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Abstract

Some modifications on Kohonen's self-organizing feature map are discussed o make it
suitable for finding skeletons of binary images. In Kohonen's feature map, the s=t of processors
and their neighbourhoods are fixed and do not change in the leaming process. This may pose
problems when the set of inpul vectors represents a prominent shape. The reference vectors or
weight vectors lying in zero-density areas are affected by input vectors from all the surrounding
parts of the non-zero distribution {5} Hence z shape extraction problem requires a dynamic change
in the network topology. In the present paper, o overcome the limitations of Kohonen's feature
maps, we propose & mechanism in which the set of processors and their nefghbourhoods change
adaptively during leaming, to extract the shape of a binary object in the form of a skeleton.

Kevwords: Neural net; Scif-grganization; Adaptive leanring; Binary image; Cheracter patisms; Skeleton

1, Introduction

Artificial nevral network models have been of great interest for some years in various
areas like optimization, pattern recognition, computer vision and image processing
[2,7.8,12] Several neural network models have besn proposed so far for various tasks.
Kohonen's self-organizing feature maps [6) are a particular type of neural network
model. In Kohonen's feature mapping algorithm, a set of processors, having some initial



4 A Do e el Mewrocomputing f4 (1907414

weights, is considered and the same input is fed to &l of them. The best matching
processor {the winner processor) is found and the weight vectors of this processor and
its topological netghbours are adjusted accordinply. The proeess is repeated for all the
inputs and severdl ilerations are performed unatil the weights converge. The learning
{adjustments} is unsupervised.

In Kohonen's self-organizing feamre maps, the set of processors and their neighbour-
hoods are fixed and do not change during learning, This may posz problems in many
sitluations. For example, when the set of inpur vectors represents a prominent shape, it
may easily happen that the reference vectors or weight vectors lying in zero-density
areas are affected by ioput vectors from all the surrounding parts of the non-zero
distribution [5]. This is particularly trye for & problem like shape extraction which
demands dynamic change in network topology. In the present paper, we propose, to
overcome the limitations of Kohonen's featire maps, a mechanism in which the set of
processors and their neighbourhoods change adaptively during leaming, in ovder o
extract the shape of a binary object in the form of a skeleton.

Describing structure and shape of objects is sometimes pecessary in image process-
ing, pattem recognition and computer vision [1,10,11). Character recognition systems
often requite skeletons for extracting the hasic peometrical and topological features of
the character patterns and hence, in the peesent work, such patterns have been paid
particular atteotion. Chher advaniages of skeletons are io reduce the memory space
required to store the essential strucwral information of the pattern and to simplify the
data structure requited for processing the pattern.

In the neural networks modet discussed here, the weight updation rules are similar 1o
thogse in Kohonen's self-organizing feature map. But during leaming process new
processors can be added to or old processors can be deleted from the nerwork. The
initia] topology here is simple (linear with a small number of processors) which grows
adaptively into a more complex topology to deal with complicated structures. Similar
types of dvmamic neural networks have been suggested by several anthors for vector
quantization [3], estimation of probability distributions in the plane [4], and shape
clagsification [13].

In his tnode]l Kohonen has used the term ammay of processars to represent the network.
Since in our model the processars ane tnserted /deleted duning the leaming process, we
use the term list of processors to represent the petr strociore. In the list, each node
represents a processor amd the links represent the conpections between processors. This
makes the insertion /delztion of processors meaningful and we can follow the standard
insertion /deletion algorithms gvailable in the list processing literature. In our discus-
ston, by net structure we mean 4 (linked) list of processors having linear or nenlinear
struciure.

