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ABSTRACT

An TD3 ke free-bused glassilior named RTD3 has been proposed, The classificr
Teruited & tanking of the features avcording to their discrininability betreen classes.
We propose a gimple but effectivg seheme for feahure ranking, P tiest constructs a
preliminary trec with g defaolt threshold at cugh node, ¥ the performance of the jnital
tres is not satisfactory, then the threshold at each node is tuned with penetic algorchins.
111Y3 s found to outeerform nearest-netghbor classitier for all the dala sels comsidered,

1. INTRODUCTTON

In pattem recognition {1]. an object is characterized by a sel of [catures.
The values of these features can be of three types:

{1) mmmerical,
(if) categorica] of nonnumerical,
(i) furzy or ambiguous,



272 K. R PAL TT AL

Mumernical values of features have a proximily relation belween them. For
example, let us consider that a man is described by his HEIGHT, WEIGITT,
efc. In this case. a2 man with height & feet is closcly related o another
person whose height is 5 feet 11 inches. Se for numeric-valued features, we
can extract some relationship bolween the dila poinls by analyzing their
distances.

Clhalegorieal vialues are nonnumeric. Each teature can have a number of
values, called artribute values, and an objecl or a data point 5 character-
ized by values of these attributes (sometimes these values may he repre-
sented by presenee or absence of these attributes). As an illustration, a
man may be described by ITAIR-COLOR, EYE-COLOR, cle. Lel the
different wvalues of the attribute ITATR-COLOR ke black, brown, and
blond, and Lhe values for EYE-COLOR be black, blue, and gray. S0 & man
in this scheme can be described as 1TATR-COLOR: hrown, EYL-CLOR:
b,

We can denole these different atlributes by numeric valucs also, such as
HAIR-COLOIR: 1 —black, 2 — Blond, 3 — brows. But we can never expect
the proximity relation that we enjoyed In the case of numeric data, becavse
“black is nearer 1o blond than to brown™ carties no meaning (although 1 is
nearer to 2 than 3). This makes categorical data unsuitable for proximity /
distance-based analysis.

Tinally, the fuzzy feature values are not well defined, so one cannot
cxpect. 4 precise value for 4 feature. For example, assume that 4 man 1s
described by features ke COMPLEXION and PHYSIOQUE. COMPLEX-
ION can have different values such as “Tair,” “dark,” etc., which are not
precisely defined, bul can be expressed in terms of membership lunctions.

We are accustomed to using linguistic values (not necessarily fuzzy) to
reprosent cateporical fealure values, and human processing of such infor-
mation creates no problem, but machine processing of such irreducibly
nommumeric dats requites speeial attention to achiove 3 wselul paliern-re-
cognition system.

The TD3 [1] approach to classitication consists of a procedure for
synthesizing an elficient diserimination tree Tor classifying pailerns that
have ponnumeric values. The I3 approach makes use of the labeled data,
and delermines how [eatures might be examined in sequence uniil all the
labeled examples have been classified properly, TF the data set wsed to
consirucl the tree is a representabive of the much larger ensemble of
patterns comprising the origimal body of the data, then we can oxpect a
very large pain through nse of [133.

1D3 can be very effective under certiin conditions, but should nol be
used beyvond its scope of validity. Two serious limitations of the ID3
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approach are:

1. it uses categorical data only,
2. it cannot deal with partial information.

In D3, onme way to handie nomerical datg i to convert the data to
categorice] data by dividing each feature mto a number of groups and
assigning one label for each group. Then each data point can be rcpre-
sented as a vector of labels depending an the attribute value ranges. The
problem of this technique is that the mumber of calepories is to be
assurmied and the finer details of the data sel will be lost. becauwse, for a
range of values, the grtegonical vilue will be the same, In this article, we
have proposed # classification algorithin which can deal with numdrical
data like IRIS, Mango_ Leaf, Crude _ <il, ste. [2-4].

