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1. IstmopucTion
Let X;, Xj....X; be a set of independent normal variables with mean m and
variance v, Tho problem is to make a point estimate {(zy, 73, ... x,) of v on tho basia
of n random observations z,,z,, ...z, on tho chance vorinbles X X X, Let
us first consider tho simpler caso whero the mean m is known. The maximum likeli-
hood estimator of v is S/n whero S=ZX{x)—m). The amount of information I{) per
unit of samplo is J(v)=1/(2¢*) and 8o from the Cramér-Rao inequality we have that
for any unbiassed estimator ¢ of v
1o
alw) m w (L)
It is easily verified that the maximum lLikelihood estimator Sjn is unbissed and that
its varianco is (20*)/n g0 that in the class of all unbiased estimators Sfn is easontially
the only admissiblo estimator if we take our loss function proportional to tho 8quare of
tho error committed. That is to say if ¢ bo any other unbiased estimator of v then,
unless of courso ¢=Sjn almost everywhero,
E(t=vp > E{S{n—v}*
with tho atrict siga of inequality holding for at least ono v (as & matter of fact in this
caso the strict sign of inoquality will hold everywhere).
Now consider the class of estimators a§ for sl valuesof a. Wo noto that
Efa S—v)'=E{a(S—nv)+{an—1)}
={2a'n+(an—1)u*
and that the above is minivum at a=1f{n+-2), the minimum value being
S t_ 2
5 v) -
‘Thus in tho class of cstimators of the form a§ the only admissiblo one'is Sj(n+-2).
The maximum likelihvod estimator Sf», which is also the best unbissed estimator, is
not admissible in the sense of Wald. It is very surprising that by introducing a
bias in our estimator ¢ we can make the risk function r{v|t}=E({—v)* uniformly smaller,
than tho Cramér-Rao limit (1.1). Such o thing, however, is not possible in overy caso.
Take for instanco tho caso of tho normal mcan m with known varianco, say unity.
By the Cramér-Rao incquality if ¢ be any unbiased eatimator of m thon

Eg—vp >

(L2)

_1 1

E(t—mp> nl(;)=1; .
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Tho maximum likelihood cstimator  attaina tho above limit for all m. It
waa proved by the author and, under a moro generel sct-up, by Blyth (1051) that in
tho claws of all estimnators that generate continuoua rivk functions the estimator Z is
admissible.  In the next section wo proceed tofind out a class of Admissible estimators

for tho varianco. Throughout in this paper wo take the square of tho error as our
loss function.

2. A CLASS OF ADMIYSIBLE ESTIMATORM

Sinco §=X(r,—m)! i3 a suflicient statistic for v we have, from the Rno-Blackwell
theorem and the convexity of tho loss function, that for the purposo of cstimating v

wo need restrict Ives to only functions of 8. The frequency funetion p{Slvids
of Sis

=1 a3 ger1g-a e
P(S|v¥ls 2"'[‘(1!/:!)‘r §e11e-8i1d S
(05,8<0, 0<v <o)
Now consider tho a-priori probability frequoncy for v
p(v)«lu-F:\[:(:an‘r”"dv (A>0, p>1) . {2y
Tho joint frequency function of S and vt

PS, v S do=plv)p(S1v)dS dv

S+n
2 4Sdo

n n -
=——-".-‘ — ST“.-l u_(TH‘ )e
n
G+rn=1
4 n
2 r (a)[‘(;‘—l)
The marginal frequency of § is
»

P(SHa=dS I 2(8, vidv

n

o am gt

_B(g‘ =) (—§+r\)§+/'—l

Tho a-posteriori frequeney fanction of v, given S, is

M8, vMe
plvl $)dv Ty

a
+p—1
(S+4\)" _(S_HI) _S+A
D e ¥4
"+ =1

25 ! r(;ﬁ-/x—l)
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Tho a-pouteriori expected valuo of v given § is
E(vls) = Irp(vlS)du
°
S+
=m=h,($). . (22)
Now consider the estimator £, The risk function generated by #, is
rlvlh,)=Ellt,,—v)*]0)
IR, ) M

B T 77 e ey R o vy
and tho averago risk for the a-priori distribution (2.1} is
)= [ rivltapiondo
L)
t
A - (23)

=G —3nFZ—1)

It should be noted that (2.3) is defined only when y#>>3 in (2.1) so that wo henceforth
restrict ourselves to only such a-priori distributions of the form (2.1) for which z>3.
Thua for every A>0 and p>>3 the estimator ¢, is essentially the only Bayes solution
corresponding to the a-priori frequency (2.1)and so every &y, (A> 04> 3) is admissible. Wo
makethe interesting observation that althought,, is admissible for every A>0 and A>3
the limiting Bayea solution fo, = '_H';S'T‘ obtained by making A—0is not admissiblo
for any #>3. It is conjectured that tho limiting Bayes solution I,,=n—‘-s'_+~_7, considered
in {1.2) is admissiblo. We also noto that there eannot exist any estimator ¢ of v for
which the risk function r(v/t)=E[(¢—v)*{v) is a bounded function of v for all vin 0<v<<co
For, if possible, Jet ¢ be an estimator for which r{v]1°)< A for all v. Then the average
risk, with (2.1) as tho a-priori weight function for v, will be <M. But for a cufficiently
large A {ond any u>>3) (2.3) will certainly exceed ) which contradicts the fact that
1, is & Bayes solution. Thus it is clear that thero cannot exist any mininax estima-
tor for v and that somo other criterion haa to be set up for choosing a good estimator
from tho class (2.2) of admissible estimators,
3. THE CASE WHEN THE MEAN 13 UNKNOWN

So long we considered the case where the mean m was known. Now consider
the case whero tho mean m also is unknown,

