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1. Introduction. Given a square matrix M of order n and a ¢ € B™ the linear
complementarity problem is to find w € B and = € B such that

(1.1) w— Mz =g, w2, z20,

(1.2} whz = 0L

The linear complementarity problem is well studied in the literature. For the
latest books see Cottle, Pang, and Stone (2] and Murty [18]. In [14], Lemke propases an
algorithm which either computes a solution to the linear complementarity problem or
shows that there i no solution to (1.1) and (1.2). We call a square matrix M = ({my;))
of order n a Z-matrix or say that M € Zifmy; <0,i# 5 1<i<n, 1 <j<n The
linear complementarity problem with a Z-matrix has a number of applications. See [2]
and [26]. Z-matrices have a least element property related to their complementarity
property which has been observed by Cottle and Veinott [3].

The generalized linear complementarity problem with a vertical block matrix of
order m x k was introduced by Cottle and Dantzig [1]. Their statement of this
problem is as follows: Given an m x & (m = k) vertical block matrix M of type
(v, ma, ..., ) and g € RB™ where m = ZLImj, find w € B™ and z = R¥

i
such that

(1.3) w—Mz =g, wzl, 2210,

ey

(1.4} Z wl =0, j=12,..,k

i=1
This problem is denoted as VLCP(q, M.
Cottle and Dantzig [1] extended Lemke's algorithm to solve the abowe problem.
They have also extended some of the properties of the square P-matrix to the vertical

block P-matrix.
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132 5. R. MOHAN AND 5 K. NEOGY

VLCP, or the vertical linear complementarity problem, has not been studied ex-
tensively until recently, although Lemke [15] as early as 1970 anticipated valuable
applications of this problem. Recently, a number of applications of this problem have
been noted in the literature. In [6], Ebiefung and Kostreva introduce a generalized
Leontief input-output linear model and formulate it as a VLCP. This model can be
effectively used for the problem of choosing a new technology and also for solving
problems related to energy commodity demands, international trade, multinational
army personnel assignment, and pollution control. In [12], Gowda and Sznajder in-
troduce a generalized bimatrix game and formulate a special case of this as a VLCP.
A slightly more general form of the VLCP also occurs in control theory [21], [22].

There have also been other generalizations of the linear complementarity prob-
lem motivated by certain other applications. The horizontal linear complementarity
problem arises in nonlinear networks. See (8], [9], and [27]. Oh [19] has formulated a
mixed lubrication problem as a peneralized nonlinear complementarity problem.

The VLCP has been studied by Szanc [23]. A more general version in the setting of
a finite dimensional lattice gives the generalizved order linear complementarity problem
studied by Gowda and Sznajder [11]. However, when specialized to B”, the generalized
order linear complementarity problem is seen to be equivalent to the VLCP. See
Gowda and Sznajder [11]. Generalizations of Fy- and Z-matrices have been studied
by Ebiefung and Kostreva [5] and Szmajder and Gowda [25]. See also [7] and [24].
The extended generalized order linear complementarity problem was considered by
Goeleven [10], Gowda and Sznajder [11], and Isac and Goeleven [13].

Mangasarian [16] while studying the classes of linear complementarity problems
solvable by a single linear program introduced a class of matrices which later came to
be named as the class of hidden Z-matrices in [20].

A square matrix M of order n is called a hidden Z-matrix if there exist square
matrices of order n, X and ¥, X € Z ¥V € Z such that (i) MX = V and (ii) there
exist nonnegative vectors v, 5 € " such that ' X + 'Y = 0.

The class of hidden Z-matrices alko possesses a least element property which is
related to complementarity. For a study of this property see [2]. The least element
theory for hidden Z-matrices was motivated by the observation of Mangssarian [16]
that the linear complementarity problem with a hidden Z-matrix can be solved as a
single linear programming problem. For related results see ako [17].

Recently, Ebiefung and Kostreva [4] have studied the generalized linear com-
plementarity problem with a vertical block Z-matrix. Complementarity and least
element properties and a computational scheme using principal pivoting were studied
in this paper.

The present work is motivated partly by a question which naturally arises from
the work of Ebiefung and Kostreva [4] and Mangasarian [16, 17]: what is the largest
class of vertical block matrices for which the associated VLCP has the least element
property and hence can be solved as a single linear programming problem? This ako
has an implication for the class of VLOPs which has polynomial time complexity.
Surprisingly, unlike in the peneralization of other properties of square matrices, the
required generalization of the hidden Z-property does not depend upon the represen-
tative submatrices. We introduce the class of vertical block hidden Z-matrices and
study the associated minimality and complementarity properties.

