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An imporiant problem in pattem recopnition is determining the shope of a pattern class from its sam-
pled points, We have reported earlier a procedure in this regard which provides multivalued shape of
4 pattern chass in &, In the present article, an exension of the procedure o higher dimensional space
() has heen suggestsd. The effectiveness of the exisnded version has been demonstrated on some
arificially generated pattern classes (in #7), The convergence of the estimated shape to the orginal
set has also been venifted wsing two different metrics.
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L. INTRODUCTION

Determining the pattern class and its shape from sampled points {or a sel of rain-
ing samples) in any dimension is an important problem in pattern recognition.
There are various approaches described in the literaure for determining the shape
of a pattern class from sampled points in #° [Edelsbrunner ef af. 1983; Jarvis
1977, Akl er gl 1978, Fairfield 1979; Toussaint 1980; Preparata of af. 1985;
Murthy 1988]. These methods are mostly [‘:Llcuristir: in nature and/or they provide
an exact boundary or shape of the pattern class. One of the inherent cbservations
about these alporithms is that the boundary of the class is restricted by the sam-
pled points. This needs not be true because the resulting boundary leaves certain
regions not confined in it, although it should be. So, it is necessary to extend the
boundaries to some extent to handle the possible uncovered portions by the sam-
pled points. The extended portions should have the following two properties:

{i) As the number of sampled points increases, the extended portions should
decrease.
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(ii} The extended portions should have less possibility to be in the panern class
than the portions explicitly highlighted by the sampled points.

The second property reads to define a multivalued or fuzzy (with continnom
grades of belongingness) boundary of a pattern class. _

We have reported earlier [Mandal er al. 1992a] a procedure which deals with
the problem of determining the pattern class and its multivalvued shape/boundary
from sampled points in f°. The procedure initially deals with the decomposition
of the sample set into some groups of nearly rectangular shape. Then it determines

" each of the subclasses corresponding to the groups separately, puts them together,
and finds the multivalued shape of a pattern class. The effectiveness of the proce-
dure was demonstrated on some artificially generated data sets (in &%) and also on
a real life speech data set. The convergence of the estimated classes to the origi-
nal ones was also verified vsing Hausdorff metric and another new metric Sim.

Some investigations on estimation of shapes for point sels in f* were also
carried out. The use of Delaunary triangulations to “sculture” a single connected
shape of a point set was suggested in [Boissonnat 1984]. The concept of e-shapes
for the point sets in & has recently been proposed in [Edelsbrunner ef al. 1992].
In the: present paper, a procedure for finding shapes in higher dimensional spaces
(B, N = 2} is proposed which is an extension of our earlier work [Mandal ef al.
1992a]. The procedure initially concems with the decomposition of the sample set
into some groups having nearly N-dimensional parallelepiped (henceforth paral-
lelepiped) shape. Finally, combining the subclasses corresponding to the groups,
the multivalued shape of a pattern class is determined. The effectiveness of the
generalized methodology has been demonstrated on some artificially generated
data sets in 2°. The convergence of the estimated classes to the original ones has
also been verified. _

In section ff, some basic concepts and the block diagram of the multivalued
shape determining procedure are provided. A brief description of the procedure
for f? is furnished in section /7. The remaining sections of this article are con-
cerned with the pattern classes in ", Section V deals with the procedure for
decomposing a training sample set. Section V provides an approach to determine
the multivalued boundary of a pattern class. Experimental results are provided in
section ¥/ The convergence property is discussed in Section Vil Section VI
finds the conclusions and discussion. &

II. SOME BASIC CONCEPTS AND BLOCK DIAGRAM

Some of the basic concepts which are useful in developing the proposed methed
are initially stated here. The block diagram of the procedure is then provided.
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A. Some Basic Concepts

a. Parern class:  In most of the real life problems, pattern classes are bounded.
Thus the pattern classes considered here are all bounded. A formal definition of pat-
tern class in A" is given below using topological and measure theoretic concepts,

DeEFMTTION 11 A set A C B is said to be a pattern elass [Murthy 1988} if

(£} A iy path connected compact,
I[u} cllfnrl A)y = A, fol means closure, Int means intevior]
(i) {ne(A) is path connected and
() MEAY = Owhere 8 = AN (A and A is the Lebesgie measure on B,

The relevance of the properties {f), {if), (iif) and (iv) of Definition 1 is provided
in [Murthy, 1988]. Let B ={_A : A satisfics Definition 1}. 815 the collection of
all classes in B*. Any A € Bis referred to as the pallern class.

b. Accuracy factor: It has been argued in the previous section that the regions
nol represented by the sampled points of a class should be included to some extent
while determining its boundary. In other words, the regions covered by the sam-
pled points should be extended to some degree for obtaining or estimating the
shape of the class. For a given number of sampled points (1) in BY, an accuracy
factor &, has been considered here to be [Grenander 1981] such that

| i
I <98, {Immu (1

so that as ¢ increases, 8 — 0 and t57 — =. Since §, decreases with the increase of
t, the accuracy of the obtained boundary also increases with the increase of 1. The
selection of an aceuracy foctor is guided by the inequality (1) and its justification
can be found in Mandal ef ol {1992a] and Mandal [1992]. =

c. Coverage factors: Each individual sampled peint represents a covered area
of the pattern class in the feature space. As mentioned earlier, the extended por-
tions should have less possibility to be in the pattern class than the portions
explicitly highlighted by the sampled points. To decide on the amount of exten-
sion, a coverage factor is defined below comesponding to each feature axis.

