + fg. Let g,li) = E"||ij. .0 < i < n. By (2.32) and induction in i, it
is easy 1o show that g, (i ) is a finite-valued functiononi € {0, 1, .., n}. It follows from
(2.34) that

k

i—1 ]'_‘1. o
gali) =3 [Enxmﬁ +TCa1+ Caat 3 f TN + Tape -*'”d-vg,.m}
J=0vr;

< HE|Xol* + TCot + Ca2) + Y fulidguli — ). (235)
=1

where

B+T -
.-f.u{!::' =3 E > ﬂk _'.-J.u { (g )T 1}
k

Let o be given by (2.29). Then

- - b + Ta? T T
E ﬁlﬁ}e—l’u.l"'_,ufu - 23 Z & = k E—II’."MI el i {EI'E.'..;_,HH - 1}
=1 1=l k =k
= Tﬂf +bf el g
E 3 Z 2}* E.I'I'_"J.}+r.r:|_,".l|:l]‘" —1

k=1

oo 2 2
- 32 Ta; + b {l
B = o +2h T2

and hence, by Lemma 2.2,
E|X}]* = gali) < HE| Xol® + TCa1 + Caa)(1 + T/,

1t then follows from (2.32) again that

sup sup E|X"|IP=C' 1+ E|X*1=C". (2.36)

nz= ] Qar =T

Using (2.33) for n, m and using the Lipschitz conditions on A, B we get (the calculations
are similar o those in (2.11) and (2.14))

E-” X:I _ X:Jr ”2

| A

2E lf I Tou(Bu, ¥)) — Blu, ¥)"))ljis du
0

I
+rf ITi—ul A, X)) — Afw, ¥ du
4]

| A

I
zf folt = E|¥" — Y™ du.
1]
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Let guu(t) = E| X" — X™|> and 8, (1) = E|| X" — ¥Y*|*+ E| X™ — ¥™||>. Then g, u.
8y are uniformly bounded (by (2.36)) and

gal.ur{f} E ﬁf fi!{f _“}{gu.ur{u} + 'ﬁal.ur{“”d“-
1]

Similar o (2.32), it follows from (2.31) and (2.36) that, for ! <r = 1" |,

E|X! - Y¥'I* = E|X} — Xp? (2.37)

=
3 Z{E—i}rhl s 1}_:' E{X:} ‘}"-"J:}E

| A

h)
ﬂk + b

—2de Tim)y y
T ——*(1—e¢ )

+3(1 + r:”}z
It follows from (2.33) that
& ‘ §
(X7, ) = e ™' (Xo, @) +f e MU Blu, X or, dW,)
(1]
)
+f 'T-'_J‘*”_“:II:A{H, }:I}Jf}k}du
4]
and then
E(X], @0

I
< 3E{Xp. @) + 3[ (B + Tade U9 + E|¥"1*) du

7 B+ Tﬂk

IE(X Wl4+C"
= {trfﬁk}+{+ ) TR

Hence, by the dominated convergence theorem, it follows from (2.37) that 8, (1) — .
By Lemma 2.2 and the dominated convergence theorem again,

;
Enalt) = f Sy () pildt) — 0
4]

Therefore
sup E|| X" — X™||* = 0, sup E||¥" — ¥™|? = 0. (2.38)
1<T 1<T

Note that since ¥ is a piecewise constant, kefi-continuons, adapted process it is pro-

gressively measurable. In view of (2.38) we can choose a subsequence {ny | such that
Z¥ = ¥ sansfies

’%UPEIIZ“ nal kG

&
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Thenit follows that 3, | Z¥ — 24| < oc as. for alls. Thus Z) converges a.s. foreach
5. Define
lim Z¥(w) if it exists in &,

X, (@) = Ji—x _
0 otherwise.

Then X, is a progressively measurable process. Further, it follows that

hupEH A o L § sup E|| X" — X, |* = 0.

i 5=F

From this, it can be verified that X is a solution o (2.2) (on (82, F, P)) with Xo = X,
and that (2.13) holds. This completes the proof of (i).
For (11), again let P be oiven by (2. IH}I Then { X} and 1L} are solutions o (2.2) on

(2, F, P) and, in view of Theorem 2.3, J|:: E|X, U_.,.|| ds = oo, Using the Lipschite
conditions on A, B, we can deduce

E| X, — =2 U folt — )E | X, — U2 m]

An application of Lemma 22, withe =0 and § = 0, yields
E|X, - Ul =

forall r. Thus F(X, = U,) = 1 and hence (2.30) follows. O

We are now in g position Lo oblain an estimate on the growth of the pth moment of
the solution.

Theorem 2.5. Let | X, } be a solution 1o (2.2) satisfving (2.13). Then, for p = 2, there
EXISTS @ constant l‘::_ depending only on the constant C, in Lemma 2.l andon Cay, Caa
such that if E|| X" = oo, then

sup E|| X, |I" = C,[1 + El Xol"]. (2.39)
=T

Prmaf.  Let X{ be the approximation constructed in the proof of the previous theorem.

Using Lemma 2.1, it follows from (2.31) that, for ! <1 =1 .

I
E| X" = 3"’"|:EIIXjL I+ E',,E(f Falt —s)ds(l + | XL ||"}')
[} " v

1 LRl
E(f falt = s)ds(1+ | X3 ||"}) ]

=38 [ENXp 1" +(Cy CY + (TC1 )" EQ + X 17 HR (240)
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Let i, (i) = E’HX:L 1", 00 =i = n. By (2.40) and by induction in i, we see that i, (-} is a
finite-valued function. By (2.33), proceeding as in (2.40), we have

1 e
E|xp)* <3 [EIIXc:II” + C,,E( Salt —s)(1 4 || ¥ ||3}m-)
i}

1 o2
+ E(f falt —s)(1 4+ || ¥7 ||3}m-) ] (2.41)
4]

Using Hilder's inequality for the ds integrals, we get

I

2=l
E| X |* <3 |:E||Xn||"' + E',.,( Selt —35) ﬂ'-‘-‘)

]

a

X E( falt —)(1 4 1" ||3;=*f-nr.-)
4]

¥ =1
+ (f _f_,{f—:.‘}ld:.‘)
0
® E(f Falt =)+ (¥ 1) ﬂ'ﬁ')]- (2.42)
0

It then follows from similar arguments as in (2.34)—(2.36) that there exists a constant €,
depending only on p and on Oy . Ca 2 such that

sup sup E|X7|" = C,l1 + E| Xol ") (2.43)

nz=1 Q=1 =T
As noted in the previous resull, a subsequence of X converges to X, where X is a
solution to (2.2). Hence, using Fatou’s lemma, it follows that the required moment esti-
mate holds for X. The result follows (rom this as X, X have the same finite dimensional
distributions by the uniqueness part of the previous theorem. O

We now look at the regularity of paths of the solution to (2.2).