Our classifier is a decision-tree-based approach. Bach node has a
protolype vector and corresponds o a particular elass, The tree creation
process pges a ranking of the features, and the prototypical vahey of cach
class are computed as the class centroids. In order to find the class of an
unlabeled data point, we start at the root of the tree. At each level, we tesl
the distance of a particular feature value of the daia point [rom some
protoiype (through the computation of membership values using the lwey
c-means [5] formula), and then fit the dita oo the node with highest
membership vahe:, This is how we go down towards the leaf level until we
get some node where the data point fits with a considerable amount of
agreement. The decision-making .process requires a threshold for each
node which is learncd using genctic aleorithms [6].

We Lricd our proposcd scheme on Lhree data sets, and the petfomance
is foumd o be better than the nearest-neighbor classifier [1].

2. RID3: THE PROPOSED SCHEME

We are given o p-dimensional data set X ={x, %.,...,x | 1, ER", wilh
¢ classes C={C,C,,....C .5 The jth component of any data point x;
represents the value of the ith feature f; {we denote the lealure sel os
P={f, - ,_,I'}}] The problem is Lo construet o classification tree, whose
cach node s either g leaf-node or o decision-node. A leaf-node corre-
sponds to a particular class, whereas a decision-node corresponds to a class
as well as a rest node with respect to some feature. There are three distinet
parts of this algorithm:

([} feature selection,
(ii} tree construclion, and
(i} tree oning,.
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A FEATURE RANEING

There are many techniques for feature ranking. Some of these tech-
miques are based on interclass and iniraclass distances, some are based on
probabilistic. fuzzy models, while others are based on neoral networks,
Each approach has its advantages and drawbacks,

Features shoufd be ranked according to thedr ability to discriminate
dilfferenl classes, The discriminating ability of a feature s dependent on
the tvpe of classitier we use to evaluate it. For example, the most
mportant featare [or traintng a mulilayer perceptron (MLP) may be
different Irom the most important featore for @ nearest prototype classi-
ficr.

The ability to classify patterns by machine relies on an implicit assump-
tion that classes occupy dislinel repions in the feature space. Intuitively,
the greater the distance between classes, the better is the chance of
suceessiul recognition, Cnoe approach couid, therefore, be to select those
feamorey for which the classes are maximally separaled. Woe presenl a
feature-selection scheme |7] based on this principle, below.

As dencted earlier, let X --{xjx, o R i L2,....x) be the data set,
There are ¢ classes £, Cy. ., O, with a priowl class probability P, for a
clags €, such that UJ_,C =X, O,NC,=¢ ¥i+#j, and |C)|=n,. Let ¥=
{v.v,ER®, pap, i—1,2,. . a} be a data sl generaled from X by some
feature-seleetion tochnique, where the Ath component of ¥, is equal to
s {th component of x,. In other words, ¥ is generated by deleting
some (p—p') rows of X, if X and ¥ are represented as matriees ol ordery
prand g xon, respectively. 5

Mow the rmaldecs, within-cluster-seatter 5, and the between-cluster-
scatler &, can be defined as

S T A 1 Oumm) Oy ()
and
8= iﬂ-(mé—m}(m[—m}‘, {2
25!

Here i, is the dsample mean vector of the ith class, e,

Ht = [ "Z }-;-,._.\]n,-, (3

k=1
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and m 15 the mrure sample mean, Le.,
it = E ‘Prm." {.4:'
i—1

Intuitively, for the feature-ranking task we like 0o maximize r(8,) and
al the same Lime minimize il S, ). To achicve this, we can maximize

HY)= EE‘;L“]; : (5}

where ({4, Y= ja,. A~ e

The main drawback ol the above erilerion function ((3) is, il for a
].".Iaﬂ.i{‘.ulﬂ.l' leature subset (5, a elass (O} is well seattered and a poctiom of
(C;) is overlapped with another cluss (C,) such that their centroids (with
respect to features in §) are far away, then J(¥) (for features in 5) may be
greater than that for another featmre subset, § =5, which separales the
two classes in such a fashion thal a single hyperplane may pass belween
them bul the cenlroids {with respeet to the foatures in 87 are not so apart,
Intwitively, the sccond feature set is better than the first one although the
crterion function may indicate the reverse. For the feaniwre-ranking task,
we take p’=1, Le., we compule JLY ) for cach feature (Y is ome-dimen-
sional vector), and rank the fealure accordimg 1o AY).