Let X, X3, ..., X, . ... X; be the training samples where X; = (x;, x;,, . . .,
Kip oo ,.x,-H}’ and Xi; denotes the jth feature value of the ith sample. Let MAX; and
MIN; denote the maximum and minimum feature values respectively in the sam-
ple set corresponding to the fth{j = 1,2, . ., N) featore i.e.,

MAX, = max [x) and MIN,= min {x;).
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The coverage factor for the set of sampled points corresponding to the fth feature,
denoted by & (= 1,2, . .., ), is defined as

where & is the accuracy factor. When the number () of sampled points increases,
the accuracy factor (8, decreases, and correspondingly the values of the coverage
factors (g;'s) also decrease, and the accuracy of the boundary increases.  »

d. Hole in'a pattern class: A path connected and compaet set is referred to here
as a pattern class, IF it bappens that within the range of the paitern class or set,
some portions do not belong to the class, then the portions are referred to as the
hales. The intuitive idea behind holes of a pattern class can be put mathematically
by the (ollowing definition.

DeFITION 20 A pattern class A is said to have k holes if
A=RBUCLUGU... UG suchthat

{7y Band C, are path connected sets for i = 1, 2, e SR
{6y B iy unbounded emd O, &, . ., C, are bounded,
(i BUG UG U.. UG isadisconnected setfor | sh =i =, .S sk
where | = r=kand
{iv) l:-l L.l_lf,-J U... UG isadisconnected set | =i, <i; <. ., <i, =k where
2=r=Fk

Then C1_, G... ’ C.. in Definition 2, are said to be the holes of 4. The hole
detection procedure for #* can be found in Mandal et al. [1992a] and Mandal
{1992), and it is described in section /{I.A for B

B. Block Diagram

The block diagram of the multivalued shape determining procedure is shown in
Fig. | [Mandal et al. 1992a]. It consists of two parts, namely the decomposition
and the fuzzy processor. The decomposition section deals with the decomposi-
tion of the sample set into some groups of nearly parallelepiped shape. The fuzzy
processor determines each of the subclasses comresponding to the sample groups
separately and all these subclasses are then combined te compute the multi-
valued shape of the pattern class.

The decomposition section consists of three blocks as shown in Fig. 1. The hofe
detector block decomposes the training sample set with holes into groups to find
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FIGURE | Block diagram [Mandal ¢ al. 19%2al.

the hole information. The boundary variation calewlaror block finds the valoes of
the boundary variation factors corresponding to all possible boundary directions.
These boundary variation values are analyzed in the patiern class sub-divider
block to decompase (if necessary) the sample set into groups.

Concepts of fuzzy sets [Zadeh 1965; Zadch 1973; Pal ¢r al. 1986; Bezdek 1981;
Bezdek er ol 1992; Kandel 1982; Yager ef al. 1992] have been used in the fuzzy
processor to extend the boundary of the sample set and also to relate every point
in the whole feature space Lo ils possibilily to be in the patlern class. The mem-
bership function estimator block decides about the compalibility/membershp
functions to represent each of the subclasses corresponding to the sample groups.
The boundary decider block determines each of the subclasses sepurately, puts
them together and finds the multivalued shape of 3 pattern class. &

Before explaining the operations of different blocks for a pattern class in BY, a
short description of the procedure for 8?2 [Mandal er al. 1992a] is provided in the
next section. &

ITI. DETERMINING MULTIVALUED SHAPE IN R&*

The decomposition section takes the set of sampled points of a pattern class as an
input and decomposes the training sample set (in #7) into some groups of nearly
rcctangular shape. To obtain this decompaosition, a procedure based on some
overlapping windows was adopted [Mandal e af. 1992a). Before describing the
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eperations of various blocks of decomposition, the spproach to generate the win-
dows and the concept of (multivalued) boundary are furnished below,

Generation of windows:  The two features under consideration are referred to as
the first (F,) and second (F,) feature axes respectively. One of the axes is consid-
ered here as the base axis and the other axis is considered as the height axis.
Consequently the coverage factors corresponding to the base and height features
are referred to as the base coverage factor (g,) and height threshold factor (g;)
respectively, ;

The sampled points are first of all arranged in ascending order according to the
base feature values, The first window starts with the first sample of the ordered sam-
ple set and it includes all those samples one after another in ascending order until its
base coverage length exceeds g, Assume that the generated first window ends with
the kth sample of the ordered sample set. That is, the first window is construcied in
such a way that the range of the base features exceeds £, Tor the first time by includ-
ing the kth ordered sample. The construction of the second window with the same
base feature is such that it will end with the (& + 1)th sample. To find the starting
sample point of this window, it proceeds backward from (k + 1)th sample vnil the
base coverage length exceeds g, for the first time. Similarly other windows are con-
structed by including one new sample at the end and excluding some samples from
the beginning of the previous window such that the base coverage length would at
least be e;. The last window ends with the last ordered sample i.e., the sample with
the highest base value. Thus, some overlapping windows of the sample points are
generated utilizing the sample base values and the base coverage factor (s;).

