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Higashi and Klir have defined a metric on the set of possibiliny distributions, based vn the L-uncerainty, ‘We
shovw here that similar metrics can be defined based on Yoger's measurs of {non} specificity ond the imprecision
measure of Lamata and Maral, These metrics satsfy almost a1l properties of the carlier metric, wdicating some
invariant characteristics of these three measures of {non) specificity. We also disprove some resulls present in the
Tieratmre. Finally, we argue in favor of defining these metrics on ordered possibiliny dasirbutions.

INDEX TERMS: Possibility distibutions, unceniainty. nonspecificity metrics

1. INTRODUCTION

Higashi and Klir |1983a] introduced a metric structure on the set of possibility distribu-
tions on a finite domain of discourse. The metric 13 based on the [-uncertainty measure, Tt
pives a measure of the separation between two possibility disiributions as implied by their
{/-uncertainties, The greater the distance the greater is the dissimilarity between the two
possibility distributions. Ramer | 1990] elaborated on this metric structure and introduced
a new function which is not a metric but is additive with respect to possibiiity distributions
on non-intcractive consonant bodies of evidence.

In this paper, first we discuss some inequalities for possibility distributions. Then, as an
extension of the treatment in Ramer [1990], we define metrics an possibility distributions
based on 1) Yager's [ 1983 ] measure of specificity and 2) Lamata and Moral's [1987] mea-
sure of imprecision. We then show thal properties discussed in Ramer [ 1990] for the {/-un-
certainly based metric carry over to these metrics as well. This investigation, thus, shows
some invariant characteristics of various well known measures of imprecision.

The rest of the paper is organized as [allows: Scction 2 introduces the nowation and var-
ious definitions, section 3 discusses three measures of nonspecificity, while section 4 dis-
cusses several inequalities on possibility distributions that will be required. Metric definition
using various megsures of non-specificity and their properties are presenied in section 5.
Section 6 concludes the paper.
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2. DEFINITIONS AND NOTATION

In our subsequent discussions the following notation will be used. Let 2= [x,x,, .., x,} be
a finite domain of discourse, A possibility distribution on 3'is a function g ¥ — [0,1]. A
basic probability assigrment (BPA) on ¥ is defined as a mapping m : P(3) — [0,1] such that
(= 0and AEE[ ﬁ m{AY = |, PLE) is the power setof £ Let F= [A € B3 m{A) =0},

Then (F, m} is called a body of evidence and the elements of F are called the focal sets of
{ % m). For a consonan body a_,f'euid.r:nce, that is when the focal sets are nested, we can
write A= {x,, 5, ...} i= 1, .., n, such thatm(A) > 0, i m(A,)=1. A plausibil-
ity measure [Klir and Folger, 1993] for a consonant body of evidence is known as a possi-
bility measure. Every possibility measure « on £ can be uniquely characterized by a
possibility distribution p; ¥ — [0,1] via the formula (A= max, o, [p(x}}.

We write, p= (p,, ... . p,) where p= plx;), i= 1, ..., n We denote by

P=ipp. - F.} its descending rearrangement and by f=(p. P, ... .7, } the as-

cending one. The descending possibility distribution is often called ordered possibility dis-
tribution. It is easy 10 see that for an ordered possibility distibution m(A)= p, — p.,,-.

If Max{p/i= 1,...,n)= |, then pis a normalized possibility distribution. In this in-
vestigation we restrict ourselves to normalized possibility distributions.

Let Py be \he set of normalized possibility distributions on X and p.g € P, Wesay p=g
if plr)= glx)¥x, € T, thatis, p,= g¥i=1,...,n. Onthe other hand, p = g if p, = g, Vi=
L....mandp=gqilg = pie.q,=p,¥i=1,..., np\/qisthe disidbution (p g){x)=
Max|pix), glx)}. Note that, p = py/gand g = p/ g.

Given two sequences a= a, i= 1,2, ..., nand b= b, i= 1.2,. .. . n, we definea <b
il E:Iﬂj = E.Ibl. Y. Furtherg > il b < a.

Ifp € Prand ¢ € P, where ¥= |y, ..., ¥}, then the cartesian product, p & g, of p
and g is defined as p @ g: X X ¥ — [0,1], such that p & g(x,v)= Min(p(x). 9(3;}}-

A function f2 Py X P, — R, where Z is any finitc domain of discourse 15 said to be ad-
ditive, if fip & r, ¢ & 5= g} + fAr.s), where pag € Py, 15 € Py and 2,2, are finite,

A functiond: Py X Pr— R is ametricif for pg € Py

. dip.g) = ﬂ. with equality iff p= g
2. dip.g)= dig.p)
3. dip.g)=<dipr) + d(ng) ¥r € Py