In this investigation, we have proposed @ simple yet cifective method of
ranking features, We have used the ranks obtained by both J¥7} and the
proposed scheme for constrocting the classification tree as well as w0
classity the data points. In our tree-based approach, we go on classilving a
data point with respect Lo dilffereml featores, one by one, untl we are able
to make a satisfactory decision aboul ils class.

211 A New Feghure-Rantdng Scheme

In pattern recognition, we call a lealure pood i AL can discriminate
between different classes. Thus, 1 good feuture should not show much
vatialion within a clags but should have significantly different values for
different classes. To get the feature evaluation index, we compute three
indices: nondistingoishability (NTY), intercluster separatmn {1C%), and class
dispersion (), as follows,

Firsl, we compute the natural prototypes of each class, where by
“natural prototype’ we mean the prototype that can be oblained by a
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clastering algorithun (ignoring Lhe class labels of the dats points). One can
vse the “hard c-toeans”™ of the “lueoy c-means™ (FOM) or some other
clustering alporithm on the data set X to get ¢ custers. In the present
case, we have used the FOM alporithm which, for the sake of complete-
ness, is bricfly discussed next.

Fuzzy c-preans algorithm. The FCM algorithm [5] can be wsed 1o con-
struct a fueey e-partition of a given data sel. The lurry comeans formulales
the clustering problem as u weighted least-sgquare optimization problem,

Let the protefvpe vectors for the e classes be V=1{p,,&,,...,0.}L. 1, ER?,
and 1, be the membership of x, (x, =X} to the ith class. Then the FCM
problem can be written as

n [
minimize 1,6,V XY= ¥ ¥ ()" (d)® (6)
k=1i=1

subject o

(i} 0=n,, <1 Yik,
(i} X;u,, ~ 1. ¥k, and
(iii} 0 <X, u,<n i

Here & s the membership matrix, s> 1 s o tuewifier which controls the
fuzzingss in the resultant partidon matrx £F, &, =[x, —ovll=the Eu-
clidean distance between x; and v, Howewver || || can be any other inner
product induced norm also. '

The necessary conditions for optimality of J,

o which are given below,
can be derived wsing Langrangian method:

] "
m= Yo (wg) aed Eofugd s Ieise (7)
-1 =1
and
iz 1
My == [ L {dmf‘fﬂn)ﬂm_w] ! l<k<n, l=isc. {8)
J'_-I ‘

The zlgorithm can be staried initialidng cither on £ or on . In our
implementation, we initilized on £, Using the value of [, we compute the
centroids in (7}, Then the new centroids are uscd to compute L7 using (5,
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The process is iterated in this way between (8) and {70 until either
& =& _ill< e or [W,—¥,_,l < e or hoth are satisfied.

Here I} and ¥, represent the membership and the centroid matrices al
the ¢th ieration and ¢ is a small positive pumber. We caleulated the
natural centroids ¥ ={a,.z,,..., .}, with e=0.0001. For FCM, the chuice
of an optimal s is still an open question. Theoretically, it is shown [5] that
as m-rae, g, Lie, Yi=1L2 . e; Lo, with higher values of m, the [ueey
clusters become indistinguishable. On the ather hand, as m—=1', u,
becomes erisp; ey, + 1 for the clossst protofype and w,, — 0 Tor the rest,
Thus, for Tow values of m, the fezziness in the pintition is lost. These fuets
suggest that neither a high nor a low value of m 15 desirable. Empirically.
it is found that FCM works better in the neighborhood of m=2. In our
experiment, we tried dilferent values of moaround m - 2, and Lhe perlor-
mance of lthe sysiem is found to be consistent, We report the resolt for
pe=2.5 just as am illostrative case.

Now we compute the set of actual ceniroids m={m.m,, . ...m )
r; = RFP, considering the actual labels of the data points. In other words,
we compute Tor each leature £ i=1,2, ., p,

m'l'.l'=m E Kips F=12,.. 5k (9}
“f

5o r1,; is the mean ol the fth feature vatues of the data points belonging to
class f. pr,; will be called the actual prototype of the feature / correspond-
ing to the ¢lass j.

