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Absiract. In this paper, we yse the theory of degeneracy graphs recently
developed by Gal et al. to introduce B graph lor studying the adjacency
of almow complementary feasible bases, some of which may be dogener-
ate, which are of interest in the context of the linear complementarity
problem. We study the structurc of this graph with particular reference
10 the possibility of cycling and various anticycling rules in the Lemke
complementary pivoting algorithm. We consider the transiion node
pivol rule introduced by Geue and show that this rule helps in avoiding
cvcling in the Lemke complementary pivoting algonthm under a suitable
axsumption.

Key Words, Lincar complementatity problem, degeneracy graph,
cycling, transition node pivot rule.

1. Iniroduction

Given a square matrix M of order # and a vector geR”, the linear
complementarity problem is the problem of determining vectors we R” and
=& A" such that

w—Mz=gq, wz=l), zz0, (i)

L'}

wiz=¥ wz=0, (2}

whete for any vector x, x' denotes its row transpose, This problem is well
gtudied in the literature on mathematical programming and has a number
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of applications. See the recent books by Cottle, Pang, and Stone (Ref, 1)
and Murty (Ref. 2).

The Lemke complemmentary pivoting algorithm to solve the above prob-
lem proceeds by considering the augmented system

w—Mz—dn=q, (W, z,2)=0, {3)

where o is a given positive vecter in R". See Ref. 3. The vector & which is
artificial to the original system of equations has been called the covering
vector by Cottle, Pang, and Stone {Ref. 1}, who take it to be merely nonzero
and nonnegative.

Given an # » p mattix M and a vector ge R", we call an # * » submatrix
B of {I, — M. —d) an almost complementary matrix if the following hold:

fi} =disacolumnof B,
(i) —M;is a column of B if and only if F; is not,

In addition, il such & matrix is nonsingular, then we call it an almost comple-
mentary basis matrix, This is abbreviated as ACB matrix. We call B [an
f % p submatrix of (f, — M, —d) an n-complementary matrix if

(i} —dis not a column of B;
(i) —M,is a column of Bif and only if 7, is not.

Il an p-complementary malrx is nonsingular, we call it a complementary
bagis matrix. This is abbreviated as CB matrix.
Let

Xig)={{w.z, 0} w— Mz —deo=g; (w, 7, 20) 20},

We say that a given (w, z, £o) is an almost complementary feasible solution
if

(w, z, 2o )X g, we=0, zp= 0.
We call a (w, z, zp)eX(g) 4 complementary teasible solution if

=0, wir=1[,

Suppose that (w, z, z,)&X(g) is an almost complementary feasible solution.
The submatnx formed by the columns of {f, —M, —d4) corresponding to the
positive coordinates of (w. 2, zp) 18 said to be the almost complementary
matrix that cotresponds 10 (w, z. 2p). In analogy with the practice in the
theory of linear programming, one may cail an almost complementary feas-
ible solulion {w, z, 7] an almost complementary busic feasible solution if
the columns of the almost complementary matrix that corresponds to it are
lingarly independent. However, unlike in the linear programming context,
il may not be possible to ¢xtend such an almost complementary matrx, if



IDTA: ¥OL. %4, NOQ, 2, AUGUST |997 411

it contains fewer than # columns, to an ACB matrix by adding more columns
1o it from among the columng of (f, — M, —d). For an example, see Example
i of Ref, 4. To avoid such casgs, we shall call an almost complementary
solution {w, z, 2y) an almost complementary basic feasible solution only if
the almost complementary matrix that corresponds to (w, s, 2,) can be
extended to an ACB matdx. We denote an almost complemetitary basic
feasible solution by the abbreviation ACBFS. Similarly, a complementary
feasible solution is called a complementary basic feasible solution (CBFS)
only if the complementary matrix that cortesponds b it can be extended to
& CB matrix.

The combinatorial structare of 8 convex polytope S can be represgnted
by a graph G{S}=(N, E), where the set of vertices N is the set of extreme
points of § and ¥, the set of edges, is the set of pairs of adjacent extreme
points {', v°} = N. See Griinbaum (Ref. 5). This can be extended also to
unbounded convex polyhedral sets by representing the extreme tays
(unbounded edges) of § by artificial vertices. A vertex x and an artificial
vertex y are said to be adjacent if the extreme ray represented by the artificial
vertex v is incident on the extreme point représented by the vertex x.

