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Abstract

I'hie peneralised regression (erepl predicior Lot the foite populiation tatdd ol 8 oedd vacsble s
often emploved when values of un auxilinty vaciabbe ave available. Soveral vatianee catimalors
har it do well o Jaree samplss thoogh bearing ne optimality properties. We find & varance
eslimacnT which, under a restrictive model, has an oplitnalicy properts under "ssact” as well us
agympiots” aualysis, Bul this involves model pacameters. Llader a [urlher cestriction on the
el Laer model-purameter-1tee vadanee cstinlers are Jenived sharing the same usymplotic’
omiraulily, Nomerieal illustrations throagh simolation are presented to demoostrate marginal
improverments jn using them rather chan their predecessors. Pwo of the latter, thoogh s
oplimal, ure simpler, intuitively appealing, compets well in datpe sanples, zenerally appiicahbls
and should be peesisted wilth in procice.
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Kevwords Asymplolic analvsis: Confidence interval; Goneralized vegrossion prodicter; {uad-
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1. Intreduction

We consider estimating the suevey popuolation tatal ¥ of a real variable v wheo
pewsitive vulues of another virtable x well correlared wich p are at pand, From the
works ol Cussel ot al, (19780 and SHcndal (1980) we know that, if o Hnear repressian.
throwph the ompin, of ¥ on x may be modelled s plawsible, then what they eall
a ‘generalived regression’ (ereg] estirmictor, rather peedicwor for ¥ becanse ¥ ois then
a ranlom varizhle. s populady cployed. With a more seneral Imear model posrula-
tion of course apprapriate alternative exlimators or predicrars are available iram the
shove sources and also from those of Sdrndul (19521 und Sdrndal ¢f al. (1992). For
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simplicity, we shall no more refer 1o these alternatives in this paper. Irrespective of the
validity of any model. the greg predictor above is known ta have a property of being
‘asymptotically design unbiased” (AU for ¥ if one applies RBrewer's (1979} asymp-
Lotic approach. This property, ronders 1 robusiness” as 39 generidly recognized 1n cas
ong wics Lyvge somples. In order thal one may construct for ¥ oa conhidence inlervil
{1 usinge the preg predictor denated by ¢, one needs an appropriale estimylor, say, ¢,
of ils mean syuare crror {MYE) which we shill refor fo as o vurianee gstimator.
Sirndal [(1982), Kool (1990} and Simdal ol al 1992) have gven several vanance
eslimators far ¢, They are ktown Lo petform weil in large swmples. But oo optimahty
property 15 known about them. In this article, after giving certain preliminaries in
Section 2 we present 4 variance estimator in Section 3, studded with a certain
optimality property under the linear regression model with a zero intercept but with
general model variances o) for the regression ersors which are wssumed fo be
independent across population members labelled 7 = ..., &. But this invalves the
regression slope parameter § and ¢} which canuot be known in practice. So. instesd of
the ‘exact’ optimality above an ‘asvmptotic’ optimmality following Brewer’s {19749)
appraach is aimed at. The same variance estimatar torns aut “wsymptoLlically’ oplimal
too, With a further restriction on the model that ¢ — ¢ fii — 1,.... ¥, with 7 =0
unknown bul £ known), substituting suitablg cstimators for § and &7 two alternative
varianee cstimalors are derived from the above opbmal variance estimator. Toocen-
nately, bolh lurn aut oplimal ‘asymplotically' and both are applicable, provided f; s
kuown 4s we assume Lo be the case This same restriction applies Lo two variance
estmators of Kol (1990) but not 1o the two piven by Sdirndal (1982, each of which
lails tn shate the optimality property we are looking for. To have a theoretical
comparizon of relative efficiencies of the variance estimators is not easy. So. we rgsolt
to a numetical exercise through simolation study, reported in Section 4, to compare,
using several criteria, the efficacies of the contidence intervals for ¥ vsing ¢, and the
above-noted six variance estimators, We find them to be quite competitive when data
are generated to fit the model that yields optimality for our variance estimators, which
naturally in this tailormade situation have a slight edge over the four others. Burc
Sirndal's (1982} variance estimators besides being generally applicable continue as
vighle competitor even Though they Tuck optimality, Allowing vieriations in £ we fing,
however, pur variange calhmadors 1o disply y tobusiness in this respect, So, 0 one needs
opumality only then it 15 worthwhile to go for the new cstimators which are morc
complicated buat acherwise it is safe to persist with Sa&rndal’s casier estimators
A message of interest is that Sirndal’s estimators do not lap behind the optimal ones
wlhich are avuilable in rarer situations,