Muote that, if the data have well-separaied clusiers and we use a good
clustering algorithm, then the natural centroids and the achwl centroids
will be close. Moreover, for a good feature (a feature with better discrimi-
nating power}, the corresponding component of the natural centrold and
the actoal centroid will be more closce. Using m, V, X, we calewlaie three
measutes for determining the feature ordering:

(a) Nonbistinguishabiity, (ND) = 40 1(13¢-J-—mf.-}2,

() InterClusterSeparation, (FCS;)= X5 (K5 _(my—m )0,

(€) Classtyispersion, (CD;)=Lf (L, 2 »lx —m;)"),

NI} Measures the distance between a component {fcature} ol the
natural cenlroids (computed without considering the ¢lass labels),
and the actual ceniroids (compuied using the lagbels of the data
points). Thus, if the ciusters are distinguishable with respect Lo g
feature, the ND for that leature will be low. ie, lor @ good
feature, ND should be Lo,
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IC8  Measures the distances between the cluster centroids with respeet
Lo 8 particular feature, lotuitively, for well-separated clusters, this
distance should be high.

CD  Measures the total distances of each data point (using only one
feature} from its cluster centroid. Clearly, for compact class strac-
tures, £1F shoukd be low.

For 4 good feature, we cxpect that ND should be low, whereas ICS
should be high and CD should be low,

Thas, the overall feawnre evaluation index (FEI} for the ith feature can
be defined as

FEL=(ND, * CD,) /ICS.. {10}

A problem with (10} [s that when, for a feature, all the data points have the
same value, clearly ICS will become zero. To gel around this problem, we
modily (100 as

FEfL=(ND,=CB) /(1 +ICS)). (1)

Since ICS can never be pegative, (11 can be used safely. The lcatures arc
ranked according to this index and are used m the classification trec
according Lo this ranking. The lower the value of FFEI for a fearure, the
higher shoyld be s rank.

Suppose the data set is such that with respect 1o feature {, the controids
are well separated but the classes have overlap, Tn this case, the actual
centroids based on featnre § may be well separated, but the natural
centroids are likely to be away from the actual centroids, and they may not
be well secparated because of the owerlap bebween the classes. Conse-
quently, AD will be high, resulting in a high value of 2#f. Thus, FEI is
not cxpected 10 have the drewback of J(¥) discussed carlicr.

21.2.  Results on Feature Ramédng

We have used three data sets: Anderson’s IRIS {2], Mango_ Leaf [3],
and Crude _ Ol [4].

IRIS is a [our-dimensional data set consisting of 150 points divided into
three classes of equal size 530, The four features {f, f., 15, fy) are [Sepal
Length, Sepal Width, Peial Length, and Petal Width). IRIS has been gsed
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TARIT
Teamre Ranking for TRIS
Feuiure Rank Ty Rank tw
oo ) FEl
f1 2 3
f2 4 4
fa 1 1
f4 2 2

in many rescarch investigations rclated Lo pattern recogoilion and has
beeome a sorl of benchmark-dita,

Munzo_ Leat, on the ather hand, 1% ¢ data set with pumber of foatures
p=18 (i, 18-dimensional data) with 166 data points. It has three classes
representing three kinds of mango. The feature set consists of measnre-
ments such as area (A}, perimeter (Pe), maximum length (L), maximum
breadth (B}, petiole (P), length | petiole (L +P), length Spetiole (L/P),
lengih /maximum breadth (L/B), (L - P3AB, AL, A/B, A/Pe, upper-
midnb /lowermidrib, upper Pelower P, and so on, The terms upper and
lower arc used with respect to maxinan readth position.

Crerrid and Laniz [4] chemically analvzed crude oil samples [rom three
zones of sandstone. I is a five-dimensiong] data ser with 56 data points
and three classes, Wilhelm, Sub-Muilinga, and Upper (Mulinia, second
subscales, Arst subscales).