3. (NON) SPECIFICITY MEASURES

There have been several attempts to quantify nonspecificity |Higashi and Klir, 19834,
[ 983b], | Ramer, 1990], | Yager, 1983], [Lamata and Moral, 1987], [Dubois and Prade, 1983]
and [Pal et al., 1992, 1993]. We consider here three of them. Let p= {p . p;, . ... g} E Py
and 7 be itz ordered {descending) version,

Higasli and Klir's U-uncertainty.  The Uuncertainty (a measure of non-specificity)
| 1983h) associated with 7 is defined by
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=

U(p)=2(p, ~ Puv,) logi= 2P, mg[.’ ] (1

Ramer and Lander [1987] have shown that the {-uncertainty 1% 4 special case of a wider
class U defined by

Up(p)= 2 @ (7)~ 5] oy i 2)
where {2 |{(,1] — [(,1] is a continuous nen-decreasing mapping,

Yager's Measure of (Non) Specificity.  Yager [1983] defined a measure of specificity, s(p}
as

= ﬁii—l]
——=2

s(p;.=5|:m=§[p‘ with p,,, =0

L 1 |
=7 +_§lﬁ-[—.—. w (3)
i i i1

2
The specificity measure provides an indication of dispersiod of the associated belief func-
tlon, Np)= | — s{p) is often viewed a3 a measure of non-specificity.

Lamata and Moral's Measure of Imprecision. Lamata and Moral [ 1987] defined an index
of imprecision, w{p), for a basic probabilily assignment m as

A
w(om) = Lnf,{zx nr{A) |AU. (4)

wimr) is the logarithm of the average cardinality of the focal sets, hence it also represents a
measure of non-specificity. For a consonant body of evidence wi{m} can be interpreted as
the imprecision measure of the underlying possibility distribution p and it tkes the form
wi{pl=log Elﬁl — Fius I fwithp ,, =10
=1
=log|p, % 1= py X1+p, ®x2—p, X2+ )
+poy X (n—lj—p, X(n—1}+p X n=p, % n]

= |0g|:$ pl.i|.

4. INEQUALITIES FOR POSSIBILITY IMSTRIBUTIONS

We first state two results from Ramer [1983]: (1) If @ < b, then @ < b; (2) Let pand g be
such thal p > g then, Uip) = Lig). The following iwo lemmas show Lhat these are not nec-
essanily true.
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LEMMa |. Ifa < hthenneither & < b nor & < & is necessarily true. O

Proaf. Consider the following counter example: Let o= (0.7.0.2,0.2,1.0} and

b= (10060401). Then &=(02.0.2.07.1.00 b=(0104.0610). a =
(10070202 and & = (1.0,0.6,040.1). Clearly ¢ =< & but neither g <hnor d=<h
15 True. ]

Limma 2. Lel pand g be such that p > g. Then it is nol necessarily true that U(p) = Uig).

Proof.  Let p= (1.0,0.3,0.3) and g= (0.2,0.4,1.0). Clearly p > g. But, Ui{p)= 0.3 log 2
+ 0.3 log (32). and Lig)= 0.4 log2 + 0.2 log (¥2). And, Ulg)—Ui(p)= 0.1 log 2 — 0.1
log (W2)=00logd = 0l log3 =0, O

LEMMa 3, Ifp=gthen p=gandp=g.

Proof  Enough to show 7 =4;. Since 7, is the /™ largest in the sequence (p, ...,
plowelel [p, o, ... 5yt bethose g5 8 greater than or equal to %, Then we also have
P less than or equal to each element in {g,.4,0. - - . . gy ). since p, = g,. That is, 7; is less
than or equal 1o some { elements in the sequence g, and in particular (o the ¢ largest ele-
menis in the sequence 4. In other words, p; =4,
CoroLLARY. p=g=p<gandp<g.

Lemma 4. p=prjg=sp=pi/g

Proof. Lel ¥ = (kg < g,) and §,= [k p, = gq,]. We have,
IL _ %
Zpva=2(pVak

—-gjm since f=p\/q

- P ok P

=3 p+ & p g
pard B l_:Ezpr .-"lIE?.

Therefore,
T pvf g, = L p,; thisis possible only if §; = &,
e IE%
Hence we conclude thal p = g ie, p=p'/gq. O

Lesmma 5. Let pg.rbe finite sequences of the same length n. Then

2205,V q.1ir] = 221p, V1l Vg1

Froof.  We prove V(i)
(Vg n+Hip Vgl n=ipyabinValtp Vol in vyl
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(o v )t e nNg, =S e NVEn\ag)
P RN e N RN G) (6)
LetA =(p;  ri\jg 1) B=(p, r\g -r)C= ip - NP g N N e gg) and
D=ip-rNprgNr o g) TA=C B= 0D weare done. So let A = C, which
implies p.r, < g;r; and

0<A-—C=g4r,-C=qr 4,5 (7
But then, we cannot have B = D, for if 8 = D we would have pyr; < gr;and 0 < B —

b= gr. — D= gr; — ra; a contradiction to (7). Thusif A > Cthen 8 < [0,
Now note that the exchanges p. & p,, g; €+ g, r, < r;, leave (6) unchanged, while ef-
fecting the exchanges A +» B and C 3 D. This symmetry means that, we also have, if B >

D then A < C. Moreover, it is enough to prove for the case A > C, B < I3, and the other
case is proved by this above mentioned symmetry,

So,let A=C, B

We prove the inequality for the case g; = p,, and by observing that the exchanges g, €5 p,
g; + p; leave (6) unchanged, we deduce that the case p; = g, is also proved.