In the next sactioh we have four subsections. Section 2.1 describes the technique for
simple patterms ke arcs. Sectiom 2.2 explains how to deal with more complicated
patterns having branchings, forks and crossings (for convenience we call them together
tree-like patterns). Section 2.3 considers patterns that contain loop structures. In all the
cases the starting structure of the network s linear only. It is the dynamic natore of the
pet that enabies it to learn the structure of the input pattern and te expand (topologically)
accordingly.
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1. The network and updation rule

Kohonen's feature mapping net is an aray of peocessers where each processor is
connected to one or more sutrounding processors and every processor stores 3 weight
vector. The map is adapted on the basis of a set of input feamre vectors. The net of
processors is nommnally representable in either cne of iwo dimensions. Dimension of the
weight vertors is the same &5 that of the input vectors which can be atbitrary. Suppose
the aray of processers under consideration is represented as {mw,, 7;..... m}. The
neighbourhood N, of a processor r; is {a, {4r, is connected to 7} which includes .
The processor o, hag a weight vector W, whose dimension is, say m. Suppose the set of
input vectors is §={P, P,,..., Py} where the dimension of each P; is also m.
Updation rule for the weight vectors iz as follows.

Suppose at tme instance ¢, P, is presented to the met and let Wilr)=
{w, (1), wio{e),.. . w, (1]} be the nearest weight vector to P, Then, the weight vectors
of the processors within the neighbourhood of , are updated in the following way:

W+ D) = W) +a(n)[P-W(n] famen, {1
where o7} is the gain term satisfying certain conditions [6].

2.1, Simple arc parterns

We shall first consider input patterns having an arc shape {e.g., character patterns ‘5",
', N, LY ete.). The struchure of these patterns is such that they can be represented
by linear structures. Shape extraction from such arc shaped pattemns consisting of planar
points has been discussed in our earlier work [9]. The present discussion deals with
binary images inspeart of planar point sets, We start with a net having a linear soructure
which is represented by a list of processors [, 7,....,m,] where 7, is connected 1o
exactly two processors 7,_, and ., {the two end-processors are connected 10 exactly
one processor each). Here the input featsre vectors are 2-dimensional coordinates of
object pixels ard hence m = 2.

Here S={P, P,...., Py} is a set of N object pizels representing 3 binary image
where P, = (x;, y,). On the basis of the pixels in 5, the weight vectors of the processors
, will be updated iteratively. Let the initia] weight vectors of 7, be (w,{0), w, (D))
Suppose the pixel P; is presented at the 1th iteration. Let

dist{ P), W, (7)) = Min[dist{ P, W.(1))]

where W.(2) is the ith weight vector at the fth iteration.
That is, wr, is the nearest processor from the pixel P. P; updates the weight vectors as
follows:

W+ 1) =W, (1} +a()[P; - W(0)] for 7 en, (2}

It this updation is continued for severgl itergtions then the weights tend to approximate
the distribution of input vectors in an orderly fashion. Tt should be noted here that the
processors do not move physically in the ordering process. It is the weight vectors that
are made to change to define the ordering.
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One presentation each of ali the points in § makes one sweep consisting of N
Iterations. After one sweep is completed, iteration for the next sweep starts again from
£, through P,. Several sweeps make ooe phase. One phase is completed when the
weight vectors of the cutrent sel of processors have converged, that is, when

[W.(ey—W(t+1)l < e forall i (3)

where € is a predetermined small positive valoe. Only at the end of a phase, are
processors inserted or deleted. That is, during the iterative process in a phase, the sat of
processors remains unchanged, though the weight vectovs of the processors keep
changing. Suppose, after the sth phase is completed, the weight vectors of the
processors are W(s),... W, (7) where n(s) is the number of processors during the
sth phase and ¢, is the 1otal number of iterations needed 10 reach the end of the sth
phase. If now, ar the end of a phase, the weight vectars of two neighbouring processors
became very close, the processors ane merged. If their weight vectors are far apart, a
processor 15 mnaettad batween thermn,

Mare formally, if

IVA() = W)= Min  1W(1) =W, (1)l <, )

then the two processors o, and m,, | are merged and the new processor has the weight
vector as [W, (s} + W, (¢ )]/2. If, on the other hand,
IWie) = Wil Max () =W, (631> 5, (5)
Lo Y ¥ el

ther coe processor is insemted between 1, and ., and the new processor has the
weight vector as [W(s)+ W, (7.)]/2. 8, and &, are two predetermined positive
quantities such that &, < ..