The features are vapadivim {in percent ash}, iron (in percent ash),
beryilium {in percent ash}, saturated hwdrocarbons {in percent areal, and
aromatic hydrocarbons (in percent arcal

The ranking oblained by J{Y) and FRT for different data sets are
presenled in Tables 13 From these tables, we find that the ranks
ohtained lor IRTS using both schemes are the same, while for the other
two data sets, the obtained ranks are quite different. Conssquently, as we
will see luter, the decision trees for Mango | leaf and Crude _oil ercated
based on ranks obtained by ¥} and FEI will he diffcrent, smd Lheir
performance will also be different.

22 CRRAQN OF THE [RER

The basic classificr in our algorithm 15 a tree which is made once [or all,
using the training data set. After building up of the tree, we are able 1o
predict the class of any data point (unlabeled).
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TARTI 2
Feature Ranking for Mango 1 caf
Featwe Rark by Rank by
Tl Av) | DEl
1 11 7
f2 3 13
I3 13 1
fd & 15
i 3 9
fa 16 17
i 18 1
b 17 2
1o I 2
fi0 g 16
T 14 f
Fab: 9 4
13 L5 3
4 2 8
iz T 14
fl6 1 110
fiT 12 3
fl8 1t 1

Eauch node in the degision tree 19 either a leal node (o decision node) or
an infernal node (a testing node). Each leaf node solely represents a class
(umigue). 1T any data point reaches Lhis node, alier traversing from the rool
ol thé tree (the traversing mechanism is explained Eater in Lhis section), we
will conclude that class of the data point is that represented by the leatf
nerde. On the other hand, cach inlemal node represents a Lest with respect
to a feature, as well as it can also represent a class. For internal node, if

TABLE3
Fealure Ranking for Crode_0il
Fealure Rank by Bank by

nia. A1 FEi
fl 3 2
2 2 1
3 ] 3
4 L 4

; 4 3
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the computed membership value s greater than the threshold, then we
assign the duta point to the cluss represenled by that nede,
For construction of the tree, we need two things:

1. an ordering of the feutures of the given data sel; ler the ordering be
Fipfieooo fi, 85 done in featureranking section, and

2. for each feature [, the prototypes in each class, Le., m;; for i=
L2 ..p o L2 e {as caloulaled in (9))

Now the tree is construocted as follows:

(1} Fach intemmal node has exactly ¢ children, cach child enrreaponeds
to a class, and there arz p levels in the tree.

(i} Let vs denote the jth child of the ith node of level -1, i=
L2,...¢ b and j=1,2,...,¢, by N, Le, N} is a node at level 1. The
structure of the node MY is that it has a protowype vector mé; of dimension
1, of which the first / — 1 components are inherited from its parent, and the
{th component is the value of the prototype of the feature f;, for class f.

{iii) Each node A\ has a threshold value 6, which is inilially set to 0.5
tur all nodes. These thresholds are wpdated later to get an improved
performance of the classitier.

Ax an example, let us consider the IRIS daia set. The ranking of the
features is

Fy.Fy 00,

and the constucted tree is shown in Figoare 1.

Simee f; ds the modt important Teature for TRLS, an level 1, the
classtfication is done with respect o f5 {feamre 3% Thiy is depicted by the
three children of the root node at level 1. In the next level, the tree is then
grown using f, {feature 4}, the scecomd important leatuee for TRIS. Thus,
for cach of the three nodes at level 1, we get three children for level 2,
Ligure 1 shows omly the subtrees For classes 1 oand 3, The process is
continucd until we reach lovel 4.

23 TRAVERSING MECITANINM ALONG THE TREE

The depth of the troe is cqual to the number of Teatures “p” Hach
node eomtains the level of itsclf and a prototype vector whose dimension is
couil to the Tevel, Bach node hias a class label and has ¢ children, il it i
nok a leaf mode.
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Fig. 1. The classilier free comstrucied by RID3 for TRIS daty,

Given a data point x {.‘cl._ Hgyiay X _ﬂ], we procesd ws follows for labeling
ir.

Step 1: Start from the root, ie., V.

