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Abstract

In this paper we have studied the dynamics of planktonic growth with special consid-

eration on time dependent ¯uctuations in density of the species. We propose a modi®ed

delay di�erential equation model of the growth of two species of plankton having com-

petitive and allelopathic e�ects on each other. The model system shows a stable limit

cycle oscillation when the allelopathic e�ect is of a stimulatory nature. Ó 1998 Elsevier

Science Inc. All rights reserved.
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1. Introduction

The study of tremendous ¯uctuations in abundance of many phytoplankton
communities is an important subject in aquatic ecology. These changes of size
and density of phytoplankton have been attributed to several factors, such as
physical factors, variation of necessary nutrients, or a combination of these by
various workers. Another important observation made by many workers is
that the increased population of one species might a�ect the growth of another
species or of several other species by the production of allelopathic toxins or
stimulators, thus in¯uencing seasonal succession [1].
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The toxin produced by the unicellular green alga, Chlorella vulgaris, is an
autotoxin that not only limits the size of its own population [2,3] but also in-
hibits the growth of the planktonic algae Asterionella formosa and Nitzschia
frustulum (Bacillareae) [4,5]. Pratt [6±8] studied a number of properties of a
substance produced by Chorella and named it Chlorellin.

Besides the above work, evidence of widespread toxic inhibition of phyto-
plankton by other phytoplankton has been observed by many researchers [9±
42]. Some of the genera of planktonic algae that were reported by the above
researchers to have species inhibitory to other algae (in addition to those dis-
cussed above) were Phormidium, Scenedesmus, Pediastrum, Cosmarium,
Aphanizomenon, Micrasterias, Oscillatoria, Pandorina, Nostoc, Cylindrosper-
mum, Mesotaenium, Aukistrodesmus, Anabaena, Microcystis, Ceratium, Aster-
ionella, Haematococcus (a motile green alga), Chlamydomonas, Skeletonema,
Olithodiscus, Peridinium, Gymnodinium, Ulva, Chorda, Ceramium, As-
cophyllum, Chondrus, Fucus, Enteromorpha, Myriophyllum, Ceratophyllum, Le-
mna, Cladophora, Pithaphora, Hormotilla, Platydorina, Volvox, Eudorina,
Gonium, Botrydium, Thalassiosira, Phaeodactylum, Scytonema etc.

Some of these algae have also been observed to produce auxins which stim-
ulate the growth of the other algae. For example, Berglund [24] has noted that
the green alga, Enteromorpha linza, produces substances which are autostimu-
latory and stimulatory to the growth of Enteromorpha species. Monahan and
Trainor [27] also found that the green alga Hormotila blemista stimulated its
own growth and also stimulated one strain of Scenedesmus. Porter and Targitt
[43] reported that Sponge (Planktoris) kills a coral through a waterborne all-
elochemic. Many other examples of toxic inhibition and auxic stimulation were
observed in planktonic algae by several researchers. Such allelopathic stimula-
tors and inhibitors certainly a�ect algal succession, blooms and pulses by caus-
ing stimulated (inhibited) species to have a selective advantage (disadvantage)
in competition [1].

Most of the above work has been reported and discussed in detail in elegant
reviews of Hellebust [42] and Rice [1]. Gupta and Houdeshell [44] dealt with the
allelopathic e�ects of algae on other algae and allelochemic e�ects of algae on
zooplankton in a di�erential-di�erence equations model of a dynamic ecosys-
tem. Rice [1] has suggested that ``all meaningful, functional ecological models
will eventually have to include a category on allelopathic and other all-
elochemic e�ects''.

Maynard Smith [45] incorporated the e�ect of toxic substances in a two spe-
cies Lotka±Volterra competitive system by considering that each species pro-
duces a substance toxic to the other but only when the other is present.
Chattopadhyay [46] investigated the stability properties of the above system,
although the study contains the ¯aw of ignoring an important delay factor
in the system. In reality, a species needs sometime for maturity to produce a
substance which will be toxic (or stimulatory) to the other and hence a delay
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term in the system arises. To our knowledge no such attempts have been taken
to include the time delay e�ect in a model of allelopathic interaction in plank-
ton ecology. The aquatic ecosystem might be more transparent if one can in-
corporate the time delay e�ect in the model system.

In this paper we have assumed that the production of allelopathic substance
by the competiting species will not be instantaneous, but mediated by some
time lag required for maturity of the species and from this viewpoint we have
modi®ed the model of Maynard Smith [45]. The biological meaning of the de-
lay introduced into the model is that an allelochemical is produced by some di-
atoms in their mature phase of growth only. The delay thus accounts for the
maturity time of the new born cells, after which they become capable of pro-
ducing the allelopathic substance. We have investigated the local and global be-
haviour of this modi®ed dynamical system. It has also been observed that time
delay can drive the competitive system to sustained oscillations, as shown by
Hopf bifurcation analysis and limit cycle stability, if the allelopathy is of a
stimulatory nature. Hence the time delay e�ect produced by delayed toxin or
auxin production can regulate the densities of di�erent competing species in
the aquatic ecosystem, thus in¯uencing seasonal succession, blooms and pulses.