2. Notation and preliminaries

Wi consider 4 survey populalion & = {1, . .7 . &%) Onoil are delimed tweo real
variables x and v taking values x; ( =0, known) and y, with popufavion tolalz X and ¥,
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respoctively. The problem is 1o gslimale Y oon ascertaining the values of gy for the
unifs 1o o sample £ af o given size p { < %) We requite every unil in < o be distinet.
The selection probability of 2 is pis and the design p is supposed it e so resiricied
that the inclusion probahilities &; of units { and ;; of pairs of unity {f, f] are positive.
Though extremely restrictive. a popular model M. saw, 15 poslulaled o telale
i Voo kel with X =i, xn., w0yl Tor o which one may valdly
WTLLL

vi— M e e L. (31

Here fis an umknown constant, o's are mdependently distriboted random variables
with means B, (51 = 0 and variances Vel = &7 [, =0 unknown} 1T this madel is
tenable, then the well-known preg predicior for ¥ s

I s v

! Lo+ HptX =% —fon

ay

i -
here Iy=1 40 izs and 5 0 otherwise; ¥ ois sum owver o L
,ITQ =Y Orarr b (00 Ol LY 0= 0) s an assignable constant. One may note thar
though there is oo intercept term in (2.1), {; does not have a ratio form. If there was
4 nonzero intercept term io (2.1) an appropriate corresponding greg predicter for
¥ would be different from £, But in this paper we treat only ¢, For subsequent use 2t
us write

]

e, =ri—flgx.  gu=1+4 H -y 3y, J L

I . _E:Q:Klz I:ﬂ"

= 2 [ T
ty — js‘ feed 3 5:1'“'.
y — bgd +Em S
Far the madel M we farther assume thit
I'il = "-:.lu': }'.1-} <+ i

The particular case of M will be denated by M{fYwhen 67 — o7 f. f = [ hare gl = {4
is unknown but f; 1% known. By E,. L. we shall denode expectalion, viriwnes with
respech Lo po W shall wrile T F for snm over &, j i # )0 L and A = [, — 7028,
Further led
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Sarndal (1982) approzimates Fuir) by
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and gives two estimators for it, 1o be called variance cstimators for ¢, as, on writing
le'_l' = IEI-I:‘-.i"'

L

. ; W
T {’.‘I- d ¥l 1|E _“gﬂ'
oy = E y (E — —") Al and oy = E}_,(g—t = &J Agids)-

i = B

At this stage let us observe a crucial fact that though the model M motrvates the
predicror ¢, the latter has the following model-free property as an impaortant metrit.
Brewer (1979) introduced an interesting asympotic approach which assnmes hypo-
thelica? resppearance of 4, say, T (= 11 times. On each appeurance. a sample of
# distinet units ws befove is drawn from it adopting the same design po All samples so
drawn independenily are pooled together and the statistics of the form ¢, are cal-
culaled feom the pooled swuple, Allowing T Lo tend to infinity a limit of the
design-based cxpectution «f 7, may be taken, This Hmiting value may be denoied by
Him K0 b Similarly one may define lim 8 g0, 1L s well-known Lha

Lir byt = 1 23
sa that for large samples g, is close to unity and that
limFE,{r,] - ¥, (2.4

Fu. (2.4) implies thut t, is ssymplotically design enbiascd® for ¥, For s, (o the ADU
roy mocel 15 required. The vananee estimatory 6 and oy also do nol need any model,
Bul Kot (19900 recommended wo vananee estimators for ¢, as

L

ol U Vil R o B 3 ()
i -Em{T:j_] [ 3 ] S £

which are practicable when the model M) is vahd. So to compare r, with &,

ti=1,2), we require M ). If we postulate M ). then it is ol interest to investigaly

availability of an appropriate optitmal variance estitnator under Af( ) This investiga-

tion 15 undertaken in Secrion 3,

3. Optimum variance eslimation

Tor sunplicity let us write ¥V oof (2220 in the Torm
V=3 my ' XY ekl
with

- - b Lo

- 1) @it Y 2 ) i

Lol
T S d

s Py :
A BT . L "
l -ﬁ[‘ﬁ = 1)—, (LQ:.‘{L- ;'rl),

k=1 ]

= 2Ql’-}fl-ﬂj
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Let us restrict i class of nonhomeogenaous quadratic estimators of Vool vhe form

