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CHAPTER O

ABQUT THE THEEIS

0.7 INTRODUCTTICN

Since the rediscovery of Meniel's works towards the beginning of
this century the geneticists did not confine their studies only at
familial level. The study of genctic entities at population level also
became egually immortant for understending the mechanism of Iinheritance.
T?is branch of understanding the mechanics of heredity, known as
Poﬁulation Genetics, has by now bacome so well known that a discussion
of any part of it does not need any general introduction. In view of
this fact, we irstead spend some time to get into the problems discussed

in this thesis.

Bagically we study three problems in this thesis. The {irst
problem is that about pepulation etructure. Though population as a
whole 18 of interest to the populativn geneticists, his knbwledge ig
incomrlete without an ldea about the constituents of the population.
We, in fact, study the structure of populations whicn are under genetic
eqilibrium, the nmating models which are lilely to be in operation in such
an equilibriun population and further some statistical aspects of
estimation of gene fregquencies in two common polymorphic systems, namely
ABO snd MESs blood group systems. With gpecial reference to ABO bloocd

group system it is shown that some population structures are not
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cistingnishable from others under some conditions.

The second problem is the study of genetic correlations. The
importance of the role of genetic correlations in understanding the
inheritance of =zenetic oharaoteré, especially the quantitative ones, 1is
by now beyond doubt. Though much has been done in this field of population
genetics most of the results were applicable t§ raendom mating population
only. The population structure prescribed by Wright (1921), widely
knogn as Model II population structure, received relatively less attention
although Li (1955) and Kempthorne (1957) have considered them in some

details.

Although the first two problems have a common base, in the sense
that both stem out from the basic problem of understanding the population
constituents and their interrelations, the third problem stands out to
be =z discrete ome in this respect. This is about the construction of
some mathematical models for muman multiple births. In thie field also
there had been many contributions to know the cvxaet factors influencing
the human mtltiple births but it is felt that these biological findings
were not properly injected in the construction of the models present

in the literature (Das, 1953-56; Bulmer, 1958; Allen, 1960).

0.2 POPULATION STRUCTURE

One of the most important concept in this area is that of
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genetic equilibrium. But the term is mcre often-than not misappropriated.
Many text books interpret genetic equilibrium as equilibrium at gene
level. This for is quite sound. But when one says, 'one characteristic
feature of a random mating population is that in it the gene frequencies
are kept constant generation after generation barring the influences of
external forces like mutation, migration and selection'. It 1s to be
remembered that this is no criterion of random meating. It is a fact
that for any elosed population where forces like mubation, mlgration

and selection are inoperative gene frequencies remain same generation
after generation irrespective of the mating system practiced there.
Lpparently this was-the contention of J. B. S. Haldane, who called 1t

as 'Gene Pool Theorem's Therefore, to characterise any mating system,
it ig not sufficient to consider equilibrium at gene level. We, in
section 1.1 consider only genotypic equilibrium and derive the necessary
and sufficient conditions for the maintenancer of such equilibrium,

It turns out to be that random mating, among many other mating systems,
in one mating scheme which keeps a2 population under geﬁotypic equilibrium.
Li (1955) studied such conditions for an autosomul trait explained by
two codominant 2lleles at 2 locus. We, in section 1.2, exbend this to
K-allelic case and zlso prescribe the conditions for a sex-lined
character. The main results indicated in this section are presented

also in Chakraborty (1970c). The analysls of the K-allelic ease shows that
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the class of mating structures which preserve a population at genotympic
equilibrium is tor wide to be studied in great details. We, therefore,
restrict ourselves to a smaller closs, which is known as Model II

population structure.

Though, in 1921 Sewall Wright prescribed this structure of an
equilibrium population therc had been many attempts thereafter to
interpret the parameters used therein. The parameter, F, when different
from zero signifies the deviation from rendom mating. A value of
F = 1 characterises a mating system where there is complete fixation
of the geness It is for this reason F 1sg sometimes referred to as
coafficient of fixation. Although most frequently F is interpreted
as 1lrnbreeding coefficient, through a discussion of the various
interpretations of this F coefficient in section 1.2 our contention
is to show that among many other forces which may cause deviations from

random mating, consanguinity or imbreeding is only one factor.

But both Model I (random mating) and Model IT population
structure suffor from some mothematical and statistical loopholes. It
i8 shown in Chapter IV (secticn 4.1.3) that under some conditions a
nixture of random mating isclates cannct be distinguished from a
homogeneous random mating population and hence,if, without knowing
exaot composition of the population, one blindly applies the random

mating forrmlae to compute the gene frequencies of the population, he
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gets solutions to some mathematical equations but with no physical
significance attached t; thems  Model IT populatiorn etructure on the
other hand, provides little scope for statistical estimation of the
parameters. As is shown in section 4.1.4, in case of ABO blood groups,
orly in a very restricted set up Schull's (1965) explicit expressions
give rise to admissible value of gene frequencies and the P~
coefficient. On the other hand, evon if such solutions are admissible
tﬁere is no guarantec about the relisbility of such estimates. Sometimes
standard error of the estimates are so high that cven an appreciable
emount of inbreeding cannot be detected in large samples. The problem
of detection of this F coefficient from ABO blood group data is
discussed from ancther angle in section 4.1.5. Minimum sample size ig
computed to detect a prescribed level of F with given precision (in

terms of the level and power of the test procedure ).

With these limitations of the mating structures of Model T and
Model II, it was felt to design a seheme wherein the anelysis is plausible
for mating structures which do rot come in either modzl. Such a mating
model is termed as Hestricted Random Mating (R.R.M.). The terminology,
itself, suggests that the assumption of random mating is rnot dispensed
with in fullt In fact the mating ot the gametic level is assumed to be
at random. Invoking Haldane's 'Gene Pool Theorem', it is obvious to

note that the gene frequencies are kept constant in a population whzre
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the mating in vogue is R.R.M. In Chapter II we discuss the problem

of eatimation of LB0O gone frequencies under this set-up, evolve a

pocdness of fit statistic and derive its asymptotic sampling distribution.
Such analysis is of great use cepecially when there are dominance
relationships among the alleles present at the locus of interest. The
analysisg 1s also illustrated through data on S-factor of MNS blood

group system (section 2.3).

0.3 CENETIC CORRELATIONS

The latter half of the Chapfter I is devoted teo the study of
genetic correlations in =z population whose structure is slightly
general than Model I. Under this Model II structure, the results of
Li (1954) are generalized. Idi has derived the correlation betwsen the
parents and the offspring when both parents and s (>1) offspring are
considered. He termed this correlation as 'parent offspring correlation’.
Li's results were valid enly for random mating populations and he
considered the case wilth two codominont allelss ot an cutosomal locus.
In scctions 1.4 and 1.5 we dexrive the parent offsvring correlation for
antosomal as well as sex-linked characters wherein the alleles do or
do not have any dominance relationship between themw. It is scen thet
in the absence of any dominrnge relationshlp between the alleles, the

parent offapring correlation depends solely upon P, the coefficicent
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of departure from random mating bat as soon as the characters are
recessive in nature; ths parent offsprirg correlations also involve

the gene frequencics. Generalizationg are seeked in K-allelic (section
1.6) case also for which we invoke the weighting system developed by
Stanton. Thie is necessary beczuse the superficial weighting scheme
followed otherwise presents obvious snomalies (Chakraborty, 1970a,

19706, 1970c).

In gection 1.7, we derive sone important correlations between
relatives other than parents and offspring. It is to be remembered
that the envirommental effect is altogether ignored while deriving
the different correlations in this chapter. The last section of
chapter I (section 1.8) advocates another imporiant rale of parent
offspring correlation. Parent offspring corrclation is used here to
¢stimate the coefficient of departure.from random mating. Though for
such estimation of F, family materials are necessary but the advantage
of this estimate over the existing ones is also irdicated in this

sectlon. The meterials of this section is also found in Chakraborty

(19704).

0.4 HUMAN MYLTIPLE RIRTHS

The blological mechanism of human mmltiple births ie, by -now,
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sufficiently explained. Though not the exact nature, bu£ the hereditary
nature of dizysotic twinning tendency is known and further we know

that twining rate changes with parity of tirth as well as the age of

the mother. Again the behaviours of monozygotic and dizygotic twinning
rate are not the same in, at least, thess two respects. In Chapter IIL,
first we glve an account of these biological findings. Later on in
pection 3.4 we construct o probabillstic model for these multiple births
which is in fact a generalization of Bulmer's Model (1958) taking into
account the fact that hereditary property of dizygotic twinming was not
incorporated in Bulmer's Model. In section 3.5 we present a stochastic
mndel where the intensities of the two basic processes (namely, scission
of a zygote and the release of extra eggs) are assumed to be time
dependent. In the last section of this chapter the intensity of the
relcase of extra ova is assumed to be dependent also on the age nf the
mother. One plamsible relationship is‘also indicated through an empirical
study. The models connstructed in this chapler thus take the biological
findings also into account and present neat expressions without intrnducing
any parameter withr no physical interpretation as seen in Dag (1955-56)

and Allen (1960).

In the lasgt chapter of the thesis, in section 4.1.2, a comparizon
of the different method »f estimating the ABD gene frequencies (under

random mating population structure) is tried out. DeGroot (1956) had
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tried one such comparison where instead of considering all of the
estimates at a time, he took one at a time and compared the efficienciles
measuring them by reciprocal of the variances. However, we take the
generalized variance as the criterion and draw the comparison, The
results those we obtain are same as those of DeGreet (1956) and

Sukhatme (1942). In section 4.2 the MNSs system is discussed. In

this system the gene count method of estimating the chromosome
frequencies is slightly modified for the use of desk calculators.

The 1o 3s of efficiency-(or, the increase in standard errors) are not
appreciable. These two results are aiso found in Chakraborty {1970e,

1970f) .
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CHAPTER I

GENETIC CORRELATIONS IN 4 GENERAL EQUILIBRIUM POFULATION
WITH ONE LOCUS SEGREGATING

1.0 INTRODUCTION

At the dawn of this century gencticists rediscovered and
established the Mendelian principles from studies ot the familial level
while searching for the mechanisms of heredity. They confined their
investigations to the alikeness or unlikeness betwecn specified parents
and their offsvring. Population geneties, on the other hand, is concerned
with the statistical consequences of Mendelism in a 'group' of families
or individuals; it understands the hereditary phensmenon on a population
level. A population geneticist goes on to investignte the propertions
of purple- and white-flowersd plants in a given region, the frequencies
of the various types of croseses in such 2 reglonal population, the
proportions of the various kinds of plants from cach type of cross, aid
the genetic structure of one generation as compared with that of the
nexs under various circumstances presuming the mechanism of heredity to

be what Mendellan genetics has deseribed.

The life of an individual is limited in length of time, and
barring mtation his genetic makeup is fixed throughout his 1life. In

contrast, a population iz prrctically immortal, may be large or small
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in bulkiness, may be spread over a wide or limited geographical area,
and may change in genetic composition from generation to generation,

. suddenly or gradually. The study of population genetics is thus
inevitably mlated with the understanding of its genetic makeup. In
this chapter we shall first deal with some principles znd laws which
emerge while making an attempt to study the Mendelian consequences in
a population =nd with this background we shall study the genetic
relaticnship between the parents and offspring which, needless to say,

plays a crucial role in investigating the mechanism of hercdity.

1.1 EQUILIBRIUM CONDITIONS

The first and foremost important concept of population genetics
which goes as the most important landmark in the subject is genetic
equilibrium. By 'equilibrium'®' we mean that there is no change in
genotypic proportions in a population from generation to generation.
This implies no changes in gene frequencies either. There are many
possible types of cquilibrium conditions of which we study the most
important ones only. The particular equilibrium condition under random
mating (a ﬁating system in the case of bisexmal organisms where any onc
individual of one sex is equally likely to mate with any individual of
the opposite sex) is lmown as HARDY-WEINBERG LAV because it was

discovered independently by Hardy and by Weinberg in the same year, 1908

\I\

No. th _{f!(} ;.......\ ".
e 1 ﬂ %zx;.. [ YRy
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(see for example Stern, 1943). This law may be formulated as follows:

Consider a large panmictic population wherein there are only
twe alleles (A, 2) at a locus with relative frequencies p and @
(p + @ = 1). If the proportions of the three genotypes A4, Aa and aa
with respect to this prir of genes in the population are p2, 2pg and q?
respectively, the genotypic proportions in the next generation will be
the same as those in the preceding generation. The population (p2, 219,
q?) is then said to be in equilibrium in Hardy-Weinberg's sense under

the gystem of random mating.

A nice property of such an equilibrium was shown by Wentworth
and Remick (1916) wherein they proved that equilibrium in Hardy-Weinberg's
sense 1s reached after a single generation of random mating regardless

of the initial composition of the population.

The direct exbtension of the Hardy-Weinberg Law to the case of
maltiple alleles was first made by Welnberg (1909; see Stern, 1943),

the general formulation of which can be written as follows:

In a2 large parmictic pepulation in which the freduency of the
allels Ai is qy s the proportions of the various genotypes in an
equilibrium condition are given by the coefficients of the 4's in

the expression

2 4 \
[Z qlAJ = uqi ii+2 T a qj iAj (1.1.1)

1<3
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where L - 1 (1i=1, '2, ese, k). We shall refer to this pepulation
in our :;-ubsequent discussions as MODEL T, It may be noted that if an
initial population is not in an equilibrium state, the condition (1.1.1)
" will be immediately established after one single generation of random

mating, Just as in the case with two alleles.

A more general result is knovm in the two allelie case which Can

be stated as follows:

THEOREM 1.1.1 (ri, 1955) A population will be in gquilibrium with

respect to an autosomal locus with two alleles 4 and a, if and only
if the Aa.x Aa matings are twice as freduent as those betwoen the two

different homozygotes (A4 x aa =nd 2a x Ab).

For a proof of this result one can refer to Ii (1955). Note
that this relation is independent of gene frequencies or amount of
consanguinity. Also, it is clear that such 2 relgtion is true for
parmictic populations. This property of an equilibrium population was
first noted by Fisher (1918, pp. 410-11) vwhose argument 1is especially
simple. Of the six possible types of matings in the population, four
types (AL x AA, a2 x ag, AL x L3, AR X ka) produce offspring of the
same genotypic proportions as their parents. On the contrary, in
Ab x aa matings the two homozygous parents are replaced by heterozygotes

in the next generation whereas in Aa X fa matiﬂgs only h2lf of the
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osfspring regain the homozygous condition. Hence the theorem. It is
to be noted here that it‘ne complications of the selection pressure is
" altogether ignored for this purpose. 41l the genotypes are assumed

to have the same fitness coefficients.

Analogous conditions can also be studied in the case of sex-
linked characters. As usual, one nay take the homogametic XX 1ndividuals
as females and the heterogametic XY (or X0) as males, where X
denotes the sex chromosome. Then, with respect to a X-linked locus
with two alleles A and a, in case of females we have genctypes A4,
Aa and aa whereas the males can be of genotype 4 or a. With this,

the mating matrix ¢an be represented by TALBLE 1.1 .1,

TABLE 1.1.1

Mating frequencies with sex-linked genes

I~f‘ :einales 0 Malss 5 Total
= 1 Y0 %
ba Uy %0 %
= 901 %00 ( %

Tolea,l SO Py Py 1

With this, it is easy to see that the zygotic proportions of the
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females in the next generation are given by

Y = Uyt
u ps
11 B o
Q = W trF 3t gy
.

vhich in turn give the necessary and sufficient conditions for genetic
equilibrium as Uyq = 2 U and Usy = 2 Ueyy o It can be verified that
these conditions also imply that the male frequencies are kept constant

in the next generation. Thus we have

THEOREM 1.1.2 (Chekraborty, 1970) A population will be in eguilibrium
with respect to a X~linked locus with two alleles A znd a if and only
if frequeney of Aa x A mating = 2 x frequency of AA x a mating and

frequency of Aa x a2 mating = 2 x frequency of aa x A mating.

Similar results can also be obtained with more than two alleles
at a locus. But as the mumber of alleles inereases, the munber of
conditione also increases enormously. With three alleles A1 ’ AZ' AB
at an autosomal locus, it may be seen that thers are as many as six
. eqqations which together form a set of necessary and sufficient conditions
for genetic equilibrium. The mating frequencies in such a situation

oan be designated by TABLE 1.1.2.
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TABLE 1.1.2

Mating frequenciea with 3 alleles st an autosomal locus

Mates A1 1‘;1 A_] ILZ 111 A3 !12 A2 1'12 A5 ABAB Totals
444, % 4 By5 Rz g g Yy g Yy
bydy Uyo LY Uz Up By 5 Usg Uy
L B Toz Mmz By Uge o Ugg U3
fahy St B Ao Pty It B = P Uy
bods B Tg  Wzg  Yyg  Vgs Uy Us
Azhs Y Vg Uzg Vg Ugg  Ugg g

Potals T, u, ' U U, g U, 1

Prom this, one easily gets the necessary and sufficient conditions for

equilibrium as

-

Uy = 4 Uyyr Tz =2 Uyg ]
Usg = 4 Qpgy Tyg =2 0
i PO LY [

o

[}

34 P (1.1.2)

For a gsex-linked locuc with three allesles the mumber of conditions
is even more. One can easily see that in gach 2 case thare are as many

as elght equations which form 2 set of necessary and sufficient conditions.

Fisher's argument for the vallidity of Theorem 1.1.1 can easily
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he extended to form a set of necessary and sufficient conditions for

K alleles (K2 2) at an autoscmal locus. In such a case we have
] K Kz_ | mmber of eguations of the form
AA, x A A, matd (F AA LA i f\
Freq. of 144 x 1™ matings = 4(Freq. of iii x in-j matings

forall £ ¢ J; i, 3=1,2, «e0y k

I

b(1,1.3)

and K(K - 1)(X - 2)/2 equations of the form
Freq. of ‘P‘i’ﬁ‘j X AiAk matings = 2 x Freqd. of AiAi X zLjA.k mating
for all 1, j, k=1, 2, «+., K such that J <k
‘ ~

and i # 3 # k.

Note that total rumber of equations in such a set is K(K - 1)2/2. .
Thus putting X = 3, we have & equations, for four allelic case cne

has 18 equations and so on.

Because of these many equations, it is very difficult to study

the populations mnder such equilibrium conditions.

Wright stadiced yet another type of couilibrium situation in
his classic study of 1949 (Wright, 1949). Though his equilibrium
conditionssare not as general as (1.1.3) hut certalnly it is a
generalization ovor the pammictic equilibrium model {(Model I). In his
model he polnted out that when the gametes zre not uniting entirely

at random but are correlated, there will be relatively more homozygous
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individuals in the population than in Model I. If the correlation
cogfficient between the nniting gametes 1s P, the population, in
equilibrium state, will consist of :

2 A

& - F) Zf'i q A 7°+7 i 9 & A
(1.1.4)
. 2

- ):i[('l -F) g +Fqi_7AiAi

+2(1-F) £ g

q -A L
1< 173717

We shall refer to this porulation as MODEL II. When F = 0,

1t reducer to model T and thus model II 1s a generalization of model T.
It should be remarked that the parameter F, measuring the degree of
agsociatlon between the uniting gametes, is entirely independent of

the gene frequencies, qi's. The later tells us what proportion of saech
allele there is in"the population while the former measures the extcnt
of the association between pairs of the alleles. In (1.1.4), the F
is assumed to have values in the closed interval /0, 1_/. 1In the next
gection we shall study in details the variocus interpretations of this
parameter, F. That the equilibrium condition. of Wright (as given

by 1.7.4) satisfies the general equilibrium theorcms 1.1.7 and 1.1.2

follows from Yasuda (1968).

Yasuda based his results on what is kmown as Wzhlund's prineiple.

Suppose that a population is divided into many endogamous parmictic


http://www.cvisiontech.com

smaller populations (isolates) restricted by geographic.., racial, religious,
‘encial and ec.onomic barriers. Tet Wy (Ewi = 1) be the relative size

of the ith tisolate. If a genetie system consists of two alle%es Py

and a.‘ with frequencies By and 9 in the ith isolate, roespectively,
then tl}e frequency p of gene A Is p =1 Py *y and its variance

2

- D)2 "= 5 by Wy - p2, where

5° in the total population is =z (p i

the summation is taken over all isolates. Since the genotypic frequenciles
of AA, Aa and aa in the total populations are L pi2 Wys 2 Zpi qy Wy
and Zqiz Wyt respectively, the subdivision results in increasing
romozygosity by an amoum.: equal to the gene frequency variance 02 v
Comparison of this result with that of Wright (equation 1.1.4, teking

K = 2) leads to 0‘2 =p(1 - p)F.

In case of a contimious model the gene frequency and its variance

in the population can be expressed by Labesgue-Stieltjzs integrals

2 2 2
p=/) p dw and O = f p, &w -1 ,

where sums are taken for the discrete model and integrals for the
contirmous model. Note that, thus, the first moment of the isolate-
distritution gives the gene frequency and the second moment the genotype
frequency. The third and the fourth moments give the mating type
frequencies ot & sex-linked and at an autosomal locus, respectively,

cince three and four genes are concerned in cach gene combination.
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Let us consider 2 locus with two alleles A and a whose
frequencles are p and q, respectively, in a2 subdivided population
~with a non-randoﬁness coefficlent ¥. Suppose that the difference
between gene frequency of an isolate, b and the population, p, 1s

A,pw, whose kth moment 1s expressed by m,
k k
me = [ (&p)". aw = [(p - )" aw,

whare the integrals are understood in the Lebesgue-Stieltjes sense.

For the population moment, as Yasuda (1968) shows, M,
a a
M =fp, -dv=[(p+ap)" dv

- 3 LG 5™ [ (an) a7

a
ay _msr
= E(r)P m, 3
r=0

]

a 2

or M =pa+§iﬂl p* (1 - p). ¥ +0(m3),

vhere O(x) stands for =y function which is at most of order x.
In the above expression, if the cublc and higher powers of A4 P, are

negligivle, the term O(mB) can be ignored. For example

M1 = P,

5 _2
N& =P +p(1 "p) F! (1.1.5)
M}""’PB""}PZ“ "I)) T,

p4 5 6p5(1 -~ p) Ps

o=
i
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With this it is straightforward to evaluate the mating type
frequencies in the case of two alleles at an autosomal and a sex-~linked
locus (for autosomes, reciprocal crosses are grouped together)a To
illustrate, considsr the Iintercross Az x Aa and its relative frequency
u;q+ In an isclate, the proportion of this mating type is 4.pW2(1 - pW)2 dw,

go that

]

2 2
ugg = Sap (1 - p )" aw

H]

4My = B My + 4N,

[ d

12 + 4pq(1 - 6pq).F (1.1.6)

The mating types and their relative frequencies, thms computed,
are shown in PABLE 1.7.3 for an autosomal locus and in TABLE 1.1.4 for
gex=linked locus.

TABLE 1.1.3

Frequenoy of mating types (two alleles at an
autosomal locus)

Mating type Fredueney

LA x AA p!Jr + 6}_:)3 q.F
A x fa 4p°q + 126°a(1 - 2p). F
Aa x Aa :ipzqz + 4pqa{1 - 6pa). T
A x 22 2'_pgq2 +2pa(1 - 6pq). ¥
da x aa 4p0° + 12pa° (1 - 2q). F
aa x aa &+ 6p° aF

Total 1
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PABLE 1.1.4

Frequency of mating types {(two allecles at a
sex-linked locus)

Mating type Frecquency

A x A p3 + 5p2 q.F

Aa x A 2p2q +2pa(1 - 3p). F
Mxa ©°q + pa(1 - 3p). F
laxa 2pd® + pa(1 - 3p). F
aa x A ' Pq2+PQ(1 - 3p). F
aa x a q3+3pq2.F

Total 1

Once these two tables are ready, 1t is easy to see that these mating
frequencies satisfy the general equilibrium conditions ag dictated by
Theorem 1.1.1 and Theorem 1.1.2. Thus, it is proved that Equilibrium
in Wright's sense (prescribed by Model II of equation 1.1.4) is a

particular case of the general genetice equilibrium but Model If ig a

generalization of Model I.

1.2 MODEL II : INTERPRETATION OF WRIGHT'S F PARAMETER

We have already seen that Model II describes the genotypic

frequencies in an equilibrium population in terms of the gene-frequencies
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qi's and the parameter F denoting the so-called fixation index. As
we have scen in section 1.1, the value of F describes the deviation
from Hardy-Weinberg proportions (as given by equation (1.1.1)) due to
.the net.effect of all of the forces acting on the genes and genotypes
at the locus under consideration. If inbreeding in a constant amount,
f, per generation, is the only force acting on the population, then F
will also be a constant, equal to f, the so=called "coeffielent of
inbreeding". In reality, however, there may be (1) inbreeding due solely
to the finite size of the population (fN) which may vary from one
generation to the next asAthe effective size of the population varies,
(2) inbreeding due to some regular pattern of consanguinity (fc) and,
.(3) irbreeding due to positive assortative mating (homogamy) which may
vary among genotypes or between sexes. In addition, F will also te
affectedsby selection (e.ga, differential viability or fertility),

mitation, gene flow, and random genetic drift (Jain and Workman, 1967).