In order o prove sample continuity of the solution, we impose a stronger condition
than (2.107:

L=
Y BN =Gu < (2.44)
k=1

forsomed, 0 <8 = 1.

Theorem 2.6. Ler (X)) be a solution to (2.2). Then (X,) admit a continuous modifi-
cation, which is of course a solution to (2.2).

Proof. Let P be defined by (2.18). It suffices to prove that X has a continuous modifi-
cation on (82, F, P). We wrile

XJ = ?]XH+ ]V', +ZJ
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where ¥, = [ Ti_.Blu, X,)dW, and Z, = [| T,_, A(u, X,)) du. Clearly, T, Xq(w) is

continuous forallw, For0 =5 =t =< T,

& i
”zl I3 Z.-.'HE = H {Tr—ar S r-.'—n}A{IL Xﬂl}d“ + f ?]—IIA{IL Xﬂ}d“ H
] 5

=2 |:f\ 0T — TocudAln, X)) ﬂ'u]-
]

3

+2 |:f (|75 Az, X..}Ildu]_

I.I“I

+2[f IZE—_’MI’J—M“E’{I + "X“ ”j}l ! du]-
&N k

T
U (1+ X, ||f}du]au.r}
4]

by Hidlder™s inequality where

| A

3 I
< ] o | — e - ] L 3
als,t) =f Z{f Ml gty +f Ze b= o du .
0 & X &

o can be computed and we can venfy that (s, 1) = f{r — 5) with
Bs) = Z —[{1 G S 1

Clearly, (2.9) implies §(4) — 0 as § — 0. Using (2.13), it follows that

= a
lim sup ||Z,—Z,| =0 a.5.
=Dy —5d

Thus {Z,} is conlinuous a.5.

2

[f IZ{ —J;I'J—urfl _J'*H_"ll}'_f;“ + 11X 0P }} du]

(2.45)

(246)

It remains o show that {¥,} admits a continuous modification. We achieve this
via the Kolmogorov critedon. Choose p such that (1 — 8)p = 2, where # is as in
(2.44). Recall that, by the choice uf P E|| Xol® = oo and hence, by Theorem 2.5,
sup,.; E|X,|" = oc. As before, E stands for the integral with respeet to P. For

5 =t = T, wiling

5 |
h o Y.\' - f {?}—Jr = T.:.'—H}B{H~ XII::I d“'n =+ f Tj—ul B{I'L Xlr}d“rﬂl
] &

and using Lemma 2.1, we get
)

L =
E|Y, =Y, " = 2”"1:',,E|:If (- — TZ--H.}B‘I[H,X"}IIﬁSdu]
(1]
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1 LRl
+|f ||?:_..B‘{u,x..}||ﬁsdu] ]

¥ 2
il 2I’"—| ["f!E[If E{E—MI’J—M_e—iél'.v—nfl}lbf{l +" X“ "2} ﬂlﬂl
05

) ll.l_,"!
+U Z*"'E"‘*”"’”bfn+||x..||3mul ] 247)
N k

We wrile

i) =) (070 — BTG and o) = ) e
k

k

Mowy

T |"'.-"2
EU x;r.{n}{1+||X..||3}:m]
1]

5 ¥ =1 X g
= E[(f yfru[u}ﬂ‘u) f vriee (1 + || X, II‘}”"‘H’H]
1] (1]

5 2
2250 +E||X“||"’}(f ﬁfl{u}ﬂ'u)
0

by Hiflder's inequality and {2.39). Similady, estimating the second term in (2.47), we
get

E| ¥ —¥:{®

- X 2 1 pi2
=Cy(1 +E||X(,||f’}|:(f ﬁfll[ﬂ}du) + (f bhl[u}du) ] (2.48)
0 s

Evaluating the integrals, we oblain

|5

2
E|lY,-%I" < C,EQ+ ||x(.||}f’[( ; 5 —e-’*“-"”}-’)

bi e AP
— ] — -Ahg (I—x) i
+ ( .3 )Lk{ € }')

Now using the obvious inequality 1 —e* < x Al = xfforx = 0,0 < § < 1, for
§=(1—#8)/2and § =1 — & respectively, we get

e

k

g 3 B il
E|lY, - %P s CLEQL+ ||xu||}f’[( D 55t —s}}'-“)
&

+ ( iizmr —s}}'*")fﬂ]
— 20

= ! ! bJ_: & | — ) g2
pal ~” o S _n _ ey s
< CLE(L+ |1 X (W . M,._,)(Elz) (t —s) :
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Recalling assumption (2.44) and noting that, by our choice of p, (p/2)(1 — 8) = 1, we
conclude that

E|Y, —Y,|I" < Caslt —s|'** (2.49)
with & = (p/2)]1 — &) — 1, where Ch s depends only on p, Cy 4. Thus {¥,} has a
continuous modification, O

Now the existence and uniqueness result, Theorem 2.4, can be recast as follows.

Theorem 2.7. There exists a continuous solution X to the SDE (2.2). Further, if X' is
any ather sofution to (22) with continwous paths, then

P(X, =X forallt, 0=¢=T)=1.
Our next step is o prove unigueness in the law of solutions o (2.2).

Theorem 2.8. Let{X,} be asolution to(2.2) [on (2, F, P)| and let { X} be a solution
to(2.2)on (2, F', Pywith respect some P'-cvlindrical Brownian motion on H.Suppose
that X, X' have continuous paths and suppose Po X;' = P' o X', Then

PoX-t=PoX !, (2.50)

Proaf. Let (X7} be the approximaton constructed m the previous theorem and let
[ V"l be the approximation defined analogously on (22, JF, P') (with X}, in place of
Xy and {W'}in place of {W,} in (2.31)). It is easy to see that the finite-dimensional
distributions of { X'} and {V"} are the same. Now E| X! — X, |* — 0 implies that
P(|X" —X,| > &) — O forall § > 0. Similarly, P'(|V," — X}|| > &) — 0. Thus
the finite-dimensional distributions of {X,} and {X]} are the same. Since X, X have
continuous paths, this yields (2.50). O

We now consider the martingale problem corresponding 1o (2.2).
For f € L}E{[E&"},n =1, let U, f: H — R be defined by

]
(U YR = fllhe).. .., (A, @) (2.51)
For f € CX(R"), we write f; = (3/dx) f and f;; = (8/dx;) f;. Let
D={U.f: feCHRE").n= 1} (2.52)

Define L, on T by

Lo (U f)(R) = 3 Z{E'{r,h}fﬁ.. BY(t, hg) (U fij)th)

i, =1

+ Y (A, h) — ki, @) (U fi)(h). (2.53)
=1
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If {X,} is a solution 0 (2.2), then we have seen that (2.27) holds and hence it follows
that, forall g € T,

g(X,) — g(Xo) —f (Lyg)(X,) ds (2.54)
]

is also a martingale. In other words, if { X,} is a solution to (2.2), then { X, } is a solution
to the {IL, }-martingale problem. That the converse is also rue is proved next.