In section 2, we present the required notations and definitions. In section 3, we
study the least element and complementarity property possessed by vertical block hid-
den Z-matrices. In section 4, we present some characterization theorems for vertical
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block hidden K-matrices.

2. Definitions and notation. By writing 4 £ B™*" we denote that A is a
matrix of real entries with m rows and #» columns. For any matrix A € B™*", ay
denotes the ith row jth column entry and Pos{ A) denotes the nonnegative cone gener-
ated by columns of A. If A € R™*™ and J C {1,2,...,m}, A; denotes the submatrix
of A consisting of the rows of A whose indices arein J. A ; denotes the ith column and
A, theithrowof A. If A € F™" J, C {1,2,...,m} and Jo C {1,2,...,n}, then
A, 1 denotes the submatrix of A consisting of only the rows and columns of A whose
indices are in Jy and Jo. respectively. Any vector 2 € R” is a column vector unless
otherwise specified. r' denotes the transpose of . For any two vectors z,y € B", we
define min(z, y) as the vector whose ith coordinate is min{z;, 1 ). Let M be a vertical
block matric of order m » & and type (my,...,my) and g € B™ be given. The set
FEA(g, M) = {(w,z)|w € B™, z € R¥, (w,z) satisfies (1.3)} & called the feasible
region of VLOP{g, M) and any vector in FEA (g, M) is called a feasible vector.

Let " be a comvex cone. We say that ' is a pointed convex cone if € does not
contain any linear subspace except {0}. If C is a pointed convex cane in B", € induces
a partial ordering of vectors in B* defined as follows : 2 < (Cyif y—x € O We
call this partial ordering the cone ondering induced by C. In particular, in this paper
we consider the cone ordering induced by C where € = Pos{ X)) for some nonsingular
X.

A matrix M £ RB™" & aaid to be a By-matrix ( P-matric) if all its principal
minors are nonnegative (positive). Such a matrix is called a K-matrix if it is both a
Z- amnd a P-matrix.

DeFNTION 2.1, Consider a rectangular matriz M € R™** withm = k. Suppose
M is partitioned row-wise into & blocks in the form

M
e
m=|" |,
l e J

where ench MY = ((mi,)) € BR™ ** with Z_:f:l my; = . Then M is called a vertical
block matrix of type (my, ma, ... ).

DermiTion 2.2, A submatriz of size & of M is called a representative submatrix
if its jth row is drown from the jth block MY of M.

Remark 2.1. Ifm; =1, j = 1,...,k then M is a square matrix. Thus, a
vertical block matrix is a natural generalization of a square matrix. Clearly, a vertical
block matrix of type (my,ma, .. ,my) has at most H_LI mm;  distinct representative
submatrices. . _

Let J; = {1,2,...,my} andlet J;, = {Z;_:i iy +1, Z;:l my+2,..., Z__;:l m; b,
2<i<k

The vectors q,w £ B™ in (1.3) are decomposed to conform to the partition of M
into blocks of MY, 1< j <k, ie,

qt a?t
q° ur?
q= . aml w = . \
l#] L]



134 5. R. MOHAN AND 5 K. NEOGY

where ¢¢ = {q;":l and w' = {1:}':] are 7ty % 1 column vectors.

Dermirion 2.3, A vertical block matriz M of type (my,ma, o .,y is called a
vertical block Z-matrix if all its representative submatrices are Z-matrices. Vertical
bock Py Pl-matrices are also defined in a similar manner.

DEFINTION 2.4, Let M € B™** be a vertical block matriz of type (1, e, oo ).
M is called a vertical block hidden Z-matrix if there evists @ Z-matriz X = ((z4;)) €
R*** and a vertical block Z-matriz ¥ = ((y;)) € R™*E of the same type as M and
nonnegative vectors € RB*, & € B™ such that

i) MX =Y,

(i) ' X + Y =0

LEMmA 2.1. Let M be a vertical bock hidden Z-matriz. Let X € R¥* be any
Z-matriz and ¥ € B"™** be a vertical block Z-matriz of the same type as M satisfying
the conditions of Definition 2.4 Then X is nonsingular and there exists an index set
a C{1,2,...,k} such that the matriz

W =[ ;{uu <y ik :|

r 4
1" £ i'" [y

is in K, where V' is a representative submatriz of Y corresponding to a representative
submatriz G of M.

