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Ahgiract—A minimul spanming toee (MST) based clostoring wehmigue aleny, with its teoretical formualation is
preseated in this paper The: proposed Llechnigque is compared with Boyes Classalier awd it 15 shown teoreticalty
that the clustering techniqoe, although an unsepervisad one, approaches the performaence of Bayes Classifier
unieber & condiiion, as the smmber of rample peints Dow csach class Wcreases. Expormenial el wilh wany
synthetic data sets in 2-03 amd 3D validate the theoretical prediction.
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1. INTRODUCTION

Pattern recogniton mlers o the classification or de
scription of objects or patierns ! ¥ There are essentially
two basic types of lechmigues in Pattern recognition:
Superviscd and Unsupervised. Supervised pattern recog-
nition techmiyuey are used For the cases where a priori
informatiom for cach class under consideration is avail-
ablc. Here (he problem is to assign labels to overy pualicm
vector in the whole featore space. Bayes classifier is a
fumdamenial classilier in supervised patbcm roeognition.
It provides the minimal misclassification probability
amonyg all possible partitions of the whole feature space
imio [he given numnber of classes. It can be implemented
cakily provided class conditional densities and a prior
prbabilities of the classcs arc known, Rul geoerally,
these are not known. Usoally resesrchers iry o estimate 2
priosi probabilitics and densilics oo 2 training sample
get of patterns and these traiming sample patterns are
assumed to represent the classes property ™ A training
sample set of patterns consists of Gmilely many patterns
where a class label is alinched Lo each pattern in that sct.

In some applications, only » set of training pamerns of
unknown classification may be available and the user is
supposcd 1o providke a Tabel 1o each pattern. Chustoring
technigques are unsapervised techmiques which attempt o
solve the prodlem by finding sooctores 1o the daly vl and
hus partition it into & chosters where & may be known or
wnkivwwn U Several clustering wechmigques ure available
in literatuce and they vse different ohjective fanciions for
oplimization o result Tn difterent partitions of the daty
sel Thus different clostering tcchmiques, many Gmmes,
resnlt in different clusicr configurations and thos making
it imperatve o validale clusiering lechniquesfelusters.
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There are several cluster validation technigues existing in
(he litzratre

A probable way of validation is to compare: the clusters
ohtained with the classcs obtuwined o the Bayes clas-
sifier, if it is possible. If such a comparison is possible,
then it would not ooly validate the clusters b also
provide an objective justification for the: corresponding,
clasicring technique. Uhenally such a comparison is not
atrernpted, bocavse cluslering lechnigues basicatly ex-
plore the data for possible clusiers whereas supervised
classification {cchnigues wlilize either the taining sam-
ple set or the density fanctions to result in “good”
classifeation, T the Hlerainee, comparison berween sn-
pervised amd unsupervised techmigues has oot been at-
icmpie], becauss the Tnmitions and methodologics for
these two 1ypes of techniques are ditferent. In this article,
wi i i whow hat a common meeting ground for these
two lectmigques does exist and a comparison is foasible
under soch a simation. The mathematical detadls poe-
semied dn dtas paper will show how soch & companson
betwesn supervised and unsupervised technigues is pos-
sihle. In Fact, in this article a clostering schome 1s
presented and it has been shown theoretically that the
resulling cluster boundaries wonld provide the Bayes
decision boundaries as the number of sample points go o
infinity under a “smeth™ ormdition, where the nmmber
of featnres is greater than or equal o 2.

In supervised classification, the number of classes
(mepresenied by K is koown, whereas in unsuperviscd
techmigoes, the number of clusters may not be known.
The proposcd cluslcning lechmyee linds e number of
clusters aulomatically {ie. the mamber of clusters s not
un inpul o the alporithm). It iz shown mathemaiically
that as the number of obaervations (r) goes 0 infimity, the
number of vhlned clusters tend to the number of classcs
and the boundaries of the chsters tend to the cormespond-
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ing Bayes decision bovndarics between the classes. The
organizalion of lhis waticle is as follows. Section 2 pro-
vides the mathematical preliminanics associated with the
article. Saeclion 3 preswmis the mathcmatical formulation
of the problem:. The proposed clustering techmigue is then
depicted in Section 4. Taperimenial resulls with scveral
synthetic data sels in 2-1 amd 3D arc proscoted in
Section 3. Concluding cerarks are incorpotated in See-
tion .

I MATHEMATICAL FRELIMINARIES

The: bagie problem attempted in this paper is pattern
clasym fhcation, In order to provide a solution one needs o
define the: phrase “Pattcrn Class™ property. ‘The defini-
tiom of pattem class is given below.

21, Pattern clusy

In most of the real lile problems, pullem classcs e
bounded. Thus the patiern classes considernsd here ame
also bowoded. A formeal definition of pattern class in &Y is
given below using topological and measore theoretic
COmCCPLE.

Definition 1. Asct A C KY iz said 1o be a pattern class™?
i

(i) A is path connected and compact,

(i} cl{Imi{AY) = A, [o] means closure, 1nt means in-
leTioT]

(m) TnifA) ix path comeecicd and

{iv) pe(fid) = 0 where f4 = 4 Ncl{A®) and ks the
Ledessymue rueasime on i

The relevance of the properties (-0v} of Defmtion 1
is provided in meferenoe (123, This defimition has been
nsed in several ofher anticles'™ " tou. Tet & — {4 A
satisfTes Dedinition | ]. 3 is the collecton ol a1l classes
RY. Any A © @ is referred 1o as the patiern class. Note
that & iz the mwmber of features under commdisiiom smd
the valoe of & is taken 4o be grealer than or equal o 2.