The maximem and the minimum height values are found for each of the win-
dows and these are taken to be the upper (1} and lower {{} boundary values respec-
tively of that window. The combination of the upper boundary values highlights
the upper boundary of the training sample set for that feature and the combination
of the lower boundary values provides the lower boundary of the training sample
sel for that feature. Putting together the upper boundaries and lower boundaries of
all the features provide the complete boundary of the set.

The way in which the boundary of a training sample set is obtained using the
aforementioned procedure of generating windows, is now explained considering
a typical pattern class [Fig. 2(a}]. A hypothetical traiming sample set is shown in
Fig. 2(a), where the locations of samples in the feature space are shown by cross
() marks. Initially, F, is considered as the base, and a few overlapping windows
are generated. In such windows, F; is considered as the height feature. A typical
window 15 shown by dotied lines in Fig. 2(8) where the samples in the window are
shown by tick (/) marks. The boundary values corresponding wo the lower({) and
upper{u) directions (referred to as 2; and 2, respectively) are also marked for the
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FIGURE X Mlustrating the concept of boundary in 872

window, Based on these boundary values, the rough boundaries in the coded
directions 2; and 2, are drawn in Fig. 2(c). To find the boundaries in the lower and
upper directions of F, {i.e., directions 1; and 1,), some overlapping windows are
first of ali generated considering F; as the base feature. A tvpical window with its
sample points and boundary values is shown in Fig. 2{d). Fig. 2{e) shows the
rough boundaries in the coded directions 1; and 1,.

Combining the boundaries in Fgures 2(¢) and 2(¢), the complete boundary of a
pattern class 15 obtained [Fig. 2 f}]. To incorporate the possible uncovered por-
tions of the pattern class by the training set [Fig. 2(a)], these boundaries are
extended to some extent (depending on the coverage factors). To visualize the
seid extension, the extended boundary of the pattern class is conceptually drawn
in Fig. 2{ f}. The extended portion should have lower possibility to be in the class
than the portions explicitly highlighted by the sample poimts. The extended
regions decrease with the increase of the sample size (f).  *

The hole detector block decomposes the training sample set into groups to find
the hole information. When the subclasses corresponding to the sample groups are
combined later, the holes are excluded from the final shape of the pattern class.
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The boundary variation calculator block detects the geometric structure of the
pattern class from a set of sampled points. The boundaries in four perpendicular
directions [Fig. 2(h)] are considered 1o find the boundary vanation factors,

. The pattern class sub-divider block analyzes the boundary variation factors to
determine whether the training sample set is to be decomposed or not. Based on
the direction for which the variation factor 15 maximum, the sample set is decom-
posed into groops of nearly rectangular shape, _

The fuzzy processor section inftially finds the subclasses corresponding o the
sample groups. Finally it combines them to get the estimated multivalued shape of
the patlemn class. The concept of membership functions in the light of fuzzy sct
theory was brought in here to represent each of the subclasses corresponding to
the groups separately. Membership functions have also been used 10 relate every
point {referred Lo as Feature Space Cell or FSC) in the entire feature space to iis
possibility 1o be in the pattern class, The membership Function estimator block
finds the appropriaic membership functions to represent each of the subclasses
comesponding to the sample groups. The boundary decider block determines each
of the subclasses separately, puts them together and obtains the multivalued shape
of the pattern class.

The effectiveness of the procedure for #* was demonsirated [Mandal er al.
19924] on some artificially generated data sets as well as on a real life speech dala
sel. Fig. 3(a) shows a pattern class as con sidered in [Mandal et al. 1992a), A train-
ing sample set of size 50 is shown in Fig. 3(a). Based on this sample set, the esti-
mated multivalued set of the class is shown in Fig. 3(b) with 0.15 as the accuracy
factor (&). &

The extension of the procedure 1o the pattern classes in Y (¥ > 2} is furnished
in the following sections. As in the case of R, we first decompose (based on a
window approach) the training sample set into some groups of nearly N-dimen-
sional parallelepiped (henceforth parallelepiped) shapes and these are then com-
bined to find the final shape of the patiern class (in &Y). »

IV. DECOMPOSITION

A pattern class in &Y is represented here by a set of sampled points. The decom-
position section detects the geometric structure of the pattern class from the sam-
ple set. The N features under consideration are referred to as the first (F)), second
(F3), ..., Nth {Fy) axes respectively. Initially the window generation procedure
from a sample set in R” is described. The generalized methodelogy for finding the
shape is then elaborated using the window generation procedure.
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FIGURE3 (a} A typical pattern class with a setof sampled points; (b) Estimated (muoltivalued) shape
of the class.