Sinco 2 and S=2(z,—z2)! jointly contain all tho information about the pare-
meter point (m, v) it follows from the Rao-Blackwell Theorem that all admissiblo
eatimators are cssentially (i.e. excepting for & set of Lebesguo measure zero) wunctions
of only Z and S. Ifhowever, we restrict ourselves to only such cstimators ¢ for which
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the risk functions rim, pl1)=E[t—v)¥|m, v] aro functions of ¢ alono then we can prove
the following:
Theorem 3.1:  An admissible estimator for which the avociated risk function is inde-
pendent of m (8 eascntially @ function of S alone.
Proof: Let t=H2, §) be any admissible estimator such that rim, vlt) is inde-
pendentof m.  Letl,=l(z+A,8). Sincomisalocation parameter it is readily scen that
r(m, vl6)=El(ti—v)|m, v}
=E[({~v)'Im+A,v)
=r{m+42, v}t)
=r(m, o|l)
sinco r{m, v|t) is indcpendent of m. Thua ¢ and & generates the same risk function.
Hence from the convexity of the loss function {{—v)? it follows that the estimator
={{t+h) will bo uniformly more powerful than ¢ unless (=t almost everywhere,
Since by assumption ¢ is admissiblo in the class of those estimators that gencrato the
same risk function for all m it follows that, for ench real A, i(Z, S)=t(2+42, §) almost
every where in #, S, And this proves that (2, §) is essentially & function of § alone.

We can prove in tho ssmo way aa in the provious section that in the sub-

class of all thoso st which are ially functions of § alono Ul estimators
of the form.
8+A
— 3
v v ] (A>0,p>3) e (30)

aro admissible. It is to bo noted that we now have n—1 and not n degrees of [reedom
for 8 and that is why thero is 8 slight difference in the formulae (2.2) and (3.1). Wo
also note that the best unbiased cstimator §/{n—1) and the maximum lLikelihood
estimator S/n are both uniformly less powerful than the limiting form of (3.1) namely
toy=Sfn—1).

We now prove that all estimators of the form (3.1) are admissibio in tho class
of all estimators for which tho associated risk funetions are continuous, It is con-
jectured that 4, is admissiblo in the unrestricted class of all estimators,

Consider the a-priori probability density function for tho parameter point (m,v) nemely
_m _A
i, v}dmdv= 7_7 - ‘?‘.(/: vee 2dmiy
—0<m<0, 0<v<mw,, o>0,A>0,4>3
Aa fn the previous section wo tako #>>3 in order that the average risk associated with
the Bayes solution may be finito.
The a-posteriori probability domity or (m,v) is

-3+ ") ~%
plm, v|2, S)dindy = _“"'ndv
-~ 2 +I‘) N
I‘ 2oy ¥ ¢ dpdo
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where T=n(z—mP+S+A.

Henco tho Bayes® solution corresponding to tho a-priori density p(m, v) dm dv is

tpa=El]2, 5)

- ] ] pim, v)7, S)dm do

| T
(-:-,;q_lllm ir_ (5+ll_))¢— ET’do
- L]
s-z_;.;‘dm iv_ (; * I‘)f_ %dv

— a

I

-1 =

EEE ].T_ G“‘"]),_%M
LA

As both the numerator and the d

[y,

of tho above
convergent for all o>8>>0 wo have

lim
=)0

[. T_(;‘H‘_&) dm
re =

_ S42
T(—0)+%i—4
=ha

wo thus observe that

ly prove the admi

_m! m'e

by . —o

e W oM. 29 gc0<d
20

Sinco

wo have
o=l + ‘-:-, XE, S, a)

whero {2, S, ) remains bounded a3 o —oo,

Sormulta)=rm, el + ;, Im, v, o)
whero h(m, v, @) remains bounded as o—so0,
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aro uniformly

4, i8 a limiting Bayes solution. This howeser does not
ibility of ,,. Wo sketch below the method of proof.
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Hence, with p{m, v) din do a8 tho a-privri demity, tho averago risk for 4, and b,
satisly tho following relationahip

i
Hlpa)=ft) = Za olo) . (34

whero g{o) remaing bounded and non-negativo as o—». We omit the detailed discus-
sions regarding convergence that are neecssary in (3.2}, (3.3), and (3.4).
Wo now provo that if thero exists an estimator ¢ for which
rim, vlt) < rim, vjh,)

for nll m and v then the et of points whero tho strict sign of incquality holds must be
a sct of Lebesgue mensuro zero.
Let 4 bo the sct of points whero

rim, v}t) <rim, vjt,,)
I1f m{4)>0 then wo can find n sub-set A, of A with positivo Lebesguo measure and an
€>0 such that for all (m,0) in 4,

rim, ell) < rim, vitL)—c.
Then

= I ]r(mx/l) plm,c)dm dv<'(l.,)—e[ !p(m,r)dm dv,
Ay

Sinca m(4,)>0 it can bo easily scen that

al !J»(m, v) dmdv— ‘—/._l,;,[ [Alp(v)dm dv>0 as gr 0

whore p{uv is the marginal a-priori probability density for v,
Thus wo havo

HO)<rth,)— 3 1i0) . G9)

where f(g)—+a positive constant a3 ¢ »%, Form (3.4) and (3.5) wo have that for all
sufficiently largo o

H1) < #la)
which is a contradiction since #,,, is tho Bayes solution corresponding to the s-priori
probability density p(m, vidm dv.

Heneo if  gencrates a continuons risk function and if*r{m, vit)rim, vits,) for
all m and v then the sign of cquality must hold everywhere for if rim, v|$)<(mn, rity,)
for at lcast uno (m, v} then, from the continuity of the two risk functions, the strict
sign of incquality must liold in a set of positivo Lebesguo measure which, ns just
demonstrated, is & contradiction.
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