2.2, Clasy condirional density fimction

Defimiion 2. Let A & 5 be a pattom clazs. A fonction #
- BY — [0, 00) s said 1o be nclass conditional density
fanction oh A il

@ [.flx)dz > 0 YC, € apen, C C A,

) f ) de—1,

{iii) fis continmous on A,

(ivy fix) = 0 Ve e 4 and

(¥) fla) — 0 vr e A,

Explananon: In the above definition. (ii} is the nsmal
propery associated with any density fimeton. The prop-
crty (i} is nevessary since, if the probability of an open sel
C A5 poro then the class is nothing but A i O instead
of A Propezties (i) smd (v) io (be above delimton arc
nsoal properties associaled with density furction. Prop-
crty (iv) is A smingent propenty assumed oa the densicy
fumciiom. Many densily [uncions provide xoro densitics

N. CHOWDIUEY and C. A. MURTHY

at the houndary poimts of the set A, Thus fi{x} = 0,
% i Ini{A} is » moTe appropriatc property associated
with densily [woction, However in 4 remark made in
Section 3, iLhas been sigicd that the results in this amicle
would hold in case of “f{x) = 0, ¥x & Tot{A}" also. For
mathematical simplicily, the prpery (1v) 15 ncluded in
Definition 2.

2.3 Mixiure demyity fumction

Let Ay, Az, ... Ag he (he K pattern classes (as defined
in Dehinition 1) and py, o, ..., pg be the conesponding
class condftional densifies (a5 deloed in Definition 2).
Let Py, P, Pr represent the a prieri probabilitics of
the classes Ay, Aq, .., Ax respeclively. Tet 4 = P < 1,
Wi—1...., K. Note that 377 , P; — 1. The mixture den-

sity function, represented by plx) @5 defined as
¥
Pix) = Pipilx).
—1

Nente. The above deltmtion 1% the standard definttion of a
mixmre density (unction

24 Beyes classifier

Node that A, ={x:pix} >0} ¥Wi—12___ K
whure A; v the #b class,

Tt B ={x:0<pix}
V{I—EPEJ...;K},

let B ={x< (B URU-—-UR )% : 0= Ppix),
Pirile) = Papgleh Vi £ 1%, i — 2,3, K,

Let BY = Tmi(®), Wi — 1,2, ... K.

it is assumed i thix artcle thel esch B amd Bf* A
connecied set. In most of ihe PR problems whene the
muuber of featores N = 2, this assmmplion lalds. The
implication of this assumpdion will e clear in the Taler
sections. Observe that 144, — LS. Hera A; and R; denole
the repions corresponding to the actmal ih class 2nd the
Bayes ith class respectively. [t may also e noted thal
£ Ui £ is a disconnocted set for all § 7 4.

MNote that B; is the acceptance region for the class §
obtaincd using the Bayes classifier. ‘These regions pro-
vide the minimal Bayes error probability e which is given
by

Pipix) = Pl

K
e =
1

. P [p.—(x:l,

S

2.5, Bayes decision Inundary

Ceperally  Bayes decision boondary  befweesn  the
classcs § and § (7 # f) is given by J; where

By — Lv - Paplx) — Pwilx} = Papgla), WA 4}

Yor the sake of convenience, the set [T; is divided here
inlo bwo parts @y and G, where

fgr = {x = {0 = Ppi(xi = Pipix) = Pipe(x, Wi 6}
and

B —ix : 0= #px) = Ppdx) = 2plx), W+ 64}
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Mote that Hin ={x : Pyp(x) =0, Wi = 1,2, . KL
Rince # =0, W1=1,2,... K and @iz} =0, ¥, and
Wi=1,2,...,K Infact Jp = {x - plx} = 0}. We shall
he congidering 3 as he BPayes decision houndary
berween the classcs i and j in this article. The set G
has boen bandled separaiely in this aticle.

2.0, Random vectors

Let Xy,X5,.... %, bc indepemdent and identically
distributcd random veelors folluwing the density func-
tion p{x) dcfincd above, In other wonds, there is a set 12
such thal

:0D-Rf¥vi=12..,m...

Thus for any &, §X{w), Xz{uw), ..., X,{w)} is the given
data sei of A observations, where w € 12, In other words, a
given ¢ma  set  can be  roproscoivd by
Salew) = [ X)), Xa{w), ... X (0]} Note that 8, is a
randoin set in the sensc that for a given value of a2,
one can get several 8 {w)s depending on the valoes the
random vectors take. Let ¥y, Fr, ..., Fo be independent
and identically distributcd random vectors such that

y. — 1 i X;is rnisclassilied according to Bayes mie,
T 0 otherwise.