Generation of windows:  Similar to the case of #°, a window based approach is
adopted here to find the boundary variations of a sampie set in B”, Initially, one of
the feature axes i considered as the base feature and the corresponding coverage
tactor is referred to as the base coverage factor (g;). The training samples are first of
all arranged in ascending order according 10 the base feature values. Then, depend-
ing on the base feature values and the base coverage factor £, the same procedure,
as stated for f22, is followed here (o generate windows. These windows are such that
base coverage length of each window would atleast be =,

Here for a particular window, the base feature values of the samples are assumed
to be the same and the rest (N— 1) features for the samples may take any value. So
the generated windows are visualized here to belong to B¥!; although the origi-
nal sample set belongs to #”. In this sense, the proposed method of generating
windows always results in reducing the dimension of the sample set by one. In this
context, note that, the initial training sample set may itself be considered to belong
2 an A-dimensional window.

Based on the aforesaid concepts, the multivalued shape determining proceduore
is extended to @Y. The approach has been applied on a sample set in 8 in the
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following way. To start with, the feature F, is considered as the base feature and .

carrespondingly a few windows in BY ™! are formed. For each of these windows,
another axis F_ is considered as the base feature and windows in RV are formed.
Repeating this process sequentially with F,, Fi, ..., F; _ as the base features
axes, some one-dimensional (1 =D} windows are generated eventually. The val-
ues of the left out feature F; are considered here as the height values. The masi-
mum and the minimum height sample values are found for each window and these
are taken to be the upper and the lower boundary values respectively for that win-
dow. The combination of the upper boundary values of all | —I windows, gener-
ated by sequentially taking F, , F, ... ., F, _ as the base axes, highlights the upper
‘boundary of the training sample set in the F, feature direction. Similarly, the
combinaticn of the lower boundary values provides the lower boundary of the
sample set across F;_ axis.

A. Hole Detector

The operation of this block is same as that described in Mandal er al. [1992a]. The
procedure sequentially considers Fi, Fy, ..., Fy_; as the base features (and cor-
respondingly gy, €2, . . . , Ey—; a5 the base coverage factors}) to penerate few 1-D
windows with Fy as the height feature. Here the coverage factor e, across the axis
Fy is referred to as the height threshold factor. The samples in each window are
then arranged in ascending order according to the hetght (F,,) sample values. If the
difference of height values of any two consecotive samples within a window
exceeds £y, then a hole 15 assumed to be present between the said sumple pair, Let
&' and &" be the height feature values of two such sample points. To detect the
hole, the sample set is decomposed into two groups according to whether the
height values (i.e., Fy values) are less than (&' + £")/2 or not,

The aforesaid routine is repeated until every sample group 15 found to be not
containing any hole. When the subclasses commesponding to the sample groups are
combined later in the boundary decider block, the holes are excluded from the final
shape of the pattern class, »

B. Boundary Variation Calculator

To find the boundary variations of the sample set in 8", 2¥ perpendicular direc-
tions (coded as 1, 1,. 2, 2,, ..., N, N,) corresponding to the lower and upper
boundary direetions along the N feature axes are considered. The /& features are
-denoted here by F; , F,, . ... Fy suchthati, € {1, 2,. .. N}lfork=12.._.N
and i, # i far & # &' The procedure 10 find the boundary variation values is
described below for a training sample set in &Y, Though the notation used here
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may seem Lo be little cuombersome, it may be noted that the procedure is the nat-
ural extension of the 2-0 case (described in Mandal et ol. [1992a]).

Initially assuming the feature F; as the base (and correspondingly ¢;, as the base
coverage factor), some windows are penerated from the total training set. Let the
number of windows generated be denoted by g, . As mentioned earlier, in each of
these g; windows, the F; feature values of the samples are considered to be the
same and so the samples are visualized to belong in 8"~ with F, , Fiorn s, n il 8
the feature axes. Let a particular window, say jith one, be denoted by W/ where
A =L12,..., g, Now assuming the feature F;, as the base {and correspondingly
£;, as the base coverage factor), the sample set of the window W/ (€ #""') results
in q;":(,-ﬂ windows in (N—2} dimensional space with Fi, Fi, . ... £, as the feature

o Fige s
axes. Similarly, considering sequentially the features F;, Fi,, . . ., F, , as the bases

e
(and correspondingly £;, &, .. ., &,_, as the respective base coverage factors),
some 2-D windows will be generated and the nomber of such windows is denoted
by gty (where j, =12.....qlif5ddy, fork=1,2,...,
MN—73). These windows are visualized here to belong to &7 with £, and £ as the
axes. Thus the original sample set (belonging to B}, after the aforementioned
operations, gives rise o a collection of 2-0 windows.

The feature £, is now assumed to be the base (and correspondingly =, is
assumed as the base coverage factor) so that the samples of the jy_Jth window
Wi ne b results in gf i A, 1-D windows wih Fy, as the feature
axis. For the samples belonging to these 1-D) windows, the values of F; are now
considered as the height values. The maximum and the minimum height sample
values are found in each of the 1-D windows and these are taken as the upper and

the lower boundary values respectively for the respective windows.
Let Hr: ik . denote the boundary value of the kth (k=12,...,

ghthbbiv-ntdl ) 1-D window (generated by taking F,,_ as the base) for the

W=l
feature £, in the direction d {d € {I, u] where ! and « stand for lower and upper
boundary directions respectively). For each of the g/its"tw—bb 2D win-
dows, the upper and the lower boundary variation factors, denoted by