Theorem 2.9. Ler { X} be a progressively measurable process satisfving (2.13) such
that (2.54) is a martingale for all g € D. Then on the probability space (2, F', P') =
(2, F. Py@ ([0, 1], B, v, there exists a cvlindrical Brownian motion (W) on H with
respect toa family (G, ) such that (a) | X, } is G, -progressively measurable and (b) | X, } is
a solution to (2.2). (Here v is the Lebesgue measure on [0, 1] and Bisthe v ~completion
af the Borel a field ).

Proof. Using (254)for g = U, f, f Cé{ﬂ:&}l, we can first conclude that ({X,, ¢},
1 = i = n) has a dght continuous with left imit modification and then further that it
has a continuous modification. (This follows using arguments in Theorem IV3.6 in [4]
and Exercise 4.6.3 in [9].) We denote the continuous version of {X,, g} by ¥'. Then we
also deduce that

I ]
M =Y —Y; - f MY ds — f (Als, Xo). i) ds
0 0
15 o continuous local martingale and that
) 1]
(M', M}, = f {B*(s, X, b, B*(s, X ), ) ds.
0

As g consequence, recalling definition (2.28) of 7, and using (2.6) we have

Esup|M[|* = 4E(M", M*), < bi(1+n). (2.55)

1=,

Let N¥ = &M} Then using (2.44) and (2.55) we get

E sup Zh’f@k" —+ 0, m,F — 00

=% (k= "

Hence N, := 3=, Nig is an H-valued continuous local martingale. Here
: g 1/2 )
(N*, NPy, = f Ap AT B, X en, B, X)) ds
[

|
=f (G, Gl )ds,
0
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where G, (w) = L_'*QB{:.', X (w)). Mote that

r
f G (w) |5 ds < o<
1]

in view of assumption (2.10). Let {#/.1 = j = oo} be a sequence of independent
{F')-Brownian motions on ([0, 1], B, v), where (F!) satisfy the usual conditions. Let
Gl = F®F t 20.G isaa-fieldon @ = Q x [0, 1]. Let (G,) be the smallest family
of a fields on ©' satisfying the usual conditions such that G' € G,. Using arguments as
in the proof of Theorem V.35, in [12], it can be shown that there exists a cylindrical
Brownian motion { W) on H with respect to (G,) such that

i
N, = f sy dw.\'-
(1]
Then NX = (Ny.@x) = [ ihi " B*(s, X, ). dW,) and hence

|
ﬂ,.fjk = f {B‘{.‘f, X_-,-}fﬁk1dw.\}-
i

From here, it follows that {X,} satisfies (2.27) and hence that {X,} is a solution Lo
(2.2). O

In the light of Theorem 2.7, some of the results concerning (2.2) proved earlier can
be recast for the (L, )-maningale problem as follows.

Theorem 2.110.

ia) Let {X,} be a progressively measurable process satisfving (2.13) and suppose
1 X, }iva solwion to the (L, ) -martingale problem. Then | X, } admity a continuous
madification.

by Forall p & PUH), there exists a continuous process | X, } such that (2.54) is a
martingale for everv g € T and such that the law of Xy is p. Further, the faw
af the process X is uniguely determined.

) For0 =5 = T, x € H, there is a unigue measure Py, on C{[0, T|, H) such
that (writing the coordinate process on C{[0, T|, H) as )

(1) P inlu)=x,0=u=s5)=1,
(i) gim) —f: iLygdin ) du,t = sisa P, martingale.

(dy Further, () is a time inhomogeneous Markov process on the probability space
(Q,F B ) (where 27 ix C{[0, T|, H) and F' is the Borel a-field on 27)
Joreach (s,x) € [0, T] = H. The (common) transition probability function
Pir, y.t. B)is given by

P{?’, _"ll,f, B} = -Fr,_-.'{nj E E}

Jorr =t =T, ve H, BBorelin H.
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Proof.  (a) and (b) follow from Theorems 2.4, 2.6, and 2.7. (¢) is the same as (b)—with
achange of origin from 0 tos in the time variable. For (d), note that if, for eachn, G, isa
countable dense subset of C,;E{[FE_“}I (in the norm, || Fllo= (1 F1+ 3 160+ Zu’ £l
[| - [, being sup nomm), then

D{F = {Lr“f': _.f ECMI'
is a countable set and for every g = U, f € D we cangel g € T, such that g, — g and
L,gir — Ly g. Just take gy = U, fi where fi € C, approximate f in || - | norm. Hence

the Markov property of () under | £, .} and the expression for the transition function
follow from well-posedness. (See Theorem 6.2.2 in [9].) (]

3.  Interacting System ol H-Valued SDEs

Let L, A, B, a,and b be as in Section 2 satisfying conditions ( 2.3)—(2.9) and (2.44). Let
R: H x H — H be afunction satisfying

R (1, B}) — R(ha, ), @) | < rilllhy — hall + R — 511, (3.1)
WR Ry, ), @] < rell + Il + 1RGP, (3.2)
Here ry are assumed o satisfy

er)-.;ﬁ = O3y < o0 (33

k

forsomed,0 <& < 1.Let (W, Wf ..... W) be N-mdependent eylindrical Brownian
motions on H and let X('?'I ..... X('?'"“" be H-valued random variables independent of
[W/.1 = j = N}.Consider the following equations for an interacting system XY =

I 5 Mo e Nk
+E§R{X‘ XNEy 4, (34)

Letting ‘H denote the N-fold product of H, define

Lih..... hy)=(Lhy,..., Lhy).
W, = (W, ..., WY} becomes a eylindncal Brownian motion on H and (3.4) can be
recast as

dx = —LxYdt + B(t, X")dW, + A, X V) dr

for appropriate choices of B, A, b, and @ which satisfy (2.3)-(2.9) and (2.44). Hence,
it follows that the sysiem of equations (3.4) admits a unique solution with continuous
paths.
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Proceeding as in the proof of Theorem 2.5, we can show that for a constant C.
depending only on p (and on L, A, B, and R) but not depending on N,

)
Elx"I* <c, [Euk':;” 1" +f fitt =)
0

x

: 1 N
L+ E|XY 1"+ =S "E|x¥Y " as|. (35
x4 N; x5 )

Here fi(u) i= fa(u) + Tfglt) + Trlw), frelu) = ¥, e ri. Now summing over
Jaowe get

1 5 Nojip
= 2 EIX)

i=1
I < N.j i [ o
=C, ;ZEIIX}': " II"+fu filt —s) 1+2EZE||X_; e tds |
=l J=l

Letg(t) = (1/N) i) EI X |12, c = CLQ/NY 5L, EIXg Y12, £(1) = 2C, /i o),
and &{r) = 4. It follows from similar arguments as in the proof of Theorem 2.3 that the
conditions of Lemma 2.2(i) are satisfied for the present case. By Lemma 2.201), it is easy
to see that there exists a constant € such that