Then the average nmmber of masclassihod points inoa
given sample of size nis 1 377 | ¥i. From stmong law of
large numbers we got

1 n

E Y, —+ e ac.usn— o0
n

=1

Ir (THTI:I" ':W} represent any other Pﬂfﬁﬁm of the
whole set, spch that -; is the region corresponding to class
i, then te erfor probability corrcsponding to this puri-
ot is

K
yor f pilx) dx
i—1 .l“:-'-
amd il is always greater than o eqoal to e for all such
partitions {71, 72, ---, )

It a clastering on Sp{w) has provided K, () clusters
(K, may he preater than &, eqoal 1o £ of less than X). Let
he  Ku{w) chsters be mepresemted by Sy{w)
o b 20 Rl

Let Cpplw) =Sy} B, ¥Wi=1,...,K and
Wi—= 1,2, .. K lw). The chuser 5,0} is assumed o
cotrespond to the class § i #Cy (B (W), Ve £
(whcrc # denotcy the number of pomix). T case of a G,
the decision is takcn arbitrarily.

A FORMULATEON OF THE FROBLEM

We would like to find a clustering technique which
provides the Bayes classificr. In other words, ihe panation
of the data sct should comespond 10 Bayes classes. Since
the: mumher of cluslers is unknown, a clustering techniqoe
may nol resnlt in K closters. The oomber of clnsters
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obtaincd may be greater than X or less than K. As the
nmmber of puinls 7 — oo, the toniber of clusters ob-
fained meed to go wards K as well as the obtained
clusters should comespond o the Bayes classes. Motc
that, no prior knowledye on the density of the classes is
aviilable. An approximatins of any density function may
b taken to be ihe average nuinber ol sample points in a
disk, This apprisimation imay he obtzined if the radivs of
the dhsk s “silaldly™ chosen. Observe that, from the
sarople, we can at most approximate the mixiore density
Minciion, bl pot the class conditional density fimciaons.
Thns the approximation of the mixtere density fumclion
need to be azcd to get the Bayves clavees. A meaning Tor
the “mixture densities providing the Bayes classes™ is
that the *vallcy poimts™ 1n the mixtme denkty Tonction
shonld cormspond to Bayes decisiom houndaries beiween
the classcs. Im fact, there mraeds o he a relatioaship
between the mixtore density [unction and the Bayes
classifier If a clogicring method shoold reselt in Bayes
classificr.

A way of defining valley poinls in a density fonction,
an assumpliom wlalmg o vlley points are stated in
Section 3.1,

3.1 Valley poinis

A point xy € B is said to be a valley point of p(x} if
3r > 0, and y1,¥» & BV such tha

T I (0 < & = 1) soch hat 3y — Iy 4+ (1 - fp)yes
(i) Wit dy, O0<I<1, Wx=Iy (1 [}y and

%r < r, cither
LR f ply)dy < [ plyidy {a)

vz ¥HLn]
oar
[ worer—o, ®)
viela,r ]

where vix,r) is disk of madivs r and cooter st x

Let ¥y be the sctof all xy € &Y satisfying (x) and V2 be
the zet of all xy = BY satisfying (b). Tel ¥V = VUV,
then Vs said to be the scl of mlf valley poinls of pix} in
BY,

Remarks. (1) The peneral idea regarding valley point
a3 € R of afonction ofx) is thai «(x) =kes highor valucs
than r{xg) in a neighbourhood of x;. Mote that neigh-
hourheod of a point in K is an interval. An cxtension of
the concept “interval” to & is the collcetion of points on
a line segment. The sct ¥ i3 constrocizd osmg the above
mentoned gencralization of the “Interval ™. The comdi-
tion {a) in the definition of ¥; reflects the concept of
“wvalley points™ with the help of a line segmeni. Nole
that, if no sech lne segment exists Tor a point x ¢ RY,
then il is nut a valley point inkitively too. Observe that
the density of a point Iin ¥y is greater than zero.

{2) Note that there may cxist many “vallecy pomts™ for
which the demsily is wemo. Thess points are included in V2
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[reter to condition {h)]. Ta fact, no poant in V5 can belong
to any Bayes class.

{3) Mote that the constraint (a), stated above, 15 satis-
fied by a density fanction & <+ f(xg) < flx), sinee fis
continuous.

‘Ihe main assumption regarding the valley poanis 13
stated below.

Assumption (A1). Let 88; = B; N BC and Iy — 5B, 1 88
for all i # . We assume that

|t =W
o

Note. The above assmnption states thal the Rayes hound-
ary between any two classes muost belong w the valley
region as defincd above. This assomption does nol con-
tradict the usual real life sitoations where we [ind the
number of representative samples from both classes to he
comparatively less at the boundary hetween the two
clasecs than that of any other region of any individual
Clase itscll, If wi do oot have valley remions at the
boumndary between any two classes of a given data set,
the propose] iechmiges will ool be gble w find those
classes. Mote alag that il the bovndary remion cormesponds
to high density repions, a clustening lechnigue senemully
canmi divide the regions in two cluslers, since cluslenng
techniquoes wswally adempld. o fnd the high deosity
regions of a given sample and mark cach such egion
as a core of a cluster. This assumption 15 fermed sy
smooth asswmplion since 1L assmnes smooth Irnsiton
of the mixture density function from one class to another
class in the feamre space.

From now onwards, roughoul this atticle we one
going to assame that the Assumption (Al) staled ahove
will b satisfied by the mixture density fanction. The
following results may then be derived under the asswnp-
ton.