Whatever may be net operative force on the locus, several
interpretations of this F-parameter have been attempted (Wright, 1921;
Bernstein, 1930; Malécot, 1948) and the same conciusion was reached with
respect to Zygote fredquencies in terms of gene frequencies and the inbreeding
coefficlent (i) This F-parameter can be understood as a measure of non-
randomness that also describes zygote frequencies, the correlation

between uniting gametes (Wright, 1921). Wright's this interpretation
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is alreedy indicated in the previous section. But it may be worthwhile
to review the works of Malécot (1948) which resnlted in essentially the
game formulas as that of Wright since it dictates the crucial ideas

' untrammeled by unnecessary assuxnptions.

The basic notion in Malécot's presentation is that two gencs in

the population may be 2like for two entirely exclusive reasons

DEFINITION 1.2.1 ¢+ Two genes are said to be ldentical by descent if

they are replica of the same gene possessed by sSome ancestor.

Thus they are alike because they are coples arising in the
reproductive process of one gene occurring previously in the ancestry,

"or one is a copy of the other.

DEFINITION 1.2.2 + Two genes chosen one from each of two unrelated

individua¥s are said to be alike in state if they are found to be in

the same state.

That is, they may be alike in the sense of belns both A: for
example, becanse two genes are drawn at random from the population and
both happen to be A. If the gene frequency for A is p, then the
probabllity of two randomly drawn genes belng both 4 is pg- Sometimes

they are also called identical by state.

For instance, let us take the population p2 AL + 2paq Aa + q2 aa
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(#odzl I). We draw two individuals at random from it 2nd then consider
a gene at random from each individuzl., The probabllity of the genes

being alike in state is equal to p2 * q2.

With this background we are now in a position to auantify the
degree of relationship between two individuals pracisely. Malecot
uses the term "goefficient de parente” for which exact English torm 1s
not available yet. Instead Wright (1922) used the term "coefficient
of relationship". Neveftheless, for avoiding confusion, it 1s to be
 stressed that they are not the same thing. In fact under pannixia
tooefficlent of relationship denotes a quantity which is twice Malecot's
\coefficient de parente'". Kempthorne (1957) translated Malecot's
tcoefficlent de parente" as "coefficient of parentage”. This can be

defined as follows %

DEE‘IRI'I'ION 1.2.% ¢+ Consider two individuals X and Y with genotypes

ab and od (where a, b, c and d may be A or a independently) .

Then 'rXY

X is identical by descent with a random gene from Y.

is defined to be the probability that a random gene from

In another language, if we usz P(a = ¢), say, to denote the

probebllity that genes a2 and ¢ are identical by descent then

ry =3/ P(a=c) + Pla=a) + 2o =) + F(b = a) ] (1.2.1)
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Now we define the coefficient of inbreeding of an indjuidual as :

DFFINITION 1.2.4 :

[y}

£0o1

ficient of inbreeding of a diploid individual

NE

(with respect to a fixed locus) is the probability that the two genss

possessed by that individual =t that locus are ldentical by descent.

For instance., inbreeding cosfficient of an individual X may
bé denoted by FX' If ¥ has the genotype ab at a loous, then by

definition
Fy = Pla = b).
Comparing X with itself, it is easy to find that

T %—(1 +FX). (1.2.2)

Tlas we have the coefficient of parentage of X with itself equals

unity plus the ooeg‘fioient of inbreeding of X, whole divided by 2.

Wright's formulation for computing the coefficient of parentage

is as follows :

FPirstly, observe that the only contributions to the coefficient
‘of parentage of two individuals X and Y arise from lincs of
angestry leading from X and Y to common ancestors. If we designate
by 2 a oammon ancester which is ny steps above X and Ty gteps
above Y, then it is clear that the only contribution t0o the coefficlent

of parentage arising from the chain of relationship from X to 2 to Y
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Pt

is equal to

T
('2") * Tpz
or

(1_)”}( By Ay g F,) (using équa,tion (1.2.2)).
2

To get the total cocfficiont of parentage we merely consider all
possible distinct chains of X -7 - Y relationships and add up the

contributions. Thue

P

+ + 1
T = Lapy* (1+7,)_7 (1.2.3)

summation being taken over all distinet chains of X - 2 -3

relationships (Wright, 1921).

It may be of interest to mention here a few notes on these
two coefficients made by Keupthorne (1957). (i) These coefficients
are probabilities which bear no relation whatsocever to the goene effects,
Of course, it is wuc that these coefficients do appear into the
cerrelations between two relatives with respect to charasters which
are either quantitative or transformed into so using the dichotomy of
the qualitative nature of the character. Kempthorne goes further to
term such usage of tuese coeffilcicnts as "appendage" without having
any real basis. (1i) If one interprets F as the correlation between

uniting gametes (as Wright did), some quantative attribute is to be
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assigned to each gamete in such a case. TIn the two allelic cases it
poses no real trouble since one can always construct a two-by-two table,
‘merely insert the treduencies in each cell and attach munbers 1 and O
to A and a, respectively, =and compute the prnduct moment correlation
between the mumbers for the zumetes of the mating paftners. However,
these formulation clearly takes one into deep trouble in case he has

to 'deal with more than two 2lleles at a locus.

The above formilation is made in such a way that the
coefficlente of inbrecding and parentage do not depend upon the number
of alleles present at that locus. Thus, if we start with the population
(Z ini)z and choose individuals at ramdom to c¢nter the pedigree, then
it is clear enough that the probabllity that any given gene is Ai is
Gy If P is the probability that two genes are identical by descent,
the probability that they are both A'i is Fqi. The probability
that they are not idemtical by descent is (1 - F), and the probability
that two ordered origlnal geneg are Ai and Aj is q_iqj. Hence we
can state that the population which would result from inbreeding the
population (& 9 Ai)2 (as dictated by Model I} to an extent measured

by P has the array similar to Model IL. To be apecific, Tn the case

with two alleles A and a, the array is

[Fp+(1 -F) pEJAA+[2 (1 -~ 7) quAa+[Fq+ (1 «P) qzjaa
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where p and Q are the freguencies of 4- and a-alleles. This

may, alternatively, be written as

[p-(-Fypa/ah+/2(1-F)pg basa-(1-F)pa/ aa

or as

[v° +Fpa 7 ak v 2(1 - F) pa 7 ha + [ a® + Fpa / ea

indicating that homozygntic classes arc sach incrsased by Fpd which

is -one half of the loss of heterozygntes resulting from inbreeding.

Another attempt at interpreting the same F-parameter is
Bernstein's. q-coefficient (Bernstein, 1930). The formulation goes

' as follows :

Let P[A/AJ = P denote the conditional probability of
u.niting.with an A gamete when the given gamete is known tc be 4.
Similarly, P/ a/ a] = @ can also be c'lefined. Now, since the probability
that any gamete gi}en at random should be & 48 p, 2nd that be a
s q (assuming the allelic frequencies tobe p and a4 for 4 and
a, respectively), the probability that any zysote be AL is p x P
or that it be aa is 4 x Q. Further, the probability that any zygote
ba ha or af is 2p(t -P) or 2¢(1 - Q). Equality of these last

two cxpressions yield the egquation

1-P _1-8_
q b
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which defines Bernstein's g-coefficient (C<ag1). It ean casily
be verified that Bernstein's o -crefficient is the same as Wright's

Froocfficlent (for verification see Li, 1955).

Besides thesc, F-parameter can also measure the degree of
differentiation in subdivided populatinons and describe mating tyve
frequencies (Wahlund's effect; Wahlund 1928). But with this
interpretation the situation remains no longer identical with that of
inbreeding in the multi-allelic gase since in the latter case (inbreeding),
all the heterozygote frequencies are decreased 40 the same sxtont
whercas in the former (pc-npulation subdivision) a heterozygnte frequency
may be decreased or increased, or remsins the same as that of random
mating population without subdivision, as the covariance of the
fredquencies of the alleles Ai and ‘A‘j may be ncgative, positive, or
zere: (Li, 1969). A4lso, no correlation cnefficient can be eczleulated
for the case of population subdivisioﬁ, as ne natural numerical values

can be assigned to the alleles Ai.
V4

Li (1955) indicated several other interpretations of this F
coefficient by relating it with indices of combination of pammixia with
selfing and parmixia with sib-mating., But, for human genctics those
relationships do not carry much importance although for plant breeding

purposes such formulations can be frultfully employed.
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In the sequel we call the F~paraneter as the coefficient of
non-randonness since basically it sisgnifies the actual departure from
random mating. Licie wasy O ( F (1. BSince Model TI with F = 1
deseribes a populstion where all the genes are fixed (all individuals
are genetically homozygotes), F 1is sometimes referred as the fixation

index also.

1.3 GENETIC CORRSLATIONS UNNER PANMMIXIA

In the earlier two ssctions we have discussed the nature of
‘genetic equilibrium and presented the structurc o»f a population which
preserves genetic equilibrium with respecet to one segregating locus.
Having done 30, we now proceed tn study a powerful tool to study the
mechanism of inheritance of characters which are metric in naturs or
may. b2 made so by using the dichotomy c;f its gualitative nature. This
tool is nothing butﬁgenetic correlation or correlations of genotypes
among relatives. Extensive study has been done on this subjeet most

of which are for random mating pepulations. In this section we are

going to give a brief account of the important id.as on this ¥wopic.

The lay stone was placed by Sir R. &A. Fisher through his
classic paper of 1918. Though he was ot actually the first writer
on this topic (Weinberg, 1909 and 1910), ncvertheless Fisher's work

remains a historical momiment on its nriginality and comprehensiveness.

P e
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He used the principle of regressiom analysis tn evaluate the correlations
between relatives on the suppesition of Mendelian inheritance. More or
less in the same period Sewall Wrizht developed the concept of 'path
coefficient' (standardized partial resression coufficient) which he
thoroughly used to compute the varicus correlations of rel-tivec

(Tright 1918, 1920, 1921). It may be neted here that Fishor's concept

of 'fagtors! of correlation is practienlly identical with that of

'path coefficients', though the two discoverics are independent (Li,
1968). WUright's method is basically a disguised form of the use of
Bayes' rule and the law of total probabilities. Maloent (1948)

recognized Vright's calculations by introaducing the fundamental concept of
identity by descent (for definitions see section 1.2) ang exploiting

its properties. The method of 1dentity by descent has been perfected

and developed by Malécot and his students, especially Gillnis, Janquard
and Bonffette. Li and Sacks (1954) fruitfully applied this concept to
obtain the joint frequency distribution for any type of relatives in

a simple manner. Kempthorne (1957) has applisd +h. enncept of identity

by descent to the study of quantitative inheritance.

1.4 PARENT OFFSPRING CORRELITION I GRVERLL SQUILIRRIUM
FOPUL, TTOM

D AP,

1.4.1 Two alleles at an cutosomal locus withogt dominonce rolationship:

The corrclation betwszen perent ang ~ffsoring, being the most
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importent of all the genetic correlations, received the maximam attention
in the literature. Fisher (1918) called such a correlation as 'parental
aorrelation'. Tn 2 random mating population the joint distribution of

' parent=child pairs can easily be shown as dosignated in TABLE YT

TABLE 1.4.1

Joint distribution of parent-offspring pair in a
rendom mating population

Child
AL An aa Marginal
% 5 2 1 0 total
L
Parent M2 " 2 0 p?
2 2
Aa 1 P 4 P4 q 2pd
2 2
an | ® 0 pa % q
Marginal p2 2pq q2 ’

total

Note that this is the picture when wé consider an zutosomal characier
explained by two alleles at a locus, the three genotypes being A4, Aa
and aa. For thettime being we also assume that the actlon of the genes
are additive (in the sense that thers is no dominance relationship
between the alleles). It is clear now that the variabvle 2 relates

to the gene-content of an individual (since 1t assigns the values 2,

1 and O to be the genotypes L4, Aa and aa respectively). Wow it

is clear enough that the correlation between the 7 valucs of parent

and offspring is {(from TABIE 1.4.1)
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e L
Sl = 15

winich is independout of the allelic frequencies p and g in a
population. The prime here Yefers to the child. The faet that o

Ty =;— is entircly a conssaquence nf the Mendelian inhoritance and
the randomness of mating among the genotypes. This is the parent-
offspring correlation. MWote that this index is based upon pairs congisting
of one parent and one child e¢ach. But when both parents and more than
one offspring arc measured, what sort of corrclation should be adopted?
This question was posed by Li (1954) and he showszd that for random
mating population the canonical correlation between the parental sets
of variables and the offspring sct of variables is the answer. In 2
general equilibrium population Li had nn answer. Here study the nature
of parent offspring correlations in a general equilibrium population

as dictated ®y Model II. .

Consider thexgase with twc alleles at a locus where the frequencies
of the different wmating types in the povulation are given by TABLE 1.4.2
below. From the theorem 1.7.1 it follows that the population is in

equilibrium if Ugq o= 4 L, With Model TI we have D = p2 + F paq,

O.
H=2pq(t -F) and R = q2 + Fg where p and q the frequencies of
A- =nd a-alleles and » (0 < # < 1) is a constant over genecrations

measuring the degree of non-randomness.
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TABLE 1.4.2

Freguency of matings In an equilibrium population

Mates AA Aa aa Total
Ad Uns Yo 1 Yo : D
48 1 24 0 H
ge Y0 LT Y00 2

Total D H k 1.

Following Li's argument (1954) here also the total scores of

parents as well as offspring {s in number) are considered to derive

the correlation.

The distribution of offspring - total for sach mating can be
obtained by considering the corresponding probability generating
function (p.g.f.). TFor example let us consider the mating Aa x Aa.
Here the p.g.f. of offspring total is [f(x)]s where p.g.f. of

#*
a single - offenring measurcment is given wy

f(x) =

= ;—(1 +X)2, [xf < 1.

dence, Prob. (offspring - total = ; mating is Aa x ha)
= Co-eff. of x in 1—8 (1 + x)zs
4
1 2
- (Z)S . Scj, 0 < 3«28,
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Once tMe probabilities are obtained for all-matings, the joint
distribution of parental total and offspring - total can be obtained

for any number of offsprings.

Phe Jjoint distribution of these two total measurements when both

parents and s offsprings are considered is specified by

C Uy, Af 3 =0
P e 4
0 Lo if 1¢ §g2s
( s 1y8 . .
IZ%,‘O. Cj (‘2—> if 0 Jjgs
P o =y
2. |0 if s<J ¢ 28
P 28 MRY: c
LS PRI (4) 1f 0§ & s-1
Pzrj N gl 4 2L B

l 2ay0 g+ %0, (P ag 3 ns

R

g = T\s ©
[211321. Cj (-2-) if 0¢ j4<s

P -
3y28-] 10 iIf  8< 3§28

Uy if  j = 2s.

P = ¥
i 0 1If 0§ <2s

where P, 7 Prob. {parental total = i, offspring - total = 3).
1

The Joint distribution of the offspring - total and parental -~

total when only one parent is avallable for measurement can be obtained
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from the above expressions identifying the reciprocal crosses and
collecting cells according to the genotype of one parant (Note that

for autosomal gene one-parent analysis is the same for mother or father).

From these joint distributions one can easily find out the
variancea and covariances of the two variables (parental total score
and offepring total score) and hence the parent-offspring correlation.
The dei';a.i'ls are omitted here and the expressions are presented In
TABLE 1.4.3. Afterwards we shall present an alternative method of its
computation which does not require these Joint distributions. Put
thes;e joint distributions dictate the relative frequencies of the

families with all possible parental total and offspring total combinations.

For small s, the algebraic exerclsss can be carried out

without the p.g.f. approach a2lso. As & increases the correlation

for one parent approaches \/(1 +3%) / [2(1 + F) /. A close observation
3nables us to see that for F = 0 (panmixia) this limiting value

becomes 1/2 which is Li's observation. Thus, at this stage it is
clear enough that Li's analysis (1954% 1s a special case of the present

one «

To consider a special case, let us assume that w fraction of
the population practice selfing in each generation and the rest (1 - W)

fraction panmixia, It is known (L1, 1955) that 4t is equivalent to the
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TABLE  1.4.3

Variance, covariance and correlations between

garent(s) and child(ren)

Number of children in a sibship = 8

02 spg / (s+1) + (38-1)F_4

One parent opg = spa(l + 3F)
o%=2pq(1+F) r = (1 +38) /e
Vo (148) [(a+1) + (3e-1)ET
Two parents ops = cepall + 3F)
i
e s(1 + 25

cp~4pq(1 + 3F) r o= [Teet) + (38 = 1)

c2p - Var. (Parent-totzl); Gg - Var. (Offspring-total)

Tpg = CoV: (Parent-total, Off— total) and r = corr. co. eff.
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case with F = 3~ .. Putting this in the asymptotic expression of

: . T+ w
correlation with single - parent measurement we get r = 5

[ ]
result is of particular interest for plant population. Correlation

This

can be obtalned for any mumber of offsprings inscrting this value of

F in the expressions of 1st row of TABLE 1.4.3.

Canonical Correlation :

The general treatment of this subject follows from the historic
paper of Hotelling (19%6) on canonical correlation. Denoting the
measurements on parents by Xy and X and that for the jth child

(in order of birth) by yj we have the expressions for variance and

covarlance as

oi1 - 0‘2‘2 - o; R ois = 2pq(1 + F) (1.4.1)
9xy%, = 4F pq (1.4.2)
Uxiyj = pa(t1 + 3F) (1.4.3)
"Yj.vj. = pa(1 + 3¥) (1.4.4)

Note that equations (1.4.1) and (1.4.2) are already in existence in
the literature (Li, 1955 and Kempthorne, 1957). (1.4.3) is derived from
the jolnt distribution of one offspring and one parental total and

(1.4.4) 18 obtained as
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: z2
" (y, + ¥,.) "2y,
oy.y” ik j2 "}

373
2pg(3 + 5F) - 4pq(1 + F)
2

4

It

pa(l - 3F).

ki

Now if an1x1+b23c2 and Yacj Ty +Cy Vy b oeee ¥ 05 Vo the

gorrelation between X and Y is given by

(1 + 3}3‘) (b J«-bE)(cdI + 0, + eas +cs)

2
\/4[(131 +b )(1+F)+4Fb _7[(0 +...+c Y(1+F)+(1+3F} 1 c.c

g
J<d!

=

:
which assumes a maximum value

s(1 +37F)
(s +1) + (38 - 1F

when all b's are egual and all ¢'s are equal L.e.)

bi = b and c:j = g for 1 =1,2

jS‘T, 2’ LI L) S.

The correlation between one parent and s children is

= (1 + ) ;
i \/2(1+F)[(s+1£+(55-1) F_/

(putting either by or b, equal to zero). Note that these are the

game 28 those obtained in the last column of TABLE 2.
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Direct Consequences

Now let r,, (F) represent the canonical eorrelation coefficient
when 1 parents and j children were consigered (1 =1, 2; 3 =1, 2,

sevy 5y ) Then one can sse that the following results are true
(i) rij(F) g_fik(F) for jrk,i=1, 2.
(ii) r2j(F) 2 r1j(17') for all j
and (iii) rij(F) > rij(F') for B2 Pt
i o @), Pleila T BN Bhni

- These consequences prove that with inbreeding the parent-offspring

eorelation increases which is a natural finding.

Further putting F = 1 (complete fixation) in the general
formulz, all the correlations turn out to be unity which coincides with

general theory.

A mumerical illustration :

Taylor and Prior (1938) and Race et al. (1942) analysed two
geries of family dzata on MN blood groups from England. This illustration

is also based on these two series of family data.

Wor M- bloed group system there are three phenotypically

distinct genotypes MM, MN and NN. Assigning values 2, 1 and 0 (or
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edquivalently M-gene content) to cach individual, frequencies of parental
total and offspring total are presented in the TABLE 1.4.4 for family
slzes 1, 2, 3 and 4. Other families are left out from this analysis
beczuse of small rambers when classified according to the family size.
The canonical correlaticns are also presented in the table. These
provides a direct verification of the inequalities stated just now though
family sizes 3 and 4 give a dismal result. This may as well be a case

of sampling fluctuation. Of course, one may note that there are only

18 families with family size 4.

TABLE 1.4.4

Frequency distribution of the families according to the

parental total and the offspring total

(s = 1)
Parental Offspring Total Total
Total ‘ 2 1 0 Frequency
4 5 5
3 6 15 21
2 ¥ 15 2 20
1 8 13 21
0 1 1

Correlation (r1) = 0.7077
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TABLE 1.4.4 (contirmed)

(s = 2)
Parental _ Of fspring Total Total
Total 4 3 2 1 8 Frequeney
4 7 i
3 5 11 9 25
2 4 12 5 1 22
1 4 11 2 17
0 4 4
Total 12 15 25 16 T (i3
F%equency
Correlation (rz) = (0.8334
(s = 3)
Parental Offspring Total = Total
Total 6 5 4 % Pl & 0 Frequency
4 3 3
3 2 3 2 1 8
2 1 16 2 19
1 5 8 3 L 10
0 4 4
Frzgz:icy 0 4 2 17 8 %, 5 44

Correlaticn (r3) = 0.9255
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* TABLE 1.41.4 (contimmed)

(s = 4)

Parental Of fepring Total Total
Total 8 7 6 5 . 4 3 2 1 0 Frequency

4 1 1

3 1 2 3

2 3 2 7

1 3 1 1 1 6

0 1 1
Frzzzgicy 1 1 2 5 5 1 1 2 18

Correlation (:.«4) = 0.9108

1.4.2 Two alleleg at an autosomal locus with complete dominance @

¥
In the ssotion 1.4.1 we have assumed the action of the alleles

4 apd 2 to be ndditive. MNow let us relax that oondition and assume
L +to be dominant over a so that only two phenotypes %2 (consisting
of individuals with genotype 4A and Aa) and 2 {oonsisting of
individuals with genotype aa) are distinguishable. We assign 2

score of 1 and O to the individuals with phenotypes A and a

respectively.

The phenotyple frequencies under Model II are glven by
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1 - q2 - FPpg and q? + pgq for A and 2 respectively} where op
and g are A~ and a-allele frequencies, (p +9 = 1), and P isg
the coefficient of non-randomness. For mathematical simplicity we
assune that p, q > F which is, of coursc, realized in most of the
natural populations. With these, the three phenctypic mating tyves
and their frequencies, as derived by Yasuda (1968), cen be expregssed
as shown by TABLE 1.4.5. The uij's, in the third column of this
table, refer to the genotypic moting type frequencies as used by Li

(1955) {(e.g., Uy = ha x Aha mating frequency; see also TABIE 1.4.2).

TABLE 1.4.5

Phenotypic mating types and their frequencies
(autosomal recessive character)

. Frequency
Yating type Yasuda' notation (1968) Li's notation (1955)
—- = 2 2
Ax A e (1+q) - 2qu(1-3q?) Uy + 2u21 + u11
2 : 2
T el 2pq” (18%) + 2Fpq(1-6q~) 2u,q + 2u10
| 4 .3 '
ax e qa + €rFpq Usq

Once these are known, the jolnt distribution of the total

scores of the parents and offspring (s in number) in a sibship ig

glven by
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. L) \
P , = %
0.3 | 0 if 350 .

).(g:;)s.zum if 0< j4s

148 P oo
2_1_.;.20+2u1o . (3 if j= s

e (@@ 0gics

e

Py

& D\u?z+2u21+(%)suﬁ if j=s
N J

where, Pi o= DProb. (parental - total = i, offspring - total = j) for
1

iﬁo\; 1;j=0, 1,2’ “a ey S

Dencting the scores for parents by X4 and X and that for the
1y
3 h offepring (by the order of birth) by Yy e have the variances

and covariances given by the expressions asg follows:

g = J a J = = 0’2 = qu
X g% ¥4 Te
/
a = (& -~ B)pq
X%y
and Gy Fep = LCL[A‘A—CJ
J° 3 4
where, A = (q + Fp){1 + q - Fa)
PFwP +q+ q2 - 6Fq2
and C=3F+4q-pq-6Fq—6Fq2.

(1.4.5)

(1.4.6)

(1.4.7)

(1.4.83)

(1.4.9)


http://www.cvisiontech.com

o
=
-3

Derivation of (1.4.6) is obvious since each of the x and y variables
takés only two values 1 and 0 with probabiligies (D + H) and R
respectively znd hence variance = R(D + E) = A.p4. The covariances
given by equations (1.4.7) to (1.4.9) can easily be.worked out by

considering the suitable joint distributions.