Step 20 If we are [n the ith node of level I—1, then its ¢ children are
the nodes N, N4 .., N, whose prototypes are m, b, ...omi,. .

Step 30 We calewlate the membership of the dats point x to all these
nodes using the formula given in {8). The membership to the Ath child is
piven by g, (TS (dy /d 1 Lekec, Here df =l —mill.
where x'={(x,;, X;z....,%,) is an Fdimensional vector and 2,,7,,...,1, is the
ranking of the features. In other words, x' is obtained considering the
most importani £ components of x in ovder,

Step 4 Let g, =mas( gy, poe. o pe b U op, = 8 we conclude that x

belongs o the class N, (8, is the threshold of the node Nj)), else we set
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our current node of operation as AL, and repeat steps 2 to 4 until either
we reach a node where the computed membership value is greater tham
the threshold of that node, or we reach the leal level, 1T, al the leaf level
we do not get a membership greater than the threshold, then we cither
comclude thal the data point is ambigunous, or we assign x to the class
represented by the leaf node where we have reached

24 TIE IMPORTANCE (N TARESHOH.O

The threshold plays an important role in the proposed classilication
scheme. Suppose that our data set has three classes, and that class 1 is well
separaice from classes 2 and 3, which have a good amount of overlapping,
Now an observation from class 1 comes for testing, aod its membership
values o the three dilferent children ai the very first level (computed
based om the most important Tealare) are something like (09, 0.05, 0,05,
For such a case, even I we fix the threshold 4t 0.4, the system assigns the
data poinl Lo the righi class, cfass 1.

Now comsider a daia point which aciually belongs to class 2 but, as far
as the most important feature is concerned, it lies midway between Lhe
corresponding prototvpes of class 2 and class 3. Suppose the computed
membership values arc, say, (L1, 05, (b4 Since our Lhreshold is (15, we
cannot make amy decision at this level. So we have to go down along Lhe
tree, and iL may happen that the membership is never able to achieve such
g high value as 0.8, because some other foature can drag the data point to
some other class. This can happen, as all featires are not always useful.

The previouws discussion mudoes it elear ihal the choice of the threshold
values is a decisive factor for pond classification performames, Moreover, il
also suggests that some nodes should have high threshold (the nodes
corresponding 1o well-separated clagses), whereas some others may need to
have low thresholds fo avoid unnecessary traversals and to reduce (he use
of less important features.

In our algorithm, we learned the thresholds vsing genetic algorithms,
which are explaned in the next scobon.

3. TREE TUKING USING GENDITIC ATGORITIIMS

Genelic alporithms (GAs) are probabilistic heuristic search processes
bazed on natural genetic sysiems. Lhey are hishly parallel and believed to
be robust in searching global optimal solulion of complex optimization
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problems, They recombine strisetural informuation o locate new peinls in
the sgarch space with expected improved performance.

GAs are capable of sobing a wide ringe of complex optimization
problems using three simple genetic operations {reproduction /selection,
crossaver, and mutation} on coded solulions (cheomosomes Sstrings} for
the patameler sel, not the parameters themselves, inoan iterative fashion.
GiAs conzider several points in the search space simultineously, which
reduces the chance to converge to a local optimum. They use the payotf or
penalty {i.e., objective) function called the fitness function and do not nead
any other auxiliary information.

CiAs exploil historical inflormalion o speculate on new scarch points by
the grossover opemation on o pair of polential dirngs selecled by Lhe
reproduction fselection operation. Matation, an the other hand, s a see-
cndary genetic operation of genetic algonithoms, It occasionally alters a
random bit position of o randomly selected string. It has a great nmpor-
lance to sustain the genetic diversity, which reduces the chance of getting
slack to a local optimur. Muolation alse helps the algarithm to recover
information, which is somelimes cssential to abtain o pood solution, lost in
the sarlier generations.