Result 1. x e Vy = of LE B

FProvof,
xC WV = plx) =0 = HUd = U B

Rewult 2. TF x = 1, then x 15 a point on the Bayes decision
boundary belween Iwo classcs,

Proof. x € ¥) = 3, j such that x & U

= x € &8 N E8; = x € 4B, and x € &8,

4 ;,ﬁj[l:::l — P.;{)_,'{J::] = P_,lf.l',ll:.f.:], Il

= x 1% 4 point on the Bayes decision boundary between
ith and jth classes.

Mote that the converse is also troe, i.e. if v is a point on
the Tayes decision boundary betweon two classcs, then
X O V]_.

Resuft 3. 1 x = (Vi U ngfi thco x belongs to cxactly onc
particular Bayes class and x does nod helong o hoondary
of any two classes.
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quﬁ ]f.'lf'p"’] Ve = x lJl-K_-l ;. II]EVE

=+ Ji such that p:(x} = 0 and there cannot exist £ and
i+ soch that 1-',;1;:,-1{1) =P,—_.|}J‘,:2{.I_:| -3 P;p;{.'c}, Wi ?“I' Iy, 2
{from Result 2)

= There cxist cxactly ome 1§ such that
Mux, Pipy(x) — Pipi(x), i thore cxists cxactly one i
such that x belongs to the ith class and x cannot belong
o the bowndary of any bwo classes,

Resili 4 If Uiy — ¢, then B; U B is a discormected sel.

Froof. We need to show that B; 1) 5 is a disconmected sel.
Note that 5; and B; are connected sets. Thus it nees o be
proved that either B; 1 8; = ¢ or ;7 B — . We shall
show below thar B; 11 8; — ¢

Suppose B; 1 8; 7 ¢n Let i = j. Letx © B N By Then
0 = Ppnlx) — Papelx) = Pyni2), W8 £ 07 Thal is, £ he-
longs to the decision boundary between classes § and .

This implies that x € 48; N 48;, which implies that
x & Uiy, This is a comtradiction. Uhos B 11 8 — .

CHrmerventtom. Trom the above resules on valley points, it is
clear that, il a method finds ¥ UV, then the Bayes
classes  may  be  wsolomyicully  obtned, sinee
(ViU W)Y = UE BY amd B L BY is a disconnected set
for all i 7 §. The statement of the pectdem from the above
results is stated helow.

Siatement of the profdem. Here, imbially, a set ol valley
points  Vplw)  of  the  given  daia mel
Eofed = { X1 (), Ko, . o Xglw) ) need Do be desfined
and foond., It needs to be shown that V{w) tends to
ViUV, as n — 2o, The clustering technigue needs to
find cither ¥, (i) or V5 (w). The number of disconnected
sk i V¥ {eo) provide the number of classes as a — oo
and every conmected set comrespond to a Bayes class as
n — X

4. THE FROPOSED CLUSTERING TECHNIQUE AND ITS
CONVERGENCE

IL 15 shown in the previgus seclion that the valley
regions in the mixmre densily funcbon wall give nise
to Hayes classes under Assampiion Al Thus o lechangus
has been sated helow which finds the valley regions in
the given data. "This meithod hasically atilizes minimat
spanning tree of the data set where the edpe weight is
taken to be the Enclidian distance between the corre-
sponding nodcs,

The clustering techoique psesented in this paper ix
based on finding the valley repions of the feature space.
Vulley regtoms ame thowe regions whore the deosity (the
murmher of poinls within a gven aren in 2-TF or widhin s
given volume in 3-D) of data peints is the lowest com-
parcd to that of its neighboring regions. Here the densicy
of any poinl. x 15 assumed b be the oumber of datay peints
present in an open disc of radius » around x Winimal
Spanning Tree (MST) of the data points is used to
caleulale the value of ragnd Tuchidean interpoint distance
is taken as the edpe weight of the MS5T. The square-rool
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of (he averape edge weight is taken to be equal to r. If we
regmesent the som of the ol weighl of minimal span-
ning tree of 8, (w) by [, then it can be noted that £, — oo
ae. asn — oo and (L,/r) — 0in probability.*'™ Buinote
that the property “f, — oo ae. asn — 00" docs mot bold
gowd foxr & — |. Becamse in soch a case, the mesimom
possible value of I, would be equal to the length of the
class nlerval. TTence the clustering technique presenied
in this paper is valid for & =2

In this work we have taken » to be egual o
By = (Tn/m)"™ where W denotes the dimensiomality of
the dala set. Note that k, is & fuoctiom of inlerpoint
islznces in Solw) as well as the wmber of points re. It
may also be noted that {!’..,;’n]l"r"" has heen considered in
odher works™ "™ ton,

This f, is wscd for Gnding the rading of the disk and
conscquemdy the valley regions of the data set. In fact, the
proposed technique [nds the valley points in the data sct
by aping the above definition of valley points of a density
function by using MST. We shall be considering squanes
aroumd cach poimil Ineslead of disks. This minor altcration
is only for the purpese of ease in implementation,
Theoretically, there is no difference between considering
sguarcs wml considering rectanples.