(R A A R |T.’} i 21

1 i

TE ha:_i}:_-_'l-'_:f i (31

EIN R

Let the constants g, b, by, free of ¥)obe <ubject o

T i

Epfon ) =1, Epibgloy == foriceld and Lpbalsd =2, foriji<£iint
{33

It follows that E izh = F. An optimal estinrator of Fowichin the class of estimators
3,17 satisfying (3.2% 15 derived in the following theorem.
Theorem 1. Under M, fiv all estimators ©oof the fure (A1) satisfying (3.2),

. ’ Y
.\_.-]‘“_:’—_Em F“_ﬂl:.l': F]l .'?E '-‘x:?.(l ! )??I:, | EETI:_.'[ : i P'r"l:"

T

where 57 = 3, ~ (af + pf ¥ oand g =iof + piviod L i pipgoand g — fxg is

Eguality is ateained in the above if v equals

. P "irm L
r;,_,=}_5:,-[_5,=,"—r1 —.fiﬂ—‘i"} v —Ir.!}.:j—+\ allorl + uly

-
JII

SN iy,

Proof {(skerehl. Following Godambe and Thompson (19771, we get, for the saliop-
ated variance of »and M.

Mgt = ELE (6 — V¥ = E,E {t) + EJfEq iz — V312 — B (1)

ol EpEm[E} + -Er.! iy + \_ 1':'-- = ll"!-.l‘lbxl:f:ﬂ I \_' T H’ lu,l'h*st.fru

=Y adEl ot =Y ey —‘ — kulFY

L I'|'
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Ta get od of the second term in M) we take
a, =3 (o — Bolud(af + uf} + ¥ 3 Aoy — Doy Fajbpese

Then wriling f% = x/my, b = aimg. denoling by ¥, Lhe sum over all samples and
wsing (3.2) 11 1% possible 1o show, followime Cussel ot al. (1976} that

Mickzd ¥ih APt Lipld 4+ 2% Y iha - BE P, fap(s)
1 Ll

of | i sl

i

A 1
2Y I?( = ‘)ﬂf G ﬂﬂff(—- : l)fm — M. say.
S L

This reduces to equality when by, = b% and b, = b,

Thus, M{#) =M, — M)

But this #y involves unknown f and & and hence is not usable. 8o, this "exact’
optimality s nat fruitlul. So, we adopt Brewer's (1979 asymptotic approach as an
aligroalive. Let uy restrict W a class of estunators or rather predictors of L osay,
w — wik, Y, which are aaymptotically design unbiased’ for ¥, Le. let

m B, (w) = . (3.3)
Among all such w, one, say, ©* = v*{x, ¥ ] will be regarded as ‘asymptotically opti-
mupm’ it

Enlim E{w  FFP z=E lim E e* - V) f3.4)
Asymplotic optitahity of v atnong ADU estimators of ¥ s established in Theorem 2
below.

Theoremt 2. {Tuder M. for w sebject 1 (3.3), we hace

E ImE (w  F)zM,=E lim Fli - F)*
Proof (sketed). Lol k= h{s ¥) satisly lim 00 = O; Burther let

) £ o !
D= Z 1[_1"51 f = LL ﬁijy.'.l.’.; ;ﬂ and A — Em{'ﬁ-" I”}
HY i

Following and cxtending (vodambe -loshi (1965} and Godambe-"Thompaon (1977
Lypo analysis we have

Eolim Eptw — V)* zlim E V(0 1 Um E Fo(h + lim B, 47 — F0V) = My,
3.5
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Fquality holds on choosing

-r<i ! I.'::' :
e - [E wfal + ,!rf*](?TI 1)1 =Ny a;;,tx,-;;,-(;? l]—‘ — hy. sy

it follews Lhat gy =T 4 fy sadislics im Koo, — Fi=0 En, — Fi=10 and Lthe
lower bound i {331 s attwined [or w = 5, Thue o 15 the desiced “asymprotically
oplmum’ eslimator for ¥ oand the Theorem 2 follows.

Ao, s ool wsable we restrict Moo MO Under validiey of M{ 0L we nove thal v,
redices Lo

Fay = i 2;[._1-;; = ﬁZx;:’- - J:JIIE]UN .:I + ':I? 3, z; jr. | ||I:I ! |:
| E E sl ¥i¥i- lii LES YT I P fi* Z E A dj

lel ft = f#2 and ¢ = &7 be, respectively, estimared by estimmiors & ond ¢ which are
model unbiased sotisfying E_(0) = # und F_[¢) = ¢, given by

i '\ o ”$| JrJ ] IE .ll"ll;. i ;xl'.':.-r::.]\ E Xl 'irw.r' ]\\ :

~enn ) e olls r?rf--r:])_(w i) |
Al by Wi "tL LR o il sir i)

= 1 v L

6= | Dot (T ) (29

We propose now the owo lollowing practicable estmators oy, and e for ¥ opiven
helow,

Ly —Z-I.(_l-',;—ijxf q‘}_.l'")J rr,ﬁzfx.f ' fj\_'m'-.