Using these equations (or, directly from (1.4.5)) we obbain the

correlation between parental total score, X (= X + x2) and offspring

8

total score, Y (= =

¥y as
ju1 9

V2s .o [a(i - %) 4 8(3 -7) 7
VL (24 -84 - C—(—%r—'-'-il 7

(1.4.10)

Putting F =0 in (1.4.10), we get the parent-offspring correlation
(%g) for randem mating population as

%

2 2 . pa (1.4.11)

VLU ) (3 a) ¢ 84 +pq) 7T

2
Pk
1

In this case also it can be shown that the expression in
(1.4.10) represents the maximum correlation between the two sets of
scores (i.e., the set of parental scores ard the set of offspring
scores). The treatment is analogous to the undoninated case, as

described earlier.
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A mumerical illustration 3

For this mirpose, we consider the data of Race et al. (1948, 1949)
where they subdivided the MN Dbvleood group system by using iso-agglutinin
S+ Though the discovery nf s-serum now divides the individuals into
three phenctypically distinet genotypes 88, S and ss, we consider
the grouping with only Se-serum and thus get phenotypes S+ (consisting
of S5 and Ss individuals) and S- (consisting of ss individuals).
The joint distributions of parental total score and offspring total
scores are shown by Table 1.4.5 for 9 =1, 2, 3 and 4 separately. The
parent offspring correlation is also presented below the tables for
different family sizes separately. Expression (1.4.10) zlso ylelds
the same correlations with a2 F-value of 0.05 since the frequencies of

S and s alleles are 0.3812 and 0.6177 respectively.

TABLE  1.4.5
=,
Frequency distribution of families according to parental
total and offspring totzl scores

(S = 1)

FPorental Offspring total Total
Total 0 1 Frequency

0 8 0 8

i 6 11 7

2 1 6 7

Total
Frequency 15 17 32

Correlation (ri) = 0.5809
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TABLE 1.4.5 (contd.)

49

(s =2)
Parental Offepring total Total
Total 1 2 Frequency
0 0 0 5
g 5 6 13
2 5 17 22
Total
Frequency B 23 40
Correlation (rz) = 0.,7036
(s = 3)
Parental Offspring total Total
Total 1 2 3 Frequency
0 0 0 0 4
1 8 9 4 21
2 0 » 2 ‘i 9
Total
Freduency * i i 34

Correlation (r3)1= 0.7676
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TABLE 1.4.5 (contd.)

(s = 4)
PR LI Y M I Freanerey
0 3 0 0 < . 3
’ 0 4 1 0 1 3
5 0 0 0 3 E 4
FrZZEZicy 3 i 1 ’ : 10

Correlation (r4) = 0.85%48

1.5 PARENT OFFSPRING CCRRELATIONS FOR SEX LINKED
CHARACTERS

Tn section 1.4 we have derived the canonical correlation between
the parental set of scores and offspgéng set of scores when the
character concerned is explained by two alleles at an autosomal locus.
The sex-linked characters need specilal attention since the asymmetrical
chromosomal couplemcent of wales and femeles makes it necessary to
distinguish the sexes of the individuals. We shall take as usual the
nonogzmetic type XX as females and the heterogametic XY (or X0)
as males, where X denotes the sex chromosome. Hence, with two alleles
L a2nd a resting on a locus on this sex chromosome we have phenotypes

A and a2 for males and 4&4A, Aa and aa for females when the alleles
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are codominant so far as their gene actions are concerned. In such a
situation the necegsary and sufficient condition for genexral genetic
equilibrium is given by Theorem 1.7.2. It is casy to sece that under
Model II the genotypic frequencies are given by (p.A + ge.a) & and
[prE + Fpa)id + (2pg - 2Fpa)ds + (q2 + Fpa)aa / @ where, p and

q are the A- and a~allele frequencies respectively. F thas the
same interpretation as in the other cases. The six different mating
types, their freduencies and the segregation ratios ean be represented
by TABLE 1.5.7. DNote that Theorem 1.1.2 dictates the equilibrium
condition given by Uyq = 2u20 and Uy = 21.10,1 which is satisfied by
the mating type frequencies under Model II.

TA-BLE 1 05|1

Mating types, their frequencies and the segregation
ratios (sex = linked codominant character)

e
bkt

=il Yasuda (12:Z?uency Chakraborty Segii%izion

Mating type = (19g0) Roys Girls

$ I LA a M Aa aaz
A x A 57 o ZEpa ) 1 0 0

: B Log

Moxa 5% + Fpa(1 - 3p) Y0 T LI - A
he x 4 2°a + 28p3(1 - 39) w4 I N
laxa 2p¢” + 2Fpa(1 - 3q) P 2 4 0 3% 3
aa X A pq2 + Ppa(1 - 3q) Qo @ g 0 1 0
2a ¥ a q3 + Squ? u 0 1 0 0 1
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As in the earlier case, we denote here the scores on mother
L]

and father by x4 and % reapectively and that on jth

W 5
kt“ daughter (in the order of birth) by Yy and 2z, respectively.

son ang

Then we have the variances and covariances between them zg

3
cyi1 = 021 = Ciiz S 4 osow = Cfir =2(1 + P)pg
Oxzyj = 0
Oi1yj a9 X7, = (1 + 7).pa
Oygy = 31 + Fina -ﬂb (1.5.1)
Oz, 2y, = 53 + 3F).pa
GXTX?. = 2Fpg
Oxz, = (1 +3F)pa
“yyze = 21+ 3P)pe y

The derivations of these expressions are analogous to those of

gection 1.4 and hence are omitted.

However, these are obvioug once the

suitable joint distributions are recorded. The Joint distributions can

eazily be constructed from the TABLE 1.5.1.


http://www.cvisiontech.com

If, now, we denobe the parental total score by X {= Xy + x?),

s
total score of & number of sons by Y (= Z yj) and the total score
] 1

of .r rumber of daughters by % (=% Zk), we have correlation between
1
X and Y as

2

2s(1 + 3F) ] (1.5.2)

(s +1) + (s ~1)7

and correlztion betwesen X and % as

Y

ns

fi 3r(1 + 2F) J (1.5.3)

r=2.l

3/ (3x + 1) + (5 - 1)7_/

When only one parent is measured, the different correlations are

seen to be as follows 3

s(1 + 3p) ek
x,Y (s + 13 +{m = ﬂFJ

H
I

; S (1 + 38)° T® (1.5.4)
X‘IZ ’“ (1 + F)[(}s*+ 1) + (55 = 1)F_7J 3
rx2Y = 0
J 2r 1%
aad rXQZ = (1+7) ’w(Br +1) + (58 - T)F J

In a famlly with s mamber of scng and r mmber of daughters,

the parent offgpring correlation [rx ( )_7 is seen to be
$

Y + 72

rojs

Ty, ren T [s(1 +F) +22(1 - 2r) /. Em] CLGIEY
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where, D =2rs(1 + ) +xf (Gr+ 1) + (5r - 1)/ + s/ (s + 1) + (s - 1)r 7.

When the character is sex-linked recessive in nature the variances
and covarisnces of the x, ¥y and 2z variables are given by the
expressions in Table 1.5.2. The tabls also gives an illustration by
wsing the data of Adam gt al (1963 and 1967) on Xg Dblond group. 1t
ig woll known that antigen Xga behaves a5 an X-linked doeminant one
and thus their tests were not efficient at distinguishing heterozygous
Xgéng females from those homozygous, Xgana. The observed variances
apd covariances are quite in good agreement with the expected cnes
(obtained by using the gene freduency estimates of Adam et al, 1967

p = 0.678 and q = 0.322 and a2 F-value of the magnitude of CHGZ)

From the expressions of TABLE 1.5.2 one can, easily, obtain
all the parent offspring correlations. Needless to say that the
corresponding expressions for pammictic populations can be obtained by
putting F = 0. Thus we can have the expressions for different parent

offepring correlations for Model II as well as Model 1.

It may be recalled here that for autosomal genes the correlations
between four types of parent-child pairs (consisting of one parent and
one child each) are the same, 21l being (1 + 3F)/ [2{(1 + F)_/. But
for sex-linked genes, becausc of the reason already mentioned, they
ors not the same. We have already noticed that there are four kinds

of parent-offspring relationships: father-son, father-daughter,
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ncther-son and mother-daughter. Such correlations will be studied in

greater details in section 1.7.

TLBLE 1.5.2

Variances and covariances with sex-linked recessive model

Value for Xg Dblocd
Quantity group data
Expected* Observed

Variance : father rq 0.2183 0.2208
Variznce : son rd 0.218% 0.,2169
Variance : mother A.pg 0.1256 0.1261
Variance : daughter A.pq 0.1256 0.1255
Father - son covariance 0 0.0 ~0,0042
Mother - son covariance ra{q + Fp) 0.0999 0.0855
Father - daughter covariance pa(q + Fo) 0.0999 0.09%6
Father - mother covariance 2Fpq D.0873 0.0886€
Hother - daughter covariance A.va-pq(F+a-3Fq) 0.09%1 0,0896
Brother - sister covarizsnce %EZTQ += (G q)E;7 0.0640 (0.N653

* Expected values are obtained by putting p = 0.0678, q = 0.322

(Mdom et 31, 1967) and F = 0.02
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1.6 PARENT OFFSPRING CORRELATIONS ¥OR MULTI~ALLELIC -
CABE

In the two allelic case we have assigned weights O, 1 and 2
to the genotypes a3, 4ha and AA respectively and thence.‘mnputeﬂ
the correlations. This arbitrary assigmment of welghts 1ls a natural
formlation of the fact that the heterozygote Aa 1is intermedizte
between the homozygotes. But this superficilal approach lesds us to
encounter difficulty when we attempt to extend the procedura to n (3 3)
alleles. That is how the multi-allelic case noeds special sttention.
Herein first we discuss two weighting schemes developed by gtanton
(1960) and using these we infiicate how the foregoing analysis can be

readily extended for multiple alleles.

Genetic Weighting

Suppose that we consider the case of autosomal genes wherein
at a locus there rest n alleles *gj, A2, reay An. For understanding
the need for a genetic wcighting scheme let us analyse the case with
n=3. A weighting method like that of 2-allelic case leads us to
arrange the genotypes as A1A1, A1A2, AQAQ, A2A3, A3A3, A3A1) and
attach weilghts 0, 1, 2, 3, 4 and 5. Thas the genotype A3A1 recelives
the welght of magnitude 5 which is unfortunately not intermediate

between the two homozygotes A1A1 snd A3A3 having weights O and 4
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ot

respectively. This anomaly is not surprising enough if only one notes
that the above weights assigned to the genotyres do not represent
genetic effects per se. Therefore we feel the necd of a weighting
gchene whereby the homozygotes are placed symmetrically with respect
to one another. The above weighting design places the homozygotes
linearly on the weighting axie only and does not possess the rejuired

syrmetry .

These considerations suggest that one might use the complex
vectorial weights and in some way bring the symmetry of the site of
the homozygotes. Suppose the n homozygotes are placed at the v
vertices of a regular simplex with n vertices in (n - 1)-dimensional
space; it is then natural to place the heterozygotes at the mld-points
of the sdges. For symetry, we may suppose that the origin of =
coordinates is at the centroid of the simplex. Let vy denote the
vector joining the origin to the peoint representing AiAi' We assign
thig vectorial weight to the genotype AiAi. To the heterozygote AiAj
we assign a weight of %(vi * vj) which represents the vector Jjoining
the origin to the point where AiAj is located., With these vectorial
weights an algebra is generated where the vector products are interpreted
as scaler products and with this convention Stanton (1960) had

2
'vi —_~.'vi.Vi

¥

& Constan‘t . (i =) 1; 2, v ey n) (1060’{)
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For simplicity, +his constant is taken as 7 (i.e., the vectors joining

the origin to the n vertices are each of unit length). Then, using

thé fact that all of the edges of a regular simpley are of equal length,

w2 have
vy Vo= constant (i £ j).
Also we have

Vy o+ Vy VB e 6 & W 1 0

gince the centroid of the simplex 1s taken as

Multiplying (1.6.3) by v; we have v .

.;

-

and hence using (1.6.1) we have

o= -/a- ) (149

The idea can be illustrated, for three allelic case, by Figure

1.6.1 wherein the simpless has a physical realization in the sense that

it is an equila*2ral triangle =nd the weights

mirbers. Using expressions {1.6.1) and (1.6.4) we have for this case

2 12
Vp =2 1, vivj EiZE0DE B vi(vj

i, [ 36, +vj)J2=%

fw) = -4

I

&
vy (vy +vy)

Throughout the relations {1.6.3), 1, j

o
o

(1.6.2)
(1.6.3)

the origin.

+{n-~-1) Vivy = 0
. (1.6.4)
are ordinary complex
i y .
s %’(vi + Vj) %(Vi + Vk) o _8— (1'6'5)

and &k range from 1 to 3
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FIGURE 1.6.1

Weighting scheme for three 21lelic case (after

Stenton, 1960)

X

2

A

N

(0, 2, 0)

(0, 0, 2)

(1, 1, 0)

TIGURE 1.6.2

> X
(2, 0, 0)" 1

Alternative weighting scheme for three alleles
(after Stanton, 1960)
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but are distinet from one eznother in any single relation.

An aliernative woichtine scheme ¢ Stanton (1960) developed yet another

aporoach to solve the weighting problem wherein he characterized the
genotypes with n alleles at a loous by vector variables (X1, X2, ooty
Xn) where each X; 1is 0, 1 or 2, and thus denotes the mumber of A,
genes in the genotype. Thus for each such vector variable we have

X1 + X2 g ol Xn =2, Thus the genotypes with such weights attached
to them will all lie on the hyperplane X1 + X2 + ees ¥ Xn = 2. BSuch
s situation in the 3-allelic case can be illustrated with Figure 1642,
The difference between Figure 1.6.1 and 1.6.2 1is that the origin in
Pigure 1.6.2 has been projected into the centrold of the triangle and

s change of so0zle has been introduced in order to normalize distances

and make the distance from the centroid to each vertex equal to unity.

It may be mentioned here that this alternative wveighting =zcheme
iz not used tn derive the'gorrelations. This is mentioned only for ths

gake of completencsasn.

Parent-0ffspring Correlation ¢

We 1liustrate the method of extension taking n =3 for ease
in illustration. The recults are general, although the proof for

arbitrary n 1s simpler by a stochastic method. Let the freguency of
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gene Ai be denoted by Ay with the customary convention that the

total frequency be unlty, that ig, 4 + a4 + q5 = 1.

The frequencies of the different genotypes in the case of
autosomal alleles without any dominance relationship between them are
given by Model IT (expression (1.1.2)) and the welghts attached to
them having relationships expressed by (1.6.5). Then the average weight
attached to individuals of the population is given by

',;*:vi[qiz + Fa, (1, -q) 7 +2(1 = F) I oqa, . Hy +vy)

i<y
f (1.6.6)

and hence the variance of the weights ig given by

Dl Lo e Pl - 0T ¢ 2000 F oSy e v 70 (5 o,

:'-(1+F) z %3y -
=

Tims, with the same interpretations of x's and y's as before, one

now obtains \
2 2 2 2 3
g = E = g =G o A= O = (1 + F) = q q.
X x5 74 Ty 2 1<3 3 \
0 1.6.

Bl &Y §<3
and & = 3F I tj q .)

x“xﬁ’ i<3
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which leads to the correlation between X and Y as

- T s(1+ 37 5
R [f? +8) + (3s = 1)#}

as found in the two allelic case.

In case the character 1z sex-linked, the males can have only 3
poseible genotypesz. that is, ﬂ13 A2 or AB' We immediately find that,
for females, the mean and variance are the same as before, as given by

(1.646) and (1.6.7), For males, we find that

mean = ? 9,7y
i
5 {(1.6.8)
and variance = © =3 ¥ q.d,
% i

One can now obtain the covariances easily and hence get the parent
offapring correlation. It is interesting to note that like the autosomal
caga, nhere also the expression are in complede agrecment with the two

allelic case. -

The case with dominance is studied in some detalls by Stanton
(1960} though his resulis are only applicable to pammictic populations

described by Model I. He referred to three pessible types of dominance

y

r . & inate g A don iy
Type I ¢ 4y doninates A2 and 31 Ae dominates 3
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Type II A1 dominates both Az and A3’ neither AZ noxr A5 dominates.
Type TII : A, and A, dominate A?’ neither Ay nor Ay dominates

the other.

Tn the case with dominance, even under pannixia, one cannot employ
the method of stochastic matrices because of some inherent difficulties.
However, by the direct approach the corresponding expressions can easlly

be worked out analogously.

1.7 CORRELATIONS BETWEEN OTHER RELATIVES IN AN BEQUILIBRIUM
POPULATTON

norrelations between the other relatives arc also as important
as porent-offspring correlation so far as the use of these correlations
to study the mechanism of inheritance is concerned. And very often
the knowledge of absclute frequencies of the varlous genotypic
combinations of any two relatives with respect to one pair of genes,
autosomal or sex-linked, is reg;;ded as more important In certain types
of studies in human heredity. Various wethods of obtaining these
frequencies directly or indirvectly are prevailing in the literature.
The difficulties of the rather straight forward procedure (that is,

obtaining the joint distribution from the mating table) can be well
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gpprehended froum Hogben's paper (1933). Li and Sacks (1954) gave a
procedure of finding the frequencies of various genotype combinations

of near relatives by using the matrices of conditional probabilities.

The main purpose cf their method, well known as ITO method, was to
express such matrices of conditional probabilities of the relatives

in the form of linear combination of some basic matrices. A more precise
form of their work can be seen in Karlin's review paper (1968) where

he has emphasized that this method is really an application of the

concept of identity by descent as developed by Malccot (1948).

'In case one is more interested in the correlations between the
relatives rather than the frequencies of different genotype/phenotype
combinationg, the method of path coefficients, developed by Wright (1921
and later) pays dividend since it gives the correlations instantly
once the relationship is gspecified. This method, of course, docs not
provide the absolute frequencies of the different genotyype (or phenotype)

corbinations.
e

But all these methods are well known to study the genetic
correlations between relatives when the population is assumed to
exercise random mating only. Relatively fewer results are known for

populations which kecp themselves under equilibrium through a more

general mating structure. In this secction we derive the genetic
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gorrelations between some near relatives in a population described by
Hodel IT. We ghell =¥udy the different csses with one pair of alleles
at a2 locus in detail and indicate the necessary generalizations in the

case with multiple alleles at s locus.

Two codoininant alleles a2t an auntosomal loous ¢ Tet A& and a denote

the two codominant alleles at an autosomal lecus. Now, recalling the
definitions 1.2.7 and 1.2.2, we note that a pair of relatives may have
both, cne or no gene identical by descent depending upon the type of
relationship. In case there is exactly one gene common through identity
by descent the corditional probabilities that one should be of a certain

genotype when the cother’s genotype is given can be represented by the

matrix =
r, . _2%g & _ o2Fp |
Pt F e G‘E P-!-FQJ .
S e [ EE Fi1 =28}
Ty = z !P L J 2 E [é + *L;fjjfll
* —
L) LY { 2Fp
’ . [1 q+FpJq R

where p and q are the A- and a-allele frequencies and F has the
sape interpretation as in the earlier case. One may observe that this

also represents the matrix of transition probabilities of a parent
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of fepring pair since a parent and one of its of fspring always share

one gene through identity by descent.

Hence, multiplying the first row of T, by p2 + Fpd, second

ToW by 2pq(1‘— F) and the third row by q2 + Fpd one can convert Doy
into absolute frequencies for different genotypic combinations of a
parent offepring palr from which the parent offspring correlations (rT*)
is obtalned as

= - i+ 3F
Ty 21 +F

3 {(1.7.1)

Since we are, for the moment., conterned with autcsomal genes
only, this will be the correlation for all parent offepring combinatlons
(mother-son9 mother-daughter, father-son or father-daughter). With
this correlation alone we can obtain the correlation between the full

gibs or two half sibs through FPigure 1.7.1 and 1.7.2 as follows :

The correlation between two full silbs

(. fe2d)

where m, the correlztion hetween the mating partners is given by

mn=2F/(1 +¥F).

Inserting this value of m In the sbove expression (1.7.2) one


http://www.cvisiontech.com

<
-}

gets 3
= = o llat 20
“Fo, [1+ P (1.7.3)

Putting F = O in the expression of (1.7.3) we obtain the

eorr-lation between the full =ibs in a random mating population as

< 2.3F -

il

Tpg

In Figure 1.7.2 we decnote A to be the correlation between the
parents who mate with the common parent. (In the figure, A 1s the
eorrelation between the two wives; the busband being the common parent

of the two half sibs).

The ¢orrelation between tha half sibs turms out to be

Tpa rm2 s /__(‘I + :n)2 + A1+ 2m)_7 (1.7.4)

et ¥

Correlations between other relatives can also be worked out similarly
“

using this basis correlation Tpo e
*

fencs with dominant rolationship at an autosomal logus :

Let us now assume that the allele A to be dominant over a.

Thus we have with us phenotypez A and 2. The parent-offspring

correlation takes the form
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PIGURE 1.7.2

O

b
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(&) L g MU + P "ﬁp) . (1 7 5)
Ty T+q-%qg " (1+q-Falqg+Fp) . A

Wecdless to say that for F =0 (Model I) this expression

reduces to a/(3 + a) as obtained by Li (1955).
The full sib correlation is easily seen to be

=

% (a) ~t+dr (4)

TS, Ty

Hafrr

" %[1 + %— Fq (1%% : &ﬁip}r Fp) (1)
It may be mecalled that in the absence of any dominance relationship

between the allsles, the genetic correlations depend only on F, the

enefficient of departure from random mating. The correlations are

indepeﬁdent of gene fredquencies. DBut in this case the correlations do

depend upon the gene frequencies as well. TUnder panmixia the correlation

between the full sibs is given by

(a)
- 4%%(1“1 /[ putting F = 0 in the

expression (1.7.6);7.

Codominant allelce at a sex-linked locus" :

We have already seen that due to the asymmetric chromoscmal
complenent of males and fewales it is necessary to distinguish the sexes
of the relatives in such a case and hence we need to consider all of the

four kinds of parent offepring relationships ¢ father-son, father-daughter,
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mother=-son znd mother-daughter. Likewise there are three kinds of sib-

prire ¢ two broth ro, two sisters and brother-sister.

The parent offspring correlations can =2asily be obtained once
w: consider the sogregation ratios as ghown in TABLE 1.5.1. The

eorrglations are ag follows 3

‘\
Father - son correlation, To, = Q.
X 1+ F vk
Pather - daughter correlation, Teq = ( > )
m «f{ W
[ ¥ 4 . 1+F'§ (177>
Mother - son correlation, r = ( )
ms 2
and Mother - daughter correlation, r . = —%—ﬁ—iET
' *md " 2(1 + T
2/

From (1.7.7) we get interestingly enough that there is no
correlation between father and son for sex-linked genes, since the son
receives his father's Y-chromosome only which is void of the locus under
gonsideration., The correlation for mother;faughter is the same as in
the case of outosowal gunes, because the daughter also receives Dp.A
and g.z from her father. The two correlations for father-danghter and
mother-son are the same. Note that each of these statements are true

also in case of randem mating populations,

.
r

Once theze basic correlations are obtained the full sib correlations

are obtained from the Figure 1.7.3 as follows :


http://www.cvisiontech.com

. 1+ F

Brother - brother ¢orrelation, R1 5

1 + 5F + 25°

22T +F)

Brother - sister correlation, H2 -

1

L +
Siater - bl i
inte sister correlation, R3 5 ER

E {1 « 3571 +

In deriving this we made use of the faect that correlation

between the mating partners is given by

m=F \/5/ \/1+F

in this case.

+

Foaom

5(1.7.8)

2

J

From Figures 1.7.4 and 1.7.5 one can now establish the following

relations for half-sib correlations :

frother - brother (related through mother) correlations,

1+F
R4-s >

Brother - sister (related through moth®r) correlations,

2
= W B 1+ 5% + 2F
Rs= 5 [MFrnT

Sister - sister (related through mother) correlation,

A1+ 4F + 77%)
2(1 + F)

2
1.+ 5F + 2F° 2
Rg = [ 2(1 + F) Wik

~

(1.7.9)
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Brother - brother (related through father) correlation,

A A+ F)
= - _—
R7 4 5
Brother - sister (related through father) correlation,
LR T+ 3R B‘.z 'A_Z
S 2 LB A oL
and sister - sister (related through father) correlation,

Cop FOs A 43 (A, o+ AF w21 4 )

K. = + 4
9 2 1+ F 4(1+F)3 /

vhere _?\1 and /\2 are the correlations between the two fathers

(figare 1.7.4) and two mothers (figure 1.7.5) respectively.