Lel 8w = [ X (), Xafw), ... X )} or € 51 That
in, the given et of sample poines s represented by S (o).
We shall sometimes reter it as 5, for the sake ol sim-
plicity. .26 for a pointx —= (x;, 3, . xp) © BY and fora
positive real number r,

”{;E: J‘J _{l:.‘:11.1!"?-:l"':|}'i'~r:]‘l - ".Er' .!"l'" E--r]'-

wx, 7] iz nothing bul an N-dimensional square with
ceoter al % oamd smide  lempth 2x Lo
¥z, r)=H#(5, N vix, r). That is, £B{x, r] denotes the num-
ber of poinls common & v, ) and S, Thus Ddx bl
depotes the number of points common to ¥x, i, ) and 5,
It hax been shown in reference (18) that

D{x, ha}
n.l’r:"IN

— piz)

under certyin mild conditions. We are moing to vse this
result repeaicdly in dhis section. Mote that the conditions
umdler which the above statement is valid have nat heen
shated o this article explicitly in the formulatiom of the
density function (Section 2), becavse these comditions
are not directly related to the muin philowophy of the
paper. It is also to be notod that most of the density
lunctinns satisfy thosc conditions.

Px, by iswsed below in the definition of yalley points
of a data sct 5, The defmiliom ix given here.

Iefinition 3. Let Dix,r} be the mumber of poimry
in the data set which fall in a sguare of side length
2r with cenier ul x. Then a point 4 € BY is sad to
be a valley point of the data sct 8, if Jyi,y: € B such
that

(1) n, 0 = &y < 1) such that xp = fyy + (1 — g

(i) W7y, U 0= 1 amed Wx = by + {1 - ¥z such
that either =< £3(xn, Ry < Px, by} or D, k) == O
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Lt ¥V, he the set of all such valley points for a given &,,.
Tt wall be shown below that the proposed method wonld
give rige o the Bayes classifier as the number of sample
ponis poes to infinity

We have V© = UE | B Note that B is a connected set
foralti — 1,2,..., K wnd B L1 B is disconnected for all
i #j and hence the commected components of V© arc
BB, . B We ncod to show that V, » ViU V.

Proof. (i) Let x £ 8Y be such that plx) — 0.

3r. == O such that plvidy =0,
pewiEa)
Which ioplies hat x o ¥a. Mow

[ plyldy — 0, V<

yEKIE)

YV < re

Which implics that for sullicienily large a, D{x, b} — 0,
since fiy, — 0 a.e. = x € ¥, for sufficiently larpe

Thus it pix) — Dihem x & ¥, [or sulficiently larpe r <
X e Vo

fii1 Lot 3y & BY b such that plag) = 0. Let xy = ¥,
for sufficiently large r, lhen there exists g,x < Y,
0 < iy < £ and # = O soch that

(a) x=Hhx, + (| — fyleg and

b YL b, 0021 and Vg — g + {1 — Do

This implics thai Dxg, ) < 2{x, k) for sefficiently
large n

Hl:.rqﬂ - 'u‘—l:x’ h"’}
nh2R T Rl
= plap) < p(x)  (from reference (18]]
= xm eV

for zufficiently lanee n.

{ii) Let xp= V), then Jx),m < BY, 0 < fy < { and
3r, = 0 such that

{a} x = fary + {1 — I}z and

B W Ll 0T 1 and W — dxy |- (1 —fxz

== plap) < pix)

Pleo bu) _ Dl )
WBTZN RN
|from reference [[8)]
= Map, ) < Dix f,) for sufficicotly Taoge: »

= x < ¥, for suificiently large n.

= fon sufficiently large A

Thus il pixg) = 0 then x © V) & &y © V, Tor soffi
cienly larpe n. Combining (§)-(ili), it has been shown
abwwve that ¥V, — ¥y L Vo a8 p = oo, Note that simmlar
results can be proved if property (iv) of Definition 2 is
modilfed in the following way:

fix) = O%x  Te(A).

5 IMPLEMENTATION DETAILS AND RESTLTS

TLhas been already stated that the clustering technigue
presented In this paper is bascd om fnding the valley
regions of the feature space. Valley regions are thoss
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regions where the densiiy [the number of points within a
given ares in 2-13 (Within a given valume in 3-T3)] of data
poinis is the lowest compared to that of its nerghboring
mcgions. & possible of way of compuoting: the Tocsl
densities of data poinls & to employ open disk (0 case
of i#*) or sphere of radias » (in case of B2). The number of
dara points that tall within such a disk or splene cm b
assopmed to be the density of the region oocupied Iy thai
disk or sphere. Another way of compming the Tocal
iensities of data poinds s te use squarcs {cubes in 3-
D} of side f. For simplichy of computation, in all the
experments for this work, we bave considered squares
{oubesx in 3-E¥) of sude Ry, (hoovghoo! the myven fosmm
space, where minmmal spanmng ree (MS1) of the data
prits is owed W deide the walee of By, The Emsity
associated with any such squan: is laken o be the mmmber
of dala prrinks Fulling within that sgquarc. A sprare (cube
in 31 may have » muximum ovmber of cight squancs
{26 cubes in 3-T7) in ils nesghhorhood.

A square T (b0 be teroed ss mxel This asammed o bein
valley region if its density is less than the densily of its
nelghboring pixels T;y, T for ol teasl one @, whens | varies
from 1 to 4. Graphically, Ty, F1z, T2, T22. Tsi. T3, Tans
T3z and ¥ are shown ek {I5n. 1).