; A 3
3 EE -}:I.J.( ¥r ¥y Hx Y )7‘ .-IE'} J' Mils,

i
_(.E 1.‘ }If I-. fm-_-'.,l'c‘: ] I“) Y I.z }—- I-'i:lfd 'r_\i.':ﬂ'. I j :|
T e
& \}_,:E:'-k'r'[fsl'.-'n:']l % tl e I.I.-.'l."nl'.','

. 'r':'_l,ﬂl Fo¥ileii T i ;
1Y 2, ]#)“ e
32 g R I: i P A o 4 o

£ 38
Ly — I\L.;\;:-_xl? )

-

ILcan b seen fromm the following theorem that hoth vy and eq are ADU for Fand
shure with i, the same wsymplodic optimality” {ALCH.

Theorem 3, LUnder M1,

iy K K g b= F and
[ Ly hm B, — FF = Mo i= 12
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Prowf. Adopting Brewee's {1979 asymptotic approach and applying Slutzky's
wall-known fimit theorem wilk varous sequences as veg uited. (i) follows prommly. Ta
prowve (i), wo Just nole thal 01} combined wiltk Eqie,, V=0 for j = 1, 2. imoplies
[ha.

I £ (e, — V1P =lim Epbir — BV i=M,, j=12

Remark 1. Ap ostimator for 77 eun be "ACY only il it is ‘hoth {a) ADL! and (b model
unbiased simultancously’. Henee one may cheek (hat op k; (f = 1, 2} cannot be "AQ"
for V.

In order to check how v, may fare vis-a-vis v; and &; (f = 1, 2} in practiee when
vialues of # and & should be moderately lurze we consider numenics] exereises Lo
exumiing how they may fare respectively in combinulion with ¢, in producng appro-
priite conflidence inlervals (C for ¥o For Lhis we generale X subjecl to M oso
that use of 1, miy be uppropriate and in facl lake the special case M f) only
tur apicability of &; and w, (f— L 20 Since £ cannol be known in praciice, Lo
sludy rohwsiess of (he procedures we pencrule ¥, X with a piven fi bot apply
alterpalive chaices of f; in the Tormulas of &), w71 = 1,21 and see vanation in
performances of corresponding CTs. As the raln emphasis s not oo the model but on
the design-based aspecel of sampling theoueh 1ts hypothetically repeated realizability
we Lake several replicates of the samples drawn by the samea procedure and calcuiute
varions performance criteria for the CT's. To constroct a Cl for ¥ with £, as a point
estimator wnd £, as @ vatanee estimalor fr 1L as uswal we regard (§, — ¥ '\fl_r: as
a warabie distribuled for large 1 approximalely as a standardized normal deviate =
Then for g given o {lL T weeling =, for the k% pount oo the right tail area of the
normal diztribotion, £, — rﬂ,_.h..-’ﬂ gives the 100f1 — &% CT for ¥. with = io {i}, L1 ln
Secticn 4 we describe how we implement the simulation ta evalwate the performances
of the reaulting CT's.

4. Simulation stud¥

We illuslrate three sets of peneration of ¥, X subjcer to the model M ) allowing
varigtion in (&, #) and olher respeets disgussed helow.

First we take (1) N = 16 n = 30 1o keep x; posiltve we lake v = 10 + 0; generat-
ing &; as random samples from the negative exponential density f(5) = fexpl A0,
A =0, =0 kaking 2 = (L6, Next, lollowing the very well known convention, justibied
empirically. we fake f; — x® or ilMusiradion we choose cp — 1.1 anly; doawing

differently we generate ¥'s. To draw samples from O we apply Midzone's
[1952) scheme of selection drawing first a unit from {7 with a probability proportional
Lo s mcasares £ {f=1, ..., %) {uken as lhe highest integer not execcding
£.2 4 0.65:7 with h — 0.78; the remaining (r — 1) units are chosen at random withont
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replneement froms the (8 Lpunits lefl in 0 atier the firs draw. We take the number
of replicates B of the samples as LK. By 3, we denole sumn over the replicales. Using
the penerated ¥ X Z=1(5, ... 5. Zw). a0d drawing the sumple each lime we
construct the 35 CTor ¥ ogiven by o, 4+ 196, taking & = 005 and v, as v;. A, and
vei [f— 120

