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fn this poper we propese a newral network model
ter synthesise texture images. The model is baved on
a continaons Hopfield-like network where each pivel
of the image & occupied by o newron thar is eight-
conntected to i1s neighbours. A state of the newron
denotes a certain grey level of the corresponding
pivel. The firing of the neuron changes iix slate,
and hence the grey level of the corresponding pixvel
Different two-tone and grey-tome textiure mages can
be synthesised by manipulating  the  connection
weights and by varving the algorithm iieration nym-
her. For grev-tone texture synthesis, a Markov chain
principle huy been emploved to decide on the mul-
tiple stale truasition of a newron. The model can be
emploved for texture propagution with the advantage
that it allows propagation without showing  amy
blocky effect

Keywords: Computer graphics: Tinage processing;
Texlure synthesis

1. Introduction

Compuler-generaled  images  can appear  highly
realistic it the swfaces are rendered with adequate
texlures, Texture synthesis can be useful in computer
graphics and animadion, design of textiles, wallpaper
and laminate finishing, camoultaging techniques, tex-
luring of missing or incomplete portions, cle, Tex-
ture synthesis can also he applied in scientific prob-
lems involving analvsis by synihesiz.

Use of formal grammar is an approach towards
texture synthesis. o and Lo [1] wsed a stochssiic
tree grammar approuch for the purpose. Another

approwch 1s the growth model introduced by Yokoy-
amd and Haralick [2]. The model is based on throe
operations, namely seed distribution operation, skel
eton growlh operalion and muscle growth operation.
Another approach proposed by Ahuja [3] and
Schacter er al. [4] is based on creating conliguous
Hecewise pattems by mosaic and hombing maodels,
Some approaches (o lexture synthesis are based on
a computer draflling approuch. For example, Mezei
er al. [3] describe a model Tor plolting patlerns of
natural objects such as rocks, wool, brush, bark and
fur. In this method, @ set of primitive shapes like
lines, curves, quadrilaterals, ovals, ete. are chosen
and distributed on 4 surlace with a dense vniform
random pattern. Some stochastic fexiure synthesis
models are also available. TFor example, loxiures
may he synlhesised using Markoy  chains [6-91.
Another powerlul class of lexlure synthesis is based
on fractal geometry [10,11).

In this paper we proposc a newral neiwork model
[or synthesising two tone as well as groy oo
lexlure imagres. This model s based on a continuous
Hoplicld like network, For grey-tone texture gencr-
ation, a Markov chain principle bas been used to
decide on the multiple state transitions corresponding
to multiple grey levels.

The basic model is discussed in Seol, 2, while
lwo-tone and grey tone texture svnthesis approaches
are deseribed in Sect, 3. This system can be used
In texture propagation, ic. growing the lexture field
without having a blocky effect. The textuwie propa-
gation aspect is deseribed in Scel. 4, The synthesis
results are presented and discossed in Secr 5.

2. The Model

ihe proposed model consists of a conlinuous Hop
licld-lke neiwork of monevrons, in which the action
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polential belween a neuron padr is simulated by the
posilive and negadve signals cireulaling in he nel.
Each neuron accumolales signals as Lhey amive from
ils connecling neurons, and the polential of Lhe
neuron increases or deereases depending on whether
the arriving signal is positive or negative. The poten-
tigl of a neuron N; is delermined by the arriving
signaly  weighied by the connection  sirengihs
between N, and its connecting neurcons. The node
value of & neurom signifies its state. Thus, 1If X, is
the node wvalue of the peuron N; and wy is its
connection strength with the neuron & whose node
value is &, then the potential of the newron & 15
ziven by

e= 2 IX =Xy (1)

i, o
where fi-) is an indicator [unction delined by

ifx=10
otherwise

o=, @
Note thal wy; = 0 i N and & are not directly
connecled. The quantity /(X — Xw, represents Lhe
amount of signal coming from nearon A; o new-
ron N,
The cuput of neuron &; is determined from the
total inpul signal ¢ using the logstic Tunction