vir a1, L, are defined based on their respective 1-D windows as follows

e
i i [y = 0000 re T
iid i = i By td sk gyl 3
.";L{f‘l[---ﬁ.\'—|]---ﬂ Hl'jfr";l,[...lil'f.-_; ] Hr’j{r’:[...{r’,\-_l L. J{E w
k=2 (3)
i - i ek iy 2 and
Sy =L2... ’qusH:[u-.w—.uw—zJa--n d € {lu

where g is the coverage factor for the feature F . Here the division factor R%ﬂ_ is
used to make the variation factor unitless.
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Now, let MAX,; and MIN, be the maximum and minimum of the boundary
values respectively inoa particular direction o and corresponding to a particular
two dimensional window W' Uh-atd if the difference of MAXy and MINy
does not exceed g;_(i.e.. if (MAXy — M.’Nﬂ) = g}, then the boundary variation
for F, in the direction 4 corresponding to the said 2-D window is considered to be
insignificant. In such a case, the varigtion factor is assumed to be zero i.e., make

-2 = 0. Otherwise the sample set is considered o be decompasable in
the direction d for F .

MNote that the order in which the features have been considered for the previous
generation of windows in {2 is iy, f, . . ., iy-2. [t may be observed that for every
such sequence, a set of 2-D windows is generated. Thus, all possible such
sequences of leatures are considered and comespondingly boundary variation
factors for the lower and wpper boundaries across the left over two features are
caiculated for each of the 2-£ windows.

Pattern classes in #°: As the notations used to describe the generalizéd
approach seem (o be litte cumnbersome, the procedure is now explained for the
pattern class in . For a better understanding, a cubic shaped pattern class, as
shown in Fig. 4(a) is considered. Initially, £, is assumed to be the base feature to
generate g 2-D windows. A typical (say, jith) window Wi, =1,2,...,q)is
distinctly marked in Fig. 4{a). The 2-D view of this window with some typical
training samples is shown in Fig. 4{&) where the F, feature is taken to be same
(as the mid value of the ranges of F, in the window] Then considering F; as
the base, the sample set of the window W"‘ resulls i in §iiz windows in F; feature
space. Now find the boundary values of cach of q,m 1-0 windows, which are
denoted by Hii5* (k=1,2,..., q"i}z} and € [{, #}}. Based on these bound-
ary values, the boundary variation factors of F;in direction o correspending to
their 2-0 windows are calculated using Eq. (3) as follows "

il o
l‘ﬁzf o= F"I(Hﬂg:t _ Hf}"zf'k l)é fg%
A=L2.....¢y and dE([Lu}.

Similarly, by taking F; as the base feature, every sample window w {gener-
ated by assoming F, as the base on the original sample set), gives rise ta ii'f:':!] -
windows in Fj featore space, Finally the boundary vanation factors of £y in the
lower and upper boundary directions corresponding to their 2-D windows are
obtained. So for all the above g, 2-D windows, the boundary variation factors
iy ™ Vi G Vi T Vi G = 1.2 qu) are caleulated.

Ii Fy is inttially ldken to be the base, the original sample set results in gy 2-D
windows with #| and F; as the feature axes. A typical of such windows is marked
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FIGURE 4 oncept of windows for a pattern class in 82

in Fig. 4(c). The 2-D view of the marked window is provided in Fig. 4(d).
Conresponding to each of the g; 2-0 windows, the boundary vanation factors
Vor B, Vi, Wt VY (j, = 1,2, .. g ) are obtained.

If £ is first considered to be the base, the initial sample set results in g; 2-D
windows with F and . as the feature axes. A typical windows is marked in
Fig. 4(e) and its 2-D view is provided in Fig. 4(f). Corresponding to each of
thf:. 43 2—1.[) windows, the boundary .vﬂriation factors Vi =, Vit B, Vi, 2,
Wiy @ (f; = 1.2,....4;) are determined.

Thus, there are in total 4(g, + g, + g¢;) boundary variation factors correspond-
ing to a sample set in *. All these variation factors are analyzed in the next block
i.e., pattern class sub-divider block. =

C. Pattern Class Sub-divider

This block analyzes the boundury vanation factors to determine whether the train-
ing sample sct is to be decomposed or not, To decide this, it finds the maximom
of all the variation factors. If this value is zero, then the sample set is assumed o
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be nearly parallelepiped in shape and it is not further decomposable. Otherwise it
is assumed that the sample set is not nearly parallelepiped in shape and it is to be
decomposed into few groups. Corresponding to the 2-0 window and the direction
of the maximum variation factor, the 1-D windows with their base and boundary
values, and the coverage factor comresponding to the height feature {referred to as
height threshold factor &,) are marked. Based on these values, the decomposition
is made. The samples in the particular 2-2 window are then arranged in ascend-
ing order according to the base values.

For making a cluster of |-} windows, the maximum boundary value is found.
The starting window for the cluster is taken as the 1-D window having the maxi-
mum boundary value. The position of the starting window 15 noted. The follow-
ing 1-Ir windows from the starting windows are assigned one after another in the
cluster until the differences between the boundary values of the current 1-D win-
dow and the staning window exceeds the height threshold factor (g,). Similarly
the preceding 1-L windows are also put in the window cluster. The maximum
{say, MAX,) and the minimum (say, MI¥,) base values of the samples in the win-
dow cluster are found. Now from all the samples in the considered sample
set/group, the samples with the base lying between MV, and MAX, are assigned
to the first sample group.