Proof. Let r, 5 be as in Definition 2.4, Let p = X% +Y's = (0. Hence, Az = p
where A = [ X', Y] € RExlm+k] 7 = () has a solution = [:{]

We now proceed as in the proof of Theorem 3.11.17 of Cottle, Pang, and Stone
[2, p. 207] to conclude the proof of the lemma. a

We also observe the following result.

Frorosimion 2.1, Let M be a vertical block hidden Z-matriz with X and ¥ as
any matrices satisfying the conditions of Definition 2.4, Then there is at least one rep-
resentative submatriz of M which is hidden Z with respect to X and the corresponding
representative submatriz of ¥

Proof. This result follows from Lemma 2.1, By Lemma 2.1, we have an index set
a C{1,2,...,k} and a representative submatrix V of ¥ such that

o ;{nr o -T(u'ﬁ
W= [ M’J o M} [ :|

is 4 K-matrix. Let (7 be the corresponding representative submatrix of M. Since
W e K, it follows that W' € K and there is av € E*, v = 0 such that o'W = 0.
Let v = (va,va). Take r(G) = (vl,0) and s(G) = (0.v4). It is easy to verify
that GX = V oand #{G)'X + 5(G)'V = o'W = (. This shows that G is a hidden
Z-matrix, and this completes the proof of the proposition. 1]

Remark 2.2. The above proposition implies in particular that if M is a vertical
block hidden Z-matrix with X and ¥V as any matrices satisfying the conditions of
Diefinition 2.4 then there exists a nonnegative matrix I7 € R¥*™ of the form

ut ]
= S
1 u*
where u" = (uf,...,u), ) is a nonnegative row vector of order m, such that UM is

a square hidden Z-matrix.
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Remark 2.3, It is easy to see that if X is a K-matrix then UM is a hidden
Z-matrix for any nomnegative [7 of the above form. For similar results on vertical
block P-matrices, see [1]; for vertical block Fy- and Z-matrices, see [5)].

3. Least element property. In thissection, we consider the least element prop-
erty of vertical block hidden Z-matrices.

Derivimion 3.1, Let § © R™ be a polyhedral set. We say that z € § is the
least element of § with respect to the cone ordering induced by a convex cone ' if
y—x & O for any y € 5.

DerFiviTiON 3.2, § C RB"® is called @ meet semisublattice (under the component.-
wise ordering of R™) if for any two vectors x.y € 8§ their meet z = min(z,y) € 5.

In what follows, let M be a vertical block hidden Z-matrix with X and ¥ as any
matrices satisfying the conditions of Definition 2.4. Note that by Lemma 2.1, X is
nonsingular. Let § = {ve R" : Xv 20,9+ Yv =0}

LEnmma 3.1, A vector z € FEA(q M) iff v=X"1ze 5 Also 5 is a meet
semiswblottice,

Proof. To show this, note that MX =Y and w =g+ Mz = 0 as z € FEA(g, M).
Let v= X'z S0, z = Xv = (. Note that g+ Mz = g+ MXv =g+ Yv = 0. Hence
veE S,

Now given v € §, take z = Xv. Note that z = 0. We have g+ Yv =g+ MXv =
g+ Mz = 0. Hence z = Xv e FEA(g, M).

Now, we have to show that 5 is a meet semisublattice. Let v*, ¢ € § and ket ¢
be a vector whose ith coordinate is defined by ¢; = min(vl, ;).

Suppose s € J;, the set of indices of rows of M in the ith blodk. Note that

K
0+ (Vi) = qe+ D w0
i=1
=qs + Yui T + z Yuy T
i
=q; + Yt + Z Yaj T, assuming (without loss of generality) & = o},
i
>qs + Yuv; + Z Ysj 1:;.‘., sinee iy = 0 for j # 4,
i
=g + z Yy ?:: =10, simev™ € 5.

Similarly, we can show that z = X¢ = . Thus § is a meet semisublattice. This
completes the proof of Lemma 3.1, 0

LeEmma 3.2 5§ contains a least elerment.

Proof. It is sufficient to verify that 8§ is bounded below as 5 is a meet semisub-
lattice.