An extreme point {w, z, zp) of X{g) is said to be nondepgenerate il the
nuinber of positive coordinates in {w, z, 25) 15 A If we make the standard
nondegeneracy assumption that none of the extreme points of ¥{g) is degen-
¢rate, then there is 8 one-one correspopdence between the extreme points
of X(q) and the basic feasible solutions to (). Since a basic feasible solution
can be represented in the form of 4 simplex tableau, we can take the node
sel to be N, the set of tableaux corresponding to the extreme peints or
artificial points representing the extreme rays of X(g); and we can take the
edge set to be E|, the set of pairs of tableaux {T., 7.} such that 7, can be
obtained from T, by a single pivotal transformation with the pivot slement
as positive and pairs {T:(c0), T, } where the tableau T, corresponds to the
extreme point incident on the extreme ray represented by Ti(oo). We may
then consider the graph (N, E ) as the adjacency graph of X{g). This way
of redefining the graph G(¥(g)} enables us to generalize the concept when
the nondegeneracy assumption does not hold, A similar generalization for
a cotivex, polytope X {a bounded convex polyhedral set) has alteady been
reported in Ref. 6, and the resulting graph has been called the representation
graph G{X) of the polylope X,

We assume that the readers are familiar with the steps of the Lemke
complementary pivoting algorithm. We are here concerned with the sub-
graph G of the graph G(X{g)), the node set of which consists only of those
nodes of M, which are feasible with respect to the Lembke algorithm. Under
the nondegeneracy assumption that ail the alinost complementary basic fizas-
ible solutions in X{g) are nondegenerate, the Lemke complemeniary pivot
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algorithm traces a path in & leading from a Ti{20) {primary ray) to either
a complementary tableau or to another Ty (oo, F#£4 (secondary ray), see
Ref. 3.

In Section 2, we study the structure of the subgraph G; when the
nondegeneracy assumption does not hold, In Section 3, we consider cycling
in the Lemke complementary pivoting algorithm and show, under a certain
condition, that 8 modification of the transition node pivot rule introguced
by Geue (Ref. 7, see also Ref. 8) to resolve ties in the selection of the pivot
row helps in avoiding cycling in the complementary pivoting algorithm.

2. Graph G!

Given an # » # matriz Af and a vector geR”, let B, be either a feasible
ACB or a feasible CB matrix, and let T, be the associated tableau ¢containing
the columns of 7, (8,) 'B, and y,=(B,) "9 20, where lor any ACB ot CB
matrix 8, B represents the matrix of those columns of (f, —M, —d) not
contained in &, Let the entries of the tableau be denoted by ({ ¥y, 1 2i<n,
0=7<2n+1)). The column yo=1({ y:)) presents B, 'q. Note that ¥z, V.
Such a tableau is called a feasible tableau, and in what follows we shall
congider feasible tableaux only, Without loss of generality, we shall assume
that, for an ACB matrix 8, its first column is —d4. Thus, y, corresponds
to the variable z;. The tableau also presents the indices Kr), where Kr) is
the index of the #th column of B, in (f, — M, —a). Let " {r) denote the index
of the column in {f, —M) which is complementary 10 the column whoss
index i3 f#) for r>= |, Let B, be an ACBH marrix. Then, it 15 clear that there
is exactly one complementary pair of column vectors (£, — M ;) both of
which ar¢ nonbasic. The Lemke algorithm chooses one of this pair (in fact,
the complement of the one which has been eliminated from the basis in the
previous iteration) as pivot column for its next iteration. We ¢all this rule
of ¢choice the complementary rule. Let 8, and 8, be two ACB matrices. We
say that B, or its associated tableau T, is adjacent to B, {T,) if the tableau
T, can be obtained from 7T, by doing one single pivotal transformation of
it, where the pivot column & is one of the unigue complementary pair of
nonbasic columns in T, and the pivot row is any row £in T, which is selected
by the usual minimum ratic criterion to maintain feasibility,

Note that, if 8, (T, ) is adjacent to B, (T, ), then B, {T,) ia rdjacent to
B, (F,). We denote adjacency in this sense by writing T, « T,

Suppose that T, is o tableau corresponding to an ACB matrix and T,
Is a tableau corresponding to a CB matrix. We aay that T, is adjacent to T,
if T can be obtained from T, by doing & single pivotal transformation of
it where the pivot column & is chosen by the complementary rule and the
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pivot row satisfying the minimum ratio criterion 15 1 (i.2., the row corre-
sponding to the artificial variable zp in T, which is assumed to be 1). Alterna-
tively, T, can be obtained from 7. by a single pivotal transformation in
which the column corresponding to Iy i3 the pivot column and the pivot
row § that leads to the tableau T, from the tableau T, satisfies the minimum
ratio criterion.