1

"= T expl {er-llp] ®
where ¢, 3 are conslants with & = (b
Eq. (3) can be written as
1
4)

B expl— K@)

where I, = ¢,

A newron can change its state by firing. Tiring
depends on the output P; of the neuron. In the
convenlional Hoplick! ncl, the oeuron fires and
changes its state for £, 2= 0 if P, exceeds g threshold
T e [0,1]. For oor texwre synthesis we have con-
sidered a dillerent approach of firing in which the
choice ol threshold (which is user dependent) can
be avoided. The approach and the reason of wsing
it are discussed in Secl, 3,

Figure 1 shows the plot of £, against £, It can
be noted that I, is a proper cumualaive disim-
bution function.

The parameter 3 determines the sleepness ol the
curvie] the smaller the value of B, the steeper is the
curve. Vor B=0, the model behaves cxuctly like
the Hoptield model [13-15], in which a newron fires
and changes ils stale (P = 1) only when E 2= 0 and
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remaing in il previous state (=00, otherwise. See
Fig. 2 for an illustration,
From Eg. (3) it is seen that the negative valuc

ol @ encouragzes the neuron to fire, while the positive

value of @ discourages the neuron from firing. Thus,
the parameter o indireetly controls the firing process
of the neurons in the net. Also the value ol the
parameier 5 in Eq. (4 miuvences the firing rate of
nearons. The outpol £ of a neuron increases for
B2 1 and increases for B> 1, and has no effect
for B 1.

3. Texture Synthesis

Let us now apply our model lo synthesise artificial
texture images in an nxn pisel space. We associate



i neuron A, to each pixel (47 in the image plane,
and lel there be s = p neurons in the nel The sbale
Jiy of the neuron &, can be interpreted as the grey
viloe of the pixel at (L7, The topology of our
proposcd network Tor lexture synthesis is shown in
Fig. 3 in which cach neuron is connected o al most
eight nearest neurons. This nerwork corresponds to
the second order neighbourhood system. The top-
logy for a higher order neighbourhood syslem may
be considered in a similar way.

Let w0 kI of LILT} be the conncction
weights of the neuron N;; with neurons N, &S &
[—1.00L1]. We start with an image having uniformly
distributed random grey values from (00,0 - 11
G being the total number of grey values. These
grev values correspond to the inidal states of the
neurons in lhe net.

Then the polential of the neyron A s

Eﬁ = E

Winh jor Wi nr — fii) — i1

Ll 0ol
where w,, =0 )]
and by Tiq. (4} the output of the neuron N,; s
1
£y (6)

= exp{—}?r-m

The motivation of choosing such a neural model
for exture synthesis is as follows. A lexture imape
is, in general, characterised by the neighbourhood
confipuralion ol s pixels. The chustering of the
pixcls with identical grey wvalues in a particalar
fashion gives rise o a particular texmre. For
example, a directional lexfure is obtained if there is
i tendency of grev value clusicring in a paricular
direciiom. Such directional clustering has been achi-
eved by an appropriate choice of connection weights
and the firing condition of the neuron. In our model,
the total accumulation of signals 10 4 neuron Tnom
ity surroundings determines it change of slaie. Con-
sider a neuron which corresponds o a black pixel
surtounded by all while pixels. We may call the

[F1,j+11

[h]+T]

fi+1.j+1)

Fig. 3. Topology of the proposed neural et wodel
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state of this neuron unstable, as its node value
dilfers from the mxde values of all its neighbouring
nearons. The neuron should fire and change o i
stable state, which 1s white. From Eq. (5) it Is seen
thal the polenlial £ ol this neuron 1s high and
comsequently, the owtput # (from Hyg. (6)) s also
high.

It is possible o use a threshold T so that when
P =T, |he nevron lires and its state s changed. But
inslead of doing so. a threshold free fitng decision
can be made as [ollows:

& Compule F.

& Assume thal the state of the neuron is changed
and compute the output. Let it he P

o If =/ then lhe neuron aclually fires and the
slate is changred.