When the allele & dis dominant over 2 at a sex~linked locus,

F(1.7.m)

by sinilar argument one can show that the basic parent-offspring correlations

( - a - 3Fq)

“sa = "7 +a-7Fa)(q + Fp)
-
n - q + Fu
Tns fa /1 + g - PFq
and r. = C.

fs

Note that the facts stat:d in the case of autosomsal genes with

(A
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dominant relationship also holds grod in this case.

Maltiple alleleg at o segregating locus ¢

The forsgoing analysis can readily be extended to multiple
alleles, autosomal or sex-linked. But the superficial weighting system
is not enough for it beczuse of the reasons mentioned earlier. Using
Stanton's weighting scheme it can be seen that the parent-offspring
correlations, and hence the other correlatinons, turn osut to be the same
as those in the two allelic case. Worth noting that Stanton (1960) also

obgervad this for a HModel I population.

We now present an illustration of parent-offspring correlation
for characters controlled by one pair of genes with dominance and an
hypothetical case with a three allelic autosomal cheracter. For both of

them Boorman's data {(1950) on human blood factors are sufficient.

Though the genetics of the Rh-factor in human blood has
%
advanced greatly in the last two decades for our purpose here we may,
nowever, still treat it as though it were controlled by one palr of

genes with dazinance. Boorman (1950) reported the data regarding mother-

child combinations as shown in TABLE 1.7.7 here.

The parent-of fspring correlation (in this case mother-child
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gorrelation) is 0.2853. The theoretical formula (1.7.5) also leade to

the same amount of correlation with a F  value of 1.8 percent.

TABLE 1.7.1
Mother - child combination of Rh blond factors
(After Li, 1955)

Rh type of child

Hothers

) ) Tatal
(%) 1475 162 1657
() 204 129 33%

Total 1679 311 1990

Mother - child correlation = 0.2853

To illustrate the three allelic case we consider TABLE 1.7.2
which is eonstructed from Boorman's data (1950). Using the same example

tanton (1960) computes 2 correlation of magnitude 0;5180 whioh leads

to an estimate of P = 1.86 percent.
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TABLE 1.7.2

Parent - child array for A-5-0 blood types

(After Stanton, 1960)

Child

Parent ¥y iB iE B0 00 %0 Totel
Ab 49 5 - - - 122 176
AB 10 10 2 21 E 24 &7
BB - 2 - 4 - 3 §
RO - 20 4 50 56 29 fES
00 - - - 4% 622 227 890
A0 122 14 = 28 203 203 690

Total 181 151 6 146 901 705 1690

1.8 PARBNT OFFSPRING CORRELATION AND ZSTIMATION

-

Starting frow Sewall Wright, to whom the concept of ¥ 1is due,

there had been many contributions towards the direction of estimating

this important parameter.

Botimation of F is of obvious interest to

geneticists who wish to understand population structure and evolutionary

processes which deternine the associated array nf genotypes. Moreover
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gince this parameter is commonly interpreted as the coefficient of
inbreeding considereble effort hasebeen directed toward delineating the
effect of irbreeding on gquantitative as well as qualitative characters.
ind no such attempt to appraeciabe these effeets could be fruitful without
mentioning of the estimate of F, the coefficient of inbreeding. But
% should be noted that the totzl amount of inbreeding in a population
¥, can be partitioned into a portion, FA’ that can be ascertained by
study of records indicating consanguinity existing within a populstion,
and a portion, FR or remote consanguinity, which is undetectable by

an analysis of pedigrees or other records, such that

Fp = P, + T (Morton and Yasuda, 1962)

Wright's formula or Kudo's method (1962) provides estimate of Fy

vithout having any supposition on the genotype structure of the population,
0n the other hand FR and hence FT can only be estimated#by the
"binassay" methods, Li nnd Horvitz (1953) have shown that from = Model

IT populetion structure a variety of consistent estimates of F (E‘ s

in Mcrton and Yasuda's formula) can be generated, Among the methods

of estimation which they describe are methods based upon the (1) total
proportion of hetorozygotes, (2) product moment correlation betwecn

miting cametes, (3) determinant of the gametic correlation matrix,

(4) value of chi-square assuming panmixia in the population, (5) sum of
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proportions of alleles in homozygous condition among thelr respective

total frequencies, and (6) me thod of maximum likelihood, ’.Nhen there are
omly two alleles, the six methods yield identical expressions for F.

This iz not so when the number of alleles exceeds Lwo. Unfortunately,

the sampling variances to be asscciated with the first five methods of
estimation are not known, and thus it is not clear that which, if any,

is the method of prefercnce. 1In the general casc, Li and Horvitz were
unable to obtain explicit solutions for the genc frequencies and T by
the method of maximum likelihood. However for certain speclal cases

{(evg+, in case of ABO blood group system) methods are aveilable to obtain
efficient estimates of the gene freaguenciles as well as F, the cosfficlent
of non~randomness (Yasuda, 1968; Schull, Ito and Soni, 1963), In this
section we demonstrate the use of parent-offspring correlation, as derived
earlier, to provide "an alternative estimafe of F. We first give the
estimation procedure and once this is done we discuss the advantage of

this method over the other existing cstimates.

When 2 character is controlled by two co-dominant alleles 4 and
a at an autosomal locus we have seen through the cxpression in TABLE 1.4.3
that the parental total measurement (X) and offspring total measurement

(Y) have, the correlation,

Py z\/ (s +s1(; : %Es‘; - 1)F (1.8.1)
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From this one automatically attains

2

1 + 3P 1 P

.:[__1-_1% = -é- .T—s_e (1!8-2)
- P

How considar 2 random somple of N families out of which NB

families are with = children each (8 =1, 2, ..., 7) such that

Let To denote the sample correlation ococefficlent between

parental total score and offspring total score. Then it 1ls easy to sce

that
2
T p : ]
E(—2—) = —&— & o(-f—) 61.8.-5)
] 2 ¥
1 - 1 - p 8
5] 3]
r e i = 4
4 ’
and  Var. (—F—5) = = e o(=%) (1.8.4)
- 4 ! 7
1 I‘S Ns(1 - PS’)zfl- . .l\S

Eor an analogons treabtment one can refer to Hetelling (1952) pp. 2—14_7;
2
Ts
It is evident now that for large ¥, ———-5 can be taken

2 ‘1-1‘5

as 2 concisient estimate of -——9—7 and consoquénfly one gets consistent
T - P

g
estimate of (1 + 3)/(1 - F) as
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51
2
1 s
ty, = 3+~ 5 forafixed s (1.8.5)
T
8
in estimate of variance of ts is obviously given by
Js (1.8.6)
] o L 1.8'6
8 2.2 2
NS(1 - T s
4 pooled estimate of (1 + 37)/(1 - F) obtained from the whole
sample iz given by
i t r ]
gl o] g g c e
8 g
i
and variznce of T = 1/% —-3' o (1.8.8)
1 Osg
Note that T is also on congistent estimate of (1 + 3F)/(1 - F)
and hence the estimate of ¥ can be written as
N T = 'I
F = T + 3 (1 08.9)
ar. spproximate variance of which is obtained ac
v(‘:{;) » ‘3-‘ (1:8.10)
(+37° ¢ L
g=1 '\}'"S

by using the expressions (1.8.8) and (1.8.9).
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A munerical illustration :

Considerirz the ru.ovical example of section 1.4 (from the family
data on MN blood groups analysed by Tayler and Prior (1938) amd Race

et al. (1942)) we construct the TABLE 1.8.1.

Using the equation (*.8.5) we now have

T 1.00%6
ty, = 11267
tB = 1.9917

TARLE 1.8.1
Parent-=offspring correlations ®¥or different
family size
8 N T

3] =]
1 68 C.7077
2 75 0.8334
3 44 0.9255
4 18 0.9108

Nov from (1.8.6) we obtain

g
—5 = 8.4542
g4
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,.J_é. = 10.078%
a0
L = 23765
o:
v
and —j—é- " mEEaEe.,
Oy
and thus
L 2aMT
T 53,1300 1.1839
.T
Var.(1) = CEWE I 0.0427.
Hengce, F = %‘%g%% = 0.0440 by (1.8.9) and the standard error

of F = 0.02%6 by (1.8.10). =

From the combined sample one alsoc gets 69, 112MN and 54N
individuals among the 235 fathers ($he family with serial number 200
is excluded due to the reasons mentioned by the authors). From this, an
estimate of ¥ {using any one of the five methods suggested by Li and
Forvitz (1953)) is obtained as F* = 0.0429, which is fairly close to

the estimate obtained from parent-offspring correlations.

Once the estimation procedure is thus indicated it is natural

to ask why one should prefer this method insplte of the existence of


http://www.cvisiontech.com

simpler ways of estirmating it from a random sample of individuals. One
of the serious disadv-mtares of the methods of Li and Horvitz (1953) is
that, as described earlier, one cannot have any ldea about the standard
error of the estimate of P and thus it cannot be decided which one of
the five methods ig to be adopted to have the most precise estimate.

Furthermore though in the two allelic case with codominant genes all of

these five methods give identical result but in multi-allelic case

situation alters altogether. In that case the estimates obtained by

these five methods alsgo differ between themselves.

But in case of the method described here the theoretical
expression does not change since the expression of parent-of fepring
gorrelation remains the same even in the case o? multiple alleles so
long as there is no dominance relationship between the alleles cnncerncd.

Morrover, the use of parent-offspring correlation enables us to know the

gtandard error of F also.

In case of codominesnce, Wright had a method of estimating ¥
since in such a case the correlation between mates is given by 2F/(1 + F).
Use of parent-offspring cnrrelation pays dividend in the sense that
Lye gtendard error of the éstinate of P, thus obtained is much less

than that obtained by Wright's method since the former one not only
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wses the information on mates but also the information from their
offspring. Becausc of these theoretical accounts the use of parent
offspring correlation is adwncated here to estimate F though from
practioal view-point of human genetics 1t is beconing more and more
Lifriault to collect family data than to collect data on unrelated

individuals.
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UnAPTER  TI1

RS TCTED RANDOW MATING : A MARING 1

+]
4
=
2
:5
5
tmy
[

' 2.0 TNTRODUCTION

Batimatior of gene frequsncies for eny geretic character involves
always directly or indirectly some assumptions about the structure of the
population concerned. Furthermore, as we have seen in Chapter I, construction
of & model for studying the structure of a population again assunes the
prevailing mating scheme in the populaticn. Thus we have seen that
repeated random mating leads to a pepulation prescribed by Model I and
when a random mating population is inbred to an extent of F (O LF < 1),
the resulting population behaves like a Model IT one. Though thege two
are the most frequently studied population structures, many goneticists
regserve their comments about the applicability )%f such models, Herein,
our contention in this Chapter will be to procced without any assumption
regarding the mating structure at the phenotypic level and later we shall
use such a set up to corrute gene freguencies from 2 two generation data.

Mg fix our ideas, we shall first develop the model exelugively for cestimating
the ABO blood group gene freguencies end later we shall indicate the
applicability of such a model {we shall hereafter ozll it as Restricted
randam mating model) for the snalysis of family datn on genetic characters

governed by two genes at an ~utosomal locus having dominant relationship
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between them.

2.1 DEFINITION OF RESTRICTED RANDOM MATING

In the estimation of gene frequencies, along with the assumptions
about the mating systems prevailling in the population, it is also
essential to say that the same mating system is operating over generations
and the population is in equilidbrium so far as the gene frequencies are
goncerned. In Chapter I we have studied some theorems characterlzing the
equilibrium conditions for some particular mating schemes. But it is to
be noted that in the absence of selection, mutation and migration pressures
gene frequencies of a population remain constant from generation to
gereration whatever be the mating structure prevaif‘;ng in ths population.
this fact, apparently, was first noted by Professor J. B. $§. Haldane
#ho termed it as "Gene Pool Theorem'. However, this idea enables us to
search for a estimation procedure which does not neced the assumptions
regarding the maiing ctrasturc »f the population. In order to do so we
assume the phenotypic mating type frequencies to be as it 1s observed in
a sample drawn at random from a populstion. Thug, in ease of ABO blood
groups, there zre ten different phenotypic mating types and we assume
their relative frequenciecs to be )\i’s. Note that the conditions on

.'s are only the natural ones, namely, 0< Ay &1 and L ?\-i = 1.

g
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Then we introduce two more parameters, namely, © and < as

8 = Prob. [Tén individuals is of genotype A0/his blood group
is f‘;j
and ¢ = Prob.[fén individual is of genotype B0/his blood group

is 3;7.

With these parameters at hand and the gencral set-up at the phenotypic
level we make use of Hardy Weinberg Law only at the level of dividing

the general phenotypic mating frequencies into the corresponding genotypic
nating frequencies. As for example, consider the mating type A X A,

This phenotyﬁic mating can be split up into the three corresponding

»®
genotypic matings in the proportions as shown in TABLE 2.1.1,

TABLE 2.1.1

Genotypic mating types given the phenotypic
mating A x A and their probabilities

Genotypic mating types Probability
AQ x AD 92
ab x AL 208(1 - 8)
‘ 2
AL x AA (1 - 8)

Thue the relative frequencies of all the 21 genotyplc mating types
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¢an be written in terms of ?\i'S, ® and ¢ . Note that once the
estimate of these parsmeters are obtained, the frequencies of Ay, B
and ¢ genes can be obtained by usuacl gene count method. The mating
system for which the genotypic mating ty:o:a frequencies arc given as
shown above will be called in the ‘sequel ‘as Restricted Random Mating,

abbreviated as R.R.M.

5.2 TUSE OF R.R.M. FOR TIE ANALYSIS OF ABO BLOOD GROUP DATA

2.2.1 The Model :

From the well accepted theory of mechanism of inheritance of
B0 blood groups (whose discussicn is avoided here, since*it will be
discussed in details in Chapter IV) one can write down the parental mating
types, their relative frequencies and the conditional distribution of

the offspring's blood group as given in TABLE 2.2.1. Note that all the

¢ell probabilitics -rc exprossed in terms of the persmeters A i’s R

¢ and ¢ .

83
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TABLE 2.2.1

Phenotypic mating types, their frequencies and the conditional
distribution of the offspring's ABO blood types

Parental Conditlonal dlstribution of the
Matings : {fapring types
Types Frequency 8] Jit B AB
0x0 7\1 1 e a S
~ /e 8
0x A AZ U/é 1 = ‘2“- o &
b
; A B ¥ flag 4 2,
0xz3 3 &[0 g
0 x AB A 4 ~ & & -
‘ : 5
Ax A ?»5 /4 1 - - - -
8+  #(1-8) 8¢ 8(1-¢9) 8«4 1 N
Ax 3B M &4/4 e e 7 +—(;‘r—~)~ TJ"?,-QU“’U
= 1
+ ;‘»}"}(1—9)

+ t1-e)(1-¢)

L x AB ?\7 - i 8/4 {1 - 9/2)
Bx B A M - 1 -42/4 -
- A
o 9 Y 5-3p
AB x AB ;k L "}I %‘ %

10
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2.2.2 Estimation of parameters .

To estimate the parameters ?\i’s, 8" and q.‘. s & Tandom sample
of families ig chosen from the population and the observed frequencies
of the parental phenotypic mating types and the phenotypes of the
of fspring are tabulated in TABLE 2.2.2.

TABLE 2.2.2

Observed frequencies for parental matings and

their offspring phenotypes

Parental Matings Of fspring

Types Frequencies 0 L B AB Totcls
¢xo0O Nj Dy 4 - - - n,
Ox 4 N2 Dy 4 N5 - - B Ny,
0x B N3 n3,3 - n% = n5
0 x AB er - N2 n43 - n,
= s % 51 Mo - - i
Ax B N6 ey Ngo Mg ) ng
e Yy i 72 n73 B4 %
Bx3 NB N - n85 - g
B x AB N9 -~ Ngo n95 Dgy ng
b e 55 Yo > Bige | -ME,3 ™0, Mo

Totals N n

99
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Suppose that the "family size distribution is given by Prob. { a
fanily has k children j = k=0, 1, «vs « We shall assume that
the family size distribution is the same for all mating types and is also
independent of the genotypic frequencies. This is equivalent to saying
that with respect to LBO blond groups there is no familial selection

operating on the population. Tnis ensures that qk's are independent

of the parameters Ki’s , 8 and ¢ ;

Now let us have the following notations :

let T. denote the mating type with frequency Aes 2 =1, «vay 10
i hi

(e.g., T. denotes L x A mating type) .

5

Nij = Mumber of Ti type of families with ] children zach.

j“1, 29 *any Ir.

10
N = b Ni s Tetal number of families sampled
=1

=
N, = & N, ,: Total mumber of T, type of families

i 31 13
10
Mj = X Nij ¢ Total number of families with j children in cach
imd
1 th : ’ e :
Fij = 1 family of type Ti with 3 ohildren in it. 1 = 15 23
..1, N- -

. R .
n; mumber of children in Fi,j with blood greup k (k =1, for
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0, k =2 for A, k=3 for B and k = 4 for AB).

4

& E L =
Clearly, kﬂ{'}lali{

= [

Dy Provability that a child from Ti type of family has blood
group k (1 =1, 2, «ouy 105 Xk = 1, 2, 3, 4).
Hote that these pik's are given in Table 2.2.1 in terms of the

parameters 8 and gb .

¥ow, Prob '[Fijl has nijlk children of blond group ks k =1, 2,

3y "1_7

_dt T e
i ] k “ik

have children as observed_/ ¥

%.j i~ j; - nijlk .
= [l [ n ol W pik /
1=1 rg Rislk C k _

N

(.1} ij ﬂp nijﬂ‘.
T B,y ¢ ) LPk
1@,1 151k

a3

where, & n, = I, . is the total mumber of children with blood
1 ijlk ij.k

groop k in familjes of Ti with J children in each.

Now, Prob.[Nij families are of size J in Ni families of
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cED
G

t‘y‘pe Ti; j = O, 1, avuy rj

M

i
Codm
[
e
o)
[}

r .
7Ny
gm0 1

Hence, Prob. [Nij families ave of eize j {4 =20, 1,..., ) in

Ny families of type T, and Nij families have children as observed_/

r . §
- ij
N, r n, ﬂ (44 n,.
i i i j=0 n’ ik
=z i 4 ’ Pik
mow, ! =0 ];l'x By - K
50 dJ JrdeK .
T
vhere, L mn, = n ig the total mumber of children with dlood group
§=0 ij-k ik

k from all families of type Ti'

Furthermore, Prob.[Ni familics out of N are of type T 3
i=1, 2, LR ] 10__7

10 N
4 L
‘IT N, !
i=l

Finally the likelihood of the observed sample is given by
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D

M, Moes y 1
‘. N ﬂ )\'Ni g 1 “r . 13 i.j_(J 5 ' . Dk
w4 = T LA 1,3 I n gy b Lok s
1 1,5 1,31, *
Moy '
R (G . 5 M n,
N -
, . MA Y JTa, 8 10 p, JF (2.2.1)
i f t i J ik
I Ni;j‘ i nijlk i 3 i,k
14 1,5:14k
where, Mj = Z N, . iz the total number of fapilies with J children.
i !

Taking logarithms of both sides we have

log I = Const. + E Ni log )\i + EMj log qj + 'Z‘. ey log Py 2
i 3 ik
Prom the conditions & A, =1, Eg, =1, L N, = LM, =N,
. 1 j 3 i i 3 J

1

we easily get the maximum likelihood estimates of /\i's and qj's ag
(2.2.2)

HNow all the pik's arc functions of 8 and < alone as glven
Suppose we make the transformations d = e/2 and

in Table 2.2.1.
B = @ /2, Table 2.2.1 can be replaced by Table 2.2.3 as
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TABLE 2.2.5

Phenotypic mating types, their freguencies and the conditional
distribution of the children's ABO blood types

Coniitional Distribution of

Parontal Mating of fspring blood types

Typec  Frequencies 0 A B AB

0x 0 7\.1 1 = = =

0x A A, o 1 & W B

0x B A B = 1-8 :

0x AB ?\A . 3 L -

Lxh A 82 1302 v F

AxB Ag s 6(1 -a) aft-6) (1-a)(1-0)
A x A3 }\7 e + a/o (Laa)/e
BxB AB Sg - 1 -52 -

B x AB 7\9 . B /2 i [ =B/
AB x 4B By W - 3 > %

From this table we can substitute the values of pik‘s and thus
for estimation ¢ and 5 (and so € and @) we have the likelihood

equations ags

L2loc L E:.l_, C2 3 Cj =0
Do x 1 - o 1+ o
2101 _ 2t %, 0
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Baquivalently,
(¢, Sy v U3 «® 4 (02 ~03) @ -Cy =0
(2.2.3)
and (Dy + Ty + Dg) 52+(D2~D3)E-D1=O

= ,',.9
where, CAi n21 2 n51 4+ n61 + n63 + n73

C, = Gé = Mo, + gy + Mg, F Doy

,{+C+C nm+?n1+11614—r122+2n52+n62+n63
¥ P73 T ey T Py

Dy = Az 4 + Ny + g, + 2 Ngq + Ny

D2 = D5 = n53 + n65 + n64 + n94

and D1 + D2 + D3 = n,, + N4 + ng, + 2 Ty + n92 + n35 + n65

%1

+ n64 4+ 2 nB3 + n94 G

Equations in{2.2.3) represent simple quadratic edquations which
can be solved for & and P . It is also clear that cach of the
- equations has one posiiive root and one negatlive root so that the maximum
1ikelihood estimates are unigquely determined as the positive roots of
;. S - ‘ .
these equatione. Thus one has the eastimates € nnd ¢> of © am&:#

ag well.

The information matrix corrosponding to the sample is computed

ag follows : First we observe that since Ki's, qj‘s and 8, ¢ are
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independent parameters, the information matrix will be of the form

4 0 0
I = 0 B 0
|
0 0 C 1
ghecre 4 1is the information matrix of order 9 x ¢ corresponding
to A 's, 3 is the information matrix oorresponding to qj's (of

e
-.1

(2.2.4)

order {r = 1) x {r - 1) and € 1is the information matrix oorreaponding

to @ and qﬁ p

But we may note that

A =

and B =

1
e
10
o
2 Mo
P
Xl'“
10
A
Gy
L
© %
L
%

LR L

« s
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Prom thege forms of A4 and B we get their inverges as

i1/ 2

1

1 9 .,2 9 L

and similarly 51,

¢ 1is again a dlagonal matrix of the form

1 o |

whera, I o(2 Ny, + 8 Np « 2 Ny + er) + {4 N, + 4 N6 + 21{1}

}\-1(1 “}\1) _Z\' }\ IR —?\

= X = -
/58 A, (1 Ay) aes A

o12]
2 (4 - )
: N (2 N3M+ 2N+ 8 Ny o+ Ng) + (4 33 + 4 N + 2'N9)
p¢ 24 (4 - ¢°)

e
Qo

arry

(2.2.5)

A ~
showing that € and ¢ are uncorrelated. This result {s intuitively

clear also since @ represents the conditional probability that an

individuals genotypc is AO given that he is of blood group 4 and §é

represents the conditional probapility that an individual is of genotype

30 given that his blood group 1s B.
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o

Yow, inverse of I (given by equation R gives the covariance
i 3 e . . oy FATEN £ 3
matrix of the asyuptctic distribution of Aes 4 'S, 8 and ¢

which is normal.

Note 2.2.1 + It may be noted that families those are usually
mirveyed may be of the following types :
&Q femilies in which both the parents are alive and they have one or
nore offepring;
(b} families with both the parents alive but without any offspring.
{¢) Iomilies where only one parcni is alives
(a) femilies where both the parents are dead;

{e) families in which more than two generations arc present.

The estimation procedure discussed earlier includes only families
of types (a) and (b). The likelihood function of a sample which includes
sther types of families can be written down analogously and the analysis
can be carried through. If families of type (¢) are encountered in the
sauple, the part of the Lixclihood funetion corresponding to such families
aani be wiitten from the probability distribution which in turn may be
obtained from Table 2.2.3 by distinguishing the reciprocal crosses and
¢ollecting cells according to the phenotype of one parent. The part of
the likelihood function correspending to families of type (d) can be

aritten considering the marginal distribution of the blood type of the
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Eoffspring populatior. as obtained from Table 2.2.3. For families of

!”ty'pe (e) the generation of the head of the household and his children

ney be classified into one type (a) or (c). The details of the likelihood
NMmotions in these cases and the resulting m. 1. estimates are not

pregented hercin siice they do not pose any theoretical difficulty.