Two tableaux corresponding to two different CB matrices are not
adjecent.

Note that, if (8,) '¢>0, then A, corresponds to a nondegenerate
ACBFS x* of X(g) uniquely. Otherwise, 8, corresponds to a degenerate
ACBFS, and there may be more than one ACR matrix corresponding to it
In this case, the set of almost complementary tableaux corresponding to the
degencrate ACBFS x" is denoted by T and a tableau in this set is denoted
by (7. )" for some index . The pivot row in a tablean corresponding 1o this
ACBFS may not be determined uniquely by the minimum ratio criterion.
A tableau corresponding to a degenerate ACBFS is called a degenerate
tableau.

Let

(w! 2\, 23+ 0iw®, 2%, 2 ek,  vO=0,
be &n extreme ray, where

W' — M — el =0,

(w*, 2%, 20 1 =0,

(") =)z = (w'y2" =0,

and (w', ', 28} is an ACBFS to (3). Then, (w', 2/, z}) +@(w*, 2*, =5 is an
almost complementary extreme ray in X(g). We represent such an extreme
ray by the symbol Ti{z0). Note that, by the characterization theorem for
extreme directions of a polyhedral set (sec Bazaraa and Shetty, Ref. 9), there
are only finitely many almeost complementary extreme rays in X(g), and
it is easy to see that, under the nondegeneracy assumpiion, ¢ach almost
complementary extreme ray is incident on a unique ACBFS of ¥{g). How-
ever, if nondegeneracy is noi assumed, the number of ACB matrices that
corresponds to this ACBFS may be more than one. Thus, given Ti{o0)
representing the almost complementary tay (w', 2', %) +8(w*, 2%, 22), let
T, be a tableau that corresponds to the ACBFS (', 2', 24) on which the
ray Ti(z0) is incident, We then say that Ti{=0) and T, are adjacent. Note
that, if the ACBFS (w', z*, z}) is degenerate, then there may be more than
one tableau T, adjacent to Ti{oo). Let there be m almost complementary
extreme rays in X{g).
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Definitlon 2.1, Given an & = 5 matrix M and a vector ge ", let F* be
the set of all feasible almost complementary tableanx, and let i’ be the sot
of all feasible complementary tableaux associated with X(g), Let the nodes
Tilec), 1 < i=m, reprasent the almost complementary extreme ravy. Let

N={T,|T,eV*or T,e PV}l uiTiw) 15ism},
E={{T,. T}eNi T, es T} {{T:{ee), T} = N| Ti{e0) v T, },
We define the graph G = (N, E).

The following is 2 well known rasult; see Ref. 3,

Lemma 2.1, Suppose that none of the ACBFSs to (3) is degenerate,
Then, the graph G s a digjoint ynion of a finite number of paths or simple
cycles. The endpoinis of any path consist of one of the following three
possible pairs:

{i} ~ T.and 7., both complementary,
(i) T, and Ti{=0), where T, i3 complementary;
(itiy Tiloc) and Tifomn), ik,

The degree of any verfex is at mogt two.
fn general, we may note the following theorem.