Note that firing 15 uctivated to achieve lower
owlput and henee a more stable state of g neuron.
I, for a specific configuration, the lowest output
state 1% achieved, then the newuron will never fire
again. In the example cited above, once the black
neuron fives and changes w while, if will bave the
lowest outpul stae and will never change s stale
again. Thus, the [uing condition satisfies our clus-
tering need.

The specilic ways of synthestsing (wo-tone and
grov-tone lexlures are describod below.

3.1. Two-Tone Texture Synthesis

In this case (7=2. The Initial image is formed by
randomly assigning & state from (0,1} to each pixel
so that the states are egually likely, The initial
configuration of the net is thus formed. Let the
neuron &, be in state g.g = {01}, Given a set of
conneclion weights of the neighbouring neurons, we
lind the polemtial &, and the comesponding oulpul
P;; of the neuron N using Ligs (5) and (6). Now
assuming the state of neuron N;; to be | - g and
the staes ol all other connecling neurons (o he the
sumg 25 helore, we find the corresponding potential
£, and the outpot ', using the same equations.
It P, = /¥, then the next staie of neuron ¥, is
chosen as 1 — g, Otherwise, the state of the neuron
is not changed.

The above procedure is applied ileratively to each
neuron of the ner for a specificd number of times,
[L is seen Lhal (he wial number of changes in staies
of the newrons decreases with an increasing number
of iteraliony (one Heration is the Tull scan of A= n
neurons). This elfect is expected, since the firing of
g neuron decreases its potential so that it will have
less chance of firing in the next ileration. Because



Texture Syatlesic iy o Newrod Network Mode!

Humber of SCHa (Thousandsel
]

i

=

3
2
1 g
—
e
o n n e
a 10 20 3a 40 e 1w

Mumber of iteraticns

Fig, 4. Htahilitv curve. (For four levels synthesized owore off
Fig. Blal}

the net has a rendency to minmise the potential of
ily slales, @ siable stale is alained aller some fier-
alions. The fendency of stability 18 ilfusteated i
Fig. 4, in which a plot of the number of State
Changing Nodes (SCN) against the number of iter-

Fig. 5. Two-tone directionsl teslores. (o) Tloczontal exiore (g

h

ations is given. From this graph i1 ¢an be seen that
the: number of SCNs decrcases with the increase in
the number of merutions, Atter ) Iterations the
number of SCNs is about 10% of the whole image
size, and this number still decreases in the sub-
sequent iterations.

We see that hizh values of horizontal weights
will generate a texture image with grey valne clus-
tering in the horizontal direction, generaling a
ihorizontal) dircctional texture. Examples of itwo
tone directional textuess are shown in Mg 5. Nole
that the node valwes (states) of the newarons are
thrcetly wsed as grey values of ihe corresponding
pixcls, Similarly, the other dircelional lexlures can
be synthesised it high values are assioned to the
corresponding divectional weights and low values of
other weights. If there is no hias  any weight,
isolropic feature image resulis. (Sec Iqg. 8a), Tor
example)

The clustenng ellecl 1s also scen lo vary with
the number of iterations. An increase in the number
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of ilerations changes & micro-exiure (lesy clustered)
to 4 macre-texture (more clustered). This is expecied
as cach dleralion prodoces more stable neurons than
those in the preceding ileration.,

3.2, Grey-Tone Texlure Synthesis

Suppose we want to construct a grey-lone image
conmtaining the grey levels [0,1,...05 - 1}, Then each
newron in the nel can have one ol severul states.
The state of each neuron is depicied by the grey
vialug of the pixel to which it is associated. 1T the
current. slale of a4 newron N, 5 g, g =
[0 -.G=1], then given a sel ol connection weights
of the neighbouring neurons, ane can find ils output
Fousing Eqs {3) and (0} If the neuron (ires then
it will change ils stale. From Eq. (6) we can only
determine whether s newron will fire or not. This
equation dees not indicale the siaic Lo which the
neuron should travel to If it fires. This situalion
docs ol arlse in the binary case described ahowve,
where a firing neuron has only one altemative state
to go to. Hence, if a neoron can have one of
several stutes and fires, the stae transition s o be
determined by the cormresponding conditional tran-
sition probabilitics, i.¢. Lhe probubility of transition
to a state g, given thai il s in slale g, where
gng: = (01,...G- 1}, We uze a Markov chain
o delermune such conditional probabilities for the
transition of the neuron o dillerent states,