So, let inaddition g; = p;.

Then,
0=DL-8=D-gqpr since g, = p,
=47~ 4y ®)
=A4-C by {7}
and thus the lemma is proved. O

We state, without proof, the following resulis from Ramer {1990], as they will be used later.

LeEvma 6. Let a, b and ¢ be finite sequences of the same lengib n. Then

nr

o b zﬁiﬂéaqu t _E.leVL'; Wm=1...,m

1 i=1

A=

i

Lesma 7. If o and b are finite sequences of the same length, a > band (w, ..., w,)is
an arbitrary non-increasing sequence then

Ea;w,- = Eb,w‘-.

3. METRICS BASED ON MEASURES OF (NON)} SPECIFICITY

Higashi and Ktir [ 1983a] defined a metric lor P . This metric is based on the {-uncertaingy,
They defined a basic function gip.¢), for p = g4 as tollows:

gpa)=Uligi~Ulpl VpgEF, p=
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Then a metne Gip,q) is defined in terms of this hasic function as

Gipg)=glppV g+ glgpN g Ypq&ly

Here we introduce two new metrics, £\{p.q) and Dy{p.¢), in terms of Yaper's measure of
{nan} specificity und Lamata and Moral’s measure of imprecision, respectively.

3.1 Metric Bascd on Yager's Measure af (Non} Specificity
We define, ¥ p.g € Py p = q.d,(p.q)= s(p) = sigl= Mg) — Nip)
Lemma B o (pp ) = 0 with equality iff p= py/ g.
Proaf.
d{p.p N/ q)=s{p)— s{g)
=5(p) =~ s(p \/ ¢)
=r_:21(.3. —p g X1 i=1/ (- 1))=0 by Lemma 3.

Again by Lemma 3 the equality holds only when

I AV L]
= p=pY/ g, by Lemmad4. (N

With o, (p.g) as the basic function, we get our metric £ {4} as follows.
Define Wp.g € Py
Dip.g)=d\(pp/ 4) + dilgp v q).

Theowem 1. D\{p.g) is a metric.

Pmaf Letpg € Py
D {pg) = 0 by Lemma 8.
Also, Bip.q)= 0= p=p'/gand g= p '/ g by Lemma &
Hence p= g.
It remains only to prove that ¥r € Py
Dip.g) = Di(pr) + Biizg).
We use arguments stmilar to that in Ramer[1990].

Di(p.g) = Dy(p.r}+ Dy{r.q)
< s(p)+ s(g) — 25(p v/ gy = s(p) + s(r} + slr) + s(q) — 2s(p /) — 2s(g \/ 1)
e s(py g)+alr) = s(p )+ sry g)
2 s(p N q)+ s(F) = s(p )+ s(r\ q).
Mote that for any ordered, normalized, possibility distribution s € £, 7, is always 1. So,

we can recall Lemma 6 with a,&.¢ replaced by p.q,r respectively, to get, after deleting the
(i= 1)"term,

Ep'-.._,.r‘q-i-EFﬁ' Zer+ErVq Ya=2d o050
=2 i=1 i=1 i=2
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Using Lemma 7 with w, = f—l—, = J;:LE =72, ... .n, and replacing a by {p*/ r+r/ g).
b by (p '/ g+ r)and omitting the (i= 1) term in these sequences, we get

bR AV, ‘Tr'“' o r_l_l) . ET::E-{% e .—lr} =

b e R S RVPA (R

ie, spry g+ 5= sipry R+ sl g
Thus, D,(p.q) is a metric,
THECREM 2 (MonoTmonicrTy).  [Fp = g = rthen

Diip,g) % D{p,r)and Dyig.ry= Dyp,r)

FProaf.
Dipg)=dipp\/ g} + digp v o= diip.q) + d(q.q9)= s(p) — sg)
D,ip,r)= s(p) — s(r)
D,(p.5) — D,(p.g)= s(g) — s(n=d\(g.r) = 0,
Similarly, D,(g.7) < D,(p.r). O

THEOREM 3 {INVARIANCE UNDER JOINT SYMMETRY). Letw; ¥ — Fhbe g permutation. Then,

Dipem gen)=Dipg).