Lemma 2.2, [n the graph 7. there is no edge of the form
{Fil=e), Te(o0)},

Suppose that x* is a degenerate ACBFS in X(g). Let BY be the set of
ACB matrices that corresponds to x*, and let 7" be the corresponding set
of tableaux. Let us suppose (hat the set BY contains at least two bases, Let

Nl[x“}= {I11 xl, i x,r}

be the set of ACBFSs or CBFSs which are the neighbors of x* in ¥ig). Let
x*eNi(x"), so that, if T, 13 a tableau corresponding to *, then for some
(8,)°cB", there is n complementary pivoting on a positive pivotal entry that
transformms T, 10 (7. )" It is possible that x° is also & degenerate ACBFS.
Suppose that x”e N{x") is nondcgenerate. Then, if o is the degree of degener-
acy of x*, there exists a pair of complementary columns (&, k' yeT, corre-
sponding 1o the complementary pair (we.z.} such that, when column !
{where { is either & or &) is chosen as the pivot column, the cardinality of

E)n_—{f'lfl-'rﬂlln'"}|rlf= min [yl'ﬂ.l'lll.}'lnl.f!_]"l.l.l'}u]}
t=i=n
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is o+ 1. Choosing a row index r from ©@ and pivoting on the entry y,,, one
obtains a tableau (T.)°, 1 £u= o, corresponding to the degenerate almost
complementary vertex x". Let “T” denote the set of these tableaux, and let
*B8° be the corresponding set of bases. The nodes in Lhe set « "1, where
the union is over the indices p such that x"=N(x"), are called the outer
nodes of T as each member of this set is adjacent to a ACBFS or a CBFS
different from x*, namely, some x"e N(x"}. The other nodes € T" are called
the inner nodes; see Gal {Ref. 18). It is not necessary to assume that each
ACBFS or CBFS in the set N(x"} is nondegenerate. A formal definition of
an outer node in 77 18 as follows.

Definition 2.2. Let T° denote the set of almost complementary tab-
leaux corresponding to a degenerate ACBFS x" of ¥{g}. We say that a node
(T} e T of G is an outer node of G} if either there exists an ACBFS or
CBFS x" distinct from 5° in X{(4) and a tableau T such that {{T,)", T1cE,
where either F={T,}" for some index ¢ or T= T, or T=T,{o0) for some 7,

Lemima 2.3, Let ()" (T2)°°T" Then, {(30% (7% ¢ 2

Proofl. Let us define a subgraph G7(2"} of &7 by taking
G = (T", B,
where
E'= (T TP T (T ) E).

Now, G {x") is a subgraph of the graph G"={N*(x"). E*), where N*(x")
15 the set of all tableaux (not necessanly the almost complementary or com-
plementary ones) that correspond to the degenerate vertex x° and £¥ is the
set of pairs of tablegux {7, 7.} such that T, can be obtained from T, and
vice versa by a single pivotal transformation on a positive entry in these
tableaux, where the pivot column is not necessarily determined by the com-
plementary pivet rule. This graph is similar 10 the one defined by Gal (Ref.
10}, Note that 7°< A*(x") and that two nodes in G (x") are adjacent only
if' they are adjucent in G°. Now, the lemma foliows from Lemma 2.1 of
Ref. 10, =

Remark 2.1. 1t may be noled here that in peneral there may not be a
path from 4 given node (T, Fe”T® to a node (T, T7, FEB, 48 EVEN i
the nondegenerate case the graph 6. may not be connegted. See Lemma 2.1
above.
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Lemma 2.4. In the graph G, let {T,, 7.} and { 7., T} be two edges.
Let the unigue ponbasic pair of complementary columns in 7, be
(7, —M ), and suppose that both the tableaux 7, and T, are obtained
from T, by inserling the same column A ., where 4 ;. is either I, or — M,
inter the basis, Then T, and T, are degenerate tableaux corrgsponding 1o the
same degenerate ACBFS.

Praof, This is obvious. O

In the following lemma, we use the notion of a walk in a graph. A
sequence of nodes of the form T, 75, Tr. .o oL Tacy, T ds called a walk in
GOl T,, Tt isan edge in 67 fore=1,2,...,u0— L.

Lemma 2.5, Walks of the form
Tl - N (T o s T (Y,

which includes 4 cycle, where T, T, ete, are nondegenerate tablesux and
the onby degenerate tableau is { T, )P e 7", are not contained in G/ .

