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Abstract

After a bricf review of the work on Chernoff-rype inequalities, bouands ter the variance of
functions g4, ¥ ) of a bivariate random vecwr (X ¥ ) are devived when the ioarginal distribution
of X i= normal, pamma, binomial, negative hinomdal or Poisson assuming that the varance of
gl V) ds Bnite. These results follve as o conseguence of Chemotl meguabity, Slein-idenliy
for the normal distribution and their analogues for other distribotions as obkained by Cacoullos,
Papathanasion, Prakasa Hao, Srechar amonpe others Some interesting incgualities in real analysis
arc derived as spocial cases.
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1. Introduction

Chernoff (1951) derived an incquality piving an upper bound for the variance ol
a function of a standard normal random vadable. Chen (14982) extended the result
for multivariate normal distribution. Cacoullos (1982 aud Klassen (198%) obramed
a genvralization of the inequality to other distributions and detived upper and lower
bounds. Similar results were obtained by Cacoullos and Papathanasion (1983 1989
Prakasa Rao {1990} and Srivastava and Sreehar (1987, 19900, Bounds tor the vanance
of a function g of an infinitely divisible random variable (ro.} X are given in Yitale
(1989, Prakasa Rao (1992} obtained exwensions of Chernoff-type ingqualities and used
them to derive incgualities for noolinear funetions of stochastic integrals.

Borovkov and Utev (1983 ) characterized the normal distribution via Chernoff-inequa-
lity. Prakasa Rao and Srcehari (1986} extended the result to charactarize the multivan.
ate normal distribution. Prakasas Rao (1993} denived an integro-differential inequality
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for random vectors following Utey (1989} and obtained a characterization of the mul-
tivariale normal distribution. For more references and an extensive survey, see Utev
(1992, Prakasa Rao and Sreehari (1987 ) obtained a characterization of the Poisson dis-
tribution and Chen and Lou (1987 ) studied characterizations of probability distributions
by Poincarc-type mequalities. Hu {1986) and Purkavasiha and Bhandar {1990) charac-
terized the uniform diswribution by Chernoff-type inequalities. Freimer and Mudholkar
(1992) obrained an analogue of Chernoff-type inequality to characterize the double
exponential distribution. Prakasa Rao {1990} studied the case of elliptical distribu-
tions, Korwar {1989) and Johnson {1993} considercd similar problems for Pearsonian
family.

Cur aim in this paper i# o obtain lower and upper bounds on the vatianee ol a
function (X, ¥ of a bivanate random vector (X, ¥} and to denve results for functions
of the type ALY, ¥) = XY where X i3 independent of ¥. Variance bounds [or such
functions are of interest. For instance, it is known that rvs. like W)X, 7 and B P
are infinitely divisible {i.d.} when ¥ and HS are r.vs independent of X, the symmetric
stable rv. wilh chatactenistic exponent @ and £, the Student’™s ¢ rv. respectively, and
£ =2 (see Shanbhag and Srechari, 1977},

2. Stein—Chernoff bounds and an extension

Suppose X 15 standard normal. Let gi(-} be an absolutely continuous real walved
fimction such that

ElgX)) = o and E[§(X)]) = x=. (2.1}
Stein (1973} proved that
Cov(X,g(X)) = E[Xg(X )] = E[g'(X)]. (2.2}

Herc g denotes the denvative of g, Hudson (1978) and more recently Chou (1988)
extended the resalt 1o exponential families. Prukasa Rao (197%) derived some charae-
terization results for discrete and continuous exponential families via these identities.
Cacoullos and Papathanasiou {1989) obtained a generalisation of the covartance identity
{2.2), Chernofl {1981 proved that

Varfg(X )= Flg'(X)T . (2.3)
In fact, it can be shown that (See Chen, 1982)

E[{g(X) - sl 1= Elg" (X)) (2:4)
Relation (2.2} implics that

E[X{g(X) — Eg(X)}) = E|g'(X)] (2.5)
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because £Y = 0 and hence, by the Cauchy -Schwarts: inequality,

[E1g" (X)) F £ E(XDELQX Y — EalX)F

= Yarlgl X V] (2.4
bocause £X7 — |, Combining (2.4) and (2.6} we have the inequaliry
|Eg (X <V gtX)] < E[9IX ) - gl0] = Bl (X, (2.7)

Here ¥F(Z) stands for Vae(Z), It is easy o extend this resull for s which are N &
Let ¥ —=aZ + powhere 7 is N(0, 1) and define gizy = hir) Note that 4'(z) — sh'(2)
and applying {2.7), we oblain that