Note 2.2.2 t+ The parameters ?xi‘s, & and ¢ can also be
satimzted from a rendom sample of individuals from the population. The
phenotypic relative frequencies are just the weighted column totals of
Table 2.2.3. Tnus, the sample can be treated as coming from a multinomial
distribution and the parameters are cstimated by usual procedures.
lowever, these estimates cannot be used for any testing purposes for

obviongs reasons. 8

Note 2.2.3 = Thwgh the assumption of any mating system is not
maje explicitly, the following restriction may be notad : Though z general
type of distribution is assumed for the mating types at phenotypic level,
one observes thot when an individual chooses o mate with blood group
&, for example, in the above model, it ig assumed that the choice is
mrely at random between M and AOQ. Thus one nmay object that the
hypothesis of Hardy Weinberg Law is not dispensed with all together!
However, since there is no easy way of detecting 2n A individual as#

4 or AC any modcl which takes this point iInto account is going to
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be only of mathemzticel interest. So, the assumption of random mating
in a restricted sense (at genotypic level only) as outlined above does

not reduce the generality of the model.

Pstimation of the Phenotypic freguencies

The phenotypic frequencies of the population are estimated by

. . " ~ i ~ - A
substituting the estimates A, 's, €@ and ¢ (or A;'s, @ amd P )
in the expressions P, P,, Py and Py {(which are just the weighted

colunn totals of Pable 2.2.3) given as

- 2 o2
Py = 7&1+€K>\2+L>\5+a A5+ocf> }‘6”“ Ag )
A A
ol iz oA L 1.8 10
P, =(1—a)h2+ s a,}}\5+6(1 a)}\6+2 +2}\9+ ;
1‘4 : (2.2.6)
me(1-B)}\3+ 2+a(1—B)}\6+§—h7+(1-p)8 °
LN Mo
2 4
A 1 - & N e T (2 A'lO
ard PI;B=(1_(X)(1_B) ac o T /\9"“""2-—
2

Tormilae for the variances and covariances of these estimztes
can be obtained with soue algebra. However, since these are no where

needed explicitly for our purpose, the details aro omitted.
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@_stimation of the gene f;:equenoies :

Ynowing that @ proportions of A& individuals and q> proportion
of B individuals are of genotypes 40 and BO respectively, by the

umal genc nount method we arcvive at the gene frequency estimates given

by
~ RS A
) e P.A. N e PA N Pz"s.B
P = )
Pt L W e
2F. -9 P +P
~ Bl L B AR
q = > (202 07)
~ ~ NN
2P . +87P, +&P
~ O L 7 B
and T = 5

A Pt N AN
where, PD’ PA’ PB and PAB\ are the estimated phenotypic relative

frequencies. However, the varlances and covariances of these estimates
are rather complicated. One may derive some approximate expressions

for them using Boya's (1956) method.

2.2.3 Construction of the goodness of fit statistic :

Tn order to test for goodness of fit or any other hypotheses we
firat Tequire the asymptotic distribution of the characters studied on
the families. It may be recalled that the characteristics observed are

the family mating type, family size and the number of children belonging
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to each bleod group 0, A&, B and 4B (designated as 1, 2, 3 and 4)
respeetively). ™o Fl. wordom variable observad 1s a vector wvariable

LI ] Z

« vy

§I=<X1g LRI X109 }.O; ey Yr, Z19_i,19 *ey 21_1,1,4, 10’1"1,

ZTO r 4), where J{i's denote the family type, Yj‘s denote the family
L

gize and Zi e denote the mumber of children, from a family of type
E 5
Ti with } children, who are of kth blood type. As for example a
fanily of mating type A x 4 with 4 children one sach of each blood group
das X, =1,%Y, =1, 2 = [ = 2 = 7 =1
wiLbegecoTieslar 471 P54, T %5,4,2 T 054,35 T %5044

and the rests are all zero's. The distribution of X o¢an easily be
obtained from Table 22.3 for N = 1. The characteristic function of
this distribution is given as

(2.2.8)

a k
YAS . = v Z 2 Z
i } { 5 t, ujkl) Ej‘, ?\j e q € i Pyp ©

é‘.‘whiéh follows from Feller (1969},

Hence the cheracteristic function of the Joint distribution of

t 1o
NJe Mk: and 1’131{:L 8 s
. ig, it iu
{ E ?\-' e J E qk e k ( T _p-l e jk:l)k - N- )
-y k 1 X

Now consider the trsnsformation
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The characteristic function of the

by

b N'. I\l 1
}L y njkl

By taking appropriate

terms and ignoring terms of

we see that

n = I A
Jkl L 4 qk pjl
! T A
k N 5 q] pjl

NG

-

Py
Jok,1

o

order higher than v

(8) = om.{- 1" ?\/ﬂsjﬂi\/ﬁﬁ\/&ktk

Taylor's expansions for the exponential

and simplifying,

Sy

Vi Ay 9 Py By }

(2.2.9)

se transformed varisbles 1s given
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P 2 2 2
e POWSEE Tey 8 Bl o o
iy
2 2
+%;[('§SJ\/ ?\j) ol Ry wla W
J

+5( 2 Uy VKA qkpjl)

Jrk,1

2 B s 1/},3 ‘+22 tk \fci;+ L m \/k?qukpjl

k 1,k,1 K

2
-3 zk[(k—‘l) (,iujkzl \/5;) W

Js

This shows that the asymptotic distribution of X is mltivariste

Fa

normal .
: .2 1] A 1 .
Lgain consider ijl Yk 9 ijl

Thas, logj,;N;j : Mf( ’ \/E_q; ngkl (.E)

. 2 2 2
:-%[z_sj+i‘.tk+_2 quujklj
h| k Jsk,1

+%[(§sj VAT e (o Ve )BT

- e K
L 85gq X3 VPy ; f{ X £V By By VA Py
»

Ik,1 ’
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jyk,1 g 3 k

+ T kg sy V) }‘j Piy N

Jek,1

8
_.%_ 2 k(k""1) qk(ziujkl le)

By putting, ujklzujl for all k, the resulting expression

would be the characteristic function of the joint asymptotic distribution

of Né, Mfc and n;‘jl where n“j.l = (njl - Nnm ?\j pjl)/\/N )\,j pjl in

which m = L k S Denoting my = by 1<:2 Gy s the logarithm of the
k k .
gharacteristic function is given by

The characteristic function of the asymptotic distribution of
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PR

K. and ngl can be obtained by Just putting tk: = 0 for all %k in
o

the above expression.

Thue we get,

g o 12 2 - 2
1 ) 2 -% [ %, ) 7+ % s,
Og‘h?Ngj ) n‘%l (N) l j SJ + m U-il + = ( ?ja Sj 7\.3 )

j 1
IR A \pjl+%m(j?lujl VA Ta ) L2 ek Ry
Fn,2 iy Vi g 7
- % (m, - m) ‘j (Elual \/5;)2

j=j|r1 3yl
+ z Wt Tl gl [P B -m o+ oW A
4,1=1" i il le . Tl (m2 J)
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Te last summation includes all combinations but for j = §'y 1 =1'.

Thas the variance covariance matrix of the asymptotic distribution

of I\T:’.' " and n;'jl is given by

T

\{S S_] 02 LRI Sj e S_1O .—‘
S% S,” U12 U*.j U1,1O

._/\\- = » 3 . . . . [ [l . » » . e L] L] L] » . . - L] 3 (2.2.10)
,- U. TT. LN B ] U . LI AN U
| Byi= Yyl T2 33 3,10
L %10 T10,1 Uio,2 + Y10,5 U10,10

ghere each of S's and U's are matrices as shown below.

{1 =x) - VR e =M g
_\/;\19\2 {1 - ?\2) -\/2\2 ?\10

L] (3 L] L] . L ] I . L} - L . . [ I - . «

e PRTIEE ST (1 =A40)

e

. %
~Om )\1 A3P311 ~ 2m \/)\2 }\jpjz - 2m \/)x3 )\jij -2m\/i4 Ajpjlp !

® =+ & + ¥ €. & ®* & 3 2 & ¢ ¥ ¥ = ¥ » = 5 F s+ s + 5 s &

5. = om(1- '\j)‘/pﬁ om(1 - ?\j)\/pjg em(1 - 7\3) \/1?5 om(1-~ 7\3.)\/133.[Jr

J

2oV g0 MPyy B Mo APy EMVAs APys EVio APy
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) i
1Ry PaE CWEMOH P P3dvaey | Ny T

"_!’__‘ - ‘ . \IP“‘] p-2 m + a‘j pjz C(’ijz ij aj Vp'z 934

J

Oy Bys b Uy ¥EBp Bys | Ut PyByy T gVBesiTg

ij1 pk1 pj—1 Pk2 \:"pj1 Pk5 Y\ pj1 pkﬁ,
VD50 Pid VP Pyp  VPyo Prs VPyp Py |

J-

VPsq Pt VP e VP Pis

" — ) — 17!
for J Ak =1, 2y «vsy 10 and Ujk_ukj

The renk of the /\ matrix is (10 - 1) + (24 ~ 9) =24. 1In fact
by observing that many of the pjk’s are zero's, we can reduce the order
of this matrix from 50 % 50 to 34 x 34. Then, note that there is

one linear comnstraint in the ?'»i's and one linear constraint in each
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pjk‘s for 3 =2, «.., 10. From this considerations one observes that
the rank of £\ is 24

The reduced ,\ matrix of order 34 x 34, being a positive semi~
definite one of rank 24, will have 24 positive eigen velues and the rest
10 aigen values are squal to zerc. If Q denotes the matrix of the
corresponding 24 eigen vectors (and thus Q is & matrix of order 24 x SL),
we have

AANCANE BN

where A 18 a diagonal matrix of order 24 x 24. 1In fact A is the
wetrix of the positive eigen values. It is easy to note that the
random variable }: = Q ’}S follows asymptotically 2 24-dimensional
mliivariate normzl distribution with mean vector 9, and variance

covariance metrix @AQ' = A (Rao, 1965).

Hence, % =7Y'V Y 4is asymptotically distributed as a chi-

square with 24 degrees of freedon (9, being the inverse of A , is

5 diagonal matrix whose diagonal elements are the reciprocal of the

positive eigen values of A ).

This 2 1is the goodness of fit statistic which is looked for.
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22,4 A mmerical example @

is an illustration to the theory daveloped in the earlier three

sections we present the data on AFO blood groups from families in some

villages of Purulis district of West Bengal, India. The observations

o varental mating types and the distribution of bleod groups in of fspring

are tabulated in Table 2.2.4.

TABLE 2.2.4

Mating types and distribution of blood groups in

offspring

g Neting Children

™po Prequency 0 A B AB Total
0x 0 24 - 40 - - - 40
oxA 126 139 177 . . 316
Dx B 63 SO 7 - 100 - 137
0x AB 4 - 2 9 2 12
Ax A 87 ‘ 85 118 - - 203
LxB 53 2 2 2 65 T4
+ X AB g = 3 3 6 12
Bz B it 22 - 157 - 179
B x LB 1o - - 3 4 7
iB x 4B 4 - - - 2 p)

Total 459 325 302 273 79
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Fror the expressions in (2.2.2) we at once get the estimates of

AJs as
1
. 3
?1 - 0.0523, ’?\\2 = 0.2745, /}\3 = 0.1373
Fas o~ A
?x4 - 0.0087, ?t5 = 0.1895, ?\6 = 0.1155 L (2.2.11)
FAY FA) ~
. A
?x? = 0.0196, g = 0.1721, 5 0.0218
/?\\; 87
and = 0.00
10 /,
Baquations (2.2.3) take the form
8o o 4250 O~ %6 =0
2
and 570 B + 171 B - .85 =0
from which the admissible solutions are obtained as
A ~
@ = 0,4909 and P = 0.2643 (2.2.12)
Fence, the estimates of © and 43' are given by
~ ~ ~ ~
6 =20 =0.3816 and ¢ =2 P =0.5286 (2.2.13)

Feeding (2.2.11) and (2.2.12) into the equations of (2.2.6) we

obtain
/‘ . A A ~
PO = 00,2960, PA = 0.3133, PB = 0.%3251 and PAB = 0.0606

—

end thus from the expressions in (2.2.7) we obtain the estimates of the
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gene frequencies as

3 = 017370, § = 0.269458 and T = 0.538172.

o

At this stage it is interesting to note that faking % ond )
s given by (2.2.13) we can breakdown the phenotyple frequencies of the
parental as well as the offapring generationi@hich are in turn obtalned
fror Table 2.2.4) to get the corresponding genotypic frequencies of
these two populations. These are shown in the Table below :

TABLE 2.2.5

Genotypic bloed group fredquenciss for parental and
of fspring generations

Genotymes Parental Population Offspring_?opulation
) ' 2471.,0000 325.0000
oA 355.4116 296.50%6
A 7 6.5884 5.4964
0B - 150.0940 144.2805
BB 1%%.9060 128.7195
AB 31.0000 79.00C0
Total 918.0000 979.000C '

From this table we get the estimates of the gene freguencies

for those two populations as
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-

Parental Population Offepring Population
y 0.217641 0.197393
q 0.244502 0.245516
r 0.537857 0.557091

From this table one can easily notice that apparently the gene
frequencies in these two generabtions are not gignificantly different
from one another which is expected because of the gene pool theorem
of Professor J. B. S. Haldane. Of course the statenent remains valid
if only we assume the selection, mutation and migration pressuraes to

be inoperative at the ABO locus for this population.

So long, we did not consider the variances and covariances
~ Fa)
of the estimates. From expresgsion (2.2.5) we note that 8 and e

are uncorrelated and

v (B) = 1/, = 0.003354

ad V@) = 1/Tgy - 0.000417.

The other variances and covariances are glso obtained similarly

from the corresponding expressions.

We are deliberately omitting the computation of goodness of
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it statistic since it is only a2 matter of obtaining the eigen values
and the eigen weotans of the A matrix (of order 34 x 34) which can
easily be done by using an electronic computer. However, for getting
the A, matrix and hence the goodness of fit statistic we need the

two statistics of the family size distribution given by
= L = 2.
m k Gy 1285

and m, = Ek? qk = T.2702

The goodness of f£it statistic, for an analogous problem, will,

however, be presented with illustration in the next section.

2.3 USE OF R.R.M. IN TWQ ADLELIC CASES

The main object in thisz section will be to adevelop a proccdure
for testing whether any particular population is in equilibrium
incorporating the model of restricted random mating. We shall dé
ihis for an autosonal character governcd by twe alleles, one of
which being dominant over the other. For suach an aatosomal charaster
we shall illustrate the computation of the goodnuss of f£it ohi-square
statistic whose construction is already indicated in the earlier

section.
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2,51 Two alleles at an autosomal locus : Goodness of it statistic :

To start with,let us consider two alleles A and a at an

Il

atosomal locus. Let us 2lso assume that A ie dominant over a

so that only two phenotypes 4 {representing genotypes AA and Aa
coliectively) and Z (representing the genotyme aa) are distinguishable.
let 8 be the condicional probability that an individual is of genotype
ja glven that his phenotype is known to be K, I 7\1, ?\2, ?\5
reoresent . the probabilities of the L x K, Axa and axa mating
tyoes respectively then we have the conditional distrzibution of +the
offspring phenotypes as given by Table 2.5.T.

TABIE 2.3.1

Parental matings and the offspring phenotype

probabilities
Parental Matings Offspring
Type Frequency A 2
bxh ?\1 1T 2 OC2
Pxa A Yoo i o
iY A 7\5 0 1

dhere @ = 8/2.
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¥ow, in a2 random szmple of N familiee chozen from a population
let the observed fromenc,‘ies of the parental mating types and the
phenotypes of the offspring be as tabnlated in Teble 2.3%.2.

TABLE 2.3.2

Ovserved frequencies for parental matings and their
offepring phenotypes

Parental Matings Offspring

Type Fraquency N a Tcotal
A

Lx & Nf n,H N, | n,

= W i

e T B4 Moo 2
axa I\T3 - n52 n3
Total N n

The logaritim of the likelihood of such a sample 18 glven by

log I = Const. +§; N, log ?\i + 3 Mj log ay + iﬂk By 108 Py (2.3.1)
- b

[the notations used herc are same as these used for the derivation

of the expression in {(2.2.1)_7.

We, now, automatically get the maximum likelihood estimates
of ?\i's and O as

R, & Ni/N (2.3.2)
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T and 6&\ ig the positive root of the cquation

SN, ‘
Gy 67 +0, @ =0g = O (2.3.3)
whord 01 =m0 2 Il 4 + 2 IL12 + 15 4 + n22
Gy = Mgy
and C3 = 2 Dy, + n22 .

Tms; the maximum likelihood estimate of & 1is given by - a .

Tt is casy to see that the asymptotic variances and covarisnces

of the estimates of A, 's can be estimated by

c
2 Hi(N R 1\71) 3
N
A", N, (F - M)
< ¥
rS ~ N, N
| R e 2 (2.3.4)
Sov ( 1! 2)_ i~ 5 -
N
~ A
and v( !\5) = V(1 ~ Ay - As)
! = V(?\i) +V(?\2) + 2 Cov.( 7\1,7\2)
N ] NB(N = NS) )
W

In order bo gebt the asymptotic variance 'of & we first have
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i
s
Lo

the information about « from the whole data as

n, + a{4 ny - ny)

i(a) = > (2.5.5)
al? - a)
Hence, the asymptotic variance of Q
. o (1 - (xz)
v(a) (2.3.6)

el )
and thus V(@) =4V(&).

Before proceeding to the testing of equilivrium let us now
consider an illustration and compute the goodness of fit chi-square
statistic. For this purpose, let us consider again the data collected
by Race et al (1948, 1949) on the S-factor of MNSs bloed groups.

Then s- antiserum is not used we can distinguish only two phenotypes
napnely S5- (including genotypes S5 and S3) and s- (inoluding the
genotype s8). The observed mating type frequencies and the phenotypic
frequencies of the children are shown in Table 2.3.3.

TABLE 2.3.53
The S pgroup of 123 families with 293 children

Parental Mating : Children

Tyoes Frequencies 5= g- Total
5 x &- G 92 m S 02 104
S- % 5- 57 84 52 136
8- X 8- 22 - 53 53

Total 123 176 117 293
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Estimates of the mating type frequencies are seen to be

'7\\1 = 0.3577, ’)\\2 = 0.4634 and ?\3 = 0.1789

Tote that Gy = 344, G, ~ 84 and Gy = 76 and thus Q@ is the
pesitive root of

344 0% + 84 @ - T6 = O

A A ~
wiich gives ® = 0.3635 and thus © =2 @« = 0,7270.

The variances ard covariances of the estimotes are obtained

a8

A ~
v( A) = 0.001868, V( A,) = 0.002022
" ’~
and Cov.( Ay 7\2) = =0.001348
v(e) = 0.0013%27.

Now, a derivation analogous to that of (2.2.10) gives the

129

variance covariance matrix of §'= (N_i, 3 s N%, ny Niys Ty By

X - ?\i
H%Z) where N} = 1 s i=1, 2,3
N. '

- . -A-
o o i DU B

H VIR Py 5
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yhere

= s, s, 5, B

22 Uy Uin Uys

2 Ulo Yan Uas

ot t i

55 Uls U3 U3z
AR AT A

SN 14 B, SV

) : Y
i VAR VA L 3

o1 - ?\1)\/1)11
-2m~/ .)\1 ?\-2 P11

T L

2m 7\.1 )\2\ p21
2n (1 - R3) VP
=2 y/ A'z KB p21

e

R e
2m(1 - M) Vg,
VR

i

-2m\/?\,17\2 Pes

_ A
2a(1 = *5) vy
m2my Ay Mg Poy

121

(2.3.7)
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l_m + My Pyyq Ay VP4 szw

U =
11
N } + AP
|_K1 Peq Py i 1712 |
-
m+ My Ppy Ay VPaq Pos
U22 - A P Xm + O, D
o WP Pap 2 Pop

=
!

12 . |

i
PN
i
E}l\:)
<
>
[aS)
>
‘AN
~—
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2 > 1 1
Note that two statlsti.cs m  and m, (m2 appears in aj g
giten by @y =my -+ m” .\j) regarding the family size
distribution appear here. From the family date of Race et al. We

have

and my = z k2 q, = 7.1463,

The /\ matrix, thus computed is shown in the next pege. It
is ensy to mee that the matrix is of rank 5 since there 1s one linear
e t = t
constraint with A, 's (7\1 + Ay + ?\5 1) and two with py4's
(pﬂ + Dy = 1 =9y + P22)' The 5 positive eigen values are glven
by 0.8143, 1.1360, 5,5816, 14.0481 and 12.2978. The corresponding

natrix of eigen vectors (taken as column vectors), Q', is given by

T 0.6800  =0.3064  0.0029  =0.245T  =0.1599
J0.6571  =0.2421 =0.0680  0.2471  -=030802
0.0657  0.8229  0.1054  =0.0503  0.3552
-0,2624 0.0959 045566 -0.5657 -0.4204

VTl 0.0948  0.0347  0.2010  -0.2043  =0.1518

0.1727 0.0537  0.4754 0.5582  ~0.21T74
0.1359 0,0422  0.3740 0.4392  -0.1710
_0.0384  -0.3940  0.5178  =0.0983 0.7520
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0.6423

Varisnce Covariance Matrix of the Normalised observation

vector ( A\ matrix)

=0.4072

0.5%66

-0.2530 1.8780
-0.2879  =1.8246
0.8211 -1.1336

8.3923

1.0395
-0.6590
-0.4094

2.1707

3.1661

-1.5246

1.0091
-1.0780
-1.7078
-0.6168

6.9489

-1.1996
1.5808
~0.8482
~-1.34%8
-0.4854
3.5932

5.2091

-1,2053
13717

1.9121
-1.3502
-0.4877
-1.2840
~1.0103

8.1613
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=
e

o

!
Yote thet the observed transformed vector is of the form

1 = (-0.000008, 0.000010, -0.000006, -0.112633, -0.041647, 0.022883,

0.017977, 0.126521).
Hence, ¥ = Q@ X is given by
¥ = {0.0%350, =0.0601, 0.0121, 0.080%5, 0.1408).

Trom tne theory developed in section 2.2.3 w2 know ’X’ follows
asymriotvically a multivariate normal distribution with variance
povarinnce matrix @/\Q = A which is, in fact, a diagonal matrix
those dicgonal elements are the positive eigen values of A\ .
Denoting thom by d19 uey d5 we have, again, from the theory as

developes in section 2.2.3

5 2
- ! oY :
7 =Y VY = i21 e/ d,

foliows 2 “X? distribution with 5 d.f.

In the present example, Z = 0.0069 which is far from being
sigrificant (P > 0.99). Thus, the data seem te be in good agreement

=i the model considered here.

2.7.2 Bquilibrium condition and a proposed test criterian :

From theorem 3.1.1 {in Chapter I) we have seen that a population
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will be in ;aquilibrium with respect to an autosomal locus with two
:alleles A and a if and only if the Az x Aa matings are twice
as frequent as those between the two different homozygotes (Ai& X aa
and aa x AL). Thus, in the present set-up, we have the equilibrium

condition as

M B
e Q_U_ezﬂ- (2.3.8)

Now with o = 8/2, we have from (2.3.8),

&l =2 ) A,

: 2
2 o -2\2[—052+(1 -a) /

and = /
3 1 2 5 <I2

Twms, in this case, there are only two independent parometers,
namely o and Ao Inserting these values of ?\1 and ')\3 in
(2.3.1) we have the maximum likelihood estimates of the parameters

as @

o« is the positive root of Aa5+Ba4+C a3+Da2+Eoc+F==O.
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g n

It

where, A 14

B=6n12+4n27+4n22-12n11-121\12

(9]
fl

28N2+8n11-20n12-6n21-—10n22

o
]

N1-25N2-2nﬂ+20n12+4n2.1+10n22

Ba-iy + 11N, -10n, -1, -5ny,

and F=-2N2+?.n12+n22
e
a 5 KH + Né s 2
g 2 4 (1 - a )2
/}\\_ (1-2(3() }\.2
1 2/&2
t’\2 I
A 207N [B% 4 (1.8
and A, =
3 > &2

Considering the same example, the estimates obtained are as
follows :
~ ~ ~
o = 0.3814 and hence & =2¢g = 0,7628

A ~
N, 0.4416 3; = 3600 and A = 0,1984.