Proof. Suppose there is such a walk. Let { B;)® be the ACB correspond-
ing to the tableau (T, )", Let § be any vector such that ((B8,)%) "'3=0. Con-
sider the vector ¢'=g+&3, where =0 is sufficiently small so that the
minimum ratio which is positive and attained 4l a unique row in each of
the nondegenerate tablesux other than ¥, and T, continues 1o be artained
at the same row. In the tableaux T, and T,, although the minimum ratios
are posilive, they are attained at more than one row for the right-hand side
vector ¢ producing the degenerate tableau (7 )°. Sinee for small € all of the
tableaux T,, T,, (7, )* are feasible for ¢, it follows that, in the graph G
corresponding to X(g'), this walk containing the cycle is retained, which
contradicts Lemma 2.1, This completes the proof, |

Remark 2.2. The implication of this lemma is that, if the sequence of
tableaux generated by the Lemke complementaty pivoting algorithm con-
taing a eycle, the sequence must include at least two distinet degenerate
tableaux corresponding to the same degenerate ACBES.

Example 2.1. Lt
1 2 0 —1
M=|0 1 21, g=| -1’
201 -1
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Tq(0)

Tyolo}

Ty(0)
Fig. 1. Graph &7 of Example 2.1.

This example is presented by Kostreva {Ref. 11) to demonstrate cycling in
the Lemke complementary pivoting algorithm {(Ref. 3). We now consider
the graph &' for this example. We take the covering vector o 1o be the same
as —q, 1.8, the vector ¢ each of whose coordmate i 1. Note that Af is a P-
matrix. There are 2'=8 CB matrices and 3% 2*=12 ACB matrices. Nore
that ¢ is contained in each of the 12 nonnegative cones generated by these
12 ACB matrices, and all these correspond to the same ACHFS of X(¢),

(w", 2%, 20)=(0,0,0,0,0,0, 1),

Also, ¢ is contained in exactly one of the 8 complementary cones. Thus, the
graph &7 contains 14 nodes, the above 13 nodes and another one rep-
resenting the primary ray. The graph is shown in Fig. 1. The edges shown
it double lines form the cvele traced by the Lemke algorithm with & specific
pivot selecticn rule, as will be pointed cul in the next section.

In Fig. 1 the basic columns of the various tableaux are as Tollows:

(i} TiM=(—=d I, L)
(i)  TAN=(-d l: L1},
(iii} TS{D}H{_d1 -'r.I!I.J]!
ftvy T =i-d, —M,. 1)
(v) Ts(0)=(—d, —M >, 13},
(vi)y  Tell)=(—d —M ., 1)),
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(viiy TR(0y=(—d,—M,. —M),
(vili} Ty(y=i{—d —M ., —M;),
(ix) T0i=i—d —M,, —M;),
(x] Tiel0y={—d. £\, - M.}
(xiy To{0=(—d F:, —M,)
(xil) T (0)=(—d, f2, —M.5)

All these 12 tableaux correspond to the degenerate ACBFS (w", 2, 23). The
tableau T corresponds to the CBFS {w*, =", =), where

w¥ =0, SF=(173,1/3,1/2), =0,

The node T\ (o) corresponds (o the primary ray. Note that the tableanx
T1{0, Ty (), 201 and the tableaux T5(0), T, (0), T, (0) are the outer nodes
by our definition, The other nodes that correspond to (z4, w", 2%) are the
inner nodes.

3. Cycling and Anticyeling Rules

The phenomenen of cycling in the Lemke complementary pivoting algo-
rithm has been studied by Kostreva (Ref. 11). For anticyeling rules in the
context of this algorithm, see Murty (Ref. 2), Cottle, Pang, and Stone {Ref,
1}, apd the references cited n these, We first note the following diference
between the phenomenon of eycling in the simplex algorithm for linear
programming and that in the Lemke complementary pivoting algorithm.

The simplex algorithm may cyvcle among the bases corresponding 1o the
same degenerate veriex. Once the algorithin moves away from a degenerate
vertex x° 1o an adjacent nondegenerate vertex x', the bases corresponding
to x* do not ocour again. This, however, may not be true of cycles in the
Lemke complementary pivoting algorithm as the following example quoted
i Cotile, Pang, and Stone (Ref. 1) shows.

Example 3.1, Let

-1 =1 a a
M= 1 10 g=| —2 |, d=[1|,
1 11 -3 1

where & is the covering vector. The algorithm goes through the feasible
almost complementary bases

BJ:{_ds -'r.l1 f.2}1
Bﬂ':':_d, A _M.s].
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By={—d —M.,, —M;)
quf_d, _M.| 5 _M.3]1
BS=(*d! f.2'| _M..:'-}+

from where it returns to H,. The bases A, and B; correspond to the same
degenerate ACBFS,

=g, 2, 2)=100,1,0,0,0,0, 3,

and the bases B,, Bs, B, correspond 10 distinet nondegenerate ACBFSs in
Alg).