Let us consider the problem of optimizing a complex function having n
parameters k|, %;,.... %, Tosolve such a problem, genetic algomithms start
with a set ol initigl strings/chromosomes =82 - 1,2, M. as the
initial spproximations of the parameter set. In GA literature, M is called a
population. Each string 8, represents a coded version of an approximate
solution set a,=(«;,&;,,...,a;,). Usually a binary string of length L =n.f
i% laken a3 a string or chromosomal representation of an approximation. A
substring comprising bits (i~ 1)#{ through &4, i=1,2,... n, represents an
approximition of the fth parameter, The population of the strings then
undergoes a sequence of three gepetic operations to produce usually an
improved population. These operations are selection, crossover, and muty-
tiom. ‘This process is repeated until some stapping criterion is reached.

Fioure 2 pives o schematic deseription of the basic stiuciure of genetic
algorithrng,

AL OA TR FINDNNG OFTIMAL SRT OF THEESHOLDS

For our classification tree, we have to find oul an oplimal threshaold for
each nodi:, This mesns thal the number of paramelers is cqual 1o the
number of nodes in the tree, For a data set with n leatures and ¢ classes,
the mumber of nodes is cyual 1o ¥ =c", FHach string /chromosome col-
prises the binary representation of ali the thresholds, We use seven-hil
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representation for the individual threshold. The fitness function or the
objective function is to minimize the nember of wrong classifications by
the classifier. ‘The dillerenl genclic operations are performed on these
sirifgs.

Sclection s s process in which potential strings (strings with higher
fitness value) of the population P are copied into a mating pool, T=1{5;:
8. =P}, depending on their litness function values. More specifically,
selection lakes F oas inpul and produces @n output ¥ The string .o P
having fitness value £ is replicated p,=f, /. § « [T times, (7] 15 the sfze of
the mating pool.

Uszing the set of thresholds corresponding to each string, we test the
classifier with the training set and evaluating the fitness fuoction, ie.,
compule the number of correet classilReations. Then, depending on the
litness vialues comesponding to different sets of thresholds, the strngs are
copied mto the mating peol proportionately.

Crossover operation produces offspring by exchanging information be-
tween wo polential strings seleelod randomly from the mating pool
generated by the selection proccss. For cxample, comsider taa sbiings
o =IN101010T and & =10HEH0 of length 10 selected randomly from
the mating, pool. A random pasition 7 1s selected for crossing over. Adfter
crossover, the two strings are ¢ = 0101010010 and » = 1010101101.

Mutation is an occasional alteration of a random bit. A random bit of a
randomly selecied siring in the population is selected and the bit value s
reversed. Mutation i necessary [or the following three roasons:

(1) Lo repain the information lost dyring carly penerations,
(3} to obtain 3 bit valve which does not exist in the locus af that bil in
any of the strings in the population,
(ili} to sustain the genetic diversity in order to reduce the chance of
geiling sluck 1o a local oplimuam.

In Figure 3, we summarize the entire process starting from clustering of
the training data down 1o classiication of unlabeled data, Figure 3 shows
the steps as vsed in this investigation, but the underlying philosophy of
RID3 s gquitc general, and some of the steps can be replaced by other
altermatives, For cxample. the featute ranking can be dome using any other
method. Snuilarly, the threshold tning alguorthm can glso be changed.

4. RESULTS ON CLASSIFICATION

To evaluate the performance ol RID3. we have used the same theee
data sets—IRIS, Mango _leall and Crude  0il. The results of our alpo-
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288 N. R. PAL ET AL.

rithm are compared with those of the Nearest-MNeighbor (NN {1] classifier.
Belore describing the resulis, we present a brief deseription of the NN
classifier for the sake of completeness.

NEAREST-NEIGHROR ALGORITHM

(a} Store all the training instances.
{b) For each of the testing instances,
i. Measure its distance from all the training inslances.
ii. If the pearcst instance is “x,” then the testing mstance 19 assigned
to the class of “x."