After the insertion and merging of processors, the next phase stars with the new set
of processors. The process contipues until, at the end of a phase,

Gz |Win-W, (s} =8 forali (6)
The condition {6) means that the weight vectors of no two neighbouring processors are
either too close or tog far apart. The processors (on the basis of their weight vectors) at
this stage pive an approximate global shape of the input patern. From a property of the
Kohonen's feature map, this shape approximation does not depend on the starting weight
vectors of the processors.

The Algorithm
Step 1. [Initialization)
Ininalize ¢ =1}

Initialize the weipght vectors W), i=1,2,..., n to random values.
Step 2. [Sweepl
Feor all input patterns £;, j=1,2,..., N
Update weight vectors according to
rule (2).
Step 3: [Phase]

If condition (3) is not true then goto Step 2.
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Step 4: Merge or insert according to condition (4) or {(5).
Step 5: If condition (€) is not true goto Step 2.
Step 6: Stop.

2.2, Tree-like patierns

In this subsection we deal with patierns that have branchings, forks or crossings (now
onwards we shall call these three terms by a single term juwmchwres). For exumple,
character patterns ‘¥’ *T", ‘X" bave such properties. It can be seen that a linear
structure for the processors as mentioned earlier will not work for such patterns because
a processor representing a juncture in the input pattern shouki have more than two
peighbours. Thus we need to have 4 nonlinear net structure. That is, in the oet, a
processor can have more than bwo peighbours. In the case of arc patterns the namber of
neighbours (call it degree of the processor) for each processor was known and was fixed
during the learning process. But now a processor (representing a juncture in the pattern)
can have a variable number of oeighbours and the number is unknown. 5o the major
issue in this sutsection is how we can adapl the degree of each processor while leaming
the shape of the pattern,

Let us consider a typical tree-like pattern, e.g. the pettern ‘T or 'Y, As initially we
do not have any topological information of the pattern, we start with a linear net. The
patten has ope juncture from which there are three branchings. After a number of
iterations the net will be arranged in such a way that the two ends of the net will tend to
wo of the three ends of the pattern and some of the non-end processors will tend to the
third end. Thus a portion of the net will form 2 spike shape (Figs. 1(a}, (c)). Hence some
pracessor will foro a sigoificantly smell acute anple with its two neighbours. This
happens because by properties of Kohonen's feature map, as mentioned earlier, the net

b : b i
= =
|
L ] L
[T [k
——- - e R
%
| I
|
Ll el

Fig, 1. Twn patterns *T™ and ‘F . (a) and (c): the nct forms » spike 1o indicate obe of the branchings, (5} and
(dX & proveseor £f with higher deyres s Tmsertid 10 arcommodai the branching.
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will span the entire range of inpul pattern space and will try 1o be within the patiern. At
the same time it will preserve the topology of the pattem. Suppose a processor X forms
a sigpificantly smail acute engle {decided on the basis of some threshold) with
neighbouring processors ¥ and Z. This suggests that, in the paitern, there is a funciure
from which there is another branching towards X. Hence we take the following actions
to accommadate the branching when the processor X forms a smatl acute angle with s
peighbours ¥ and Z (Figs. 1(b), (d)}:

{a} Create a new processor & in the middle of ¥ and Z.

{b) Deiete the link between X, ¥ and the tink between X, Z.

(c) Establish links between U/, X, between I/, ¥ and between U, Z.