The variance covariance matrix of these estimates can
pasily be obtained by computing the information matrix and then by
inverting it. However, the details are left out since it does not

present any theoretical diffieculty.
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At this stage, let us recall that in the general case there

are three linearly independent parameters (namely, }\,1, A and Q)

2
whereas under equilibrium assumption they are only two in numbszy

(nsmely, A, and 8). Now, let us denote the estimates (in the

2
expression (2.3.9)) with subscript e (to denote that they are

obtained under the assumption of equilibrium). Thus we have

A ~
. = = . . )\.
Max. log L log Le Const. + ? Nl log ie + ? j nij log pije

vuie . funder equilibrium’/

whereas, in general

e e
Max. log L = log Lg = Const. + i Ni log ?\ig + zl Ejnij log pijg

[ the estimates with subscript g are obtained from (2.3.2) and

(2.3.3) 7.

Now, we can ecasily write down the likelihood ratio test

eriterion for testing the hypothesis of equilibrium as

2[10ng—logLe_7

- 2 log />

]

Y Fal
2 i N, [ log Mg = 108 Mot

o~ ~
+2% YT n,., /leo .. = lo v
> B g &P, gleeJ
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»
A 1+ Q
=22Nilog"h—'g'+2n1_.ilogm‘g
i ie e
“~ o~
1 - o
ol 2(n1‘1 + nm) log ———51 iy + 2(2n12 + n22) ‘logif'

2
shich follows asymptotically a AL - distribution with 3.2 =1

d.f.

For the present example the computed value of the chi-square
ctatistiec is 0.6855 which is, again, far from bteing significant
(P> 0.40) whieh indicates that the population is under equilibrium

with respect to the locus of S blood group factor.
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' CHAPTER - ITI

SOME STATISTICAL MODELS FOR HUMAN MULTIPLE
BIRTHS

5.0 INTRODUCTION

In experimental animals or plants it is relatively easy
to study the interactions of nature and mirture by controlling
enviromment at will in which the phenotypic properties develop. In
¢ase of human genetics, in general, though it is not feasible,
nevertheless certain phenomena in man approach the ideal arrangements
of experimental design., The most significant of these being the
miltiple births. Experiments to analyse the effect of a spectrum
of environments can be designed by including the 'identiecal' twins
which are lsogenic, whence the 'non-identical' (fraternal) twins
provide scope to study the effects of different genotypes under
identiecal envirommental conditions. In this chapter wz are going
to review briefly the binlogical implications of human maltiple
births and then we shall switch on to construct some models to lay
down the probabilities of bhese type of bvirths. It will be observed
that some of these models extend the already existing ones (Das,

195%3-56; Bulmer, 19583 Allen, 1960; ete.) taking into account the
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limitations involved there.

3.1 BIOLOGY OF TWING

At least five distinetly different blological situations
can be postulated, giving rise to twins, namely : the proliferation
and fertilization of (i) two ova; (ii) only one ovum, when this
fertilized egg subsequently goes through a scission at some early
gtage of its development; (iii) a binucleate egg which subsequently
divides; (iv) an egg and a large polar body; and (v) the scission
products of an egg which has divided prior to fertilization. Though
a direct cytological evidence is lacking to demonstrate that all
these possibilities are met in case of human but serologic and
sozatologlc evidences indicate that at least the first two of the
possibilitics do occur and with a good amount of regularity. For

our purpase we restrict to these two common situations only.

So, there are two different types of twinsj; 'identical'’ or
monozygotic (MZ) and 'non-identical' or dizygotic (DZ). 4s the
terminology suggests, the former comes into existence by a twinning
division of a single zygote, formed by the fertilization of a single

ovum by & single mature sperm and the latter type of twins are formed
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as a result of the two imdependently liberated ava by two gseparate
mature sperms. ilaw nay, therefore, have like or unlike sexes and
are generally pd more similar than two sibs bord of the wame parents.
On the otMer hand the members of a MZ twin pair mug#, of necessity,

be of the same sex and are of identical genotypes (isogenic).

The scission of a single zygote which occurs at an early
stage of its life (Dahlberg, 1926) may, in some cases, be satisfied
after only one such occurance i.c. after the formation:of a pair of
twins, but it may persist even further and the one, or the other,
or both of the members of the scissioned zygotes may -again undergo
similar divisions producing MZ triplets, guadruplety, etc. Thus,
as Das (1953) writes, "in order that a monozveotic 'twin: pair should
result, the scission must take place once and onlylonce. In order
that 2 monozygotic triplet should result, the splltting must take
place twice : the first division of the single zygote produces an
ldentical pair, one and only one member of whieh should then gimilarly
split into two, but once". Similar visualisation can be carried
out for the formation of higher monozygotic multiplicity. But the
actual phenomenon that takes place is fer more complicated gince
'death of a zygote' is not a less important event than the birth

of the same.
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The genesis of DZ twins is altogether different from that
of the MZ twins. Two ova liberated from one, or Doth of the ovaries
within a small interval of time and fertilised by two independent
sperms lead to the formation of two zygotes which develop and grow
simultancously and thus form a2 pair of DZ twing. Thus, they may

be either like-sexed or unlike-sexed.

Therefore, as Dahlberg (1926) and Greulich (1935) observed,
thertwo types of twins are the manifestations of two basically
distinet phenomena and awre not merely the different expressions of
one and the same twimning tendency. These two basic phenomena, in
different sequences can lead to, at least theoretically, multiple
births of any order. As for example, a r-zygous n-tuple birth
occurs when to start with altogether 1 ova are released and after
fertilization in all exaetly (n - r) scissions take place to them.

Again prenatal mortality factors are altogether ignored here.

3.2 MATERNAL AGE, PARITY OF BIRTH AND TWINNING R.TES

Both the over-all frequency of twinning and the frequency of
s j
each of the two types of twins vary considerably from country to

country. As an example one c¢an have a range of this rate as 1 in
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1000 maternities (among the Annamese of Cochin China; Newman, 1940)
to as many as 35 in 1000 maternities in South Rhodesia (Ross, 1952).
But merely this raclal difference in twinnilug rates hardly throws
any light in understending the twinning meohanism. But as already
observed by a number of authors it ig seen that there exists an
interesting relationship between the age of mother and rate of

twin confinements. Enders and Stern (1948), with their data on

tmericanr Whites and Negroes, have drayn the following conclusions :

(1) The chance of a mother having DZ twin confinements
increascs steadily with the age of the mother upto a certaln age

group and then abruptly comes down.

(1i) The chance for the incidence of MZ twins shows a slight
but steady tendency to increase with the age of the mother throughout

the whole reproductive range of age.

Sarkar (1944) collected some Indian data and proved =
similar relationship between the frequency of unlike-sexed twins and
the age of mothers in case of 84 twins. The conclusion (i) of Enders
and Stern is confirmed by some later studies (Waterhouse, 19503
8tocks, 19%2; Bulmer, 1958; etc.). TWe present here (Table 3241 and
Fig, 3.2.1) the data of Stocks for Bngland and Wales which show that

the proportion of DZ twin maternities increases with the age of mother

(S 7
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from puberty to a peak in the age group 35-39, falling thereafter
rather more steeply than it rose. The inecldence of MZ twins, on
the other hand. is virtually independent of maternal age, rising

from 3.05 to 4.29 per thousand.

TABLE 3.2.1

Frequency of MZ and DZ twins according to the age
of mother
(After Stocks, 1952)

Age of mother Twinning rate per 1000
(in years) maternities
o eow e 2 2
Under 20 19.0 3.05 3,30
20 - 24 22.8 3.23 5.26
25 = 29 27.5 3.31 7.91
30 - 34 32.3 3.51 10.82
35 - 39 37.2 3.86 12.79
40 - 44 41.8 3.55 9.47
8 and 16.3 4 .;9 2.61

It 1s at once apparent that the comparison of gross rates
of twin production is invalid unless accompanied by the distribution

of maternal age of all births; fog a relation of the kind depicted
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FIG. 3.2.1 Twinning and its relationship with maternal age

———-—-~ Twinning rate for MZ twins, -——.-— Twinning rate for DZ iwins
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in Fig. 3.2,1, if it is deseriptive of an underlying physiological
effect, calls for zge standardization in comparing rates. Thus, as
Waterhouse writes, "that a physiological relationship exists between

twin production - chiefly that of DZ twinning - and maternal age",

As far as the effect of birth rank is concerned it is seen
CWaterhouse, 1950) that in general there is a steady rise of the
incidence of twins with the birth rank and thus one gets only a
vertical displacement ﬁetween the curves for different age groups,
each curve being of approximately the same shape as that of Pig.

3.2.1. For our purpose, here, we shall not complicate the issue by
bringing this into the picture. Dut models can be separately eonstructed

for each birth rank to take these types of variations into account.

5.3 HEREDITY AND TWINNING

Investigations on the familial incidence of twinning have
revealed rather a conflict of evidence. Thus Weinberg (1901, 1909,
concluded that dizygotic, but not monozygotic twinning was hereditary,
and that the heredity involved was limited to the mother's side; on
the other hand, Greulich (1935) found the hereditary influence to be

at least as pronounced on the father's as on the mother's side.


http://www.cvisiontech.com

133

Trying to resolve the problem, Bulmer (1960) yoncluded that "mothers,
but not fathers, of twins are more often themselves twins than
expected". More specifically White and Wyshak (1964) concluded,

from the genealngic records at the Genealogical Soclety of the
Chureh of Jesus Christ of latter Day Saints at 82lt Lake City, Utah,
that when women who are D7 twing become parents they produce twins

at the rate of 17.1 sets per 1000 maternities. On the other hand,
the wives of men who are dizygous twins have a twinning rate of

only 7.9 per 1000 maternities. This finding is consistent with that

of Waterhouse (1950).

Taking all these facts into zccount we make the following
observation to build up the models: the release of extra ova is a
hereditary property i.c., mothers who are themselves members of DZ
twins have more tendency to release extra ova, in the early stage
of the period of gestation, than mothers who are coming out from a
single ovum (single birth or MZ twins). Bulmer (1958), Das (195%-

56) or Allen (1960) took no account of this fact while making attempts
to lay down their models for predicting the frequencies of multiple

birth.
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3,4 A PROBABILISTIC MODEL FOR MULTIPLE BIRTHS

In this section a model incorporating the heredity of twinning
has been presented and methods of estimating the underlyling parameters
are indicated. This also takes care of the criticism of Das (1956)
that the twinning scission of = zygote is taken as a constant in
the literature. In the sequel we call = female to be of type A if
during her birth only one ovum is released (i.e., elther she comes -
as a result of a single birth or she is a member of single zygous
mltiple birth). Otherwise she is said to be of type B (l.e., she

ig a member of a multiple birth resulting from more than one ovum).

We now make the following assumptions:

(1) The chance of an extra ovulation, for z type A mother, in a
short time interval is constant and iﬂdependent of the mamber of
extra eggs which have already been relszased; an ovary producing
extra eggs is supposed to be like a radio~active substance emitting
¢ -particles. UNow 1t is well known (see for example Feller, 1950)

thet such 2 process cbeysa Poisson distribution

where + 18 the mean of the distribution and r 1s the mumber
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of events. In the present casc the parameter is taken to be
x1(x1 >0), t.e., Prob. (i extra ovulation takes place | mother is
of type L) = x1l e /it ... (3.4.1) where, x; 1is the intensity

of extra ovulation for & type A mother.

(2) Seme arsument leads us to assume that the release of extra
ova from & type B mother also follows a Poisson distribution with
parameter xz(Xé > xq > 0) i.e., Prob., (i extrs ovulation takes
place | mother‘is of type B) = Xéi e"X2 /it ... (3.4.2) where, X,

is the intensity of extra ovulation for a type B mother.

(3) The chance that a particular embryo divides during a short

time interval is also supposed to be constant and independent of

the mamber of divisions which have already occurred; but in computing
the chance that some embryo divide during a short time intexrval, this
figure must be multiplied by the mumber of embryes at risk. This

is a realization of the pure birth process known as the Yule Process,
first studied by YTule (1924) in connecfion with the mathematical
theory of evolution. Thus, if such 2 process starts with 1 zygotes
at Zero time, then the chance that it has growm by successive division

to n zygotes at unit time is

PP (- T for nyt and iy (3.4.3)
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where, p 1s the intensity of sceission for any particular zygote
{p > 0). We further assume that this parameter p does not depend

upon the type of the mother.

(4) The release of an extra egg and the splitting of an embryo are

two independent random events.,

Under these assumptions @

Prob. (twin birth) = Prob. (twin birth | mother is of type A)s
Prob. (mother is of type &) + Prob. (twin birth | mother is of type

B} . Prob. (mother is of type B).

Now let P be the probability that the mother is of type A.

Hence P = Prob. (mother is of type A | Grandmother is of type 4).

il

Prob. (Grandmother 1s of type A) + Prob. (mother is of
fype A ‘ Grandmother is of type B). Prob. (Grandmother
is of type B)

= Prob. (during mother's borth only cne ovum is released
and the possible multiple birth is by scission of a
single resulting zygote | Grandmother is of type &).

P + Prob. (during mother's birth ...... of a single

resulting zygote l Grandmother is of type B). (1 = E}=

[ﬁésuming that the probability that a female is of type A does not
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change over the generatioﬂ .

_‘xf -
Hence, # = ¢ 1dP+ex2‘(1iP)

- -x - E
i€y Pae "2 /(1 =s 14‘9 xai ide (3.4.2)
Now, Prob. {twin birth | mother 1s of type A)

4 = Prob. {one o'\_rwn‘ is released and the resulting zygote
eplits just once } mother is of type A) + Prob. (only
one extra owulation takes plage and there is no
scission of the resulting pair of zygotes [ dother is
of type 4)

-X,-p

and By sinilar argument,
Prob. (twin birth | mother is of type B)

= ehxz-p (1 -e™P) & % ;ﬁ P (3.4.6)
Thug, Prob. (twin birth)
-3, - “X, = 2D _
=fe xfp(*.l-e’P)erexﬂ' pJ-B
_ X5 = 2]
s o e 0eaMen 2TV
: fron (3.4.5) and (3.4.6)
-x2 4 & 3 "'x-l -p
. £ ~ C‘-‘% 67 g (;r.' - 1'2_)- e ¥ (1 - e-p)j

1=e + ©
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using (3.4.4) . (3.4.7)

A close look at {3.4.7) will automatically reveal that

:xz =b -p
Prob. (MZ twin birth) = = _éﬁj ~e )

y P

1 - e +.e

X, —2p§2 k (x1 _IQ) e—x‘1_7
g .

1 - ¢ + e

and Prob. (DZ twin birth) = =

Hence, among the twin births MZ and DZ pairs bear a ratio of

X

L (ef - 1) :(x1 - %, + X, ex1) (%.4.8)

Remark 3.4.1 Prom (3.4.7), by taking
g X4 o
Xy =x, =x and e Pi1,e =, 1= P o %
28 was done by Bulmer (1958) we obtain Bulmer's formula for twin
birth where p and x were virtually interpreted as the probabilities

for MZ and DZ twin births.

The probsoility of r-tupld ®irths can also be easily deduced

from the above considerations as follows:

Prob. {r - tuplebirths)
r

= 5 Prob. (r zysotes are fcrmed at the end | 1 zygotes are
i=1
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»*

present initially). Prob. (i zygotes are present initially).

»

But, Prob. (i zygotes are present initially)
= Prob. (i-1 extra ovulation takes place i mother is of type 4).
Prob. (mother is of type A) + Prob. (i-1 extra ovulation takes
rlace | mother is of type B). Prob. (mother is of type B).

11 e‘x1 X21-1 e'xz
Bt = P B e

(1 - 1)t (1 - 1)1

Hence, Prob. (r - tuple births)
X .
1 i1
E r-1) «ip -DyT=1 o
= (r—i e (1 -¢e™) Vi . P
1 (i = 1)1

+—"—(1-p)7 (3.4.9)
G - &)

Remark 3.4.2 From (3.4.9) also by similar approximations as

earlier, we get Bulmer's formula as o special case. However, these

approximations do not appear to be satisfactory from a mathematical

point of view.

Remark. 3.4.3 It might be noted that cach term in the summation of

(3+4.9) is the probability of a i-zygous r-tuple birth. Thus, it

takes care of the criticism of Das (1953-55) and Allen (1960) and
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provides a formula involving lesser mmber of paramsters than used

by Allen (1960).

Remark J.4.4 The hereditary property of the release of extra eggs

indicated in section 3.3 translates itself as xy < % in the
agsumption 2 of this section. It is to be noted that mothers who
are members of g gingle-~zygous multiple birth are not differentiated

from those who come from single births.

Bstimation of the perameters :

In order to estimate the parameters s Xy and p let us
consider the following model: since twins are more commonly observed
than any other higher multiple birth, we shall present = method of
estimating the parameters from a random sample of twins. Suvpose r
is the sex-ratio in the twins (i.e.,-the prabability of 2 male).
There are some controversies about the choice of sex-ratio (Das,
1953) arising out of the differential prenatal mortality for male
(XY) and female (XX) zygotes and in what follows =z it considered as

the secondary sex=-ratio i.e., the gex-ratio at birth.

Thus, Prob. (male - male twins) = r2

Prob. (mzle - female twins ) = 2r(1 - )
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and Prob. (female - female twins) = (1 - r)2

in case of DZ twine and Prob. (male - male twins) = r and

Prob. (female - female twins) = (1 - r) in case of MZ +wins.

Also let
) "X-] =P i)
@, = Prob. (MZ twins [ mother is of type 4) = e (1 - e™P)
X, - 2p
¢, = Prob. (Dz twins | mother is of type 4) = X e
L/ : ' ‘x2 - P : =P
4 = Prob. (MZ twins | mother is of type B) = e (1 ~e™)
iy = x2 = 2 p
Y2 = Prob. (DZ twins } mother is of type B) = X, ©

Now, a twin can belong to one of the ten mutually exclusive
and collectively exhaustive classes whose probabilities can be
expregsed in terms of 10 -:22, ‘PT, ‘?2 and r. Table 3.4.1

gives the different classes and the class probabilities.

Note that R = Prob. (twin birth)

P(P,+®,) + (1-7) (¥, +7,)

Thus one has & classical multinomial distribution with ten

classes and involving the unknown parameters X{s X5 D and r.

Before going through the actual sstimation of the parameters let us
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present some obvious relationships among the ¢ 's and Y.

TABLE 3%.4.1

Twin births and their probabilities

] Twin births .
Moj;hez S Monozygotic ' Dizygotic
yP VM F : MM MP Ty
Pé,r Pt (1-x) | P<P2r2 2P ¢ ,o(1-r) p¢.2(1-r)2
. R R R R R

(1-P) ¥,z (1-1:)'¥1(1-r) (1-9):!2r2 2(1-P)"E2r(1—r) (1-P)’£’2(1-r)2
R R R R R

M = Male 3 F = Female

From the definition of & 11 & oo '¥1 ond ¥ it 1s easy to

7,
see that
¥, ¢, /@
2. 12 (3.4.10)
* Y Wz
¢:1
p = log /1 Ry ;3-2-_7 (3.4.11)
1 - P 1 - e
and = = = (3.4.12)
e

Let Ty Doy eees N0 be the nbserved frequencles of the
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ten different tyves of twins from a rand-m sample of N twins
(see Table 3.4.2). Then, one can casily see that an estimate of =
lg given by

n1 + 2n3 + n4 + n6 + 21'1.8 + n9

~
r =

N+ (mg +my +ng) + (ng + ng + ) (3.4.13)

It ig worthwhile to note that this is z2lso the maximum likelihood

estimate of r. The other likelihood equations lenxd us to

_?1 ) - ke
‘f;- Ny + 1y + Ng
‘F.] n +

2l " n +6n ?n
¥ g T Bg * Nyg

and hence, using (3.4.10), we have

ic% ng +n, ng * n9+n10 =)
x4 n3+n4+n : n6+n7 S

From the likelihood equations, cne can also get

n, +
R 1 ‘
Fp= (asing (%.4.12)
n6 + n7 ex1 - 1

n, +
Hence, % = log [‘l + Q— _7 (3.4.15)
=51 ng + r12
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and hence can be obtained from (3.4.14).

aé
(3.4.11) enabies us to get the estimate of p as

™ » n1 + 1’12
P = log /1 + X4 (n3 o ng)-j7 (3.4.16)

Te now procecd to illustrate the estimation procedure through
an hypothetical data shown by Taﬁle 3.4.2. This table also shows
the expected frequencies of the different classes as obtéine& from
the estimated parameters.

TABLE 3.4 .2
Observed and expected frequencies of twin briths

Twin births
1
Mo;ieg i Monozygotic Dizygotic
P MM FF T MF FF

. Obs. 1439(n))  1408(ny)  1803(ng) 3547(n,) 1745(ns)
Exp. 1435.83 141117 1804 .61  3547.23 174%.15

Obs. 4(ng) 4(n.) 20{ng)  39(ng)  19(nyy)

Exp.- 4.03% 3.97 19,84 39,00 19.16

Using the equations (3.4.13) to (3.4.16) we obtain
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Fal ‘\
F o= 0.5043
x, = 0.0028
" (3.4.17)
%, = 0.0110
and D = 0.0011

y

Since these estimates are almost efficient (as they are, in
2 sense, derived from maximal likelihood equations) one can procecd
to see the goodnesg of fit., The value of 7@ with 5 degrees of

frecdom turns out to be 0.021 (P > 0.75).

The estimate af the propertion of Mz twing out of all twin
btirth is (using formula (3.4.8)) 0.2870 which is fairly cloae to the

observed value of 2855/10028 = 0.2847.

3,5 A STOCEASTIC WODEL FCOR MULTIPLE BIRTHS

In this section we shall assume that the probabilities of
the release of extra eggs as well as the scission of the zygotes
are functions of the time after commencement 6f the period of
gestation. Thus, the above probabilities depend on the period of
conception. Let u(t) denote the intensity with which a scission

takes place and A(%), +the intensity of extra ovulation at time ¢
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after the commencement of gestation. Suppose we also consider the
prenatal mortality whose intensity is D(t) at time t. Needless
to say that the processess like scission of a zygote and extra
ovulation stop after a certain period (say, t1) whereas the
prenatal mortality continues to be in operation throughout the

peried of conception,

Tiris we have the following probabilities :

(1) i+ 1 zygotes at time + + &t starting with i zygotes
at time t. v = = - = JA(8) + u(t) 7. 5t
(ii) i -1 =zygotes at time % + & t starting with i zygotes
at time t. = - - - - D(t). &t
(iii) i zygotes at time t + &t starting with 1 zygotes at
time to = = = - - = [t - AMt) - u(t) -D(t) /] 6t
(1v) 1 + r =zygotes at time t + &t starting with 1 zygotes

at time t. - - - - 0(5t) for T 2 2.

Also suppose that the process starts with a single zygote
i.e., Prob. (one zygote is formed initially) = P1(0) =1 and

Pr(O) =0 for x¢-1.

Then from the ¢lassical procedure, we obtain the differential
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equation
a Pi(t) :
T = Pi_q(t).(i - 1).B(t) + Piﬂ(t).(i + 1).D{%)
- P (8) - 1. [B(t) + D(3)7 (3.5.1)
a Pq(t)
and  —F—— =D(t) . P,(t) for all i 1

where B(t) = A (%) + p (t).

A solution of equation (3.5.7) is given by

%&)=[%-a&L7¢ﬂ-ﬁ%ﬂjQ[ﬁ&L7“ﬂig1\

(3.5.2)
Po(t) = a(t)
o Y ()
where a{(t) = 1 - =
B = 1 - sy
%
) = S [o(t) -B() ar

- %
and w(t) = e 7 (%) 1+ (1) e 7(7) at/

(Kendall (1948)).
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In the present case, we assume that the intensity of extra

ovulation is the same for all mothers and is given by

t1 -t
?\.(t) = MaX. (0, 2 S t )
1

where, A >0 1is a constant and t1 is the period upto which extra
ovulation or scission is possible. Let the intensity of scission be

given by

U el

+ V.t t

u (£) = mex. (0, = ) where U is

’
a constant. This gives the rate of scission per zygote at time ire
The factor u /(1 + i t) can be considered as analogous to the

decay factor in Polya Process.

Tet the intensity of prenatal mortality be U which is a

positive constant.

Remark 3.5.1 It may be observed that both A (t) and w(t)

are decreasing functions of 1.

Remerk 3.5.2 Since the primary interest in this study is the

ymurber of live births, there is no loss of generality in agguming

that the intensity of prenatal mortality is a constant. However it
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mugt be borne in mind thet this assumption connet be extended further
since pogtnatal mortality rates sre vastly different from prenatal

mortality rates.