VIXWER X = V]AX )] s E[MA) — 8V = VI ER{X ). {2.8)

Cacoullos {1982) obtained the lower bound in (2.7) in Proposition 3.2 ol his paper.
Hereatter we call the inequaliny {2.8) as Chernaff-Cacowlios mequality,

Consider a random wvector (X, ¥y such that the conditional distribution of ¥ ziven
¥ o= ¥ is Np,. o3) Suppose that g(x, v} is a function differentiable with respect to 1,
Let g, denole the partial derivative of g with respect Lo x. Castille and Galambos (1959
considered some bivariate disiribulions where condiliona] distributions are normal and
proved some charactenization results, Sappose that

E[FIY —~ p] < ac and Flgbi¥ =3] = < as (2.0}
[t 15 clear from §2.8) that
T Fr {ge FIT = PelplX YV Y |2 Ex[{al X ¥ ) — gluy Y IFIY]
= apEelgs| Y] as. {200
Taking expectations with respect o Y. we have
Erlei{Exlae [F )] & Evlbe {glX ¥ )y 1

% Exp[a(X. ¥} gtoy, YIS Exylod gyl (2113

2 1. Special cases

Supposc g(X, ¥y = A(XY) and X is independent of ¥. Clearly py and @y are inde-
pendent ol ¥ oand henee can be denoted as goand &7, respectively, Further ¢, = 19 (a )
From (2,117 we then have,

Ey[a® {Ex (YR (X)) < Ey [ FylhiXY )| Y]
< Eyy[MXYY - R{pY))

= Fryle” P (%12}
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Since X is independent of ¥, the inequality {2.12) can be rewritten in the form
VXEY[YHEx (W (XY DF] < Bp[FrtA(XY )]
< Exy|MXY) — B(u¥ )
5 VX JE [YHI(XY )2, {2133
Tn particular, if g — 0 and X is independent of ¥, then
PAE [V HE(R(XD))F] £ Ev[Ve(h{XY )]
< Exy[h(XY) — h(0))
£ VX )y | Y HXY 2. {2.14)
This result was derived in Thoerem 2.1 of Frakasa Rao (1992) when X is N(0.1),
We shall now discuss two examples. Tn both the examples, the random variable X is
assumecd 1o follow Nf, o720 and ¥ is a r.v. independent of X
{1) Suppose A{x) = sinv. Then, by the ineguality (2.14), i follows that
@By [V {Ey cos(XV )] < Ey [Vy(sin(X¥ ))]
< Eyy[sin(XY )
= ET:EX}'”"E fCGS{XT j} 1].
(i) Suppose Alx) — expix). Then
B [V Ex(eT )] = B [Vae™ )]
< Exyle" - 1T
= o Exr[Fie™]
which reduces to
FEYT Y 5 Bl — )
= E[ezaz ¥ s Eccl" ¥z - ”
i B,
By taking o = 1 in the above inequality, we have the following result for any rv. ¥
Elviel 1= el ') 2 Bl - 2e77 4 1]
< Y%
or cquivalently, for any non-negative r.v. 7,
E[Ze 1= F[e” - )5 Fle®? — 2677 1 1S K[7Ze¥]. (2.15)
In particular, we have

E[] — Z3e*” | < 2E[e%] — | (2.16)
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for any non-negative random varable 2. As a Turther special case, let P(Z =) =1
where z 20, Then, we have the inequality

L -
f] - Elet et — |

for all z=0.

Other inequalities dealing with exponcntial function can be derived from (2150
Obviously., what is of interest in (2,13} and other mequalities are the intermediate
bounds.

3. Bounds Tor functions of gamma distriboted random variables
X follows the gamma distribution with parameters {x, A) and (-] 15 o real valued

function sarslving

Elg4X)] = ¢ and ELX{g'(V)}] = = 1313
where g i the derivative of g, then Cacoullos {1982, Cacoullos and Papathanasiou
(198519589 and Srivastava and Srechani (1990 proved that

TR O)F s VI < 5 ELX [9/O0Y, (32)
In particular, il X is exponential with scale parameter 4 — 1, then

LELXG X = Vgl X € ELX ¢TI0 ) (3.3

Consider a random wector (X Yy and let gix. ¢} he a real valued function. Suppose
ghfr v denotes the partial derivative of g with respect w x. Assume that the conditional
distribution of X7 given ¥ — v s gamnma (x4, ) 10