21, Markey Chain. Given a set of events
SoaSi b and given o system for which these
events follow one another with known probabilities
migb) {the probability of state 8, lollowing sialc
5., lhe system mayv be represented fully by an
moxm malrix {7 (a,b)) called a transition matrix of
4 finite Markov chain.

let M be u frunsition matrix of a finite Markov
chain {i.c. a chain having a linite number of states).
The matrix M is regular i and only 30 [or some
integer L, M* has no zero entries. A finitle Markov
chain having a regular iransiiion matox is called a
regular Markov chain. Thus, a regular Markoy chain
is onc in which any of its states can exist after
some number of steps L. no matter what the starling
state 1. In other words, o regular Markov chain has
no transient state, and has a single crgedic scl with
only one cyele, The following theorem [16] plays a
sigmificant role in the convergence to the equilibrium
stale (rom any inmitial sisle.

BB Chawdhurt wrd P Kundu

Theorem 1. If M is a4 J % ] regular transition
matrix. then there exists a matrix A salisiying

(1) lmy_. M" = A.
(i) Fach row of A is composed of the same
probability veetor of e = (a0, ,0)), ©, =

S
0, and Z w, = 1, that is, A= o where £
1=l

= (11....1¥.

The mateix A is called a limiting matrix of M

The above theorem swgests that i g regular
Markov chain is wsed to determine the siates of
trangilion of liting neurons, then after a number of
steps the net will be siable,

3.2.2. Synthesis Procedure. Now we use our
moeddel equipped with a regular Markow chain w
generals @ grey-lone texturs image.

Let the starting image have unifonnly distributed
grey values from [(L1.....(;—1} al cvery pixel
which constitntes the initial configuration of the nel
Let newron A be in state g, 2, e {O1...G -1}
Ciiven a set of connection weighls of the neighbour-
ng neuwrons, we find the output P of the neuron
Ny using Egs (3 and (6).

Let M = {wlab)} be g gmiven regular transition
matrix of order (7= {7, where wiab} is Lhe con-
ditienal probabilicy of trangition Trom siale a (0 siale
boand ab e {0,1,...G |}, We randomly sclect a
state g, wilh probability g .g.). To do this, a
random number r owhich is uniformly disiributed
over [(,1] is generated. Tf

mignga— 1= r=<"wmig.g. 1
+W[H|1K*_l)- where wig,,—1)=10 {7)

then the selected stale is g

Assuming that the state of the newron N iy gy
and the states of the neighhouring neurons are the
same as belore. we find the cormresponding potential
M, and the ouipul P, using Egs {50 and (6).

WP, = P, then the next statc of ncaron A,
i chosen (o be gy otherwise, it remains in its
current staie gy In this way, the staes ol the neurons
dre changed to achieve a more stahle configuration.

The above procedure s applied iteratively to each
neuron of the net for a specified number ol dmes,
I35 seen that the total number of changes in states
of the nearons decreases with ilerslions and (he net
lerids {0 affain a stable state after some iterations.
This effect is cxpected as the chain s regular,
and it attains the limiting equilibrium according w
Theorem 1.

Thus, a variety of grey-tone texture images can
be synthesised from any randomly (unilormlyh dis-
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iribuled grey image with a given Markov chain (i.e.
a regular transiiion probability matrix) and a set of
connection weizghts. The node values (states) of the
neurons are directly used as grevy values of the
corresponding  pixels to generate the mage. The
ellects of weighty and the namber of ilerations on
the gencration of grey-tone lextre images Is seen
similar o the case of two-tone texture Images. For
example, the clustering etfect in a particular dirce
Bon iy seen to be more prominent i7 the weight in
the corresponding direction is Increased. See, tor
example, Fig. 6.