N
Z 1x |P{c“’[1+ ZEIIX ||} (3.6)

e J=l1

Using (3.6) in (3.6) and once again applying Lemma 2.2, we gel

i . : 1 N
supE| X/ |F = € [1 +EIXy 1"+ Y Elxg* ",,} , (3.7)
1=r k=l

where the constant " does not depend on V.
. A ; W NN, e
We fix a sequence of initial random variables X(':" = (Xy"yoony Xy ) for the
interacting system with N-components satisfying the following conditions:

the law of X(':" = {X(':"'I ..... X,;:""“"}I is symmeticon  H x---x H,  (38)
| N

"':':I = ¥ Zﬁx.'? ;= [y in probability, (39

sup E[| Xy |” < Caa, (3.10)

N

for a constant Cy, where p = 2 satisfies (1 —8)p = 2,8 as in (2.44). Our problem is
to investigate the asymplotics of

N

yio
.= = Z v € PO,
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Here, C = C{[0, T], #) and P{C) is the space of probability measures on C. C is
equipped with sup norm and P(C) with the wpology of weak convergence.
The problem for finite-dimensional diffusions has been investgated by, among
others, Sznitman [ 10] and for nuclear space-valued diffusions by Chiang et al. [2].
Note that assumptions (3.8) and (3.10) and inequality (3.7) implies that, for some

constant Oy 5, we have

sup sup supE| X" = Cas. (3.11)
Ne=l j=N =T

Also, symmetry in the law of the initial random vector X and unigqueness in the law of
solutions o system (3.4) implies that the law of XY = (X%, .., XM is symmetric.
We first prove

Theorem 3.1. The sequence of probability measures P o (X" istight in P(C).

Progf.  We wrile
W, N W, LR =T
X=X A UM v Y
k=1

where
P o# ! a "
v =f T Bls, X)) d W],
]
i £ A
Pl :f T,_ Als, X¥-Jyds,
]

I
AR :f T RiXY, x4y ds.
0

First note that (3.8) and (3.9) imply that X(':"" converges in law to g in P{H ), and hence
{E{X(':"'I} : N = 1} istight. {We denote the law of a mndom variable Z by £(Z).) Since
h — T;h is continuous from H into C, it follows that {£{T X'}, N = 1} is tight.
The same computations as in the proof of (2.49) yield
E|U =0 = Cult —o|'Y,

where Cy 4 depends on p, Ca, and the trace of BALY. Since U,;';v'l = (), this implies
tightness of {2(07Y 1) : N = 1} Computations similar 1o those keading to (2.48) yield

T
1" — v < 4cs, U (1+ ||X;T*-J'||-’}:m]ﬁ{r -3, (3.12)
0
where §{8) = 0aséd — 0. For M = 1, let

Gu = {n € CUO.TL H): no=0, |l — el < MB(t —5), Vs, 1},
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By the Ascoli-Arzela theorem, Gy is compact. Given £ > 0, using (3.11) and (3.12)
we can get M osuch that

P(VM & Gy) <&

Thus {£(V 1)} is tight.
Similar computations yield

v
DAL o 5L T f (1 XM+ XN dsp(8),
4]

where
w2
Bi= 3 o= 0 =)
=1 =
— 0 as 4 — 0.
Thus

2

" N 12X
Z N1k E N1k
"“IIIN}J:=| . - E k=1 . If

T N
! i
< 4C3, L (1 gil . [ ||X_:"-"|F) dsp'(8).
k=l

Tightness of {£(% Y3 ¥V''%) : N = 1} follows from this using exactly the
same arguments as used to prove the tightness of V! above. Thus each of the four
components of X% is tight and hence {2(X"') : N = 1} is tight. O

We can now deduce
Theorem 32, [P o (™)' : N = 1} is right in PPIC)).

Pwaf. Foreach ¢ = 0, let K, be a compact set in O such that P{X:""'" € KJ) < &2,
This choice is possible in view of Theorem 3.1, Then using the symmetry of the law of
{XN.I _____ X.’\'.N} we have

N
EPY (KDl = ) PO € K)
i=l

2
< B

Leth, ={AeP(0): AK, o) =1 —£-27" m = 1}. Then K, is compact in P{()
and

.F{]_—'"" g}ﬂ,} = ZP{FW{K;_:N}I wp. 2—.'|r::I

m=1
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s

2 Yo BN )

Before we identify the limit of T'Y, we need w study the equation which will
characterize the limil.

4. The McKean-Vlasov Equation

Forpy, pa € PUH ) ket Mgy, pa) bethe elass of probability measures b on H x H with
marginals foy, pa respectively. For p = 1, let Py(H) = {n € P(H): f [l || e ey =
o). For g, pa € Pu{ H), let

lip

LMy ua)

Py, pa) :=  inf If iy — hallP"Aidhidha)

Then ‘?—",, 15 a melne space with metric g, Note that g = m.
Let RB: H x P(H) — H be defined by

Rih, p) = f Rih, by pidh'). (4.1)
Using (3.1), we can dedoce that

IRCAy ., py) — Riha, pa) | = Caalllhy — hall + i, pa)l. (4.2)
We now consider the Mckean—-Vlasov equation

dZ, = —LZ,dr + Bi(r, Z)d W, + Alr, Z,) dr + ﬁ'{Z,, CiZ 0 dre (4.3)

(where £ Z;) denotes the law of Z,). A soluton to (4.3) s defined as in Section 2.
Arguments as in Theorem 2.3 would give the following: If {Z,) is a solution to (4.3)
with Ef“’ 121> dt < ocand E| Zy|* < oo, then

sup E||Z,|1* < oc (4.4)
1=F

and those in Theorem 2.6 would give that {Z,} admits a continuous modification.
We now prove the existence and uniqueness of the solution wo (4. 3) with £{Z,) = 1,
for every g € Pa(H).

Theorem 4.1.

(a) Let Z, be an H-valued F measurable random variable such that E| Z,|* < o<
and let (W, ) be an (F, )cviindrical Brownian motion on H . Then there exisis a
solwtion (2 to (4.3) with continuous paths such that .'5'_||r(;r || £, ||2 dt = oo,
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(b er{Zj'}, {Zf}l be solutions to (4.3) (on the same probability space, with respect
to the same cylindrical Brownian motion). Suppose that Z!, Z f have continuous
paths with Z, = Z;‘; and

r
E|Z}|* < o, Ef 1Zi? dt < ec. (4.5)
]

Then P(Z! = Z forallt) = 1.
(c) Furf.‘:ei’, the faw of the solution (Z,) in (8) above is uniguely determined (by L,
A, B, R, and C{Zy)).