2. The mathematical model

Lotka±Volterra two species competition model can be written as

dN1

dt
� N1�K1 ÿ a1N1 ÿ b12N2�;

dN2

dt
� N2�K2 ÿ a2N2 ÿ b21N1�; �1�

where N1�t�;N2�t� are the population densities (number of cells per liter) of two
competing species; K1;K2 the rates of cell proliferation per hour; a1; a2 the rate
of intra speci®c competition of ®rst and second species respectively; b12; b21 the
rate of inter speci®c competition of ®rst and second species respectively and
Ki=ai�i � 1; 2� are environmental carrying capacities (representing number of
cells per liter). The units of a1; a2; b12 and b21 are per hour per cell and the unit
of time is hours.

Maynard Smith [45] and ®nally Chattopadhyay [46] modi®ed the system (1)
by considering that each species produced a substance toxic to the other, but
only when the other is present. Then the system (1) can be written as

dN1

dt
� N1�K1 ÿ a1N1 ÿ b12N2 ÿ c1N1N2�;

dN2

dt
� N2�K2 ÿ a2N2 ÿ b21N1 ÿ c2N1N2�; �2�
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where c1 and c2 are, respectively, the rates of toxic inhibition of the ®rst species
by the second and vice versa.

Notice that the toxic e�ect of one species is dependent on the density of the
other species so that the inhibiting e�ect is zero when either species is absent. In
aquatic ecosystems it has been observed that some species of phytoplanktons
also produce substances which stimulate the growth of other species. Hence
we shall use the common terminology allelopathic substance or simply `all-
elochemic' instead of toxic substance or toxin in our study. It seems also rea-
sonable to assume that the production of the substance allelopathic to the
competing species will not be instantaneous, but mediated by some discrete
time lag required for maturity of the species. For simplicity, we introduce this
time lag in the production of allelochemic by the ®rst species only and then the
system (2) will be reduced to

dN1

dt
� N1�K1 ÿ a1N1 ÿ b12N2 ÿ c1N1N2�;

dN2

dt
� N2�K2 ÿ a2N2 ÿ b21N1 ÿ c2N1�t ÿ s�N2�; �3�

where s is the time (in hours) required for the maturity of the ®rst species.
When c1; c2 > 0, the model system (3) represents an allelopathic inhibitory

system, each species producing a substance toxic to the other; whereas when
c1 � ÿ�c1; c2 � ÿ�c2��c1; �c2 > 0�, (3) represents an allelopathic stimulatory sys-
tem, each species producing a substance stimulatory to the growth of the other
species. We shall study both the systems in the following sections. We will as-
sume throughout that solutions of (3) initiating in the ®rst quadrant are posi-
tively invariant, continuable for all t P 0.

3. Equilibria and local stability

3.1. Case 1. Allelopathic inhibition (AI)

The steady state equilibria of the system (3) for s � 0 are as follows:

E0: �0; 0�

E1:
K1

a1

; 0

� �
E2: 0;

K2

a2

� �
E�: �N �1 ;N �2 �: �4�

The non-zero equilibrium E��N �1 ;N �1 � can be determined by

pijN 2
i � qijNi � rij � 0; i; j � 1; 2; i 6� j; �5�
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where

pij � bjici ÿ aicj;

qij � Kicj ÿ Kjci ÿ aiaj � bijbji;

rij � Kiaj ÿ Kjbij;

N �i �
1

2pij
ÿ qij �

����������������������
q2

ij ÿ 4pijrij

q� �
; �6�

with the conditions

pij 6� 0;

q2
ij ÿ 4pijrij P 0;

N �i > 0: �7�
For local stability analysis for all the equilibria of the system without delay see
Chattopadhyay [46]. We shall study the local stability of (3). The perturbed sys-
tem (3) around the equilibrium �N �1 ;N �2 � can be written as

dx
dt
� Ax� By � a11xy � a20x2 � a21x2y;

dy
dt
� Cx� Dy � Ex�t ÿ s� � b11xy � b02y2

� b011x�t ÿ s�y � b012x�t ÿ s�y2; �8�
where

x � N1 ÿ N �1 ;

y � N2 ÿ N �2 ;

A � K1 ÿ 2a1N �1 ÿ b12N �2 ÿ 2c1N �1 N �2 ;

B � ÿN �1 �b12 � c1N �1 �;
C � ÿN �2 b21;

D � K2 ÿ 2a2N �2 ÿ b21N �1 ÿ 2c2N �1 N �2 ;

E � ÿN �22 c2;

a11 � ÿ�b12 � 2c1N �1 �;
a20 � ÿ�a1 � c1N �2 �;
a21 � ÿc1;

b11 � ÿb21;

b02 � ÿ�a2 � c2N �1 �;
b011 � ÿ2c2N �2 ;

b012 � ÿc2: �9�
Retaining only the linear terms in Eq. (8), the linearized system becomes
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dx
dt
� Ax� By;

dy
dt
� Cx� Dy � Ex�t ÿ s�: �10�

The system (10) is equivalent to

d2x
dt2
ÿ �A� D� dx

dt
� �ADÿ BC�xÿ BEx�t ÿ s� � 0: �11�

We assume a solution of the form x�t� � bekt and y�t� � ekt. Therefore,
b � B=�kÿ A� and we have the corresponding characteristic equation as

D�k; s� � k2 ÿ �A� D�k� �ADÿ BC� ÿ BEeÿks � 0: �12�
For the zero equilibrium E0�0; 0�;A � ÿK1;B � 0;C � 0;D � K2 and E � 0.