Thos we creats a new processor I7 with a higher degree which comespends to a juncture
in the pattem. The same actions are taken for all the processors forming a significantly
small aeute angle. These actions are taken afier a phase is complete, to adapt the
topology and then the subsequent phases are continued to epable the net to approach
towards a closer approXimation of the shape of the pattern. For insertion and deletion of
processors and for convergence of the algorithm, similar principles used in the case of
arc patterns are followed here, For this the condifions 4, 5 and 6 are medified 1o
acconmodate all possible pairs of neighbouting processors as follows:

If [ Wy () —Welr)ll= : Mi: : IHWJ( ) = W) <5, (7
r w',al I;J;I'I,-—;r,}

then the two processors 7, and -+, aré merged and the new processor has the weight
vector as [W,(z,) + W,.(1,)] /2. If, on the other hand,

IRn) = Wolt)lim - Max WG] =Weln) 828, (%)
=, -.mg5l—
T £M— )]
than one processor is insertad between o, and m, and the pew processor has the weight
vector as [W{r.) + W,{r,}]/2.
The next phase starts with the new set of processors after insertion and merging. The
process contnues uniil, at the end of & phase,
S, = IwWi(r) —W.() |l = & forall i and 7, &N, — {7} (%)

2.3, Parterns with loops

The techniques discussed so far will not work for patterns that contain loops (e.g.,
character patterns “A', “8”, "D, 'P') Let us look &t pattern *A’. Our algorithm can
zenerate, on the bagis of the principles discussed in 3ection 2.2, an incomplete skeleton
as shown in Fig. 3(d). We are yet to completa the loop by means of bridging the gap
{berween processors E and F in Fig. 3(d)). This section proposes a method of doing
this. In fact, the asymptotic values of the weight vectors constitute some kind of vector
quantization [6]. In particular, the distance (Euclidean) measure and the updation rules as
considered in our algorithm, induge a partiion {5} of the input pattern space specified
as

5, = [P, € S\dist( P, W,) < dist(;, W) for all &}
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The above partition can be looked upon as 2 Voronoi tessailation which, in the
present simation, means partition of the input pattem space into regions within each of
which al} input vectors have the same weipht vector a5 their nearest one. Therefore each
§, is associated with a singie processor. Hence the input pattern vectors can be easily
labelled according to the §, 1o which it belongs. In other words, each input vecior is
given a label according to its nearest processar. Such input labelling bas also been used
by Sabourin and Mitiche [13].

Drefinition. When the input pattern is a binary image, two processors ; and 7 (i # j}
are #4id to be adiacent if there exists ar least one pair of cbject pixels PE S, and
Q € §; such that P and © are B-neighbours of each other.

Thus after convergence (let us call it inital convergence} as mentidned in Section 2.1
we lahe] the input vectors as mentioned above and then check for #ach end processor

N
g
i

ey rel)

Fig. 2. Differsnt stages of the et for the pattern 'T'. (2} initial net; (b) afier 28 sweeps; (c) after 57 swecps,
(3} after 64 gwoeps, and (o) after 105 sweeps.
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{(having exactly one neighbouring processor} whether it s adjacent to any processor
other than its peighbour. If yes, then introduce a link between thess (wo processors. In
Fig. 3(d), processor E is adjacent to processor # and they are not neighbours to each
other. So, they are made connected and become neighbours (Fig, 3{e)). After this we
contioue the algorithm until the final convergence is reached.

3, Results and conclusions

The present paper discusses how o change adaptively the neighbourhoods of
Echonen's self-organizing newral networks model 1o get an appropriate model for shape
extraction of binary images. To achieve the adaptibility of the neighbourhoods we start
with 2 nel having the simplest possible structure and a small oumber of processors. Such
4 strucmre can deal with arc patterns only, Next we explain how o deal with more
complicated tree-like patterns. Subsequently patterns that contain loop struchires are
congidarad, In all these cases, in the initial ner, each processor (except the two end ones)

A
3 {A

AA

[ o

e h

e

Fig. 3. Differont siages of the net for the pattorn *4° (a) initial net {b) afer 57 sweeps; () afier 68 sweeps (d)
afier 135 sweeps, and (e} after 19] sweeps.