Proof.  The proof closely follows the proof of Theorem 2.4, Forn = 1, lett! = (i/n)-T,

0 <i <n. Define (X't =t =<1',).i =0, inductively as follows. Let X = Z; and

I
X=X} + (T, - T;p)Zy +f T, uBlu, X)) dW,
;

]

1
+f [T A, Xp) + T o R(XG, L(X)) ] du.
i
Note that, for any random variables U7y, [fs,
P (LU, LU < g3 (L(Uh), L(U) < E| U, — Us).

Henee, using (3.1),

EIR(Uy, LU @ — R(Ua, £0U2 ) )u)
= 2 E|U) — Us ) + p2( LU, LIUL))]
< 4l E|Uy — U] (4.6)

Using (4.6) and proceeding as in Theorem 2.4, 1t can be shown that, as nom — oo,

supE|X" —X"|1> =0
=T

and that there exists a progressively measurable process X such that

sup E|| X" — X, |* = 0.
=T

Then it follows that (X,) is a solution to (4.3) and that sup, _, E| X, I* = oc. As noted
earlier, 1t then follows that (X)) admilts a continuous modification (Z,) which 1s the
required solution. This proves (a). Part (b), namely, pathwise uniqueness of the solution,
is proved as in Theorem 2.7 using (4.6). For (c), we note that the law of (X]') defined
above is uniquely determined by L, A, B, R, and £(Z) and the hence the law of { 7))
15 uniquely determined as well. [

The Martingale Problem. Let 70 and (L, ) be given by (2.52) and (2.53) respectively.
(In (2.533), &;. ¢ are eigenvalues and eigenfunctions of L respectively) For U, f € T,
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f € CHB"), let

RAU. )i ha) = Z{R{fiu.f!z}.fﬁ}ﬁ-{f!|}.

i=1

RUf)h1, ) =Y (R, ), @i} filh)

i=1

forhy, ha e H, g e P H), where f, U, f are related via (2.51) and f; = (d/dx) f.
As in Section 2, 1t follows that if (Z,) 15 a solution to (4.3), then

gl[Z)—gl[Zn}'—f ]]-'.'.'g{z.\}dj_f Rg(Z,, L(Z,))ds (4.7)
0

]

is a maringale for all g € D Conversely, if (4.7) is a martingale for all g € T, then (Z,)
is a solution to (4.3) with respect to some cylindrical Brownian motion (W) defined
perhaps on an extended probability space.

This keads us to the following definition. A continuous process (Z,) is said 10 be a
solution o the McKean-Vlasov martingale problem if it satisfies (4.5) and if (4.7) is a
martingale forall g € T,

A probability measure A on C is said to be a solution w the McKean—Vlasov
martingale problem if the coordinate process () on C = C{[0, T|, H) is a solution to
the martingale problem under A. The measure A o, is called the initial condition for
the martingale problem.

As a consequence of Theorem 4.1 we get the following:

Theorem 4.2.

(a) Let jug € TaiH). Then there exists a selution A to the MeKean—Viasov martin-
gale problem with A o ;;r(:' = jug and f_,l:: [|97: | s Adedag) = o,
iby Let Ay, Aa € PIC) be solutions to the McKean—Viasov martingafe problem

with

ﬁlﬂn{?':ﬁ_&ﬂi;ﬁ?'(—:'ﬂg{ff}, (4.8)
’ 3

ff 7211 dﬁ'hi{d?’l} = OO (4.9)
0

Jori = 1,2.Then A = Aa.

Remark 4.1.  We canchoose acountable subset T © 17 such that (4.7) s a martingale
forall g in T iff it is a martingale forall g in . Indeed, for n = 1, let {4, be a countable

dense subset of C&{R"}l (in C*-norm) and let

Dy={U.f: feld..n=1}
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Let PiC) = {A e PIC): piA)= J::‘Jr el Addn) di = oc). Itis easy to see that, for
gy Ae o)

gl —S{mr}'—f Logindds —f Reln,. Lin,)) ds
4]

]

is o A-martingale iff

FiA) :=f|:gl[=m—gl[m}—f [L..gl[m.}du—f 'J':'igl[m..ﬂﬂn,,"}du]

®g (e dgalng) - gl Jd A {4.10)
iszeroforallr <= = ---=n=s=tg..... g € Dy, k = 1. Also, we can restrict
;P ., &, 1 Lo ratonals. r

Let £ be the class of functionals F: P(C) — B defined by (4.10) for gy, ga. .. ., £

€Dy.ri <rs---r < s <t rationals. Then £ is countable and we have A € P(C) is
a solution to the McKean—Viasov martingale problem if and only if F{A) = 0 for all
Fek.

Remark 4.2. Let o, = A o 7' where A is a solution to the MeKean—Vlasov mar-
tingale problem. Then it follows that {g, } satisfies the following nonlinear equation for
gD

) )
(s, gy = {Hto, g} +f (s, Lo g} ds +f (s @ oy, Rg)ds (4.11)
4] 4]

forg € D. Here (p, g} = [ gdp. If nstead of (2.5), (2.6), and (3.2) A, B. and R satisfy
LA B, ) < ag, | B R || = by, and [{R{R Y, B2, g ] = g, then {p ) is the only
solution to {4.11). We give an outling of the proof. First, for any continuous function
t — vy from [0, T] into Py H), we can consider the martingale problem for

K.g:=Lg+ Rg(- ).

Then Theorem 2.10 implies that the K, -martingale problem is well posed, and any
progressively measurable solution admits a continuous modification. Here, since A, B,
and R are assumed 1o be bounded, (2.13) holds for any solution w the K,-martingale
problem. Thus, Theorem 3.2 in [ 1] implies that the forward equation for £}, namely,

J )
{f4r, g} = {pdo. g} +f {fte, Lo g} dls +f (s @ vy, Rgh ds (4.12)
1] 4]

for g € T admits a unique solution, in the class of probability measures, and the unigue
solution is g, = £(Z,), where (Z,) is the solution to the I -martingale problem.

The uniqueness of solution { g} to (4.11) in the class of probability measures {v}
such that + — v, is continuous from [0, T| — Py H) and vy € Pai H) can be proved
as follows. Let {pz)} and {1} be solutions to (4.11). Let Z} be the solution to the K-
martingale problem with v, = ! and let i} = £(Z)). Then, fori = 1, 2, {z}, {ji}} ane
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solutions to (4.12) with v, = u). Hence p! = fi), and hence Z', Z? are solutions to the
McKean—Viasov martingale problem. That Z', 27 satisfy (4.5) can be checked using the
additional conditions imposed on the coefficients. Hence £(Z') = £{Z%) by Theorem
4.2 and as a consequence ;..[Jl = uf I

5. Propagation of Chaos in C([0, T|, H)

We return to the setup of Section 3. We assume conditions (2.3-(2.9), (2.44), and (3.1)~
(3.100. Thus, by Theorem 32, P o (r"y-is tight. We need to identify the limit points
of this sequence. We fix a subsequence N’ such that P o (ITV) ™! converges, i.e., (T'Y)
converges in distribution to say I', which then is 8 P(C)-valued random variable.