T
Eorlg X F) < oc and Ey i Ex{gitX. }'J|Y}| < (343

[y

then, as in the normal case, we pel {using (3.3))

| - :
Ly :EI-_iE.r{)iﬂX{-ﬂ T'JIJ"}}'] = By [ Fxr(gld. V)| )
Rt

|
< Ey [F_IEX{XHJ‘i-fX‘ Y Y. (3.5}

In particular, il 4 and ¥ are independent and g(x, v = Alxp), where b is a differentiabic
function, then (3.5} reduces 10

éﬁ-,-[fz{ﬁ_t{xh’()ff NP = Ey[VydhlXY))]

% S Exy[XTHRXE . (3.6
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Shanbhag and Sreehari (1979) proved that if & s garnma with parameters (2, 1 ) and
W is a r.v. independent of Z, then, for f§= max(l,a), the rv. WZ¥ is id Further if
a =1 and W is non-negative, then cxp{ W) is id 1 is casily seen that the mequality
{3.6) is applicable to the above r.vs under cerlain conditions.

Suppose P[0 < W = 11 =1 and Z has the pdf fiz}—exp{ z)forz = 0. If W
and Z are independent, then, by taking Afu) = exp{u}, we ger from (3.6) that

Ew (W2 Ez(2e"))?] € Ep[E2(e™™) - {E2(e™ 1))

% Ey [WRE(Ze Ty, (3.7)
It is easy to cheock that, for any 0 < w =< zl:-
; 1
E[*] = .
(=] | —w
and
E.I-?-E:'u:/J o ]'
: {1 —w)i

Hence, inequality (3.7) implies that

5 1 3 1 1 . . ;2 1
o )] o [ ()] o o]
i.e.,
Wt r w2 i e
£ [u = w] <Ew | awwa—wr| <5 [ﬁ'_—?ﬁJ P

for any random variable # with P[0 < W < }] =1,

4. Bounds for functions of a random variable with Parcte diseribation

Suppose a rv. X follows the Pareto distribution of Type | with density function

Flzx) = axlx Wty pmyg, = 0,

=0 otherwise, e

where & = 0. Then the vartance of A exists only if @ = 2 in which case

axd
t=EX =axgila -1} and ¥V (X)= ———r 0.
! 0/( } (X} Loy
Further, for a differentiable real valued function g(-), we have, by resuits of Srivastava
and Sreehari (1990} and Cacoullos und Papathanasiou (1985, 1989}, that

g I ;
TTIENY s OO VIaOE - EINX wmM (O] (4.2
ax; a—1
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provided
E[¢*(XY] = ocand E[{XX1] < {433

As in the preceeding sections, we can derive bounds coresponding (o bivanate
random vectors, We consider a particular case which has somme applications.

Suppose X represents the declared income of a person. Then the real income 7 of the
person 1% given by £ = AT where F 22| as It s assumed that ¥V ois independent of
and a proper mixde! for the distribution of & is Parcio type 1 Soppose gl vy — fx)
and & is differentiable. Then g.x, ¥) = ¥R (xy) and under suitable assnmptions, we pet
[rom §4.2) thal

a -2

axd

Ev | VHER (XX — a0 (XY 0P B [Fr (MK 1]

l 5 .
e o l—E}-!lf"ﬁr{-ﬂX — s WRUXYYY L. (44

5. Bounds for functions of megalive binsmial random variables

Suppuse X 15 a megative hinomial v, with parameters (v p2) Then we have the
inequality

‘r{-’#rfr + P VAR N = PR ~;~%E[l{.1’ + r1ATRX)) (5.1

for all functions h for which E[A*(X)] = o0 and E[{X - rA%K(X)] < x where
g = 1 — p. Incquality {3.1) follows from the results of Cacoullos and Papathanasion
(1985) and Srivastava and Srechar (1987, 1990, Here AMX ) =AY 1 1) R

Suppose the conditional disiribution of X given ¥ is negative hinomial {ry, ) and
g XYY 15 8 messurable function of X and Y. Lot & giX ¥ denow i + 1.V} -
gt X, ¥ ). Then, by the inequality {3.1), we have

fi‘?‘%ux — )@, VY1 Flg(X, Y 1Y)
« %E[{X +rOAG VY] as.
and benwe
Ey [E: E (X — r A gl V)|V s Ev [V (gX. ¥)|Y)

S Ey [i—‘ Y + )ALy Vv (5.2}
:

Supposc A and Y oare independent and gis, v} = ' Fwither suppose that b < F
2.5 Then we have, from (5.2}, that
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TR £y DV NSEEY™) E(rh))
s SRR HT - 1PV,
L&,
TEVY - PER{Y - P < FH(E?) - HY(Y))
<B4 AYER,
where H(s) is the probability generating function of X. On further simplification, we
et
* E-.E}-I’{}’— LP[¥I(Y) | hH(F )P = EV[HCE®) - 1Y)
£ %Ey[{lr' LR + hHOPL