Therefore, the characteristic equation (12) becomes

k2 ÿ �K1 � K2�k� K1K2 � 0:

Hence k1;2 > 0 and thus E0 is always unstable.
For the axial equilibrium E1�K1=a1; 0�;A � ÿK1;B � ÿ�b12K1=a1�

c1K2
1=a

2
1�, C � 0;D � K2 ÿ b21K1=a1 and E � 0. Hence, the characteristic equa-

tion (12) becomes

k2 � b21K1

a1

� K1 ÿ K2

� �
k� K1

b21K1

a1

ÿ K2

� �
� 0;

�k� K1� kÿ K2 � b21K1

a1

� �
� 0;

Hence k1 � ÿK1 and k2 � K2 ÿ b21K1=a1. Thus E1 is

locally stable if
K1

K2

>
a1

b21

;

unstable �saddle� if
K1

K2

<
a1

b21

: �13�
In the similar way it can be shown that the other axial equilibrium E2�0;K2=a2�
is

locally stable if
K2

K1

>
a2

b12

;

unstable �saddle� if
K2

K1

<
a2

b12

: �14�

Hence combining (13) and (14), the condition required for the persistence of
both the species is

Ki

Kj
<

ai

bji
�i; j � 1; 2; i 6� j�: �15�
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It is to be noted that the time lag factor in (3) has no e�ect on the existence and
stability properties of the zero and axial equilibria.

We now investigate the local and global stability of the interior (non- zero)
equilibrium E��N �1 ;N�2 �, �N �1 ;N �2 > 0�, assuming (15), i.e., the zero and axial
equilibria are unstable and thus repellent. For N�1 ;N

�
2 > 0 we have

A � ÿN �1 �a1 � c1N �2 �;
B � ÿN �1 �b12 � c1N �1 �;
C � ÿN �2 b21;

D � ÿN �2 �a2 � c2N �1 �;
E � ÿN �22 c2: �16�

Condition (15) gives rij > 0 in Eq. (3). Then system (6) has unique positive in-
terior equilibrium if

ai

bji
>

ci

cj
�i; j � 1; 2; i 6� j� �when c1; c2 > 0�: �17a�

Combining Eqs. (15) and (17a) we have

ai

bji
> max

ci

cj
;
Ki

Kj

 !
�i; j � 1; 2; i 6� j� �when c1; c2 > 0� �17b�

as the condition of existence of unique positive interior equilibrium of the sys-
tem (3).

We now investigate the local and global attractive properties of the unique
positive equilibrium E� � �N�1 ;N�2 �.

Substituting k � a� ix in Eq. (12) and separating real and imaginary parts,
we obtain the system of transcendental equations

a2 ÿ x2 ÿ �A� D�a� �ADÿ BC� ÿ BEeÿas cosxs � 0;

2axÿ �A� D�x� BEeÿas sinxs � 0: �18�
The stability or instability of the system is determined by the sign of those k
satisfying Eq. (12) if k is real or the sign of a satisfying Eq. (18) if k is complex.

To ®nd the necessary and su�cient conditions for non-existence of delay in-
duced instability we now use the following theorem [47].

Theorem 3.1. A set of necessary and su�cient conditions for E� to be
asymptotically stable for sP 0 is the following:
1. The real parts of all the roots of D�k; 0� � 0 are negative.
2. For all real m and sP 0, D�im; s� 6� 0, where i � ��������ÿ1:

p

Theorem 3.2. The unique interior equilibrium E� of the system (3) with
allelopathic inhibition is locally asymptotically stable for all sP 0.
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Proof. To prove this we shall use Theorem 3.1.
Step 1: From Eq. (12), we have

D�k; 0� � k2 ÿ �A� D�k� �ADÿ BC ÿ BE� � 0;

k � 1

2
�A� D� �

�������������������������������������������������������������
�A� D�2 ÿ 4�ADÿ BC ÿ BE�

q� �
:

Since, �A� D� is always negative and

�A� D�2 ÿ 4�ADÿ BC ÿ BE� � �Aÿ D�2 � 4�BC � BE� > 0;

therefore D�k; 0� has no imaginary root. Moreover, we have the following
cases:

(a) When �ADÿ BC ÿ BE� < 0;D�k; 0� � 0 has one positive and one nega-
tive roots.
(b) When �ADÿ BC ÿ BE� � 0;D�k; 0� � 0 has one zero and one negative
roots.
(c) When �ADÿ BC ÿ BE� > 0; then both the roots of D�k; 0� � 0 are nega-
tive.
It can be readily veri®ed from Eqs. (16), (17a) and (17b) that

�ADÿ BC ÿ BE� > 0: Hence condition (1) of Theorem 3.1 is satis®ed.
Step 2: Next we consider D�ix0; s0� � 0 for real x0. Firstly, when x0 � 0,

D�0; s0� � ADÿ BC ÿ BE 6� 0:

Secondly, when x0 6� 0, let

D�ix0; s0� � ÿ x2
0 ÿ i�A� D�x0 � �ADÿ BC�

ÿ BE�cosx0s0 ÿ i sinx0s0� � 0:

Separating real and imaginary parts we have the following:

ÿ x2
0 � �ADÿ BC� ÿ BE cos x0s0 � 0;

ÿ �A� D�x0 � BE sin x0s0 � 0: �19�
Squaring and adding both the equations of (19) we ®nally have

x4
0 � �A2 � D2 � 2BC�x2

0 � �ADÿ BC � BE��ADÿ BC ÿ BE� � 0:

�20�
As A2 � D2 � 2BC is always positive, it is su�cient to consider the sign of
�ADÿ BC � BE��ADÿ BC ÿ BE� for existence of real roots of Eq. (20). Since
BE > 0 and ADÿ BC ÿ BE > 0 (see step 1), we must have
ADÿ BC � BE > 0. Hence, D�ix0; s0� 6� 0 for any real x0. This satis®es condi-
tion (2) of Theorem 3.1.