We show that ' = Ay, where Ay s the unigue solution 0 the MeKean—Viasov
martingale problem with Ay o {.‘r;r.;;.}l" = [ij.

Recall that P(C) is the class of A € P(C) with p{A) = oo where

T
pm}:ff I I de dA ).
O 0

Using (3.11), we have

1 X ff' b
E|= 1%, dr
R

=TGa,

E[p(I'™")]

and hence, by Fatou™s lemma,
E[pl) = TG (5.1}

In particular, " P(C) as. and thus F(T) is well defined for F £ £. Fix F € £, ziven
by (4.10) owr aim is first 1o prove F(T) = 0 as Then we can write, for A € P(C),

Fm}:ffﬁm n')dA(n)dAln).
CJC
where
Gin.n) = [g{nj}—gl[m}—f L, gi(n,)du —f 'Rgl[r:...nf,}du]

® g dgaine, ) - - - gl ).

1t is easy Lo see that (G is a continuous function on C x C and that

T T
1Gin, 7P = Ck [1 + f . |1? e + f lla7, ||?::u] (52)

] ]

for a constant Cp depending on F.

Lemma5.l. E|F(I'Y)| — E|F(I').
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Pmaf. Fork =1, let

Fk{ﬁ}=ff[{ﬁv{—k}}nk|dﬁdﬂ.
CJC

Then F, is a continuous function on P(C) and thus F (I'"Y") — F,(I") in distribution.
Since | Fy| = k, we get

E|R(TY)| — E|R(T)|.

Moreover,

EIR (@) - F(T™) =< EffFGEllliil?kl’drwdrw

| :
EEff[ﬁr’dr-"“ dr®

1 :
EL}-E[I +2p(I""))

| A

14

1
I‘EF[I + 2T C33].

| A

Similarly, using (5.1) it follows that E|F (T — F(I)| = k7 '[1 + 2TC5 3). The familiar
(£/3) argument would now yield the result O

Lemma 52. EF3TY)y — 0.

Proaf.  Note that

N

1
FTY)y = — 3 IM] — M{lgi (X[ - g O,

=1

where

I N I
M = g(XM) —g(X, ") — f Lug(X) du — ~ ¥ f Re(X), X)) du.
0 N =1Jo
Recall that X is the solution to system (3.4). It follows by Ito's formula that M}
is a martingale and, for i £ j, M, M are orthogonal martingales (i.e., M,‘Mf is a
marljngalc}l.lnparLiuular,E[{M’]"—M_::”MJ'_M_;{}EF:"| =0, where F¥ = (X)) 1 =
s,1 = N). Thus for a constant Cp depending on F,

1 N )
EFN(Y) < Cr Y E(M] — M)

i=1
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Moreover, it can be shown that

N
(M, MY, = f Z (Un i) (XY WU FUX B (s, X Vo, BH(s, XV dgy) s,
0 g =1

where g = U/, f and f, = (d/dx;) f. Hence
(M', M'), < Ct,

where Cp depends on F. As a consequence

1
EFYrY) = F:'F.:';.T_ O

Together, the two preceding lemmas yield the propagation of chaos result.
Theorem 5.3.  Ler Ay be the solution to the McKean-Viasov martingale problem with
initial condition . Then

™ Ay in probability.

Proof.  We have noted that T'V is tight and that if T is any weakly convergent subse-
quence converging to I, then E|F{I'")| — E|F(I)|. This and EF*(I'") — 0 wgether
imply that E|F({I")| = 0. Since £ is countable, we get PIF(Cy=0forall F e &) = 1.
We have already noted o(I") = oo a.s. Let

s fo: p(Tiew)) <= ocand FiI') =0 forall F € £},

Then P{ﬂ}l = 1 and. for all w £ ﬂ, we have [Nim) 15 a solution to the MeKean—Vlasov
marlingale problem. Since

(@) o ()" = vy ()
amd u(':" — g in probability, we have
F@olm)™ =pe  as
By Theorem 4.2(b), it follows that T'e) = Ay Since all subsequential limis of {P o

(')~} are identified as 5 it follows that T — Ay in probability. O

As g consequence of the preceding theorem, we have the following result, also called
propagation of chaos.
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Theorem 54. Let

1 N
'L" .ZE ._Ihx;\.-

and

f =hoolm) ™,

Ay being the unique solution to the McKean-Viasov martingale problem with initial
condition jiy. Then u_‘"" — o in probability (in the space C{[0, T|, P{H))).

Pmwaf. LetW: P(C) — C{[0, T|, P{H)) be defined by
W) =T o).

Then it follows that I is a continuous mapping. It is easy Lo observe that W(rYyen = uj'""
and that W { Ag)ir) = g, forall ¢, Thus the required conclusion, namely, the convergence
of W{I'") to ¥ (Ag) in probability follows from the previous theorem., O

6. Approximations to Generalized Solutions

There are many examples of SPDEs which only have distributions or generalized func-
tions as solutions. Making use of the results obtained in the previous sections, we now
give a systematic procedure for approximating such equations by “smoother”™ SPDEs
which have ordinary random fields as solutions. Then we demonstrate this method by
considering the voltage potential model for a two-dimensional neuron swdied by Walsh
[11].

Let H be a separable Hilbertian space and let L be an unbounded self-adjoint positive
definite operator on H such that T, = ¢'* is a contraction semigroup on M and L™
is & bounded seli-adjoint positive definite operator on H with discrete spectrum {)-.;'}
and coresponding cigenvectors (£}, j=0,1,2,.. Let A: [0,T]x H — H and
B: [0,T|x H — L(H, H)be continuous functions satisfying the following condition:

(C1) There exists aconstant & such that

A, ki) — Ale, ha) 3 + | BGE, by ) — BOE ho) | o iy

< Kllhy = hal% (6.1)
and
NAG BN + 1B g 1y = K+ A1) 6.2)

forany i, hy ha e H.
Consider the following SDE:

¥

i r
X = X(;.—f LX,ds +f Als, X, )ds +f Bis, X,)dW,, (6.3)
] ] ]



On Interacting 5 ystems of Hilben-Space-Valued Diffusions 181

where X 15 an M -valued random vanable such that £ || X, IIE; < o8 and Wis a cylindrical
Brownian motion on H .

Remark 6.1.  As L' isnotassumed to be nuclearand 8 is notnecessarily in o (H, H),
the formal SDE (6.3) does not necessarily have a solution on H.