Remarxk %.5.3 It is clear that had vwe not consideréd the prenatal

mortality, the resulting process would be the gemeralized Poisson
process as follows: Suppose the intensity of inorease of wzygotes
(either by scission or by release of extra eggs) be B{t). Then

with the same initlal conditions as above, one easily obtains that
i
= K{t
p (1) = oK(®)  LE®)T T
1 it
t
where K(t) = J B(t)a T .
o)

In the above case of generalized birth and death process

B(t) = A (¢) + u(t). For any time +< ¢t

v (%)

U

J”Iv /o) -8(%)/ar

4 2
1 At
Tﬂ"[{(d - ?\.) t1 +1)‘t+- "-'2*—*

]

1 + u,t1
- (LL—-) log (1 + U"b)]
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o
i e.Y(T) T
. 2;2 (7+u)° -(1 +
= e_%quj’e i (1 + pt)
where uw =1 [ty (V- )+ 17,

A closed expression for this integral on the right hand side

is not available even though it is clear that the finite integral

exists (since the integral is a bounded contimious function in the

range (0, t)). This may be evaluated by some approximation formula.

We denote

e S EL B e

Thus w(t) = e ¥ (%) £ g al B

a(t) =u(t)/ [1 +u(t) 7

i

E(t) =1-e "B /v aw) 7

and hence by substitution in (3.5.2) one gets

o, T(8)

Pi(t) = e Y(t) ZTH - ?_I_ETET';7 =t . (1 + u(t))ﬂz;

and  Py(t) = u(t) /L1 +a(t) ] for % <%

1
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Yow supposze % > t1

Y (8) = v(5) + v oo (B~ b))

156 -

U‘(£1) + e (8 | e

O IARE

and Po(t) =
L u(t1) + e

w(t) =¢e Y(t)£1 + u(t.i) + e Yt o (t1) v
L i o 1)
% 1 "E- O SN () | T(t1)_7 |
’ T (t ]
j u(t1) + e ) . e ( 1)
1 + u(t,]) + e 1(¢) - e T(t‘lj
= v (ty)
I 1 +u(t.[) - e
l;( - =
1 rult) ee ) g i
Thus again by substitution in (3.5.2)
Wm0, .. ~
ey(t)[‘l+u(t1)—e 1_71—1 .
Pi(t) = - (6) ﬂt,l) i for i » 1 |
ik +u(t1) + e -e A 2(3.5‘_4)
Kt,) i
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If one wants to incorporate the differential intensitles of
release of extra eggs for type 4 and type B mothers as was done

in the earlier mndel this can be caslly done as follows :

Pi(t) = Pi (t | mother is of type 4). Prob. (mother is of
type 4) + P, (4 | mother is of type B). Prob. (mother

is of type B). (3.5.5)

Now, Pi(t i mother is of type A) can be obtained by inserting the
co??eSponding intensity of extra ovulation, say A 1(t), and similarly
Py (t | mother is of type B) can also be obtained. However, this
imvolves another unknown parameter P = Prob. (mother is of. type B
Note that the probability of any specified i-zygous r-tuplet birth
cannot be derived from the above model unlike in the probabilistic
.model considersd in section 3.4. Thms, in particular, P cannot

be derived from the model and this has to be estimated from the

ganple.

Estimation of pareameters

From the foregoing discussion‘it is evident that the ultimate
model (3.5.4) involves two unknown parameters y(t) and v .

Similarly the model (3.5.5) involves four unknown parameters. Thesa
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parameters can be estimated by the standard method of maximum -likeli-
hood estimation under the following assurmtion @ We tacitly assume
that the period of conception is the same for all mother, say equal

to t,. Then P, (t;) will give the probability of i-tuple births

0.
for all 1. However, since O births cannot ®e observed, we shall

have a truncated distribution.

P, (tq)

i > 1.
= for 12
1 POZtOi

Prob. (i-tuple births)

il

V() T(t,) _
e O ..153 + u(t1) - e ! _7'1"1

[1vuh) vo 0 o TVH) 71

(3.5.6)

for 12 1.

Now consider a random sample of n births and the likelihood

function of the sample can be written as usual.

However, we present here a quick method of estimating the
parameters and hence predicting the chance of higher multiple births

using some approximate formulae.

Neglecting second and higher order terms in v, A or U ,

we have
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LR O S
e = + U"2"'p: t.1
Y(to) ] s
e =1+1)1;O--'(7\/2+.?LL)‘(‘,1 .
and u(t1) = U 12K

Hence, from (3.5.6) we have

-1

Prob. {i-tuple birth) & (1 -« ) ot 3. o
A
(é‘ + U‘) t1
where O =
’ 1 + U.‘to

An estimate of O (by method of mtbments) is given by

I m -~ 1
a = - L
- (3.5.7)
where the norm of the nature of births in the sample is a m-tuple.

Table 3.5.1 represents the data, published in Bulmer (1958),
of multiple births in England and Wales during 1938 to 1955. The

value of m, as computed from the data, is 1.0124. Hence

. .
@ = 0.0123 (using 3.5.7).

Table 3.5.1 also represents the predicted mamber of different
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types of births as reported by Bulmer as well as obtained through
the model describad in this section.

TABLE 3.5.1

Wamber of different types of births as observed, and
as celenlated by different authors, for England and Wales

i Prequency

irths msomes PR Y eent moted

Single 12,149,571 12,147,573 12,150,061

Tyins 150,072 151,946 149,076

Triplets 1,336 1,460 1,341

Quadruplets 21 21 22
Total 12,301,000 12,301,000 12,301,000

Trom the table, it can be seen that the present model predicts
the frequencies of the different types of births more acrurately than
Bulmer's one. The same statement is found to be true when mother's
of different age-groups were considered separately. A comparison
with other models (e.gz., Jenkins, 1927; Das, 1953-56 or Allen, 1960)
are not presented here, as it was seen that they deviate from the

observed frequencies by greater margins.
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%.6  AGE-DEPENDENT MODEL FOR MULTIPLE BIRTHS

Tn the model, discussed in section 3.5, it has been assumsd
implicitly that the inteunsities of extra ovulation is‘the game for
mothers of all age. However, taking the ovidences of section 3.2
into account, it is observed that these intensities vary with the
age éf the mother. The tendency of extra ovulation increases with
the age and then again decreases whereas the tendency of scission
of zygotes slowly increases (which we may, for all practical purposes,
take to be a constant) with the age of the mother. It is also %o
be obgerved that these facts are true for mothers of all types. 1In
thie section a stochastic model which takes this fact into account
ig constructed. For this purpose, we shall not make a distinction

in the type of mother (for simplioity).

Tms we have the starting point as followss For any mother
of age 's', (i) let A(s, t) be the intensity of release of extra
eggs at time t - after the commencement of conceptlon, where for
each fixed 't' A(s, t) satisfies the above vequirement and for
each fixed 's' A(s, t) is as in section 3.5. (11) since the
intensity of scission does not change with the age of the mother,

26 in section 3.5 one can assume that @ (t) as defined there,is
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the intensity of scission. For similar reasons let D(%) denote

the intensity of the prenatal mortality.

Then the probability Pi(t) of i-tuple births is obtained
exactly as in section 3.5, expression (3.5.4), with A(s, t)

substituted for A{t).

One can try many suitable forms of Als, t) as a function
of & for all t. From the empirical studies, as indicated in
section 3.2, one can assume, for example, the form
- (51 - s) t1 - %

Max. (0, Ae .
%

AMe, )

il

) for s 3_51

- O S, Lty = &
Max. (O, A e x

1§

Y for &2 Sy

where « , A are positive constants and Sy is the average age

of the mother where the intensity of release of extra eggs is maximum.
Pulmer as well as Stocks obszerve that the process starts at the age
of about 19 years and assumes its maximum at the age of 37 years

(51) and then there is 2 sudden fall till the age of menopause.

Remark 3.6.7 A model considering the differential intensities of

extra ovilation for different types of mothers can be obtained exactly
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as in section 3.5 and hence details will not be presented here.

Remark %.6.2  Through the form of A (s, t), as suggested above is

discontimious at s = sy, but it doces not bring into any complication,
since for mothars whose a2gs, s 5_51 the process is automatically

different from the one where mother's age, 8 > 8y . However, one can
do away with this diffieulty if, instead of bringing the exponential

term into consideration, he fits a suitable polynomial form in s.

For example, in case of the data for England and Wales (Stocks,

19523 see Table 3.2.1) one can use form of h(s, t) glven by :

t1 - 1t 5
Mgy t) = Max. (O, A . e (ao + 248 + 2,8 1)
where ag = -41.0269
aq = 3.1364
and 82 = -0-0468 .

The parzmeters, 1in such a model, can also be estimated in
a similar manner. However, the method of maximum likelihood turns
out to be laborious in this section and method of iteration has to be
ugsed, though it pays the dividend that these sstimators can be used
for further testing purposes like test of goodness of fit. If one

is interested only in getting the estimates of the parameters, other
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methods iike the method of moments may reduce the labour. It

Jezves therefore, a scope of further analytical as well as empirical

studies in this direction.


http://www.cvisiontech.com

CHAPTER IV

GENE FREQUENCY ESTIMATES 1IN BLOOD GROUPS

A.0  INTRODUCTION

Estimation of blood group gene frequencies was the immediate
provlem after the discovery Af the different blood group systems.
This problem of computing the relative freguencies of the genes
governing the blood groups in a p&pulation had great contributions
from F. Bernstein, A. s, Wiener, R. A. Fisher, C. ®. RBao, W. C. Boyd
apart from many others. Because of the volume of the contributions
it is quite difficult to have a review of the works in a short
space. Therefore in thig chapter we shall consider only two blood
group systems, namely, ARO and MNSs system and study some of the
statistical properties of the estimators arising out of the different
estimation procedures. For MNSs system we shall present maximan
likelihood estimation procedure using two generation data, the
same for A-B-0 system has already been discussed in Chapter II of
the thesis. It may be noted that though our discussions in gections
4.1.1 to 4.1.4 are always with reference to the geuneticsof A-B-O'

blood group system, results obtained herein are also valid for any
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character which has an equivalent phenotype-genotype relationéhip.
Thig follows from Cotterman (1953) who coined the term ‘phenogram'

to formulate genotype-phenotype relations as simply as possible,
especially when multiple alleles are involved. Thus‘the phenogram
z-4-1 implies a genetic system consisting of 3 alleles, 4 phenotypes
and a serial rumber 1. The last mumber is arbitrary, but is necessary
due to the fact that there is more than one phenotype system having
specified numbers of alleles and phenotypes. Under this terminology,
the standard ABO blood-group systém in man has the phenogram 3-=4-1

and possesses the same statistical properties as the leaf pigmentation
system in Coleus, which consists of three alleles P, pG and P

and which generates four phenotypes: green (pGpG and pGp)9 purple
(PP and Pp), erey (PpG) and pattern (pp) (Boye, 1941). An

equivalent system is also found in butterfly Neozyphyrus taxila

with respect to four types of the forewing in females (Komai , 1953).
To this effect, ocur discussions on ABO “elond-group system is also

valid for any charaster having a phemnogram of the type 3-4-1.

4.1 ABO BLOOD GROUP SYSTEM

4.1.0 Geneties of ABO blood groups :

The existence of four main groups of human beings have been
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well established with respect to ABO 'iscagglutination'. The term
agglutination refers to the clumping of the blood cells, and the
prefix iso (from the Greek 'isos', meaning equal) signifies that

agglutination is caused by sera from the same species, man.

These four groups of persons are differentiated from one
another by the immunologlcal properties of both their red cells
and their serum. The red cells of an individual possesses
either one or the other, both, »nr neither of two substances (or
groups of substances) called 'antigens', or 'agglutinogens', A
and 3B; and his serum possesses either one or the other, neither,
or both of two substances (or groups of substances) called antibhodies,
or agglutinins, anti-B and anti-4. Red cells containing antigen 4
are agglutinated by anti~i, cells containing antigen B by anti-B.
The four groups of persons are named after their antigens: A, B,
4B, and C. Not only does every kind of human blood lack the anti-
bodies which would agglutinate ite own red cells - a necessary
condition, since any appreciable clumping would be fatal = but also
every kind of human bleod contains these antibodies which are
compatible with the antigens of its cells. This is depleted in

Table 4.1,
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TABLE 4.1

4RO blood greoups with the antigens and antibodies
present in them

et o O T O
Y None Anti-A, Anti-B
A A Anti-B
B B Anti-i
AB by B Nome

It is cbvious that the existence of four blood groups means
that the gene that controls them must have more than two allelic
forms, since two alleles may, at most, give rige to three different
phenotypes. The now well-established explanation that three multiple
alleles govern the inheritance of the main blood groups was historteally
preceded by another hypothesis. This was based on the assumption
that an individual's blood group was determined by two genes at
independent loeci in two pairs of chrcmosomes. However, contradictions
to this theory were not apparent for many years and in fact the
replacement of this hypothesis by the theory of maltiple alleles
was based on a consideration of the relative frequencies of the

four types of individwals in various population. This was due to
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the mathematician Felix Bernstein (1878-1956). 4 full account to
the two-gene-pair hypothesis and its contradictions are presented in

Stern (1960, pp. 179-182).

Having proven the inadequacy of the two-gene hypothesis,
Bernstein assumed the existense »f threce mmultiple alleles, called
IA, IB, and IO (we shall, here, use the symbols as A, B and Ols
It was further assumed that the alleles 4 and B are codominant
if combined in the genotype AB, but that either allele is dominant in

heterozygous combination with O.

From these assumptions, the frequencies of the six possible
genotypes can be written down under Model I and Modal IT and are

presented in Table 4.2.

TLBLE 4.2
ABO blood group phenotypes, genotypes and their relative
frequencies
‘ . " Relative Fregueney
Phenotype GeRoaPE Model I Todel 1T
e O s 0 .. £ aTme(l-x)
QA 2pr 2(1 = Flpr
2 2
e - AL I p_+Ep(1 - p) _
CB 2qr 2(1 - Far
2
2o & _ . rF{1-a)
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Note : p, ¢ and 1T are the frequencles of the allelomorphs 4,
B and O respectively and F is a constant (0 F 1) with the

game interpretations as in the earlier cases.

4.1.1 Estimation of gene frequencies assuming model I population
structure ¢

The first attempt to obtain _the gene frequencies for ABO
blood group system was made by Bernstein (1925) who suggested that
the estimates of p, g amd r could be derived in the following
manner ¢ We can estimate the freguency of the gene, 0, directly from

the proportion of individuals of phenotype 0O, thus if 0, A, B

et

and AB represent the observed frequencies of the four phenotypes

adding to N, r2 is glven by

H
[
=lol

and hence r' =

(4.1.1)

]

The proportion of type A individuals is

=3 |

= p2+2pr;

and, if we add the proportion of type O individuals to both aides

of this eduation, then
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But, since p+ 4+ r =1, we have

q’ = 1 "\/é—;_o ’ (4.102)
and similarly, p' =1 - V/fi.; q (4.1.5)

The expressions in (4.1.1) to (4.1.3) are known as Berstein's
unad justed estimates. One may note a few statistical properties

of these estimates 3

(1) It is easy to see that these estimators are consistent for
Ps 9y T in their admissible range, .

(2) The sum total of p', a'y ' need not be one always. In
faet p''+q' +rt =1 if

28 I8 _ .| [I+3_ /3 /§+'6'
N ONT TN OTJE VT

(3). It may further be noted that these estimates ape inefficient.

o i i L
However, this problem will be dealt with in greater details in gequel.

Bernstein proceeded a step further to solve the second type

i
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of difficulty as follows ¢ let D be the difference between

and the sum of the estimates, that is

D = 1-p'-q" -7

Interms nf p', ¢! and r' we find

1]
]
e

i
o}
=2+
_n

T“\

—

+
Swl'
1+

ol
‘kh—’\j

i
hel
P

A

1
3
—

.

8imilarty, N = a'(2 - a');

=
¥
+
o

(p' + D)(p' + 27" + D)

B

= {4 +D){a" +2v' + D)

2|

and

1

eadn
-3
b

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

From these he argued that better estimates of p, 4, T 2are given
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[
-
G

by }
i .
Py = P11 +3)
. 1(1 P_) e (4 1 8)
Q = q + 5 .
and re = (2 4 D1+ D)

2 *
D2 D2
which total not to 1 but to 1 - Thug if jr- is small then
Bernstein's adjusted estimates, given by (4.1.8), are fairly good.
We shall later on sce +that though these are not preeisely the maximum
likelihood estimates, but are fully efficient, and hence one may

take their variances and covariances ag those of the maximum likelihood

estimates.

Wiener obtained the following exprecssions for estimating

Ps g and r from ABO data on similar grounds:

oyl 6+I_J§
P lTTE N

, l5+3 (3
q ""'"JT' /N (4'1-9>

and ' =\/%

One may note that like Bernstein's unad justed estimates,
these estimates are also consistent but not efficient and by necessity

they need not 2dd to one.
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An ad justment to these estimates are provided by Fisher as

ol

ro = "—Z“-. /
0+ 4
=8
e -[[ZE LB A
i 1
, 0
and 1 = \/EJ/V
where, V;\/o—;ﬁ + /9__;‘72 " %

(Dobson and Ikin, 1946).

174

(4.1.10)

Yet another method of e¢stimating these p, ¢ and r ignoring

the AB phenotypes can be given zs follows:

Pe3__

E+0 ~ [B+0

% . N N
\/K+3 " [B+0 ©

: N Jy F

3 a_hjx+6

el i e v N N N

A+0 /§+3

N \ N

oy

(4.1.11)

Note that unlike Bernstein ard Wiener estimates, these estimates

always add upto 1. However, the variances of these estimates are
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much complicated.

The most efficient procedurs of ecstimating the gene frequéﬁﬂibé
Py ¢ and r using all the phenotypie frequencies is the method of
maximum likelihood. But unfortunately explicit oxpressions of the
estimates can not be obtained since the maximum likelihond equations
can only be golved by iteration. For complete account of such an
iterative scoring method one may refer to Rao (1965). However, Rao
presented another algorithm which yields the maximum likelihnod
estimators, which appear to be more suitable for desk and ele'ctronic
computers, and which avoids the repeated computation of the information

matrix and its inverse.

Let Por dg» Tg be provisional estimates, and compute
§
Py = Py /ro and Qy = q5/ry. Let us represent by P, and Q
e B approximation of p/r =nd q/r. The (k + 1)th approximations

4

are found from the formulas

L e £ 2 \
A + AR -~ A 2B
= 2(0) + +
Pk4-1 2 + Pk 2 + Q’k
S . _ (4.1.12)
B + AB - 2 A B
=== =2(0) + :
Q‘k+1 2+ Pk+1 o o‘k )

The iteration may be repeated until stable values of P and
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Q@ are obtained, from which the estimates of p,q and r are

computed as

:’l‘.‘\.:—, f} =§P a.l’ld €=;Qo

Since the equations in (4.1.12) follow straightway from the
maximum likelihood equations, the estimates p , q, r given
as above are almost fully efficient and for all practical purposes

can be treated as equivalent to the maximum likelihood estimates.

More Trecently Yasuda and Kimura (1968) manipulated the maximum
likelihood equations to give a gene count method which is also,
basically, an iterative procedure. They claimed that estimators

—

obtained in such a manner are also fully e=fficient.

44%7.2 Comparison of the estimation procedures :

fWe may note that Bernstein's and Wiener's estimates are
consistent estimates of p, @ and r, especially when these are
adjusted in the manner as already discussed. Moreover, it must be
borne in mind that in these two methods the AB~phenotypic frequencies
are purposely ignored while computing the gene frequencies. The

reason of this being, in the language of Fisher and Taylor {1940},
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"systematic errnrs, not all of which are yet understood, do u;'ldmlbtedly
affcet the frequency of the rarcst of the four blood groups, AB.

As a further precaution, we have calculated the gene-ratios from the
other three groups only, as in this way the effect of grouping errors
is diminished”. Taking one of the major causes of these systematic
errors, we see that a given A gene produces less A antigen when
combined in the genotype AB than in the genotype 40. Thus, at
whatever level of discrimination one is working there will always
tend to be an apparent deficiency of AB and thus some AB bloods
will always be recorded as bloods of group B. Taking A to be the
probability of such a misclassification (0 < A < 1), the expected
frequencies of 6} K} B and AB in e random sample of N

individuals can be given as 3

£(0) = N.rg, BE(R) = N(p2 + 2pr), HB) = NZTQQ +2gr + 2 A\ pa_/
and B{BY = 20(1 - 2 ) Pg.

In such a cases; it can easily be shown that, Bernstein's
estimates py, 95 ¥, as given by (4.1.8) are no longer consistent.
In expectation pPys Gy, Ty, differ from p, ¢ and r respectively

by amounts a, b and c¢ given by
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a =%/ p(1-p) - p\/:(~1 _;)2:;1;1 - 2apa_/

s 2&[\/’(1‘_@)2 + 25 pg - {1 - WA

and o =%[\/(1¥p)2 + Eipq - (1-0)_ 7/ % V(1-p)° + 22pg
- 3(1-p) + 142/

For studying the significance of such deficiency in AB-freduencies
Pisher (in Dobson and Ikim, 1946) suggested a 5 gtatistic given
by

(2 TEE+DE:T)

with 1 d4.f.

where, w =V ¢ Zfbbtained from expression (4.1.10);7

w =~ (0 +4& + B)

"
[

and 7 = x - AB,

However, because of the simplicity of the Bernstein'a and
Wiener's method one may be more interested to evaluate the efficiencies
of these methods. This problem was congidered first by DeGront (1956)
though snme of the points wers mentioned by quite 2 few authors
earlier (Bermstein, 1930; Stevens, 1938; Boyd, 1954, 1956 and
Sukhatme, 1942). In his comparison, DeGroot cnmsidersed the varlances

of each gene freQuency separately rather than simultanecusly dealing
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with all of them. In other words, his comparison is based on the
variances of the estimates, and the covariances between the estimates
were not brought into use. We ﬁnw proceed to compare the efficiences
of these methods using the concept of the generalized variances
(determinant of the variance-covariance matrix). First of all, we
record the covariance matrices of the estiﬁators which we have

studied earlier.

Covariance matrices of the estimates @

Stevens (1950) has derived the elements of the information
matrix of the meximum likelihnod estimators. DeGroot (1956) obtained
the variance formulas from those after a great deal of eimplification.
The covariance matrix of the maximum likelihood estimates was obtained

as

pqﬂ,) pa(1 —p—q+r)

(4.1.1%
)

L) of(1+

pq+r pq+r

p(1-p) 1 2 (1+
|

-pq a(1-q) pa(t -

using the simplification of Li (1956). N, here, denotes the total

number of observations in the sample.

The covariance matrix of Bernstein's unadjusted estimates
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is given by (Sukhatme, 1942).

[p(1-p) i 2 \ T _y-
3 ~pd 1 -
v 1 1 1 P Pq( pq+r)
B 72N * N (4.1.14)
T 2
rq a(1-q) L pa(1 - pq+r) q |
and the corresponding matrix for Wiener's unadjusted estimates is
seen to be
. R . .—I 2
p(1-p)  -pa p*(1+ S%—)  pa(1 + ;Lr)
W T 2N i 1 5 ! (4.1.15)
-pg  a(1-q) ] palteos) a1+ sl )
L g~ +ar

The first components in (4.1.13), (4.1.14) and (4.1.15) are
the eovariance matrices that would have been obtained had there
been no dominance, and thus, the exact number of 4, B and O genes
were known in the sample of 2N genes. Thus, these forms of the
covariance matrices show the effect of dominance relationships

between A, B, 0 genes on the methnds of estimatiom.

The covariance matrices of the adjusted estimates of
Bernstein and Wiener do not appear to have been published. However,
Neel apd Selmll (1954) point out that these estimates, although not

precisely maximum likelihood cstimates, are fully efficient, and
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consequently one may use the covariance matrix of the maximum

likelihood estimates for them.

Efficiences of the three methods @

The efficiency of an estimate is defined as the ratio of its
variance to that of ths maximm likelihood estimate of the parameter
(Stevens 1938, Fisher 1950, Mather 1951). In this case we shall
be using generalized variances of the estimators instead of the

variance expregsions.

To show that Bernstein's unadjusted estimates or Wiener's
estimates are not fully efficient, suffice it to show that W’Bb_
or Vgl 2 iVt . One way of showing this (without computing the
determinant directly) is to show that Vg =V and Vy = Vy ore
positive semi-definite matrices. Onece this is shown the rest followe

immediately (Rao, 1965).

It can bo seen easily that

o Do e Bl (4.1.16)
B~ 'M T 8N * pgrr 2


http://www.cvisiontech.com

. 2
i (2-p) paA+2T+2

A pa
Vg - Vi "By DA+T (4.1.17)

DA+2TH2 (2-q)2
are positive semi-definite matrices. Ineidentally, it may be
pointed mut here that the determinants of both the matrices (4.1.16)

and (4.1.17) are equal to zero.