It is known that cycling in the Lemke complementary piveting algo-
rithm can be avoided by the use of the lexicographic rmle for the selection
of 4 pivot row; see Eaves (Ref. 12). Chang (Ref. 13) has studied the least
index rule for the selection of the pivot row in the Lemke algorithm and has
observed that, even when M is strictly copositive, tis rule is not successiul in
avoiding cyeling. The effectivencss of the least index tule has also beeno
studied recently by Cottle and Chang {Ref. 14). Note that, when the non-
degeneracy assumption does not hold, the graph G may contain several
cycles, and the algorithm requires a rule for the selection of the pivot element
which enables it to trace a path in & from a node of the form 7 {0} to
either a node which is5 u complementary tableauw or a node of the form
T (o0), kAL

In geoeral, suppose that we introduce & rule R for the selection of the
pivol row which ensurez that the tableau generated by the algorithm has 2
particular property . We then ohaserve the following theorem.

Theorem 3.1, Suppose that there are only two edges in the graph G
incident on any tableau with property %, each one leading to a tablsay with
property P. If the algorithm with rule % generates tableaux with property
P only, then the algonthm does not cycle.

Proof. This is clear from the observation that the subgraph of G
generated by the algorithm with rule R is a graph in which ¢ach node has
property 1, and hence its degree i8 at maost two. Ol

Let us now consider 1wo rules which have been tried unsuccessfilly.
The rules are Rule H,, which is to choose the pivot row as the one with the
least row index from among the rows that tie for the minimum ratio, and
Rule /;, which is to choose the row corresponding to the vatiable which
has the least index from among the rows that tie for the tinimom ratio.
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Rule W, applied to Example 2.1 traces the following cycle:
T (oo}, T1(0), Tu(0), Ts(0), Ts(0), Tra(0), T12(0) T11(0), Tall}.

Although at each of the nodes of the graph G generated by the algorithm,
the edge to traverse through is uniquely delermined under this rule, the
number of ares incident on a node (for instance on Ty ), cither entering or
exiting fromo 1t under this rule, is more than 2. This perhaps explains why
cycling may not be avoided by the use of Rule ®,. The same difticulty is
encountered in the use of Rule %, as well. This may be seen from Example
LR

Recently, Gal and Gepe have proposed a pivot selection rule which
they call transition node pivot rule for the simplex method. Consider first
an almost complementary tableau T, which is a node of G, . Let 1 be the
index of a ¢olumn which is nonbasic in T, Suppose that T,={{yy)).

Deefinition 3.1.  We call a column in the tablean 7, a transition column
if the usual minimwm ratio i that column is positve or cannot be
determined.

Remark 3.1. WNote that the column whose index is ¢ is a trangition
column of the tableau T, ={(y;)) if and only it

}’n:l = [. == _.""l'.r iﬂr

Remark 3.2. We shall consider a piveting rule which produees tab-
leawsx ail of which are required to have the column with a specified index as
4 transition column. However, such a rule may not resolve tigs uniquely in
the selection of a pivot row by the usual minimun ratie criterion. Therefore,
it may be necessary 1o consider a rule thal requires n given set of columns
as transition columns. This motivates us to introduce the followitg notion
of a rransition set.

Definition 3.2. We say that a set of ordered columns with index set
{ty<t<- -<p! has the transition property if yu=0= vy, <0 and
Fo=0y=0,¥lZs<r =y, =0 l=r<p Wecall an ordered set of indi-
ces of the colummns with the transition property a transition set,

Let Y, corresponding to either 7y, or — AL, for some 1 =/<n, be the
column chosen ag the pivot column in T, Let
8 =min{yw iy | py >0}, (4)