Ir other words, only foar lines are considered for 2-D
case, Notc that for 3 1 case, where cubes ane taken and
then and there are 20 neighbors for each cube, the nomber
of lines under consideration world be 13. For the peneral
N-dmmenzional casc, the mmmber of Imcs wnder conzid-
crativn woukd be {3V — 1),/2). The number of lincs to be
considered would incroase cxponentially with M.

Given a data set having # points, inimally te proposed
mcthed fmds the sgusoes that belong to vallcy rmoeions,
Then those squarcs and the points that are associated with
them yre emoved om the process. Now we have somc
dhgjornt seks of squares. The number of such disconnecied
sels ik Laken bey be egqual by the onmber of closters presen).
in e daia set. The date poanes that are aspociaied with

T11 T21 -[-31

.I-41 I l 42

TSZ TZZ T12

Fig. 1. Tap. Fro. Tna T T, T Ty T amad T

M. CHOWDHURY and C. A. MURTHY

any square of a particular set of squares are assumed W
bockmg to that particofar clester Lasty there may exist
valley paints which would not go to my cluster. For these
poinls onc may follow any onc of the folkwwing wirate-
e

{a} The points are Laken e be ned. belompng (o any
cluster.

(b} Vhcae points are pat in soare chisiers acoomting to
som: criterion such as neanest neighbor classitier ele 4%

Since convenliomal closteing weebmigues assm cach
data point to any one of the possible clusters, hence we
have followed the later stratesy and assisped the data
points that belong to the valley regions (o any one of the
caisting clostcrs on the basis of nearest nefphbor elassi-
ficy mic. The cificiency of the process is judged by the
mmber of misclassificd points.

A way of checking the validity of oblained classilca-
{Hom is o calealate the coor probability with respect to the
ablaned classificaion and showing that this error prob-
ahility wonld go to the Bayes eomr probability «(£) [since
e ix 2 Munction of ol class distamee &, so from pow
eenvwards it will e denoded ax of 8)]. Mot thet fiom strng
law ol Tarye: Aanmbers, cne eom kike the oliamed aversge
misclassification 0 he an appreoamanon of cmwor prob-
ability corresponding o thei clasabcsliom. This an
experimental verification has been made where the ob-
served average misclassificarinn is showi o be poaingr
towands the Bayes error probabilily ¢ by faking some
incrcasing vaboes of A

The obtained average misclassification For giver taia
of size & is aiven by
Number of misclassificd points

Mote that, the lower the value of e, (ur), the beiter is the
nssificati

exfw) =

& EEFERTMENTAL HESLLEE AN ANALYNIY

Several cxpenments have beon camoed ool om
syniedic dala sests e fodpe (e validily of the proposed
techmigue. The eapenments and their el are de-
serilred below.

Erperimend 1. In this experimenl, we hawe considired
several synthetic data sets in B2 Here the data points are
peparated from two classes A, and Ay wsing trencated
nommal distribotion in £2, where
Ag=[-2,2] x 0,7]
and
Az = |2+ 8,24+ 8] » K, 2

whize & — 3, 3.5 wmd 4. Hore (he x- wnd y-coomhntes
pomoal  disribution ard  wniform  disiribution
rcspectivhy.

The ol comiditiomal density functions for class A,
and Azy are denoled By iz y) — fil=dR(y) and
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pul(x. y) = fos (x}fa(¥) respectively, where

fil) = {Tz:ﬂf fxel-22)
otherwise,

e (LN B

Foslz) — { ARl frej-2+62+8,
1

otherwise,
amd

fs[!*l—{a :tu-guz

where a is given by
fﬁw[—
E

2

The a priori probabilincs for classcs A, and Ay amc
taken w0 be 1F2I. Fhos the Bayes decision boundary
between clesses 4, and A» iz given by

iz, ¥) = pasix ¥} = filxiB0)
= FrIH0) > file) —fuls) > x =5
The Bayes decision boundary between the classes x

given by the sel [{(8/2,5) - v .21}, The mixiume
densrly funciom 15 given by

]

T i 1/2)¥7).

_ plxy + puslx, y)

o plr) =V LG

It can be shown that the function ps(x, ¥) has a nrinima
at {{(5/2,y) : e 0,7} Since the valley repion of
Peix.¥) is the same as the Bayes decision boundary
botween the classcs, henee Assimpoon: Al is sanisficd
for the diaa sct sencrmated by the method as descnbed
sbowe,