The aforesaid routine is repeated on the remaining 1-2 windows untit all the
marked |-D windows are exhausted. This leads to the formation of window clus-
ters, Every window cluster results in a group of sample points. Thus, the given
training sample set is decompased into a few groups of sample points.

The decomposition procedure is applied an each of the sample groups repeat-
edly until all the groups are found to be nearly parallelepiped in shape. &

V. FUZZY PROCESSOR

A training sample set is decomposed in the previous section into few groups of
nearly parallelepiped shape. Here the subclasses corresponding ta these groups
are determined separately and finally these are combined 1o obtain the multi-
valued shape of the pattern class.

A. Membership Function Estimator

For any feature point, the possibility of being a member of a ¢lass is maximum if
il Hes in the centre of the class, As its distances from the the centre increases, the
membership value decreases and ultimately goes to zero. Any function having
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this property may be considered as the representative membership function for the
{sub) pattern class corresponding to a sample group. As the 7 function is well
established to dictate this property [Pal er al. 1986; Zadeh 1965; Zadeh 1973], it
is considered here as the representative membership function.

Thuos, the subclasses coresponding 1o the sample groups are characlenzed IJ:,I
different r functions across different axes of the form w{x; ay, ,l‘:];t ﬁu,+ Vi,» 1,,.
where & indicates the group number{k =1, 2,..., 7, 9 denmes ‘the numBer of
groups); j indicates the axis number (f = 1,2, . .. . N); e Is the peak value where
the membership value is 1.0; 8, and 8, _are the lower and upper most ambiguous
points where the membership values are (.5, and T, and Yo, are the lower and
upper end points bevond which the membership values are zero. The structure and
the functional form of such a 7 Function can be found in Mandal er af. [19923] and
Mandal [1992].

Determination of membership functions:  To determine the membership fune-
tions {which are taken as w functions), the parameters of them corresponding to
various sample groops are to be evaluated. Here cach of the sample proups is con-
sidered separately. Let MAX, and MIN, be the maximum and minimum of the
training samnple set respectively cormesponding to jth (f = 1, 2, ..., M) feature
and ith (k = 1, 2, .. ., ) sample group. Then the parameters of the o function
comesponding 10 fih feature and &th subclass (e, kth sample group) are assigned
as follows:

o .Mﬁx]j + ANy
ﬂij. e p—
ﬁfﬂ; = MLM*’J: + .Gluj, = Mﬂkj ' [4]
TI*J = M.IIN_*; —E& Tw‘i = M'AX*I :
i =L2...N .k = 1.2,._.. -.

where g; is the coverage factor for the jth feature [Eq. (2}).

B. Boundary Decider

In the previous subsection, membership functions corresponding to all the sam-
ple groups along each feature axis are determined. Using these functions, ach of
the subclasses corresponding to che sample groups is estimated and those are
finally combined to obtain the estimated {multivalued) shape of the pattern class.
All the points in the feature space are labeled with their degree of possibilities to
be in the class. To show the shape of a pattern class in the feature space, the entire
feature range is divided into small units of parallelepiped shape and these small
units are referred 1o as the Feature Space Cell or FSC. The size of all the FSCs
are same and these are made as small as possible such that each FSC can be
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distinguished in the feature space. Thus, all these FSCs are labeled in terms of
their possibility values to be in the pattern class. The FSCs with zero possibility
value are considered to be outside the class. The method of obtaining these pos-
sibility values is described below.

Procedure:  Let (x, 12, . . ., 1) be a typical feature value of such a FSC. The
membership value {,ugj.} of the FSC comresponding toith (k = 1, 2, ..., %) sub-
class {i.e., kth sample group} and jth{j = 1, 2, ..., N) fearure iz calculated from
the corresponding  function i.e., :

bty = T o By Puys Vi o) (5)

The combined membership () of the FSC comesponding tokth (k= 1,2,. .., 7}
subclass is defined as the geometric mean of g, sie..

P = (it X gy %o X gy Y (6)

MNow, the possibility, say #, of the F5C to be in the cstimated pattern class is
defined as the maximum of the membership values of the subelagses. Thal is,

o= _ max 1’{.uq} N

Let v be the number of subclasses for which the combined membership values
{pe"5) of the smid FSC are posilive. To incorporate the effect of the neighboring
subclasses with positive membership values in the estimated pattern class, the
value of 8is increased to 8" for 7 > 1. That is, when the possibility values of the
F5C {u,'s) are positive for two or more subclasses, then it indicates that the said
FSC has the possibility to lie in those subclasses, which in turn increases the pos-
sibility of the FSC to be in the finally obiained pattern class.