Therefore the unique interior equilibrium E� of the allelopathic toxic (inhib-
itory) system is always asymptotically stable for all s0 P 0 and hence the delay
is harmless in this case. �
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3.2. Case 2. Allelopathic stimulation (AS)

In this case c1 � ÿ�c1 and c2 � ÿ�c2��c1; �c2 > 0�; i.e., the last terms in the
Eq. (3) give a positive e�ect instead of a negative e�ect as in case 1.

Here, except the interior (non-trivial) equilibrium, the local stability proper-
ties of all equilibria (axial and zero) and the criteria for persistence of both the
species remain identical to case 1. In place of Eq. (5), the equation determining
the interior equilibrium �E�� �N�1 ; �N�2 � now becomes

p0ij �N �2i � q0ij �N �i � r0ij � 0; �21�
where p0ij; q

0
ij; r

0
ij are obtained from Eq. (6) by replacing ci by

ÿ�ci��ci > 0; i � 1; 2�.
Since r0ij > 0, the condition for the existence of a unique pair of positive

equilibria � �N �1 ; �N �2 > 0�, where both the species coexist, now becomes

p012 < 0; p021 > 0 and q021 < 0 �22a�
or

p021 < 0; p012 > 0 and q012 < 0: �22b�
From the values of p0ij one can observe that the condition (22a) and obvious-

ly, not (22b), does not violate the condition of coexistence of both the species
given by a1a2 > b12b21 (see condition (15)). Thus the condition (22a) is the only
condition for the existence of unique pair of positive equilibria in the AS sys-
tem given by Eq. (3) after replacing ci by ÿ�ci�i � 1; 2�:

To investigate the local stability properties of �E�� �N�1 ; �N�2 �; we ®rst note that
the relations (16) now becomes

A � ÿ �N �1 �a1 ÿ �c1
�N �2 �;

B � ÿ �N �1 �b12 ÿ �c1
�N �1 �;

C � ÿ �N �2 b21;

D � ÿ �N �2 �a2 ÿ �c2
�N �1 �;

E � �N �22 �c2: �23�
Suppose k � ix0;x0 > 0, is a root of the characteristic equation (12) where

A;B;C;D and E are given by Eq. (23). Now, we prove the following theorem.

Theorem 3.3. If A� D < 0 and B < 0, then in the parametric region
BE < ADÿ BC < ÿBE the interior equilibrium �E� of the AS system is locally
asymptotically stable for 0 < s < �A� D�=BE where x0 is de®ned in Eq. (26).

Proof. From Eq. (12) it is clear that �E� is asymptotically stable if
ADÿ BC ÿ BE > 0 for s � 0. Hence it remains asymptotically stable for all
s > 0. It can be observed that the eigenvalues of D�k; s� � 0 have negative real
parts, provided one can guarantee that no eigenvalue with positive real part
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bifurcates from in®nity (which could happen since it is a retarded system). For
stability analysis we require the Nyquist criterion and its consequences [48].

Consider the Eq. (11) and the space of all real valued continuous functions
de®ned on �ÿs;1� satisfying the initial conditions x�t� � 0 for
ÿs6 t < 0; x�0�� � P1 > 0 and _x�0�� � P2 > 0.

After taking the Laplace transformation of Eq. (11) and simplifying, we
have

L�x�s�� � L�s� � P1s� P2 ÿ �A� D�P1

s2 ÿ �A� D�s� �ADÿ BC� ÿ BEeÿss
: �24�

The inverse Laplace transform of L�s� will have terms which increase expo-
nentially with t if L�s� has any poles with positive real parts. Thus it is clear that
a condition for stability of �E� is that all poles of L�s� have negative real parts.
We apply the Nyquist criterion [49] to see whether L�s� has any poles to the
right-half plane.

This criterion leads us to the conditions

Im w�ix0� > 0; �25�
Re w�ix0� � 0; �26�

where

w�s� � s2 ÿ �A� D�s� �ADÿ BC� ÿ BEeÿss; �27�
with x0 the smallest positive value of x for which Eq. (26) holds. Now,

w�ix0� � ÿ x2
0 ÿ i�A� D�x0 � �ADÿ BC�

ÿ BE�cosx0sÿ i sinx0s�; �28�
Im w�ix0� � ÿ�A� D�x0 � BE sin x0s �29�

and

Re w�ix0� � ÿx2
0 � �ADÿ BC� ÿ BE cosx0s � 0: �30�

Using Eqs. (25) and (26) on Eqs. (29) and (30), we have

A� D
BEs

>
sinx0s
x0s

and

x2
0 � ADÿ BC ÿ BE cosx0s:

Since B < 0, we have, by restricting x0 to 0 < x0 < p=s,

ADÿ BC ÿ BE > ADÿ BC ÿ BE cosx0s > ADÿ BC � BE:

Hence z � x2
0 and z � ADÿ BC ÿ BE cosx0s intersect on 0 < x0 < p=s. Since

� sinx0s�=x0s < 1 on 0 < s < p=x0 and since A� D < 0;BE < 0, the Nyquist
criterion (25) is satis®ed if 0 < s < �A� D�=BE.
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From Eq. (30), we also have (in the parametric region BE < ADÿ
BC < ÿBE�

ADÿ BC � BE < 0 < x2
0 < ADÿ BC ÿ BE for 0 < x0 <

p
s
; �31�

so we have an upper bound x� of x0, given by

x� �
�������������������������������
ADÿ BC ÿ BE
p

: �32�
Hence we can conclude that in our case the Nyquist criterion holds and the in-
terior equilibrium �E� of the AS system is locally asymptotically stable for all
values of s satisfying 0 < s < �A� D�=BE. h

4. Bifurcation of the solutions

In this section we state the condition under which the system goes through a
point where the Hopf bifurcation occurs. We show the existence of such
s�� s0� and x�� x0� where the Hopf bifurcation occurs.

Lemma 4.1. If A� D < 0 and BE < ADÿ BC < ÿBE there exists a unique pair
of x0; s0, with x0; s0 P 0;x0s0 < 2p such that D�ix0; s0� � 0, where x0, and s0

are given by Eqs. (33) and (38), respectively.

Proof. From the analysis of the Theorem 3.2, we found from Eq. (20) that k
has a pair of purely imaginary roots of the form � ix0 provided
BE < ADÿ BC < ÿBE.

The corresponding roots of Eq. (20) in this case are

x2
0 � 1

2
�ÿ�A2 � D2 � 2BC� � f�A2 � D2 � 2BC�2 ÿ 4��ADÿ BC�2

ÿ �BE�2�g1=2�: �33�
Let suppose s � s0 when x � x0. From Eq. (19), we have

ÿ �BE�2�1ÿ cos2x0s0�
�A� D�2

" #
� �ADÿ BC� ÿ BE cosx0s0 � 0

or,

�BE�2 cos2x0s0 ÿ BE�A� D�2 cosx0s0 � �ADÿ BC��A� D�2 ÿ �BE�2 � 0:

�34�
Let

f �z� � �BE�2z2 ÿ BE�A� D�2z� �ADÿ BC��A� D�2 ÿ �BE�2 � 0:

�35�
Therefore,
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f �1� � �BE�2 ÿ BE�A� D�2 � �ADÿ BC��A� D�2 ÿ �BE�2

� �A� D�2�ADÿ BC ÿ BE� > 0 �36�
and

f �ÿ1� � �BE�2 � BE�A� D�2 � �ADÿ BC��A� D�2 ÿ �BE�2

� �A� D�2�ADÿ BC � BE� < 0: �37�
Hence f �z� has a real solution in �ÿ1; 1� of the form cos x0s0 � k, where

jkj < 1.
From the second equation of (19)

s0 � 1

x0

arcsin
�A� D�x0

BE
� 2np

x0

; n � 0; 1; 2; . . . : �38�
In Eq. (33) we assume �ADÿ BC�2 < �BE�2 [50], so that there is only one imag-
inary solution k � ix0�x0 > 0� and therefore, the only crossing of imaginary
axis is from left to right as s increases and the stability of the trivial solution
can only be lost and not regained. Obviously, in this case n � 0. �

Lemma 4.2. For s < s0; �E� is asymptotically stable. For s > s0; �E� is unstable.
Further as s increases through s0; �E� bifurcates into small amplitude periodic
solutions.

To prove this lemma we use the following lemma of G.J. Butler (see appen-
dix 2 in Ref. [48]).

G.J. Butler's Lemma. Let A� D < 0;ADÿ BC > BE. Then the real parts of the
solutions of Eq. (12) are negative for s < s0, where s0 > 0 is the smallest value
for which there is a solution to Eq. (12) with real part zero.

Proof of Lemma 4.2. For s � 0, it is obvious that �E� is stable. Hence by G.J.
Butler's Lemma, �E� remains stable for s < s0. We have now to show that
da=dsjs�s0

> 0 when x � x0, for n � 0; 1; 2; . . . This will signify that there
exists at least one eigenvalue with positive real part for s > s0, and hence �E� is
unstable for s > s0. Moreover, the condition for Hopf bifurcation [51] are then
satis®ed yielding the required periodic solutions. Now di�erentiating Eq. (18)
with respect s, we get

f2aÿ �A� D� � BEseÿas cosxsgda
ds
� fÿ2x� BEseÿas sinxsgdx

ds
� BEeÿasfÿacosxsÿ x sinxsg �39�

and

f2xÿ BEseÿas sinxsgda
ds
� f2aÿ �A� D� � BEseÿas cosxsgdx

ds
� BEeÿasfa sinxsÿ xcosxsg: �40�
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Therefore,

�f2aÿ �A� D� � BEseÿas cosxsg2 ÿ �2xÿ BEseÿas sinxs�

fÿ2x� BEseÿas sinxsg� da
ds
� BEseÿas��ÿacosxsÿ x sinxs�

f2aÿ �A� D� � BEseÿas cosxsg ÿ �a sinxsÿ xcosxs�
�ÿ2x� BEseÿas sinxs��:

Now at a � 0; s � s0;x � x0, we have

�fÿ�A� D� � BEs0 cosx0s0g2 � �2x0 ÿ BEs0 sinx0s0�2� da
ds a�0;s�s0;x�x0

���
� BE�ÿx0 sinx0s0fÿ�A� D� � BEs0 cosx0s0g
� x0 cosx0s0�ÿ2x0 � BEs0 sinx0s0��
� BEx0��A� D� sinx0s0 ÿ 2x0 cosx0s0�

� BEx0

�A� D�2x0

BE
ÿ 2x0

�ÿx2
0 � �ADÿ BC��

BE

" #
� x2

0��A� D�2 � 2x2
0 ÿ 2�ADÿ BC��

� x2
0�2x2

0 � �A2 � D2 � 2BC�� > 0: �41�

Hence da=dsja�0;s�s0;x�x0
> 0. Therefore, the transversality condition holds and

hence Hopf bifurcation occurs at x � x0; s � s0. Hence the lemma. h

5. Stability of bifurcations

Here we determine a formula that establishes the stability of bifurcating pe-
riodic orbits. The calculation is based on Hassard et al. [52]. We assume the
case where Hopf bifurcation occurs (at s � s0 and x � x0) and using the stan-
dard notation as in [52] we rewrite Eq. (8) in the form

_xt � Aaxt � Rxt; �42�
where xt 2 C��ÿs; 0�;R� is given by xt�h� � x�hÿ s�; a represents the parameter
values at s � s0;x � x0

Aa/�h� �
d/
dh ÿs6 h < 0;R 0

ÿs dg�h; a�/�h� h � 0:

(
�43�
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R/�h� �

0
0

ÿ � ÿs6 h < 0;

a11/1�h�/2�h� � a20/
2
1�h� � a21/

2
1�h�/2�h�

fb11/1�h�/2�h� � b02/
2
2�h� � b011/1�hÿ s�/2�h�

�b012/2�hÿ s�/2
2�h�g

0B@
1CA h � 0;

8>>>><>>>>:
�44�

dg�h; a� � Ad�h� Bd�h�
Cd�h� � ad�h� s� Dd�h�

� �
dh: �45�

An eigenfunction of the problem corresponding to the eigenvalue ix0

q�h� � b
1

� �
eix0h; �46�

where

b � B
kÿ A

:

At k � ix0

b � AB� iBx0

A2 � x2
0

: �47�

Now we de®ne the standard inner product of / and w as

hw;/i � w�0�/�0� ÿ
Z0

h�ÿs

Zh
n�0

w�nÿ h��dg�h��/�n�dn: �48�

So, to obtain the corresponding adjoint eigenfunction q0�h� we use the standard
result hq0; qi � 1 and hq0; �qi � 0, letting q0 � eix0h�m1; m2�, then we have

hq0; qi � q0�0�q�0� ÿ
Z0
ÿs

Zh
0

q0�nÿ h�dg�h�q�n�dn

� b�m1 � �m2 ÿ
Z0
ÿs

Zh
0

eÿix0�nÿh���m1 �m2�
0

ad�h� s�
� �

b
1

� �
eix0n dh dn

� b�m1 � �m2 ÿ
Z0
ÿs

Zh
0

eix0ha�m2d�h� s� dh dn

� b�m1 � �m2 ÿ a�m2�scosx0sÿ is sinx0s�: �49�
Therefore,

b�m1 � �m2�1ÿ ascosx0s� ias sinx0s� � 1; �50�
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hq0; �qi � �b�m1 � �m2 ÿ
Z0
ÿs

Zh
0

eÿix0�nÿh���m1�m2�
0

ad�h� s�
� � �b

1

 !
eÿix0n dh dn

� �b�m1 � �m2 ÿ
Z0
ÿs

Zh
0

eÿix0�nÿh�a�m2d�h� s�eÿix0n dh dn: �51�

Therefore,

�b�m1 � �m2 � ia
�m2

x0

sinx0s � 0: �52�

So, the required equations for �m1 and �m2 are

b�m1 � e1�m2 � 1; �b�m1 � e2�m2 � 0; �53�
where

e1 � 1ÿ ascosx0s� ias sinx0s;

e2 � 1� i
a
x0

sinx0s; �54�

�m1 � e2

e2bÿ e1b
; �m2 � ÿ�b

e2bÿ e1
�b
: �55�

Finally, we have the values of m1 and m2 by taking the complex conjugate of
Eq. (55). Using the notation as in Hassard et al. [52], we write

x
y

� �
� zq� �z�q� W ; �56�

z � q0
x
y

� �� �
; �57�

_z�t� � ix0z�t� � �q0�0� � f �w�z;�z; h� �Refz�t�q�h�g�
� ix0z�t� � �q0�0� � f0�z;�z�; �58�

where

f0 � f 1
0

f 2
0

� �
; �59�

f 1
0 � fW 1�0� � 2 Re�z�t�b�g�a11�W 2�0�

� 2Re z�t�� � a20�W 1�0� � 2 Re�z�t�b��
� a21�W 2�0� � 2 Re z�t���W 1�0�
� 2 Re �z�t�b���;
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f 2
0 � fW 2�0� � 2 Re z�t�g�b11�W 1�0�

� 2 Re �z�t�b�� � b02�W 2�0� � 2 Re z�t��
� b011�W 1�ÿs� � 2 Re �z�t�eÿix0sb��
� b012�W 1�ÿs� � 2 Re �z�t�eÿix0sb���W 2�0�
� 2 Re z�t���: �60�

Using the result D�ix; s� � 0, for x � x0; s � s0, and letting X0 � eÿix0s0 also
we have assumed that W � O�jzj2�. We have retained only the terms necessary
to compute C1�0�. Therefore,

f 1
0 � a11�W 1�0� � bz� �b�z��W 2�0� � z� �z� � a20�W 1�0� � bz� �b�z�2

� a21�W 1�0� � bz� �b�z�2�W 2�0� � z� �z�
� �a11b� a20b

2�z2 � �a11
�b� a20

�b2��z2 � �a11�b� �b� � 2a20b�b�z�z
� a21b

2z3 � a21
�b2�z3 � 2a21b�b�z2�z� z�z2� �O�jzj4�; �61a�

f 2
0 � b11�W 1�0� � bz� �b�z��W 2�0� � z� �z� � b02�W 2�0� � z� �z�2

� �W 1�0� � �bz� �b�z�X0��b011�W 2�0� � z� �z� � b012�W 2�0� � z� �z�2�
� �b11b� b02 � b011bX0�z2 � �b11

�b� b02 � �bb011X0��z2

� �b11�b� �b� � 2b02 � b011X0�b� �b��z�z
� b012X0�bz3 � �b�z3 � �2b� �b�z2�z� �2 �b� b�z�z2� �O�jzj4�: �61b�

So, after taking the dot product of f0 and �q0�0� and after expanding, we have,

_z � ix0z� �m1f 1
0 � �m2f 2

0

� ix0z� 1
2
g20z2 � 1

2
g02�z2 � g11z�z� 1

6
g30z3 � 1

6
g03�z3 � 1

2
g21z2�z

� 1
2
g12z�z2 �O�jzj4�; �62�

where

g20 � 2��m1�a11b� a20b
2� � �m2�b11b� b02 � b011bX0��;

g02 � 2��m1�a11
�b� a20

�b2� � �m2�b11
�b� b02 � b011

�bX0��;
g11 � �m1�a11�b� �b� � 2a20b�b� � �m2�b11�b� �b� � 2b02 � b011�b� �b�X0�;
g12 � 2�2�m1a21b�b� �m2b012X0�b� 2 �b��;
g21 � 2�2�m1a21b�b� �m2b012X0�2b� �b��;
g30 � 6��m1a21b

2 � �m2b012bX0�;
g03 � 6��m1a21

�b2 � �m2b012
�bX0�: �63�

Finally, we use the expression of Hassard et al. [52]

182 A. Mukhopadhyay et al. / Mathematical Biosciences 149 (1998) 167±189



C1�0� � i

2x0

g20g11 ÿ 2jg11j2 � 1

3
jg02j2

� �
� 1

2
g21;

l2 � ÿ
ReC1�0�

_a�0� : �64�
So, the bifurcation is supercritical if l2 > 0 and subcritical if l2 < 0.

6. Numerical results

In this section we give some numerical results based on the formulae in Sec-
tions 3±5. These are obtained for the values K1 � 2;K2 � 1; a1 � 0:07;
a2 � 0:08; b12 � 0:05; b21 � 0:015; c1 � ÿ�c1 � 0:0008; c2 � ÿ�c2 � 0:003: (For
a discussion on parameter values and their appropriateness in plankton alle-
lopathy, see Section 7.) Regarding the stability calculations in Section 5, we
note that Eqs. (47), (63) and (64) yield (for the chosen set of parameter values)
the values b � 0:7868ÿ 0:4821i, m1 � 0:00218� 0:00396i; m2 � ÿ0:00173
ÿ0:00108i; g20 � ÿ0:000281; g02 � 0:000066ÿ 0:000234i; g11 � ÿ0:000234
ÿ0:000188i; g21 � ÿ0:0000008ÿ 0:00000065i;ReC1�0� � ÿ0:000000425.

Since _a�0� > 0 (from Eq. (41)), we have l2 > 0. Thus the bifurcation is su-
percritical and the system exhibits a stable limit cycle.

Numerical solutions of Eq. (3) with both ci > 0 and ci < 0, i.e., both of the AI
and AS systems are also presented (Figs. 1±3) taking the unit of t and s in hours.

Fig. 1. Solution of the Al system for all s P 0.
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Numerical integration was carried out using modi®ed fourth-order Runge±
Kutta method. The results indicate that the equilibrium solution is stable for all
sP 0; for the chosen parameter values, when the AI system �ci > 0� is consid-
ered (Fig. 1). With the same set of parameter values (expecting only replacing
ci by �ci in Eq. (3)) the equilibrium solutions of the AS system indicate stability
(by decaying oscillation) for 06 s < 290 and instability (by growing oscilla-
tion) at s > 290 (Fig. 2(a)±(c)). The AS system exhibits a limit cycle stable pe-
riodic solution at the bifurcation value s0 � 290 h � 12:1 days (approx.). The
large amplitude stable periodic solutions and limit cycle trajectory in the

Fig. 2. (a) Solution of the AS system in absence of delay �s � 0�. (b) Asymptotically stable solution

(with decaying oscillation) of the delayed AS system for s < s0 � 290 h. (c) Unstable solution (with

growing oscillation) of the delayed AS system for s > s0 � 290 h.
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N1 ÿ N2 plane are demonstrated in Fig. 3(a) and (b). Fig. 3(a) shows a typical
model-genarated stable pattern of blooms over a one year span. Eight succes-
sive blooms of each species occurring alternatively with each other are exhib-
ited annually. Since this is a stable limit cycle, this pattern repeats each year.