Proof.
Dipemgemy=dlpem(pem)/igemh+digemipam)y/igem)
=g{pemt+tilgew) — 25(pemIN (g
=s(p)+ sig) — Is(p\/ g}
= hip.g)

THEOREM 4 (EXPANSIBILITY). Letp.g € Py p. ¢ € Py, where T yand p(v}= ¢ (3)=
0¥y e ¥ — X. Then D\(p’, ¢ 1= Dip.g).

Proof,

Dip'.qYy=stp' )+ 3(g") — 25(p" v ¢')
=s(p) +sig) = 2s(p\/ g}
= Dipq) 0

THeoREM 5({TRANSLATION PROPERTY). Let p,gbe any two possibility distributions, not nec-
essarily normalized. let s € Rsuch thatp + #= (p, + ) E Pyand g + 5= (g, + 5) E Py
Then D\{p.g}= Dy(p + 5.4 + 5}
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Froof.  ITmmediate,

D

For u normalized possibility distribution, the translation property reduces Lo the trivial

case, 1= {), and as such is not an impeoniant one.

3.2, Metric Based on the Imprecision Measure of Lamaia and Moral

We define forp = gp.g € Py
thip.g)= wig) — wip)

Lemma 9. Letp = g, then dyfpg) = O with dy{pg)= 0 iff p= g.

Proof.  dip.g) = Uis easily seen from equation (3), since p = 4.
d.(p.p)= 015 clear.
Moreover, dy(p.g)= 0 impligs,

log p, = log Ig,

= Ip, =1ig,

g, - p)=0

q—p=0 V,as¢,-m=0V,
rP=q.

U

4

Now define Yp.g € P,
Dyp.g)=dilp. p v/ q) + dyfg.p\/ q)

THEOREM 6. [0, (p.g) is a metric.

Proof.  Ihip.g) = Gis clear

Dy(p.gy=0=dy(p.p\/ q)=0and dyiqg,p/ q)=0
S p=pygandg=p\/ g

Mow it remains to show Dhip,.g) satisfies the tnangte incquality;
e, Dy n ) = Dyipory + Dy (R g) Vr €EF;

e wipv gl w(r) = wipwv e+ wirvyg)
o log (Ep o g0 + log Zrn = log(Zp; v n) + tog(Zn W g)
= [l".p,- A% qr,-] [Er.-] =2 g [En v g

e 23p v g) ] = £E[p v | [ W ¢, ] which follows from Lemma 5.
i i f

TuEokEM 7 (MoNoTONICITY).  Ifp < g = rthen

Dy(p.q)= Dy(p.ryand Dylg,ri= Dy(p.r).

O
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Proof Djip.g)= dip.p/ @) + dilg.p v/ q)= dyip.g) + dyg.q)= wig) — wip)

Du(p.r) = wiry= wip)
Dyip.r) =~ Daip.gl s wir) — wig) = dilg.r} =10}

Similarly, Dyig.r) = Dy(p,r). O

For this merric oo the properties

i) lnvariance under joint symmetry arkl
1i} Expansibility

hald. Their proofs are similar to thase ghven for D\ (p.g).

6. CONCLUSION AND DISCUSSION

In this investigation we proved several inequalities for possibility distnbutions and then cx-
tended the work of Higashi and Kbir [1983a] and Ramer [1990]. Higashi and Klir [1983a]
delined a metric on possibility distributions in lerms of the U-uncertamnty—a measore of
(nonjspecificity. Ramer’s work [1990] was also restricted to [-uncertainty. We have de-
fincd two metrics on Py < Py one based on Yager's measure of (noajspecificity and Lhe
other based on Lamata and Moral's measure of imprecision. Properties af these metrics
have also been investigated. The three measures of nonspecificity have different algebraic
forms with differcnt computational overheads. The computation of U—uncertainty is most
expensive—it requires {n — 1) logarithmic evaluations; while imprecision requires only
one and Yager's nonspecificity requires no logarithmic evatuation, yet, we have seen that
the mathematical characteristics of the new metrics and the metric of Higashi and Klir are
similar. These metrics are also defined in a similar manner. This may be psed as indications
of two things: different nonspecificity measures have similar characteristics, and the met-
ric structures imposed by them are also similar. Thus, any of the nonspecificity measures
or metrics can be used without losing or gaining much over athers,

All these metrics are defined on general possibility distributions. But it is clear that if p
i5 a possibility distribution on 3 then P comesponds o a relabeling of the elements of .
Since a distribution, for the purpose of measuring the uncertainty, is considered indepen-
dent of the labeling in &, Intuitively it is more appealing to have the metric distance be-
wween p and g, as zero. That is, we need to consider only ordered possibility distributions.
It iz easy 1o see that, all the above analysis goes through in the case of ordered distnbutions
also.
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