MNate thal the distance between the chasses A and Aqgis
Laken o be A, wheres & is He diTerencs hetween the means
of the runcaled aormal distribation for the two classes.
Also note that the: Bayes emor probability e4) associated
with any piven data set that is penerated from A; and Ax is
a fanctien of &, where

il éd = 4.
f(ﬁ} {l] -:‘I.['rﬂﬂ{x}dx if = &4

Tahe 1 presents the resnlis for this experiment. We
have comsidersd various values of & for the expeninenis
and repoted the resolis for § = 4, 3.5, snd 3. For cach &
the different sample sies considered are SO0, GIK), T,
00, 900, 1000, 1100, 1200. The average error (e, ()}
fourd for cach sample is as shown in Teble | o § =4,
3.5, and 3. Note that for & = 4, eg(es) valoes are all fouml
to be zero whick is same as Bayes emror probabifity. The
Baycs regions for the twoe classes for & = 4 arc shown in
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Table 1. Eesulls with 2 chass poofillem fio 2B omine oozl

o o
[ Mo, of S T, [Fimuom
Value ks B o s Flelbafolline cfif)
S A B
G0 A8, (MR
L AL THILINIEN
4 500 DU @
Rk TR
00 B RS
ELD0 L LR
12K} LT e
) ] TLFRETH
fil) L
THa I
30 WX VE TP uitaniale s |
00 LR
K VB NI
110¢ b SEs
T2 TRRETA
1] T
Gl LIS i
TOO DATE
3 B MIETET i R
o b EERE
1001 DATTRE
THD [LITET
120M0 Tha R

Fag. Z{z). The bodd verical Tome mm e medll: demmes: e
Bayes decision boumdary hetwamn e o ol Tee
megions ahimnned by Che propoogd becfemggag Ty & — 4 o
sarmple sizes of 500, M0, and 3 o sheesa w
Fig 2(h}{d) for the pepose of vl omogeeiso i
cun he seere from Frg. 20ad) dha (e mepioms: ofimmd
bry the proposed techoiqoe 15 powng: lossanls. i oimme-
sponding, Bayes repion as the skt of it peings sm ifne
given sample increases. B can alu be seem thom Taitde 1
that the avcrage cmor e, () S golng: o, e e
probability «(§) as the nomber of datn peimtts. i the: @Feen

Erperment 2. o ns experimmemn, we fuoe amrssfiomd
data sets that are pemeraled foom S clesses Sy, Sy and
As in B®, where

As=[0.2] x j0. 2],

As= 12,4] = 0.2
and

As—|L3] x 4.

In this cose rangular distabutsem 15 oscd, T clbss
conditional density fonctions for clrsses Ay Ay andl A
arc taken 1o be o (x, ¥), paix. ) aml gl gl g vy,
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Fig. 2. (a)} The Boyes regioas for the two classes for =4, (h)-(d} The regions obtained by the proposed
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Fig. 2. (Continued).

where
mixy) = falz)falx),
palx, ¥) — falx)faly)
sl
Pl ] = falxlfsly),
where
x ifxe 01
failxd =4 2—x ifxe[,2],
0 otherwise,
z—2 ifx€[23].
Fl =24 x ifxe |34
] otherwise,
and
£ b ifxoil2
Jalxl=¢ 5—x ifxe72,3)
{] tiherwise.

Im thiy case, the three classes A1, A4 and A5 considerad
for the esperiments are taken to be non-overlapping.
Here the a priert probabilities for the three classes are
taken to e equal to L Thus Assumption Al stated above

Table 2. Results with 3 cluss problem in 2-1 wsing trieosenlay

distribution
i) Mo, of Averape Buves Lrmor
Walue poinis Birof e (0] Probahility e(d)
1LY 1LB6333
0 {1 50)
00 0.53480
o LY 465949 Lo
W) {528
1000 0, 1 40041
114K) 003377
120K) [3.0I0kRIK)

i5 also valid in this casc, Table 2 depicls the rexulis of ihis
experiment. It can be seen from Table 2 that the average
BLI0r ¢, (1) 13 going towards Bayes crmor prohability e4)
as the ommber of data poinis in the given sample
increases,

Experiment 3, This caperimenl wis cartied out with data
points in £, Here daly sets were generared from two
classes Ag and A7 using triangular distribotion in el
wher:

A= [0, 1] = [0, 1] = ik 1]
amd
Ay =[1.2] = [0,1] = [0,1].

Tuble: 3 presenly the resulis for this eaperimeant. It can he
seen from Table 3 (hat the average ermor e, (w) is going
towands Rayes emor probability (#) as the nomber of
daia podnls in (he given surnple increases.

Fxperiment 4. The theoretical results presented in this
paper are based on pattemn classes which are bounded. On
[he nther hand, pattern ¢lasses that are generated using
niooemal distribotion are not bounded. We have applied the
proposed method on unbounded classes wlso to cheek
whether it provides meaningful results experimentally,
Table 4 shows the cxporimental resulis wilh dafsa seis that
are generuted from bwo classes Ay and Ag in B2 using
nommal distibution. The mean values for the two classes

Table 3. Results with 2 cluss probiem in 3-1Y using lriampufar

distribution
i Ma. of Ascrage Baves Ermor
Vilue points Eiros e o) Probhalility &)
S00 030666
L] il T 20ks00 ]

FL b TR0
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Tahle 4. Resobz with 2 class problem in 2-1 wsing normoad

disteitwidion
] Mo af Average Baves Frror
Wil Ppomls Ertor e (o) Prohahility #(8)
000 o '
] 1i00 It} 576
0N 0
BLLE] 0. 10443
b2} 1406 (LML K134
il L1 0OFFOR

are Taken e be g and pp, where

a ] o
.MT(QJ and ;115:(“);5—{:,(1.5.