Letv € 5and §= [{:Jn] where @ is 88 in Lemma 2.1, Let W be as in Lemma 2.1,
Note that W' = 0 and by the definition of §, we have Xv > O and g + Yo = 0.
Hence § + Wo 0. Let w = §+ Wo. Then Wlu = W lg+ v =20asu =0
and W~ > (L Henee v > — W1 §. This concludes the proof. ]

THEOREM 3.1. Suppose that M € BE™** is a vertical block hidden Z-matriz of
type (g, o, .o mg). Then there exists a simplicial cone C' in B® such that ¥ g €
Pos(I, — M, FEA(q, M) contains a least element 2 with respect to the cone ordering
induced by C and =z satisfies z [[Z (g + (M*2),) = 0¥i=1,2,... k.
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Proof. By Lemma 3.2, 5§ has a least element ¢ with respect to Pos{l). Let
z = X o Note that by Lemma 3.1, 7 € FEA(g, M), and it follows that it & a least
element of FEA(q, M) with respect to the cone ordering induced by Pos(X). Now it
remains to verify that Z; [[™, (g0 + (M* z),) = 0. To see this, we first show that if

&=1

(X4#); > 0 then dan 5 € .J; such that
g + (Y, = 0.
Suppose ¥ s € J;,

qs + (Yir), = 0.

Now consider a v*(e) whose coordinates are defined as follows:

vile) = &, j#4,

vf(e) = & — e

Note that as X iz a Z-matrix, for € sufficiently small, X «"(e) = 0. Ako, it is easy to
verify using the fact that ¥ is a vertical block Z-matrix that

g + (Yo' (e, =2 0, ¥ 5

This, however, contradicts the minimality of ¢ and completes the proof. O

We shall now prove the converse of Theorem 3.1.

TueoreM 3.2, Suppose X is a b x & nonsingular matriz. Let C = Pos(X). Sup-
pose M is a given vertical bock matriz. If FEA{g, M) # ¢ implies that FEA{g, M)
has a least element with respect to the ordering induced by C, which is also a solution
to the VLOP(g, M), then M is a vertical block hidden Z-matriz.

Proof. Let & be an m x 1 vector whose ith coordinate (¢/); = 1 ¥i € J; and
0 otherwise. Also, let €] be the unit vector in R* with (e5); = land (ef); = 0 for
i#j. Nowlet ¢ = & —Mej. Clearly, e € FEA(g', M) and hence FEA(q?, M) # o.
Therefore, by our hypothesis it has a least element 37 which satisfies VLCP condi-
tion (1.4). Clearly, e} does not satisfy this condition. Hence 2! # &} and, hy the
minimality of 7, we have X ~1(z/) < X! (€5)-

Let v = J{_I{ﬁ'; —z¥). Note that 0 # v/ = 0. Now far ¢ € {1, 2,....k}\ {7},
we have X, v = {F: —#);, <0.Let Y = MX. Note that ¥ & a vertical blodk
matrix. Now consider Y, vi:

Yol = (Yo),
= (MXd'),
= (M (e - #)),
= (& — ¢ — Mz,
=—{q¢ + Mz!), fors g &
Therefore, noting that (¢ + M) = 0, we have Y, v¥ <0 for s & Jj.

. Let W = {(v!, 2%, ...,v*). Then it follows that X = X W & a Z-matrix and
Y = ¥ Wis a vertical block Z-matrix.
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We now have to show the existence of nonnegative vectors r and s satisfying
condition (i) of Definition 2.4. To do this consider the linear programming problem

Minimize ' 1
subject to
Xu>=1

Yuz=i,

where € is a k-vector of 1.

Note that u & feasible to the above problem if and only if X v € FEA(0O, M). As
0 e FEA(D, M) it follows that FEA(O, M) # ¢, and hence it has a least element under
the cone ordering mduced by Pos(X), which is ako a solution to the VLCP{0, M).
Therefore, the above problem has an optimal solution. By the duality theorem, there
exist nonnegative vectors ¢ and s such that X' 4+ ¥Y's = e

As W =0 and mo column of W is (), we hawe

Xtlr + Vs =W X'r +¥Y's) = W'e =0

This completes the proof. 0

Remark 3.1. In view of Theorem 3.1, the VLCP(g, M) with a vertical block hid-
den Z-matrix with respect to X and ¥ can be formulated as the linear programming
problem

K
Minirmize Z i Zis
i=1
w— Mz =gq,

w=0, z=0,

where p = (pr.pa, ..., pe) is any vector such that p* X = (.