Recalling that His) = p(l  gs) " we get that

: Yrqp” anu pr il
- et ) ] < e TR

{_EE,‘ s 3{ 1 ng;-_ g _}f
T r |t ) Fli I‘-}'} y- ] 'Ll_gfr}r _||

i fo07
¥

Le.,

o ey el ]

{Y—l}
(1 — g¥2y- J]

srgp’ 'Ey [ (5.3)

It may be noted that the above inequality holds for all rovs F osuch that 0 < F = |
as and all pt = p << lLg=1— pand rzl. o particular, for » = 1 {ic. geomeloc

assumplion )
17 ] P P Pl ]
e |4 8 i s L
o8 [ g B Ve ~ <o [ gry - 69
For any real number a,0 < a << 1, we then have
2 2 z s 2
grita 1 p Tl (5.5)

i1 gu) { —TE} (l—guR ™ {1—{;(:2]2

If we take ;;{; #1=¢" instead of glx, v} = v*, we then get, for any r.v. ¥ such that
o= F = —— lisg g iLs.,

. A —" ' a 7
rgpt Ele” — 1Rl — gt s | B2 F s
jr i A ge” ) ] CFine Ljﬂz} ¥ {1- f;ﬂ} B
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-"l'-fqﬁr 'IHI-{CT' L }1.(| e q‘:?r-}r-l I] rSf\}

provided all the above expectations exist,

4. Bounds for functions of binomial and Poisson random variables

Inequalities similar to those derived above can be obfained in the casc of Poisson and
binomial rovs. (zee, for example, Snvastava and Srechari, 1990). Let Bir. p] denoie
the bmomial distribution wilh parameters g and po 1 the conditional distribution of 4
given ¥ is Poisson {A)), then we bhave

Fylay {Ex(20p0X, F) Y0 < By Fy(a(X, YY)
= Ey[Ay Ex {{A gl X YIP|Y L (6.1

If the conditional distribution of 4 given ¥ is Biry, pr). thea

-

¥ l - . - r 53 . ¥ R
Fy i 1__5'? — —(Ex{lny - X)QgX,Y :'”}TFJ Sy FriglX ¥V FH
| = _If'.'-';.- My
SEy[prExding — XA g0, DYV (6.2}

In particular, if V|¥ = B(Y, g, then

1 i
ﬁ” P FUEALY — XDAg(X Y)Y ]-'1 < Ey|Fylal X, 1))

< pEy|Ex[UY — DALY P YL 06,3

4

If, further. X and ¥ are independent und (X, ¥) - ¥4, the meguality (6,33, aller som
simplifications, (here & =~ Bin, p)) reduces to
?]pqE[[‘r ]«]ziq + FI-':}EI.r,-_I I] i-;;E[I[q I p}_rzmli (g~ I[]]r.-:]}:r;-]
Srpg E[Y —1Vig+ pr 7y '} {6.4)

tor any rov. ¥ osuch that 0 = ¥V < 1 a5 As a special case, it follows that

npgty — LFlg= pyP" Vs g+ py? Y - a1 pyr
Sapgly = 1y - opy)! (65)
whenever ) = p < L, 0 < p =1, g=1— puand w21 It iz easy to see thal these

ingqualities are sharp. For instance, if o = 1, then both the upper and lower hounds
lead to the same expression and equality occurs throughout, Let

x=g+ pyt and =gt pyi i6.6}

Note that f=ia=iy/f and {1 | 2322 f. Then the above set of inequalities can be
written in the form

n(zx — B e — e fat! (6.7}
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which is well known whenever Oy, i<, fl<as g’E and (1 + 21722 1*3 In [act.
given any = and § in {0, 1) satisfying the above inequalities, one can find p and v in
(0, 1] saitsfving the above relations (6.6). This gives an aliemnate method of deriving
the inequality (6.7).

Remark. The above inequalities viz. (2,130, (3.6, {4.4) can be uscd to characterize the
cotresponding distributions. For example, iU X" is o random vanable such that for some
random variable ¥ independent of X and all differentiable functions A(-) the inequalily
{2.13) holds, then the moments g, of the symmetrized r.v. X satisfy the recurrence
relation

oy = RF OO, .
X X" = E|X[" as in the case of Borovkov and Utev {1983). Hence

where i, = F
X 1% normal.
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