Thee wannzmoe For both the classes are taken o be umty.
The cowzriance between the variables is taken to be zero.
Thts o gorasyre pocdhadhiliny Tor ihe two classes are aken 1o be
eqgmal tr 2. The Bages error probability &(#) is given by

71
e ) — expl{—1,/2) dx.
[

1 oo e wewemy oo Tl 4 (bl ihe nverage emror g, (0]
% iz hiwmamils Bayes error probability e(#) for # = 6as
e svoemriner off data points in the piven sample increases.
otz that ihe 2, valnes are all zero for § = 6.5 and higher,
ahimezth we have 2 non-zere Bayes cmor probability for
e & walnes. Bar pote thar the regions comesponding to
the clesiers soncnsted by the proposcd method s
bommudrd wlhorras the classcs provided by the Bayes
ax mmivanded

T TEPHILLNIN AN DHSCLTSSI0N

tm tthits peiper, 2 clestering technique 15 presented which
cxtwscts clustors by fmlimg the valley meyions in the
framre spaoc, W have also provided the theorelical
framedisteon of the techmgue. Tt is shown theortically
o 13z greammsed cheshenng lechmgoes proyides the same
mesath aes e o a Bayes classifier as the mumber of data
s ek Gin anlinily wnder a4 smooth assonpiion.

Diitizer clnstenins rechniques use diftferent clustcring
it i aiin difforcot partitionings of o gyen dala
st Thms the walidity of the obtained clusters is to be
cdord o somme: “switable™ basis to cosure e eflective-
mess af the cinsicong scchoigque, Note that Baves cliasa-
fer peostdes e sepkns corresponding o different
clasmes Wil minimmm emmor probability. In this work,
@ chaiominge tirchemapes 1% proposed and 1s performance 15
puadped il deonaiacally and expedimentally with re-
syttt o Barpes: classifier. Note that Bayes classificr
bamdlcs 1he problom of saporvised pallern Tecogmlion
wThemeses cmmeminnal Clsiering is viewed as a problem
aoll mnageined patienn recognition. [t has becn shown,
oty dhraeically @nd cxpedmentally, th vmder a
“eamnmlh™ condition ihe porformance of the proposed
chsomme ke fendx fo that of Bayes classifier as

MN. CHOWDHURY and . A. MURTHY

the mumber of data poants in a given data sot incrcascs.
Mol that he proposed closienny lechrigee, onfike
Bayes method, starts with no knowledge abomt the
pattern classes or clusiers present in a given data set
The proof given for convergence is based on certain mild
assumplions*' ™ on the density function.

‘The proposcd technique basically finds the valley
regions in the muiddimensional featurme space. A sbmilar
approsch 1x adovpted o image processmye for scpmenhng
the image nsing gray level intemsities with the help of
sicyeram 'hmhﬂ]iﬁllg.m N Ryl the wspeel ol judgmcol,
of the “guality™ of the classes obtained in soch a case
with respect o that of Bayes classifier 18 ool usoally
atternpted. 1n this work, the problem 15 ireated analyii-
cally and it is shwown, both theoreticafly and experimen-
tally, that the proposed clostering techniqoe, which nses
the valley regicms of the data to generate clusters, would
provide the same oumber of closters as the number of
classcy obtained veing Bayes classifor and cach such
closier wounld comespond (o cxaclly onc umgue Bayes
class, as the number of data pomis gocs to infinity.

Thiy arlicle alvo prosenls 3 melhod o fmdmy “valley
mepicns” i mulivariaie hisiogram, (e lileralure on
which 15 inadeguate 31 dale (o the Dest ol knowiedg:
of the authors. Thoagh the cornpuiational complexity for
finding soch regions iz exponential with respect to the
number of dirmengion, the procedore has beea found 1o be
thecretically pood in providing the Bayes classes for
sufficicody large nomber of obscrvatioms (1), The pro-
blem of mducing the computational complexity for
findmyg the clusters m higher dimeosion bas ol been
attempied in ths work.

The ariicle slw emphasizes e el for vahdating
clusicring lechmgues with the help of Baves classifier
Artihcial il ged followiong o koown misiore densily
lmction may be generated and the performance of a
cluesdering (echnigque may be judeed by oomparing the
ounber of misclassified points of the clustering techmni-
que with that of the Bayes classificr. For a propor
udgment of the applicability of any chstering tcehnigoc,
snch a companison should be attempted om & laree
number of dara scts with varving sives, varying numbcr
of classes amd varying mixture density functiom for
ohkarmy @ mesmanziel conclusom.

The proposed technigne assumes that the boundary
between any two classes must belong 6o the valicy region.
But node that we may have data distribation where the
assumption is not valid_ for cxample in Experiment 1, if &
valug is taken to be less than 3, then the Bayes decision
bovndary may commespond i a8 local maxima i the
ninxbure densily Tunction. Similarly one can cite several
other examples where the assimption is nod valid. Bot
move that in many real Bl duls seis, the density of Gie data
pomis in the vicinity of the boondary between in any two
classes is less comparcd to that in the core remons of the
classes, Thus ome can wse the proposed technigue in
Mmding the valley regions of the feature space and treat
them as the bonndary between classes. The closters thus
obtained are cxpected to cormespond 6o the original
classcs prosemt o dthe fomure space,
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The proposed cluslering technigue has been defined to
applicable for buvnded patler classes onky. But it is

foumd cxperimentally (Table 4) that the techniqoe pro-
vides good rosults in the case of usbowsded pattern
classcs alsn,

in.
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