Remark 3.2. Thus the remarks of Cottle, Pang, and Stone [2, p. 212] in the
context of hidden Z-matrices ako apply to the vertical block hidden Z-matrices.
Thus, given an arbitrary vertical block matrix M it is not in general easy to test
whether or not it & vertical blodk hidden Z.

4. Vertical block hidden K-matrices.

DerFiviTion 4.1, Let M be a vertical block hidden Z-matriz. We say that M is a
vertical blodk hidden K-matrix if every representative submatriz of M is a P-matriz.

In the example below we exhibit the blocks by separating them from one another
using hlank space.

Erample 4.1. Let M be the following vertical block matrix:

[ 176 036 016 ]
1 0 0
080  —0.20 —0.20

.32 .52 (.12
44 Lsd .04

—1.56 —1.16 (.04
—0L.60 =060 .40
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where my = 3, me = 2, and my = 2.
It is easy to verify that M is a vertical blodk hidden K-matrix with respect to
XY,

3 -1 -1
2 -1 -1
2 -1 -2
2 -1 -1
where X = | -1 3 -1 | and¥ =] -1 4 -1
-1 -2 7T -1 & -2
-2 -2 3
| -1 -2 4 ]

Vet =13 2 V]ad#®=T1 2.3 3 1 ¥ A7,

The following theorem characterizes a vertical block hidden K-matrix M assuming
that it is a vertical block hidden Z-matrix.

Tueoresm 4.1, Let M be a vertical block hidden Z -matriz of type (rmq,ma, oo g ).
Let X and ¥ be as in Definition 2.4, The following ave equivalent:

(a) M is a vertical block hidden K-matriz.

(b) There exists an z € R*, = > 0 such that Mz > (.

(¢) There exists a vector v € B*, v = ) such that for any given index set o
{1,2,...,k}, Wuv > 0, where

Xoo Xua
fre= [ Ve Vs ]
and V' is the representative submatriz of Y corresponding to any given representative
submatriz G of M. Furthermore, W € K.

(d) Every representative submatriz G of M is completely hidden K ie., for every
inder set 3 C {1,2,...,k}, Gag is hidden K.

Proof. (a) = (b). Suppose M is a vertical block hidden K-matrix. In particular,
by definition M iz a vertical blodk P-matrix. Now from Theorem 6 of Cottle and
Dantzig [1, p. 89] it follows that there is an z € R*, 7> 0 such that Mz > (.

(b) = (¢). Let z >0, £ € R* be such that Mz > 0. Let v = X ~'z. We have
Xov>0 Yv=MXv =Mz > 0. By Lemma 2.1, there exists a representative
submatrix V and an index set oy C {1,2,...,k} such that

Xu“ g Xu

Va Vo
LX) . TN} Lh) LX)}

0 g

Wy =

is & H-matrix. As Xv > 0and Vv = 0, it follows that Wy v > 0. This implies that
= (0.

Now let (¢ be any representative submatrix of M and let H be the corresponding
representative submatrix of Y. Let o C {1,2,...,k} be any index set. Consider the
matrix

Ly fryi

r qu' anﬂ'
-l

As Xv =0, Yo = 0,it follows that Wo = 0.
Since W € Z and v = 1), it follows that W € K.
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{¢) = (d). Let G be any given representative submatrixof M. Let 5 C {1,2,... .k}
be piven. By (¢) the matrix

W = [ Xﬂ.ﬁ Xﬁﬂ ]
Via Vaa

is a K-matrix, where V' is the representative submatrix of ¥ corresponding to . We
now proceed as in Theorem 3.11.19 of Cottle, Pang, and Stone [2, pp. 211-212] to
conclude that every representative submatrix is completely hidden K.

(d) = (a). Note that we have MX =¥ with X € Z2. ¥V £ vertical block Z
and ' X + 'Y = (. Since every representative submatrix s a hidden K-matrix,
it follows that every representative submatrix is a P-matrix. Hence by definition,
statement (a) follows.

Remark 4.1, In relation to Remark 3.2 if we koow that M is a vertical block P-
matrix and wish to test its membership in vertical block hidden K then it is possible
to do so by solving two linear programs: one to determine if there exists a ¢ = 0
such that My > 0 and another to determine if the required X exists. Also the

corresponding VLCP is solvable in polynomial time once we have determined the
required X in polynomial time.
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