A Datta et el F Newrocompring 14 (19970 3-14 11

[t [

o |-
la I
RN o
S -._E-}
R .._.__. i l

e (4

Fig. 4. Diffcrent stages of the net for cursive padems *g* and “y'. (a) after 124 sweeps: (b) after 182 sweeps;
f<) afier 212 sweeps; (d) after 102 sweeps; () afier 162 sweeps; {f) afer 219 sweeps;

bas coly two meighbours. During the self-organizing process some of the processors
acquites more than wo neighbours, if necessary, and thos adapt their reighbourheoods
dynamically on the basis of the input. Thus the net not only grows in size but also the
neighbourhoods of the processors can change according to the local topology of the
inpul pattern.

The algorithm descnbed in the paper haz been tested on a number of character
patterns and some of them are presemted in Figs. 2-5 Figs. 2-4 illustrate the
convergence of the net to the final shape giving intermediate configuratons of the net.
Fig. 5 shows only the initial and final nets. In the figures, a circle represents a processor
and a line jJoins two cirgles if the corrsponding processors are neighbours to each other.
Ir all the inpot patterns the initial net 1% Laken to be the same. The value of initial o« was
0.01 and o{r}=0.01/[1 + ¢/1000].

It is to be noted that the parameters §, and &, cootrof the average distance between
two neiphbouring processors. Higher valves of §, and &, mesn less ouwmber of
processors and lower values of &, and &, mean more nomber of processors, Experimen-
tal results have shown that, as it can be conjectured, small & and &; cause a zigzag
skeleton (Figs. 6{a), (b)) and large &, and &, produce 4 skeleton that may not totally lie
within the object (Fig. 6(f)). It can be seen that 8, =35, 8, = 10 {Fig. 6lc})) or &, = &,
8, = 12 (Fig. 6(d)} is the right choice. Other choices of &, and &§; are either oo small
or too high for the piven pattetn. The proper values of &, and &, depend om the
thickness and curvature of the pattem. The parameters 5, and &,, in the present work,
are chosen manuaily and their optimum values are judged subjectively, Furiher work o
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Fig. 5. Initial and final stages of the et for the pattetns * X zna 'Y, {a) inital oot (b) after 145 sweeps fr
X {c} initial ner; {d) afeer 113 sweeps for 'F ',

N Y
_”I i ¥ i S
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Fig. 6. For different cheices of &, and #; the ncl gives diffcrent shapes. () 8, =3, &, =& (b &, -4,
By=H () & =5, By =t {d) 8 ~6, E =12 () 8 =7 & =14 § =4 =16
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antomatically adapt the optirnom or near eptiomim values of these parameters is an issoe
of future research.

The skeletomization technique discussed here can be extended for implementation for
gray level images. The extension can be done in the following way. Suppose for a gray
level pattern, g,, i8 the gray value of the pixel at the rth row and sth column. Then the
updation rule replacing Eq. {2) will be

W (14 1) =W,(¢) +a()| P~ Win]e.. formem,

Mgltiplication by g,, means that the amount of updation will be more for pixels with
high gray level values and less for pixels with Jow gray level values. The gray level
extensiong for arc and wee-like patterns seem to be straightforward. But for loop patterns
the extension may not be trivial because the definition of adjacency is not well defined
in that case.

Thete are many oon-neural algorithms to find skeletons of binary images. However,
reoral approach to skeletonization has mamy advantages over noo-newral methods,
Skeletonization being » time consuming process requires massive parallelism for faster
computation which can be achieved in neural networks. [n non-neural methed, 20> array
image processars can be used for fast processing, But a large pumber of processors in
that case may remuin idle duting processing. In non-neural methods, output skeletons
are in many cases rotation-dependent while in the present neural method the ootput
skeleton is rotation-independent. The pon-nenrs] methods {for example, template match-
ing methods) are usuelly sensitive to presence of boundary noise in the input pattern
while our neural method, as can be seen, is robust o such noise. The non-neural
methods ae not generally extendable to gray Jevel images while the present oeiral
method is expendable.
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