Supposethat {a" and {6" } are two sequences in O(H . H) whichsatisfy the following
condition:

(C2) For each i, there exists a constant &, € (0, 1) such that

la")y*& |2 ey gI1*
2Ry v

Let A": [, Tl x H— Hand B": [0, T| x H — L£(H, H) be given by
At h)=a"Alt.h) and Bt h) = "Bt h). (6.5)

Consider the following SDE:

I | i
X" = Xp— f LX"ds + f A'(s, X")ds + f B'(s, X")d W, (6.6)
4] 4] 4]

on H.

Theorem 6.1.  Under conditions (C1) and (C2), (6.6) has a wnigue solution X" €
C{[0, T, H) for eachn.

Progf.  Itis easy toshow that, for each n, conditions (2.3)—(2.9) and {2.44) are satisfied
by (L, A", B"). Hence it follows from the results of Section 2 that (6.6) has a unique
solution X" € C([0, T, H). O

Based on Remark 6.1, we seck a solution of (6.3) in a larger space. Suppose that we
have an index r; = (0 such that L™ is a Hilbert-Schmidt operator on H and let

P =g H: gl <o, ¥reR}, (6.7)
where
lel? = te. 727 (6.8)
-

For each r, let H. be the completion of @ with respect 1o the nonn || - ||,. Let € be the
union of all H,, r € R. Then @ is a countably Hilbenian nuclear space and @' its dual
space.

Suppose that there exists an index pg(T) = 0 which satisfies the following condi-
Lions:

(C3) ¥p = po(T), a", b canbe extended o ﬁ“,f;" £ E{H_l.,, H_, ) such that both
a" and & end to the identity of H_, strongly.
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(C4y ¥p = pi(T), Aand B can be extended o A: 0. T|x H_, — H_, and

B: [0.T]=x H_, — Lol H, H_, ) respectively and there exists a constant &£
such that

NAG, v) — Al )12, + 1B (e v) — BOE )2

< Klvi—wl2, (6.9)
and
NAG. I, + 1B Oy gy < KA+ )2 ) (6.10)

forany v, vy, va € H_p.

Now consider the following SDEs on 4"

i ) I
X, =Xu— f LX, ds+ f Als, X ds + f Bis, X, )dW, (6.11)
0 [} ]
and
= I = I 2 3 I e 2
X'= X“—f LXds +f A, X ) ds +f B'x, X dW,, (6.12)
i i (i

where A" = @" A and B" = " B.

To obtain the existence and uniqueness for (6.11) and (6.12), we need a general
result from [6]. We state this result in Theorem 6.2 below without proof.

Let € be a countably Hilbertian nuclear space. Consider the following diffusion
equation on &':

[ i
X, =X+ f Cis, X, )eds + f Dis, X)) dW,, (6.13)
] ]

where O Ry = @' — &' and D: Ry = @ — L4, &) are two measurable mappings
and W is a &-valued Wiener process with covariance ().
To solve the SDE (6.13), we make the following assumptions:

(D) Forany T = 0 there exists an index py = pod T such that, ¥p = py.3g = p
and a constant K = K{p. g, T) such that
(D1) (Continuity) ¥r € [0,T], v £ H_I,,,and Uy, b € H_P, Cir,v) e H—q and
Dt vy )va) € H_p. Furthermore, fort fixed, C{r. v)and | Qp, o y— ool - p—p
are continuous in v, vy, and ., where

EQ.U.-I|'|:|—.|’.?.-I'|'J:IE—|"'.—|"
= D QUD(wi) — D} (v k. (D} (v) — D (22 )h]). L)

i

(D2) (Coercivity) ¥t £ [0, T] and ¢ € &,

2C(, )6, (9)] = K(1+ |lpl2,). (6.15)
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(D3) (Growth) ¥t e [0, T]and v e H_,,
€, vI2, = KA+ |v]2,) and |Q@p,wl—p—p = K(L+[v)2,). (6.16)
(D4} (Monotonicity) ¥ € [ T and vy v € H_

2O ) — Clt, ).y — w2}y + 1@ by —Duiea) | —g.—g
< Ko —unl?,. (6.17)

(D3) (Imtial) There exists an index ry such that

E((1+ | X0, log(3 + [ Xal, 0F) < oc.

—ri —ri

Theorem 6.2. Under assumptions (D), the SDE (6.13) has a unigue H_p iry-valued
solution where p(T) iv an index such that the canonical map from H_ ¢y to H_, 1y
is Hilbert-Schmidt and p(T) = max{pyi(T), ry). Further,

E (su}qu + X0,y 10 (3 + |1 X, ||3_,,,.-,~_JF) < 0o, (6.18)
I

Now we apply Theorem 6.2 1o the present setup. As ry = 0, we have py = p(T) =
po(T) + 1.

Theorem 6.3. Suppose that E((1 + | Xol2)[log(3 + | Xol3)F) < oc. Then:

(1) Under condition (C4), the SDE (6.11) has a unigue H_, -valued solution X,
(2) Under conditions (C3) and (C4), the SDE (6.12) has a unigue H_ , -valued
selution X", Furthermaore,

E sup IIJE':' R ||2 — 0 a5 no—r oo, 619}
1=F

(3) Under conditions (C1)—=(C4), we have
P(X" = X', ¥t e[0,T) =1, (6.20)

where X" is given by Theorem 6.1,

FProaf. (1) Letl
Qg v) = {g. o, Cltv)=—Lv+ A(r, v), and Dit, v) = Bir,v). (621)

Then (£}, C, D, X) satisfies assumptions (D) withg = p+ ry.

(2) The existence and uniqueness of (6.12) follow from (1) by replacing A and B
by A" and B".

We only need w verify (6.19). Note that

i I
X;—X, = _f L(X{ —X,)ds +f (@"Als, X;) — A(s, X,)) ds
4] 4]

+f (0" B(s, X"y — B(s, X,))d W,. (6.22)
1]
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Then
&7 = X1 = -, | (%0 = R ds
o f*ﬁ"ﬁ (s, X{) — Als, X)E " 1ds
+ L‘{{ff'ﬁu, X"y — B(s, i’_x.}}*g;", dW. . (6.23)
Making use of [1&s formula, we have
(X1 — )IEMF = 2, fu & = RIEM P ds
* ﬁ 26" Als. X2 — Als, X EM WK — X )(EM 1 ds
+£ 2K — XOEM NGB Bls, X2 — Bls, XON'E" . d W,y
[ 0B, K = B Xy . (624)

Summing up both sides of (6.24) over j and using the Burkholder-Davis—-Gundy in-
equality, we have
fr) = Esup|| X! — X, 2

P

(6.25)

1=r

= ﬂ+£f Gt Als, X0y — A, X0, X8 — Xy ds
0
)