The aforesaid method finds the possibility value (6) of a FSC to be in the
pattern class. Note that 0 = # = 1. If the value of 8 is zero, then the F5C is con-
sidered to lie outside the pattern class. Otherwise the FSC belongs to the pattern
class with the possibility &

To obtain the complete shape of the patlern class, the aforesaid rouline is
repeated for every FSC in the feature domain. Thus, all the FSCs are labeled with
their possibility values to be in the patiern class, and as a result, the multivalued
shape of the pattern class is obtained. &
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In the next section, the implementation and the usefulness of the generalized
procedure arc discussed.  a

V1. IMPLEMENTATION AND RESULTS

The effectiveness of the proposed generalized shape determining procedure is
demonstrated here with three artificially generated pattern classes in f°. The
classes are shown in figures 5{a), 6(a) and 7(a). For all 3-D classes, the isometric
views are provided. Note that Fig. 7(a) shows only the lower bisecting {with
respect to £, feature) portion of a pattern class which has the same external view
with the class in Fig. 5(a). Actually this class is having a hole and externally the
hole can not be shown. For demonstrating the hole detecting capabilities of the
proposed generalized method, ondy the lower bisecting portion of a pattern class
is displayed in Fig. 7{z).

Training samples of size 150 are chosen randomly from each of the three
clasges and correspondingly the accuracy factor (8} is assumed to be 0.20. Note
that the extracted classes are multivalued. Hence, 1 order to demonstrate the con-
cept of the multivalued shapes, three levels of estimated classes based on the pos-
sibility vatues (8), namely # = {.5, # = (.25, 8 > 0 are only shown_ Figures 5(%),
5(c} and 5(d) show the estimaled shapes with & = 0.5, 8 = 0.25, # > 0 respec-
tively comresponding to the pattern class in Fig. 5(z). Figures 6(b), 6(c) and 6(d)
show the estimated shapes with 8 = 0.5, § = 0.25, 8 = 0 respectively corre-
sponding to the pattern class in Fig. 6(a). Figures 7(b), Nc) and T(d} show the
lower bisecied portion of the estimated shapes with 8 = 0.5, 8 = 025, 8> 0
respectively corresponding 1o the lower bisected portion as shown in Fig. 7(a) of
a pattern ¢lass.

To give a 3-£ feeling of the training sets, the patterns of the class in Fig. 3{a)
are shown in Fig. 8. Dotted lines corresponding to all the sample points are
drawn from the Fy X F, feature plane {with F, as the minimom value in the pat-
tern class). The actual locations of the sample points are distinctly marked.
Based on this sample set, the output as shown in figures 5(b), 5(c) and 5(d) with
&= 035 6 =025, § > 0respectively are obtained. &

VIL CONVERGENCE WITH SAMPLE SIZE

Convergence of the estimated pattern class to the original pattern class in R was
dealt with in Mandal er af. [1992a]. The same property can be shown for any
dimension A > 2. For the sake of understanding and convenience in representa-
i, we have demonstrated heee for & = 3.
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chosen randomly from it with sizes 150, 30K, 500 and 1200 respectively and the
values of & are considered as (.20, (.16, 0.13 and 0.10 respectively. Here also
three levels of extracted classes are shown corresponding to 6 = 0.5, #

The convergence property has been demonstrated for a patiern

with radius 2 and centre at {3, 3, 3). Four di

shape [Fig. 9]

0.25,

=

& = 0. Figures 10{a){4) show the estimated classes with # = 0.5 based on the
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{c) {d)

FIGLTRE 6 (a} A pattern class; (b{d) corresponding estimoted versions with 8 = 0.5, d= 025, 8= 0
espectively,

selected sample sets of sizes 150, 300, 500 and 1200 respectively corresponding
to the pattern class in Fig. 9. Figures 11{a}-{d) show the estimated classes with
& = (.25 based on 150, 300, 500 and 1200 training samples respectively. Figures
12{a}<d) show the cstimated classes with & = 0 based on 150, 300, 500 and
1200 training samples respectively.

It can be seen from these results that as the sample size () increases, the esli-
mated classes are gradually converging to the original pattern class. &
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i {b)

{c) (d)

FIGURE 7 [a) Lower segmented portion of a pattern class, (bl=(d) cocresponding estimated versions
with @ 2= 0.5, @ == .25, 8 > O respectively.

B. Criteria for Goodness of Fit

The aforementioned convergence property is also verified analytically using two
distance measures (metrics). One of them is the Hausdorff metric and the other
one is a similarity metric (Sim) defined in Mandal ef af. [1992a]. It has been
shown that the values of both the metrics decrease with the increase in sample
size (i}).
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FIGURER A set of training samples from the class in Fig, Sa).

d. Hausdorff metric:  Normally, o find the similarity between sets, a distance
measure is often used. Havsdorff metric [Kuratowski 1966] has been used here
for this purpose.

Let (X, d) be a metric space. For any compact subset of JA of X, define

8y, A) = a!lIEIf..‘H. dix. y)

where inf means infimum. Note that &y, JA) is finite and 3x; € A such that
&y, A) = d(xy, y). Now the definition of the Hausdorff metric is given below.
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FIGURE® A spherical class.

DeFteaTioN 3 [Kuratowski 1966]:  Let /A and B be two finite compact subsels in
" Then the distance between A and B, denoted by Dist( A, B), is defined as

Dist{ A, B) = m{‘}'ﬁaj‘ 8(x, B), T&; 3y, .ﬂ}} (%)
where fi(x, By = Eléiéld(-’f» ¥
and 8y, A) = mind(x, y).