@' ={i| yo Sy = 0"} (5)
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Suppose that the column with index ¢ is a nonbasic column in T,,. Then, if
we select the pivot row in T, to be re©" 30 that

oo f Yoy =10BX Yrr | KE@Y, (6)

it is easy to see that column ¢ is a transition column in the tablean T,
gbtained from T, by pivoting using the pivot glement ¥;. The reason for
the name transition column is that, if we now chooss column ¢ as a pivot
column in T, then & transition occurs to a tableau which corresponds to a
BES of X{g) distinct from the ACBFS which corresponds to the tableau 7,.
However, such a tableau may not correspond to a ACBFS or CBFS of X(g),
and hence is not necessarily a tableau in the subgraph G.. Also, the set
{t,t1.ta,. .., &} will be a transition set in the tableau 7, if we select the
pivot tow as follows. Let 8" and "' be as defined in (4) and (5). T@Y' =
15} is a singleton set, then the pivot row is selected as 5. Else, suppose that

O=lg 5,...,8
Let us define the following sets recursively. First, let
&) = maxf i, Ayl ke®U, ("

O ={p| You Sy =8Y", pe@®''}. (8)

In general, having defined @', 25i<r, if this is not a singleton set, we

praceed to define 87 and B as follows:
' = max{ yy, /¥yl ke® }, (9
A ={pl yon iy =8 pe@ilh |, (1%
We now stale a trangition node pivot role for the Lemke algorithm.

Transition Node Pivot Role (TNF Rule). Suppose that the Lemke algo-
fithm generates & nondegenerate ACBFES x' and a corresponding tableau
T, with column § as the pivol ¢celumn in T chosen by the complementary
rule. Further, suppose that ®%'is not g singleton set. Note that the algorithm
generates a degenerate ACBFS x” of £(4) in the next iteration and a tableau
{ T: " from the set of tableaux T° that corresponds to x*, Let @ be an ordered
set of column indices. The role is:

The pivot row in each iteration that generates a tableau from the
set 7" is chosen so that the set @ remains a transition set in each
of these tableaux.

This is done as desctibed above. In particular, we consider the following set
A Let

@U?={|{f], k;, —— ,k_,-},
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Let
ﬁr={l'i1flt-~lt;x}+ Whﬂre"l"E{‘rr{k‘l}tF.Ekz}ﬁ*"i!r(k.r)}! (II}

be & fixed ordering of these column indices. We suggest the use of §' as a
transition set,

Theorem 3.2, Suppose that the matrix of columns whose indices are
in F as defined in (11} above can be augpmented by including »—s more
columns from (F, —M ), so that the resulting matrix is 2 basis matrix of the
systemn (33, Consider the Lemke complementary pivoting algorithm with the
TNFP rule that ensures that the set §° remainsg a transition set in every
degenerate tableau corresponding to the same degenerate ACBFS x°. Then,
the algorithm is finite.

Proof. In Ref 14, the transition node pivot rule is shown to be a
special case of the lexicographic pivot selection mle. For the fransition set
A" that we have suggested above, let us augment the matrix of columns
whose indices are in 37 by adding »#—» more columns from [f, — M), 50 that
the resulting matrix A is nonsingular and whose first s colymns are the
columns whose indices are in . Preserving lexicographic positivity of the
augmented right-hand side B '{g|(—A4)}. where 8is any ACB matrix genct-
ated from the set A% in the course of the algorithm, will ensure that the set
of columns whose indices are in fi* have the transition property at every
iteration. See Ref. 14 for a proof. Now, the finiteness of the Lemke comple-
mentary pivoting algorithm with the TNP mle follows from the result of
Eaves (Ref. 12). O

Remark 3.3, [t may be noted that the almoest complementary tableaua
generated by the algorithm with the TNP rule are not necessarily the outer
nodes of the graph G in the sense in which we have defined an outer node.
However, they are outer nodes in the larger representation graph of Xig)
as defined in Ref. 100

Bemark 34. We note that hoth the examples of cyeling piven by
Kostreva (Ref. 11} can be aveided by the use of the TNP rmle. In Example
1.1, it we choose the column corresponding to 23 {i.e., =M. ;) as the transition
columm, it is seen that the algorithm moves from the basis By to the basis
Bo=1(d, I,, —M ), at which step 11 terminates in a secondary ray. Thus,
cycling ia avoided.

Remark 3.5. The condition stated in Theorem 3.1 i easily seen to he
satisfied when the matrix M s nondegenerate, i.e., when ull the principal
minors of M are nonzero,
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