7. Discussion

In this paper we have attempted to study algal allelopathy with the help of a
modi®ed Lotka±Volterra type competition of two coexisting phytoplankton
communities. Allelopathic e�ect in the model has been incorporated by intro-
ducing the production of an allelopathic substance by each of the species. The
new-born plankton cells take some maturity time to produce e�ective allelo-
chemicals, thus inducing a time-lag e�ect in the model.

It is observed that delay of all dimensions does not induce any instability, or
stated otherwise, the delay is totally harmless if the allelopathy is of an inhib-
itory (toxin) type. On the other hand, delay of certain dimension destabilizes
the system and leads to limit cycle stable periodic solutions through Hopf Bi-
furcation, if the model system is of a stimulatory (auxin) type.

The stability of the limit cycle periodic solution has been analytically prov-
en, by using the method given in Hassard et al. [52]. Numerical solution and
computer simulation of the model system have also been obtained to substan-
tiate the analytical results.

The postulate that allelopathic interaction, both toxic and auxic, maintains a
balanced phytoplankton ecology, has been evidenced by many experimental
®ndings. Allelopathy has been described as one of the factors that controls

Fig. 3. (a) Bifurcating stable limit cycle solution of the delayed AS system s � 290 h (i.e., approx.

12.1 days). (b) Phase portrait of stable limit cycle trajectory of the delayed AS system with s � 290

h (i.e., approx. 12.1 days).
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blooms, pulses and succession in the abundance of phytoplankton species in all
kinds of bodies of water. Although extensive experimental study on all-
elopathic e�ects in planktonic world has been carried out, studies based on
mathematical models on this important subject are absent or rare in the liter-
ature.

For the numerical analysis the values of the growth terms K1 and K2 are set
to 2 and 1, respectively. This means that the growth term is reasonable 2 and 1
cell division per hour for the carrying capacity K1=a1 � 30 and K2=a2 � 12:5,
respectively (these values of K1=a1 and K2=a2 represent over approximately
14 000 and 6000 cells per liter which are the theoretical maximum densities
of the two species, respectively). Other parameters such as crowding (intra-spe-
cies competition) coe�cient, inter-species competition coe�cient, inhibiting (or
stimulating) allelopathic coe�cients denoted by ai; bij; ci�ÿci��i; j � 1; 2; i 6� j�,
respectively, have been chosen appropriate to plankton allelopathy. Actual val-
ues of these parameters can be estimated from experimental observations and
collection of data set of cell counts over a long period. The magnitude of the
time delay at which the system bifurcates into a stable limit cycle solution is
of the order of 290 h, i.e., 12.1 days approximately for the chosen set of param-
eters. The present numerical analysis is based on purely hypothetical set of pa-
rameters. The aim of this study was to investigate the delayed allelopathic e�ect
on the bloom, seasonal succession and pulses in aquatic ecosystem with the
help of a mathematical delay model. If the growth rates Ki's are allowed to vary
over a twelve month cycle, i.e., by substituting Ki by Ki�1ÿ K 0i cos�t=6��, where
K 0i regulate the amplitude of the annual oscillation and t measures time in
months, the limit cycle is periodically coupled to an external forcing that rep-
resents the e�ect of an annual change in temperature on cell division rate. This
coupling gives rise to an irregular pattern of bloom severity from year to year
[53] as is actually observed in nature. Although the model results may not yield
a high correlation with the actual ®eld data because of the presence of other
environmental noise, a modest correlation will suggest that even if the model
does not replicate actual bloom events it lends support to the role of all-
elopathic e�ects in regulating bloom dynamics.

The present theoretical study shows that if the allelopathic model investi-
gated by us is of a stimulatory type (AS system), it can successfully exhibit pe-
riodic ¯uctuations in plankton populations. On the other hand if the model
investigated is of an inhibitory type (AI system), periodic ¯uctuation cannot
be exhibited by it.

The failure of demonstrating ¯uctuation in the AI system, may be, because
of the reason that the toxic allelopathic mechanism existing in the real world
has not been properly captured in the present model. After a long series of ex-
periments on fresh water phytoplankton allelopathy, Akehurst [54] suggested
that phytoplankton might produce substances that suppress the growth of
some species of phytoplankton and activate the growth of the others. It may
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be that some species of phytoplankton, while being toxic to the others, may
also be autotoxic themselves. Or, some species may produce substances which
are toxic or stimulatory to the others while they themselves do not experience
any reciprocal e�ects. Hence all the actual allelopathic mechanisms existing in
the phytoplanktonic world may not be captured in a single mathematical mod-
el. An attempt to do this, although it may be a formidable task, is nevertheless,
worth pursuing. However, the simple model presented here can adequately
demonstrate the dynamics of a competitive and allelopathically interacting
two species planktonic ecosystem.
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