This distance measure D:'s.'{_ﬁ, B) is considered here as one of the criteria for
goodness of fit, where 4 iz considered as the boundary of the estimated set or class
and 8 15 considered as the boundary of the original class. This distance measure
Dist has also been applied on the estimated sets or classes [figures 10(a)}{d),
Hi{a)d) and 12(a)}(d)] with the onginal set in Fig. 9. The boundary of the
sphere is approximated by 5675 equally spaced points and this set of 5675 points
is considered here as the set B. Three levels of estimated boundary based on the
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@)

(c) {d)

FIGURE [0 (a}d) Estimated versions of the class in Fig, 9 with 8 = 0.5 based on 1530, 300, 500
and 1200 samples respectively,

possibifity valoes (f), namely # = 0.5, 8 = (.25 and # = 0, are considered here,
The values of the Disf measure are shown by a graph in Fig. 13, &

b. Another metric Sim: Note that the Havsdorff metric reflects the overall sim-
ilarity between two closed sets. In order to incorporate the similarity of each of the
elements of the sets, a new measure was defined in Mandal er af. [1992a] and ir is
given below.
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Let .4 and B be two finite subsets in #" with ¢ 4 and iy elements

respectively. Then 2 similarity measure between JA and B, denoted by

DEeEFINTTION 4
Sim{.A, B), is defined as

(9)

S, &(y,.A) + Disi(A, B)

Ig y=H

Y, &x,B)+
Frel

1

Sim( A, B)
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(d}
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FIGURE 12  (a)-d) Esumated versions of the class in Fig. 9 with @ > 0 based on 150, 300, 500 and

1200 samples respectively.

Mandal 1992} and it has been considered

goodness of fit for the shape determining procedure.

It has also been applied between the pattern class in Fig. 9 and its estimated multi-

valued classes [figures 10(g)}{d), 11{a){<) and 12¢a)—d)].

Sim measure are provided in Fig. 14. &

H

[Mandal ez al, 1992a;

here as another criterion for

Jim 15 a2 meteic

The values of the

Hence, the convergence property of the proposed shape determining procedure

iz algo established for &2,
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FIGURE !4  Values of Sim measure between the sctual class in Fig. 9 and its estimated versions.
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Y1, CONCLUSIONS AND DISCUSSION

We sugpested earlier [Mandal ez al. 1992a] an approach 1o compute the muoltival-
ued shape of a patter class from its sampled points in f. In the present article,
an exiension of the procedure to higher dimension has been made and the same
alporithm is applicable for any vaiue of the dimension (). (The hterature in this
context 15 sparse.) The fuzzy set theory has been found 1o be an appropriate tool
in the solution of this problem. While esimating the shape, the portions not cov-
ered by the sampled points are assigned some fuzzy membership values denoting
the degrees of their belonging ta the actual class. Therefore, unlike the conven-
tional approaches, the proposed method does not attempi to provide crisp bound-
ary from incomplete sample set. The effectiveness of the extended concepts has
been demonstrated on some artificially generated data sets in #°. The multivalued
shapes can be converted to the wsual crisp versions by considering only the fea-
ture points {FSC) with possibility value (&) = 0.5, say to be within the classes.
The convergence of the estimaled shape to the original one has been verified both
experimentally and analytically.

The parameter to be chosen for the implementation of the proposed method is
the accuracy factor. According to Grenander [1981], a good estimaie of the shape
can be found if & — 0 and 187 = = as ¢ — =, There exist many sequences fol-
lowing these two properties. We have taken one such sequence so that &, here sat-
isfies inequality as shown in (1}. In fact, we have taken 8, 1o be a number close to
the average of r-,},; and . (Note that ok and/er 5k can be imationals.)
The reason for imposing the above stated conditions on 3, is elaborately stated in
the literature [Grenander 1981].

The coverage factors required for determining the shape of a class are deter-
mined automatically from &, and the sampled points. One of the major underlying
features of the procedure is that any pattern class can be represented as a collec-
tion of some nearly parallelepiped shaped subclasses. This concept was also
found to be very useful in developing a multivalued recognition svstem [Mandal
et ad. 1992b].

Note that the proposed procedure for finding shapes in 8% is, seemingly,
dependent upon the orientation of the set with respect (o feature axes. Thai is,
most of the concepts/blocks regarding our method are based upon the direction of
the feature axes. It is apparent that the most likely case for which these blocks
may not provide the expected resulis is the one where the set is situated along the
diagonal directions. In such cases, if the axes are rotated by & suitable angle (to
make the set lie along the direetion of the feature axes), the resultant estimated
boundary 15 likely to be more smooth. This issue was already addressed earlier
[Mandal et gl 1992a] for the point sets in %, Tt may be mentioned that whatever
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be the orientation of the original set, the estimated set will tend to it as the num-
ber of sampled points gocs ta =,

The computational complexity of the proposed method increases exponen-
tially with the number of features. Thus complexity needs to be reduced for effi-
cient implementation in higher dimension, Note that our aim has been to develop
a generalized approach i determine the shape of a pattern ¢lass in any dimension
as because the linerature in this direction is poor. The problem of reducing the
camplexity, which has not been addressed here, may constitute a part of futore
investigation.
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