For our purpose, we divided the data sef ramdomly into two equal halves
and then treated one set as the test set and the other as the design
(training} set and vice versa. To claborate further, we have X=X\ U
X, U JX . We randomly partitioned X inte XY and X7 such thal,

X=X"Ux?, X"nxT=¢,

AP S XP ORISR,

[

X'=xtux]lu- uxrl,

es

X =X"UXT and XPnXT=4¢,

It X n then (XP] | 5| and Xt - [
The results obtained by RID3 and the nearest-neighbor [1] algorithms
are as shown in Table 4. The percentage of correct classification reported
in the table is the averape score oblatned by switching the training and test
sily, We have tosted the algorithm with severyl random paritions, and
Table 4 reporls a typical result, Table 4 clearly reveals that RID3 owper-
torms KN classifier for all the three data sets. The importance of proper
threshold at each node and the success of GA o finding the same are also
reflected by Table 4. In each of the cases, we find a significant improve-
ment in performance of RID3 alier tuning For Mango Leaf and
Crude Oil, mning improves the perlformance by 17% and 9%, respec-
tively, If the classes are well scparated, then we can wvse a fixed high
threshold ab cach node, and the perfirmance of the syslem is nol expected
to change with small chanpges in the valee of the threshold. Fach of the
data scts used in the present investigation has substantial overlap belween
some of the classes and henee, as explainud in Section 2.4, proper choiee
af thresholds can improwve Lhe performance of the system, Qur exporiment
shows that tuning indeed fnds gptimal or near-optimal theesholds for each
node and thereby improves the pertormance of the classifier,
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TABLE 4
Compagison of RIS with Mearest Meighinr

Porventage ol oomec| elassilication

Ranked by (FET) Raoked by f{¥)
RID3 RID3 RITX3 K13
without wilh withoul wilh
Thula get NN, toning tuning tning funing
RIS data
Fopulition — 150 a4 a4 Ba 04 a8
Dimension =4
Classen — 3
wlango_ Leat data
Fapulation — 166 26 50 67 GE.6T ]
Thmenzicn =18
Clusscs — 3
Crude (1l dala
Fapulation — 36 74 75 L) E) -]
Thmensich =3
Closges — 3

We wanl o ¢mphasize that success of the proposed scheme is depen-
dent on the order in which features arc used, ie., the ranking of the
featnres. But this dependence is not severe. To Mustrate this fact, we have
reporied in Table 4 the results obtained by RITY3 with the ranks produced
by J¥), Although Lhe rankings obtained by AY) and TEI are guite
different for Crude-Oil and Mango-Teaf, the Rnal classifier performances
are almost the same.

5. CONCLUSION AND DISCUSSICN

‘The most vital deawback of the 1133-type algorithm is that it cannot
handle numerical dala, it deals with calegorical data only. We can convert
a real data sol o oa categorical one, by gquantizing cach feature and
asgigming  dillerent labels Tor dilferent slots. As mentioned carlier, a
problem associnted with thiy is that we do not know the optimal number of
categories for 4 particular feature and we have fo assume it beforehand.
The choice of the mumber of catepories will have sigaificant impact on the
performance of the classifier. Morcover, for such schemes the finer delails
of the data will be losl.

In thiz paper, we proposed an algorithm RID3 which works on real
data, We implicitly gssamed that each feature hgs #ome amount of
clustering corresponding 1o cach class, Based on this, we have ke the
fealures using their clustering tendeney,
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In the pext phase, we construct a tree in which every node has a
prototype of featurcs corresponding 1o a class, along wilh a threshold
based on which we can determine whether o dila point coming into that
node belongs Lo this ¢lass or not. The preliminary trée is constoacted with
threshold = L5 at all nodes, which is further tuned using GAs.

Trie to this tree structare, we can enter into this wree at any level and
we can sldp any level as well Using this, we can develop a scheme [or
handling data with missing leatures which will be the theme of our future
work.

However, as with any other algonithm, there is some scope for improve-
ments:

(#) The alporithm is nonineremental, 0 an neremental yersion of the
algorithm will be helptul for dealing with daty scts which are not com-
pletely known befirehand.

{b) For “¢™ number of classes and “p” number of features, the total
number of nodes is «7* !, So for a large number of features, the number of
nodes will be very large. A possible remedy Lo Lhis problem may be (o bdld
the tree up to a predetermined level, and store the prototypes of the other
features in an array, While testing, if for any data point we require more
levels than that, we build the required subtree dynamically. Another
possibility may be to prune the tree afler it is constrieted.
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