4. Textare Propagation

Suppose thut a region is covercd with synthesised
texlure and we wanl 10 cover some mare regions
around it with the same texmure. The approach of
doing so may be called iexture propagarion. It 1s
possible 1o synlthesise the wexiure separately in the
regions and append them 1o the central region. But

7

a blocky effect may be visible at the boundary of
the regions. It is desirable that the propagation is
smooth and oo ‘blocky” ellect is visible, We propose
i texture propagalion method as follows.

A gynthesised texture is characterised by the given
sl of quanbities (M W.adr), where M 0 the state
transition matrix, W is the weight vector, » is the
number ol Iteralions and & 15 the number of grey
Tevels. Now, 6 a small portion ol the exjure image
{ tgether with the set {M Wr (7] are siored, then
applying the generation algorithm, the same texmre
image of any sive can be reproduced whenever
TECERSATY.

Let £ be an moxom lexture image synthesised by
our proposed model using the given set M. Wa,G).
Suppose we wunl to propagate this image in a
parlicular direction, say. from lefl w righl sianing
from the right mth column. Ler the desired image
be of size mx N, N = m. We first fill up the N -m
columns on the right-hand side ol the image [
by uniformly distributed random grey values Trom
{01,....,G—1}. Then the generation algorithm

Fig. 6, Four levels dircctional texmires. (a] Horimomia! fexmne (wy, = 2.7, w, = 50, vy = W, = wy = (LD {0 wertical exmom (wg, =

22, wy = 50wy = oy = oy = DY (o lell dingooal exlues (wy = 2.2, wy = 300wy — vy
S0 owy o owy — we = O For each of image § - 140

wy = 12w,

wy = (L0 () right diagonel textune



Fig. 7. Infubited lestures. (o) Two levels diaponal inhilbaed texiure Oy = (016, vy = 106, w, = [05, nwy —
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203, w, = =210,

(b two levels verical and one diagonal inhibited texmre {w, = 006, w, = 38, we = =03, wy = LY, w, = =13k (o four levels
diagonal tnhibited exwree (wy, = 23w, = LA wy = L7, we = 08wy = 090 (d) eight Jevels dagonal inhibied sesione (ay = 406,
Wy o= 260w, = 104, wy, = =21, w, = =L1}L For cach image 5 = 20

described in Sect. 3 iz applied on these columns,
bt stariing from (- k}-th column wsing the set
[ M W, 7}, where & 1s a small positive integer. The
propagaled image does not show any blocky effect
along the mth column and a continuity is maintained
along the mth row. This 15 because the algorithm
starls from the (m— khh column. In o similar moan-
ner, image { can be propagated in any direction.

5. Resaolts and Discussion

We present here some examples of texfure generated
according to various settings of our model para-

melers (weights), These images are representalive of

a variety of exmire families atiributed as isotropic,
amisotropic, attraclion-repulsion, inhibition, etc. In
cach example, wp wa wy, wy TEPrescent connection
welghts corresponding to horizontal, vertical and
two diagonal direclons respectively while wy, rep-
resents the parameler o, Figures S(aj—{d) and Gla} -

{d) show a scrics of 128 = 128 amsolropic texlures
in each of which thick and noisy lines are seen in
a particular direction. The clustering in a partcular
direclion corresponds (0 a relatively greater magni-
tude of the weight associated with that dircetion. 17
no bias 1s shown to a particular directional weight, a
family of fsotropic texture images may be generaled.

If negative values are assigned 1o any owo direc-
tlional weights and positive values to other direc-
tivmal weights, inhibition results in the direclions
corresponding to the negative weights, For example,
in Tigs Taj~(d) the harizontal and vertical weights
are positive while the two diagonal weights are
negative. As a resull, clostering in the horizontal
amd verbical dircelions are scen, bl clusiering in the
diagonal directions are inhibited. Another inhibited
exture is shown in Flg, 7(b).