Secondly, to investigate robustness we take §; as % o the formulac for &, and
(i — 1 I wich ¢ permitted to bath agree with and differ from o We keep sveryihing
glse kn faer essentiadly as in (1) but as this is only lor ancther iMusteation ol relative
clleacies of the sbove Cls wetake (DN - 6ln — 2. — 04 i — 1, s — 1E o, — L5
amd K — 100,

Thirdly, Loy avold skewness in Lthe distribution of X, we draw x; from the umilorm
distrihution L1 A0 but take (NN =08 i= 6o, =135 =3 o= | and keepine
cverylhing el in tuet peneciade ¥ bot take £ — 100 omly. To investigate robusioess
of the © 1 we take f; as x¥ with ¢ same ax ot different from e s in (2] Uhe Nindings foc
Lheae situalioms {11-(3) are presented, respectively. i Tables 1-3 elow,

Io omder e compare e CU5 based on different shoices of ¢, owe consider the
ledlovwing throe erikeri

111 ACP (actual coverape pereentage] = The pereentape of replicales for which
the CI covers ¥ — the closer it is 1o 9%, other things cemaiming in tact. the betwer.
(TI ARD (absolute psendo-relative mas) — (1713, [0, — VIV

il ACY |average coefficient of vanianon) = The averape over the replicateys of the
villues of \_.-"'Prr.;_-"zg_ This reflects the lengch of CT velative Lo 6, The lesser the values of 11
and TH 1he better the CIL

To cheek The departure af the distribotion of 4 — 07, flf"_l.-",“"’.!‘3 Tramm N0, 1] we
Murther consider the following measures of skewness and kurtosis, respectively, 4

(%) 8K —rool heta ane —41ARYS, [0 Ayl d= (BRI S d s -1 1ER)
old - A

(V] KU = hew ewo — (R T Ll - 410505

The closer SR wned KU - 3) 1 vere the less the departure Trom N, 10 Inof, we
ied three chaices of € as (im0 — & bmx ) and (12000 fe 870 Bul as the
values of criteria I-¥ 10 case (L} diffeced neglimble for these chowees, we presem the
results only for 1imx; in Table 1. o the cases (23 and {3 we tried G only as 1isgx,
i E L.

In Tahle 1 we present values of (ACE. 10* ACY and 10" ARDB) for respective r,
presented column-wise in four rews marked (1 (iv} for four respective choices af 1 . a)
as A LG U2, DUER (103, 151 and {ivpid, 1.3 As 5K 2quals 002 and K1 surns mut
30 For every parametric combination, the values of IV and {1 ae ot <hown jn
Tuhle I,

I Tables 2 and 3 ACE 10 ACY, 1 ARB, SK and K U-3 wre proesenled as scis of
five values each along & rows [or 6 different choces of 2, und along 5 columns for
S ddifferent choices of ¢ as 1.1, 1.3 L5 1.7 and 1.9

We repeated the same exercise with W — 8} and » = 15 kesping everything 2isc in
tacl bul The resalts lurn ont similar 1o che ahove wad so are not shown.
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5. Concluding remarks

There 15 very Hille to choose smons the & alfernadive variance estoma Lorsallusi raned in
tharr eMeocies in viglding confidence intervals m combination with the gencralieed
regeession prediclor. Fuch one looks effective in keeping close 1o the simed at nominal
confidence coclficient of $3%, Vanulon in the disteibotion of X docs not distuel the
relative eicacies for Lthe variance esumators. Leviadons in f: of the wype lustruted do
not perceplibly jeopardice the relulive performances of the alternative procedurss. The
discrepancies of 3k and (KT - 3) fram the xleal valoe of ze2ro do nor seeim 1o e
signilicant 1o raise serious deubts about normalily asswnplion Tor the pivedal
it ¥ The eructl messages, o owr view, are that even in (ailor-mide situalions
Korl's and oot asymprotically optimal variance eslimators may nat ouperlorm S
nidals smpler omes which do not require restrictive model postulations though all of
them are close competitors, 8o, thongh they lack opiimality Sirndal's estimalors which
are molreatsd tavher by iptuition amd tradition should be pat to use 0 wommon
pracice. However, thongh owr oplimal csbmistors are more complicated and esirclive
in vature they remain as vishle compelitors o favourable creanestances im ths age of
cartprulers. We have illostraled omly a very <pecial siiuswon witd wosingle cegressor and
a lincur regression model thoowgh the srgin, penmicting indepeadent error teoms with
d sample viranee siraeture. What may franspite 1 morg redisie glrearmstanees is ool
course warlh inveslizalion bul o presend stody s limied o this simple siluanon
wlhich we beleve o hive some interesl
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