; 1
+4E ( f 12 ) (XY — XOIE" Wb (s, X! — Bis, X)) ||f.d--)
4] i

_—

+Ef 16" Bis. X2y — B(s, Xz, i 1 oS
]

| A

E f (la" As, &) — Ats. ROI2,, + 180 — &)%) ds
P

0
I 14
+4E (4L 18— X2, 15" Bls, ) — Bs, ROIZ o, jd_‘.)

+Ef 18" Bis, X§) — B(s, X)IZ om0, )45
4]

| A

Ef (la"As, Als. X2, + 1X0 — X, )2, ) ds
1]

+BE ((wp”ﬁ’;' _ i’,”_m)
1=r
12

x(f ”"3"5“35’.1-'1'—ﬁu.J?.v}||-§;,._~.rﬂ..-ﬂ-n.‘f“') )
4]
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+E f 16" B(s X)) — Bls, Xty e,y 4
(4]

< f E|a" A(s, X") — A(s, X,)|%, ds + f E|X! — X,

0 . 0 _PI
+Lf) +33 ﬂ BN Bls. X0 — Bls. ) 5.
Hence
fir) < 4)a" ||;’:m_r,;[-€||m~ X! — A(s, X2, ds
+4fr Ela" Als, X,) — A(s, X )2, ds +2E f 1%y — X012, ds
0 0

I
+132||b"||-;:m_ﬂl_ﬁf E|B(s, X) — B(s, X 3, o nr o s
]

—m

T
+132f E|B"Bis, X,) — Bls. X Ey a1, ) 4
]

=M | f(o)ds +4f Ela"A(s, X,) — As, X2, ds
0 0

i
+132f E|B"Bs, X,) — Bls, Xty iy, 45
0 AR
where

(6.26)

_—

M = 4K sup |@" |5, + 2+ 132K sup |B"

is a finite constant as both " and 5" tend to the identity of H_  Strongly. It follows from
Gronwall’s inequality that

E, sup | X} — X,|%,,
1=T

T
= 4!?"“1 f E'_'“N.E”ﬁ".ﬁl{ﬁ'1 X0 — Als, X-"'}”:_f"ld‘
]

+ 13247 fg] e ME|B Bis, X,) — Bls, X g,y 45 (6.27)
By (6.18), (C3), and (C4) we only need o show that
la"Als, X,) — AGs. X)), — 0 (6.28)
and
15" Bis, %) — X (s, XDk 1,0 — O ©2)

almost surely. Equation (6.28) follows from (C3) directly. For (6.29), we note that
18" B s, X,) — Bls, Xz m |
=) " B(s, X,) — Bis, X012, (6.30)
=
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and, for each j,

(6" B(s. X,) — B(s, X,))& — 0. (6.31)
16" B(s, X,) — B(s. X DE N2,

= ( sup 15" |2, + 1) 1(B(s. X,) — Bis, X )&%, (6.32)

The right-hand side of (6.32) is summable and hence (6.9) then follows from the domi-
nated convergence theorem.

(3) As X" is an H-valued solution of (6.6), it is casy to show that X" is an H_, -
valued solution of (6.12). Equation (6.20) then follows from the unigueness of solution
of (6.12). O

Example 6.1. Consider the following formal SPDE:

du 13w 13 . ,

— =——+ —— — o+ W0 (t,x).x2) [0, T = [0, x]" (633

dat 2idxy  2ixy
with Neumann boundary conditions and w (0, x, x2) = wgix;, x2) and W is the Gaunssian
white noise in space-time. This equation describes the stochastic behavior of the vollage
potentialof a neuron whose cell membrane is regarded as a two-dimensional {rectangular)
patch (see [11] and [ 7] for details). [tis known that (6.33) does not have a solution which
is a random field. We write it as the following integral equation:

I
X, =Xp— f LX,ds + W, (6.34)

0
where L = — _l,ﬂ 4o and X 15 aninitial random vector determined by the mitial random
field uglx). x2). Let Ay = Oand @ix) = 1/ /7. For j = 1,2, ..., write A = —éjl and

wilx) =+ 2/m)eos jx Fori, j=1,2,...let

dj=h+h +a and  Ejilx, v) = gilxe(y). (6.335)

For each p, we define a norm || - || pon H = LE{[{}, T F]l by

=
a Ap, a
MRl = D A th &)y (6.36)
i, =i

Let H,, be the completion of H with respect to || - |,

Let py(T) = %.Lc[ﬁ.: [0, T]= H — Hand B: [0, T|x H — C({H, H) be given
by

Alt,v) = — Z Ajfv, &)E; and  Bir, v)(h) = h, for v.he H. (637)

i, y=ib

Then A and B satisfy conditions (C3) and (C4). Hence (6.34) has a unigue H_, -valued
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solution { p = é—}l. Let {6"} be a sequence in Z(H, H) such that

By 4 2
Z It }'_;3"_4_“__ o (6.38)
T ‘J"Ij
for some &, = (0, 1).
Consider the following SPDE:
du 18w 13% s 5
—=sgtsrs -+ Wine @xx)el0TIx[0,x] 639
dt  Zdx;  2idxy
with Neumann boundary conditions and w{0), v, x2) = wy{x;, xa). Then (6.39) has a
random field solution «"(r, x) given by

aC

't x) = Z & il (f u;p{_"}ﬁj'{_"}d}') 'EU'{I}
i, =1 [P
+ Z f ﬁ ) {{b“}"gij} {}'}f—l”“_.\.j W {da d}'}'EJj{-r}- fﬁ.qﬂ}l
ij=l 0 UE 4

Furthermore, let X'(x) = u"(t, x ), then X" € C{[0, T], H).

Consider X" as H_ , -valued processes denoted by X", Suppose that 5" also satisfies
(C3), then X" converges to X in C([0L T] H_, ) where X is the unique H_, -valued
solution of (6.34).

Remark 6.2.  Typical examples of operators { 6"} which satisfy our conditions are of
the form

b'h=) Ciiky h)&;,  VheH, (6.41)
iJ

where {C7' } satisfies the following conditions:

(a) Foreach n, there exists a constant &, = (0, 1) such that

Iic-“'[_’
Y S <o (6.42)
A
(h) There exists a constant M and a sequence o, — oC such that
sup tC:"l. — 1] =0 a5 on — oo (B.43)
i, j=c,
and
sup [C;l = M. (6.44)
i,f

Progf.  Condition {C2) follows from (a) directly. Now we prove condition (C3). 5" can
be extended to 5" on H_, for any p = 0. In fact, ¥v & H_,, we have
B =) CHAES" v} ok (6.45)

o
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1t follows from (6.44) that the right-hand side of (6.45) is well defined. By (b), it is easy
to see that 5"v — vin H_,. O

Remark 6.3. A more specific class of examples of operators { "} is of the form
C:'J =10 il izae, o j=ao,. (6.46)

In this case, condition (b) implies condition (a) in the last remark.
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