If all the weights are positive, a tendency io
cluster i all directions is seen, and consequently
grainy isotropic texnues result. Such textures are
shown in Fig. 8. Figures Blal-(d} are clustered
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Fig. 8. Clusterod wxlures, with {2} 2 levels (uy = L0 w, = 530, wy = 40, wy = 500wy, = 400 (h with A levels (wyy — 30, vy —
Lik, wy =02, wy =01, w, = 08k (2) with 8 lovels (wy = 50, vy = 30, wg = 4.2, uy = 44, w, = 58 () with 12 levels (w, =
3w o AR wy, = A0 wy o 44 we = 450 Tor each image 3 - 200

images with 2, 4, 8 and 12 grey levels, respectively. 30 1 1 I 13 3

As mentioned belore, a regular Markow  (ransiiion 1 16 16 &= 818 16 16

matrix i necessary to synthesise the grey level 1 1 | | | 1 1 3

textures, The transition matrix for four grey level — - - = —

textares of Fig. 6 is 16 16 8 & 16 16 16 106

; 4, %, LA S o

R S | 16 8 8 16 16 16 16 16

528 E Lobo1o3 3 3 1L

13 31 B8 16 16 16 16 16 16

& & B P13 3 03 1 1 1

L 8 16 16 16 16 16 16 &

8 & 8 &8 103 03 03 1 1 1

3 1 31 16 16 16 16 16 16 8B 8

.8 8 & 8 o3 .3 4.1 4. 3 .4

and the transition matrix for eight grey level exmires 6 o Is 18 16 & & 16
of Figs 7(d) and 8(c) is 3 03 L 1L L 1 1 3 J

L 16 16 16 16 B H 16 16
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Pig. 4. Clustering elfect with the onmber of ferations. (o) widal imoage with unifocoly distributed four grey values; (b alter five
itcrations; (o) after 20 iterations; (d) after AD jlortions (wy, — 22, 0w, = Py = 12wy = 14, w, = 1.2 and 3 = 1L

If the mumber of iterations 1s increased. the clus-
tering cllect is inercased. The varlation of clustering
wilh the number of jleratons is shown in g, 9

We present the texture propagation results in
Fig. 10, Figure [(a) is a 64 x 04 synthesised image
with 4 grey levels. This imuge has been propagated
in four dircctions — lelt, right, top, bottom — and the
propagated image of size 230 %236 s shown in
Fip. 1(b). Note that no blocky effect is seen interior
W Lhe propagaled image, and it iy as continuoos
and homogencous as the original onc.

The proposed texture synthesis approach can be
used in A wide varety ol applications. One appli-
calion concorns  realistic animation In compuater
graphics where fexture 13 rendercd on the surface
ul 312 objecis and the scene generated by graphical
means. Texture wrapping is alse wselul for deplh
eslimation in computer vision problems. Synthetic
texture has an ideal structure and its distortion due
1o object depth imaged ander ddeal illumination is
also ideal. A model of textu:-based depth esii-
mation can be properly formulated for such an ideal
situation, Moresover, our algorilhm ¢an be uscful in

Fig, . Texiure propagetion. Ga) (ven image of size 648 645
{h) propagated image of sire 256 x 256,
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lexture analysis by a synthesis approaches, Consider
the segmentation of lextare mosaic in a scene. To
evaluale a scgmentation algorithm for robusiness,
lexiures of differcnt natures can be synthesised and
presented to the algorithm.

The advaniage of the curreni technique over some
olber existing ones s that one can control he
texmre grain siec and texture dirccliomalily very
convemcnlly by changing the parameters. Alsa, the
neural net allows operations in parallel mode when
it becomes computationally very [ast. Another
advantage s the texture propagation capabilily wher-

chy onc can dynamically inercase the domain ol

testare synthesis while most existing techniques syn-
thesise texture over a fixed domain only.
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