Similar comparison for Bernstein's and Wiener's methnds is
not worthwhile becaunse

2(1-p) “+r

d0 L pal
Vo = VB T AN T pa+T

1+ 2(1-a) |
ia indefinite. ' -
. - t N 1
It can be noted from the matrix VW VB that Vw(p ) L_VB(p )
and V,(q") Z_VB(q') for all values of p, @ and r although
L))
{ Vg - vyl £0 always. From the fact that V., - V5 I1s indefinite,

it follows that there exists a linear combination of p' and 3

such that

Vplap' + pa’) < Vplep' +ba'), (4.1.18)

st least for some values of p, ¢ and T.
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Construction of such linear combinations will be only of
mathematical interest butbt it is easy to show that conditien (4.1.18)

is satisfied for a and b determined by

(a+b) [a(t = p) +b(1 -q) J< 0 (4.1.19)

Of eourse, for evaluating the efficiencies explicitely one

needs to compute the determinants. Thus one gets

R 2 ‘
vBi o, 2apg+ - x7) 5 (4.1.20)
PV t (pa + r){(pa + 2r + 2r°)

That the second part on the right hand side of this equation
is always positive reflects the fact that Bernstein's estimate is
not fully efficient. One simple upper beund for this ratin happens

to be

AR R L, P (4.1.21)

It is evident that the ratio in (4.1.20) approaches the value
1 for p or g-values close t0o zero. So, for the populations where
A or B genes (or both) are rare ennugh (e.g., imerican Indiane

and Barly Euroﬁeans represented by their meodern descendents the
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Basques, Levin 1954) the dividend of the relatively involved

computations of maximum likelihond estimates are nnt paid in turn.

Comparison of Bernstein's and Wiener's methnd gives the

ratin

ot

i - 22
VW? . 14409+ par(4 - ) 4 or(1 - 1°) (4.1.22)
IVpi 2(pg + r)2 + rg(pq + 2r)

Since the seccond term on the right hand side of this expression
is positive for all values of p, @ and r, it is clear that tVW§ is
always greater than }VB;. But in this casc the ratin has an upper
bound »f 3 unlike the case as described by DeGront (1956) where the
ratio Vw(p')/VB(p‘) grows large without bound. On the other hand
the ratio is close to 1 when p or g (or both) is small. So,
the Bernstein's or Wiener's estimates have high efficiency omly

when the frequencies of A or 3B genes (or both) are small.

As an example, for Indian powulations (taking P, 4 and r as
0.18, 0.25 and 0.57 respectively; Mmurant et al. 1958) one can sce
that Bernstein's method is as of ficient as 98.85 percent whereas
Wiener's method is nearly 56.69 percent efficient as compared to

Bernstein's method.
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4.1.3 Identifiability of Model T population :

So far we have discussed the prrcedures of estimating the
gene frequencies p, q and r when the population has a Model 1
structure. This assumption is quite serious since any deviatinn
from it will attach no physicazl meaning of the estimatés. To gay it
more explicitely,lone may always equate the observed O, A, B and AB
phenotypic proportions to rg, p2 + 2pr, q? + 2qr and 2pq respectively
and solve for p, ¢s r subject to ~he condition P + 9Q +’r = 1. But
these solutinns nzed not be the actual proportirms in whioh &, B,
and 0 genes exist in the population unless the underlying population
structure is of Model I type. Moreover, it must be stated that
whenever in a population ABO blond groups phenotypes are seen in
above stated proportions, cone should not deelare that the population
is under pammixia with respect to 4BO blood groups with A, B, O gene
frequencies given by p, q and r respactively. In this gection our
contention is to prove a thearem showing that such a declaration

will often be erroneous and hence should always be carefully avnlded.

To dn that let us reecall the set-up of Wahlund's effect and
sec how that is extended to multiple alleles by ILi (1969). We have

geen earlier that in a population, consisting of k mendelian
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isolates each of which practices random mating with respect to a
character expressed by two alleles 4 and a (whose frequencies
I TN LT Py p; and 4, respectively), the frequencies

of the threce genotypes Ah, La and aa are given by p2 + o p2’

2pg - 2 o‘p2 and q2 +g p2 regpectively, where p::iwipi s 1=

the average frequency of A~gene in the population, ¢ p2 = yariance
of the gene frequency (p) among the isolates, and W= relative
ith 2 2

isolate. We may note that Gp = O, ==

gize of th o
© q b4

(since for all i =1, ..., ks p; +4y =1).

With three alleles A'i’ A2, A5 (frequencies Py qi and T,

respectively) the genotypic frequencies in the population can be

designated as follows:

& % A5
J‘—.1 P2+G1 pq+0'12 PT +0‘13
;A pa + 9, ¢ + 0‘22 ar + 9,5 (4.1.23)
i3 Br4Cy et Ty ¥ 40y

where, 0'12 = Ewi pi2 - p2, is the variance of A1 gene frequency

among the isnlates and 0‘?2 = Zpi ql w. = pq , is the covariance

of the frequencies of A&, and A, etc. Li (1969) has, further,
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shown that these variances and covariances are related on aecount
of the restriction Py +q; + Ty o= 1. In fact, all the covariances

may be expressed in terms of the variances

) 2 2 2
20,,= 05 ~ 0 =0y
2 2 2
) — - =
2 13 62 01 63
2 2 2
S ., =
2 23 61 02 63

.2
6,5+ 0+ 05 = O
2
o = : n,
1t % * Vpz g
2
4] (4] = -
157 oz v O3 2

In case of ABO blood groups since there is dominance relation-
ship between the alleles A, B and O, replacing the A1, A2 and

4. alleles by 4, B and O respectively one has the proportions of

3
the four phenotypes as
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d AB L] L] L] . . 2 + 2 [ ]
an 8 “pa

The variances and the covariances, in this case, satisfy

the relations :

20 =0’2-0‘2—-0'2
pa T T 1
AR S 2
pr q P =
2 = 6'2 - O ¢ - 0'2
gr  °p q T

Again remembering that p, 4 and r are the averages of the quantities

lieing between O and 1y, one has

2

4 <q(1-4q) and o_, < p(1 -a) oral(t ~p)

2
1) < 1 - < e
s D _P( P)y pa

Now put r, = J\/J:-z + o

(4.1.24)

2 D \/_2 2
and. C‘* =\/(q + I‘) + 0 (q+r) - r +G.I'
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One gets from (4.1.24),

g 2 2
= a
S ST G-
2
+2 = o
Py Dy Ty, P+ 2pr + . + 20 e
and qi + 2q.r, = q? +29r + @ =g 20 o

Now if p, + a, + r, = 1, then

2 .2 2
T= (o +q +1,° +2p,7 + 2q,1,)

2D, Gy

1]

1= [0 v o) + (G v 2z + &P e 0 DT

Il

2pgq + 20‘ Zfélnce 0'(p+q+r) Q;7 5

Conversely, if 2p,4, = 2pq + 20‘pq , thenp, +q, +r, =1,

Thus we complete the proof of the theorem stated as follows:

Theorem 4.1 A mixture of random mating races with average 4, B, and
0 gene frequencies p; q end r respectively carmot be distinguished
from a homogensous random mating population with gene frequencies

Pys I and T, respectively, if and only if p, + 4, + Ty = 1

where, \/kp+r)2 N ay =\/(q+r)2 +o-i i

and r, = \/r2 +o’r2.
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To make the picture a more concrete one let as consider
the following example. Consider a population which is, in fast, a
mixture of two mendelian isolates where the 4, B, C gene frequencies
are 0.0300, 0.1688, 0.8012 and 0.57C0, 0.7488, 0.2812 respectively.
Agsuming that the relative sizes of these two isolates
are 0.5 and 0.5, one has the averages A, B, 0O gene frequencies

for the whole population as

- 'f.
p o= 9—9§ﬁ§—9—21 ~ 0.3000

0.1688 + 0.1488

g v : = 0.1588
g o Qu8012 ; 0.2812  _ 4 caqp

But, without knowing exactly this faect, if we proceed to
obtain the gene frequencies by Wiener's formula, we obtain py = 0.25,
g, = 0.15 and 1, = 0.60 under the assumption of random mating.
Thus a mixture of such two isolates will depict the same phenotypic
frequencies as depicted by a homogeneous random mating population

with, of eourse, different gene ratios.

4.1.4 Model IT population and estimation of parameters @

The phenotype frequencies of the four blood groups O, A, B
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and AB For a Model ITI population are already shown in Table 4.2.

In this case, thus, we have three linearly independent parameters,
namely, p, ¢ and F (r being related through r =1 ~p - q)« There
had been lot of controversies regarding the estimation of these
parameters. In particular the question of reliability of the estimates
(even the asymptotically most efficient maximum likelihood estimates)
is still a debatable topic. Sehull {(1965) appears to be the firsy
anthor to give the maximum likelihood estimates of p, q and F
explicitly. Later on Sctull and Ito (1969) have showm that the
maximm likelihood estimates of p, g, r and ¥ are obtainable by
solving simultaneously

P 421 - 2)F =T, o° + 207 4/ p(1 - p) - 22 /¥ = K,

2 —— —— ——
¢ +2q9r+ /(1 -a) =29z /F =B, 2pa{1 ~ F) = 4B
where '3, K,'ﬁb and AB are the observed relative frequencies

of the phenotypes O, 4, B and AB. Solution of the above set of

simultansous equation yields :

S w22 L7 -8 + 2B QE. B+ )T % |/ [405 + 29T

Lo

A=/ -0/ [2G-5+5)7, r=1-%-1

i F=(0@-3)/@E-%) (4.1.25)
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where Z =4 A . AB &AE.§+4'§.E§+3E2 .

Theugh these are vhe explicit expressions of the maxlmum
likelihood estimates, in order to obtain the asymptotic variances
of the estimates one has to follow the alternative standard technique
wherein the estimates of p, 4, r and F are derived by setting the
partial devivatives with respect to p, q and F of the log 1likelihood
fanetion equal to zers, and solving similtaneously the resulting

set of equations. Thus we have to solve the set:

\
3 o/ 2r + (1 - 20)F_/ & er + (1 - 20)F_/
U === - i
PP v+ o(1 - )P p2r2ore/ p(1 - p) - 2pE/¥
B/ 2q(1 - )./ .
q?+2qrﬁz_q(1 - ) - 2qn;7F ’
m 0/er+ (1-2m)EF7 L[ 2p(1 -9)7 10(4'1'26)
U, = 2= - - =
¢ 4 r2 +r (1 - T)F p + 2pr+1rb {1 -~ p) = Zpr;jﬁ
B /[2r+ (4 -Er)FJ
+ = 0,
& + 2ar + [a(t - q) - 2qr_fF
L. B0-n_ , _Aa-w) B(q - )
P~ T+ (1 ~2F " T+lr+{a-1)F "q+ar+ (p=-1)F
)
- = L0
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Normally, one would resort to an iterative procedure to solve
these equations using the information matrix with respeect to p, q

and F.

Yasuda (1966a, b) has showr that Up, U, and U

q i when

evaluated at F = O are related by

Up = - &) T - 3y

wiich indirectly proves that the information matrix is singular
and hence cannot be inverted when F = 0. We note that from (4.1.26),

in general,
U+ B0 + DU ~ 0 as F> o0 (4.1.27)
F 2’ “p 2 aT

and the efficient scores UF’ U?, Uq are all contimuous throughout

the parametric range (0 L p, 4, F £ 1). Schull and Ito thought

that Up is not contimwous at P = O. (One may note that the
observation regarding the contimuity of U, at F =0 ig also

F
noted by Yee and Morton (1970) in a letter in Amer. J. Hum. Genet.).

FProm the above pnints it is clear that (1) At F = 0, since
the information matrix is sinmular one cannot adopt the iterative

procedure and hence the asymptotic expressions of the estimates
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canmot be nbtainzd, (2) When ¥® is very small (at the levels of

F  which can be observed in mman populations), even in very large
samples the ABO and similar systems provide negligible information
about F, (3) Working out the explicit expressions of the elements

of the matrix, one can notice that determinant of the information
matrix converges to zero as F =5 O (which indirectly fnllows from
property (4.1.27)). This shows that asymptotic generalized variannce
of the meximum likelihood estimates is large enough as tn question

the reliability ~f the estimates.

Yee and Morton (1970), through an empirical study, has also
shown fthat the standzrd error of the estimate of F ies enormous
but for the extreme values of F which are absurd so far es human
populations are concerned. Their empirical works suggest that it
is very difficult to distinguish between Mndel I and Model II
population for realistic values of F. TFor a ready verification
of these two facts we reproduce their results in Table 4.3

TiBIE 4.3

Maximum likelihond estimation of F for ABD systenm
(p =0.22, g = C.16, r = 0.62)

F

~0.5 -0.05 ~0.005 0 0.005 0.05 0.5
;gz 637.00 0.07 0 G 0 0.07  942.00
o 0.012 0.097 0.540 ® 0.930 0.090  0.006
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Source : Yee and Morton {1970).

Moreover, for the general case of multiple alleles, it has
been argued (see Li and Horvitz, 1953) that since the method of
maximun likelihood does not yield the usual gene frequency estimates
(this being true in the present case alsn, which can be verified
through (4.?.25)) it may be best tn aceept the conventional values
and estimate F under this set of eonditions. As an example, let
us consider a sample of 115 individuals of whom 49 are of type A,

35 of type B, 24 of type 0, and 7 nf type AB. Equations in (4.1.25)
lead to an estimate of F of 0,7781, whereas the other leads to

an estimate of approximately 0.00005. 4L direct estimate of F  within
this population gives rise to a value of about 0.006 (Schull, Yanase
and Nemotn, 1962). Thus, if one accepts this latter estimate as the
"true" value, then both methnds would appear to be off by a factor

of 120 or so, but in different directionsh.

All these only suggest that for human populations (wherein,
generally, ¥ is in the vicinity of zern) some other estimation
procedures are to be explored, especially, for estimating the so
called inbreeding coefficient, F, from ABO phenotypic bicassay though

it is c¢lear that other data structures may require or profit from
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other methods of analysis.

Detection of ¥ from ABO blood group data :

We have already stated that Yee and Morton's empirical works
suggested that even for a large sample the presence of F cannot be
detected but for unrealistically large value (like F = i,0-5)- Rerein,
we study the problem a bit more analytically and tabulate the minimum
sample size required for different levels of F-values. The problem

is tackled by a consideration of the power of a 7&2 - test.

If we denote the 0, 4, B and AB phenntype frequencies under

Mndel 1T by Tys Tos n5 and Ty respectively, then we have

Ty = iy & m=Ea

i i \/;l

*
where Ty 's are the corresponding proportinns under the Model I

poypulation structure (mull nypothesis F = 0) and

¢y = Fr(1 - 1) v

¢, = Fplg -r) vn

0; = Palp - 1) Ja
and G, = - 2Fpg Jn


http://www.cvisiontech.com

157

n, being the sample size.

To detect any deviation (F £ 0) from Hardy-Weinberg proportions
(Model I) one employs a non-central 7&2 - test (see Chapman,

1968) whose non-centrality parsmeter, X, is given by
. 2 *
r =3 [o, ' Tyt otk

Z

- 2 r 2 P B
=nF /2pqg + (1 - 1)+ ST on

+ 3£5L5—513_47.

q + 2r

From this expression the minimum sample size, n, can alsn be
determined to detect a specified level of inbreeding coefficient
by 2 o -level test procedure with power 8 . Notice that A ,
the non-centrality parameter is completely specified nnec we know
the level and power of the test prncedure (Oowen, 19623 Johnson and

Pearson, 1969).

Table 4.4 presents the minimum sample size, n, required to
detect a specified level of inbreeding crefficiznt for different
Py 4 combinations. It can be nnticed that for levels of F, which
are observed in natural populatinons (i.e., less than 5 per cent)

the required ssmple size is hopelessly large which indicates the
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absurdity of the detection nf F through thig analytical procedure.

It is worth mentioning thet such a treatment is also given by Ward
and Sing (1970) wherein they considered the simple cases where the
genes at the locus of interest have nn dominance relationship between
them. In such a case, of course, the non-centrality parameter A ,
and thereby the sample size reduired, dnes net depend upnn the
relative frequencies of the genes concerned. The similarity »f
guch a case with genetic correlatinns (see Chapter I) is worth

observing which indirectly suggests a possibility of detection of

7  through the genetic correlations.

TABIE 4.4

Sample sizes to obtain a specified power 8 , using an o size
test procedure for vatious valucs onf p and g-

( a=10.01)
p = 0,75, g = 0.15
F R = 0.2 8 = 0.5 g = 0.9
0.0001 1555166667 3430666668 T688000003
0,0005 6206666 137226666 207520000
0,0010 15551666 24306666 T6880000
£.0050 622066 1372266 3075200
0.0100 155516 243066 768800
0.0500 6220 13722 30752
0.7000 1555 2430 7688
0.2500 248 548 1230
0.5000 62 137 207

1.0000 15 24 T6
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TABLE 4;.4 (continued)

o

D= 0.75, @ = 0,15

F E = 0.2 £ = 0.5 T =058
0.0001 1053500000 2324000000 52 08000000
0.0005 42140000 92960000 208%2 0000
0.0010 10535000 22240000 52080000
0.0050 421400 929600 2083200
0.0100 105350 232400 520800
0, 0500 4214 9296 20832
0.1000 1053 2224 5208
0.2500 168 271 833
¢.5000 42 92 208
1.0000 10 23 52

p = 0.20, g = Q.25
0.0001 887823529 195852 1008 4388974790
0.00C5 55512941 78340840 175558991
0.0010 8878235 19585210 43889747
C.0050 355129 783408 1755589
0.0100 88782 195852 428897
0.0500 3551 7834 17555
0.1000 887 1958 4388
0.2500 142 313 702
0.50C0 35 78 175
1.0000 8 43

19
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TABLE 4.4

(Contimed)

200

p = O|259 q\ = 0125

F 8 = 0.2 £ = 0.5 b= 0.9
0.0001 752500000 1660000000 2720000000
0.0005 30100000 66400000 148800000
0.0010 7525000 16600000 37200000
0.0050 301000 664000 1488000
0.0100 75250 166000 372000
0.0500 3010 6640 14880
0.1000 752 1660 2720
0.2500 120 265 - 595
0.5000 30 66 148
1.0000 i 16 37

p = 0,15, @ = 0.15
0.0001 640666666 1984000000 5430166669
0.0005 25626666 79360000 217206666
0.0010 6406666 19840000 54301666
0.0050 256266 793600 2172066
0.0100 64066 198400 543016
0.0500 2562 7936 21720
0,1000 640 1984 5430
0.2500 102 317 868
0.5000 25 79 217
1.0000 6 19 54
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TABLE 4.4 (Continued)

D = 0.20, 0 = 0.20

P 5 = 0.2 E.=0:8 £ = 0,9
0.0001 434000000 1344000000 3678500000
0.0005 17360000 53760000 147140000
0.0010 4340000 13440000 26785000
0.0050 173600 537600 1471400
0.,0100 43400 134400 367850
0.0500 1736 5376 14714
0.1000 434 1344 3678
0.2500 69 215 588
0 5000 17 53 147
1.0000 4 13 36

p = 0,20, g = 0.25
0,0001 365747899 1122638655 3100008403
0,0005 14629915 45305546 124000336
0.0010 3657478 11326386 31000084
0.0050 146299 453055 1240003
0:0100 26574 112263 310000
0.0500 1462 4530 12400
0.1000 365 1122 3100
0.2500 58 181 496
0.5000 14 45 124
1.0000 3 11 21
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TABLE 4.4 (Continued)

p = 0.25, 9 = 0.25
7 T 0.2 E- 0.5 £= 0.9
0.0001 310000000 960000000 2627500000
0.0005 12 400000 38400000 105100000
0.0010 3100000 9600000 26275000
0.0050 124000 384000 1051000
0.0100 31000 96000 262750
0.0500 1240 2840 10510
0.1000 310 960 ' 2627
0,2500 49 153 420
0.5000 12 38 105
1,0000 3 9 : 26

4.2 MNSs BLOOD GROUP SYSTEM

A4.2.0 Genetics of MN3s blood groups ¢

The MNSs system can best be described in terms of two loei
on a single chromosome and very closely linked. One locus is occupied
by either M or N, the other by 8 or s. Each of the genes
M, N, 8 and 8 gives rise to a corresponding antigen, recognisable

by agglutination of the red cells with the approprizte antibody.

There are thus three MN phenotypes M, MN and N, corresponding
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respectively to the genotypes MM, MN and NN. It is in terms of

these that meost anthrojpological works have been done. The discovery
of 3 doubles the nunber of phenotypes and inereases the number of
genotypes to ten, as shown in Table 4.2.1. Anti-g, being the rarest

antibody of this lot, is generally neot available for anthropological

works.
TABLE 4.2.1
Genotypes and Phenotypes in MNSs system
Phenotypes Phenotypes
(Tested with (Tested with Genotypes
entl-M, -N, -5) anti-M, N, -3, -g)
o = B P e e = B e o MsMs _ __
M3 MS MSMS
" MSs MSMs T
MV Mis MsMs
MNS MNS MSWS5
MNSs j M5Ns
IMeNS
N Ns NgNs
NS NS NSNS
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4.2.1 Estimation of chromosoms frequencies under Model I population

Structure: phenotypes detected by three sera :

As the Table 4.2.1 indicates, if anti-g serum is not used, one
can only identify siv distinct phenotypes and one may note that the
systens involves four different chromosome structure, namely, Mes, MS,
Ns and NS. We denote the relative frequencies of these ghromosomes
by B> Mgy N and Dy and the observed proportions of individuals in

each of the six phonotypes by M, MS, MN, WNS, W, and ¥5. The expected

values of these proportions, under Model I population structure,

are
- 2
E(M) = m E(INS) = 2(menS + mgn, + mSnS)
2 2 :
E(MS) = my” + 2 mgn, E(W) = ng (4.2.1
e, 2
() = 2 mn E(NS) = ng” + 2 ngn

It is easy to note that n = m., + n represents the frequency

S
of the M-gene if the other locus (occupied by S or s) is completely
ignored. Similarly, n = Ng + ng represents the N gene frequency,
8 =m +n, the s~gene frequency znd § = mg + ny the rf-gene frequency.

Note that mS + ms + nS + nS = 1,

m is estimated by the usual 'gene count' estimate
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| B

—_ e 3
m' =M + M + +"ﬂ?ls"

6(4.2.2)

and hence the estimate of n 48 nh' =1 -~ m's. These are also

the maximum lilelihood estimates (see DeGroot, 1956) having variances

as

[

v(8) = v(n') « B2 | (4.2.3)

where G is the total mumber of individuals sampled. Mourant

(1954, pp. 220) proceeded to estimate & w=s

AN RY. ﬂ"'ﬁ"i‘ﬁ (4-2‘4)

the explanation of which is evident from the expressions in (4e241)

e g
L

and thus he obtained : , ‘Ww'wy:

mé = m' /B / WS + T) | | (442.45)
nt o=nt JF /G 4B,

It is to be noted here that mé + né need not add to s8'. The next
step ig to adjust them so that they do so. The adjustment was done

as
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In terme of the observed phenoiyplc proportions

no_ (2M+H) ﬁ[};{ \/g . 6
" T Cwem) i + (me2w) R (4:2.6)

shere, M = M5 + M , H» M08 + N , N = F5 + §

Tts variance is unknown ‘and difficult to obtain.
A much simpler wethod of estimating n and n, hae been

suggested by Wiener (1954). The estimate for m, , for instance,

:
12

et ST ema+w + U - JFT (4.2.7)

Boyd (1956) obtained its variance as

2
1 -4n° +24mn /s
Vo) w——p (4.2.8)

Poyd (1995) discusced the simplifications of mathematics
resulting from é reparemetrization glven as g = ms/m and 4 = ns/n.
We can interpret® & as the condltional probability that a chromosome
is m given that a M gene is there and d c¢an be interpreted
analogously. Note that with this one has to estimete only three

linearly independent parameters m, g and d, 2ll lieing between

13
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gero and one. Wven with this reperametrization the maximum likelihood
method ig a long and time-consuming one. Bub since mexioum likelihood
method provides fully efficicnt cetimates, 1t 1s good to know the
asymptotic variances of such estimntes for one can use them to

evaluate the efficiencies of the other simpler methods. DeGront (1956)
made a study of the covariance structure of the m.l. estimates. He

obtained the varisnces and covariances of g' and d4' as
A

Y- g2)(2an + gm - ngd> - @i%)
V(g') = 5 25
1om/ (gn + an)* - g°a°7

a(1 - dg)(2gm + dn - mdgg - dg?)
AGn/ (gn + an)? - g2d2_7

- @d(1 - )1 - &)
er[(gm + dn)2 - g2d2__7

12 (4'2-9)

via)

cvig',a') =

y

Pinally, for the variances and covariances involving m' + n', he
had 5
V(n') = v(=") l
!

ovim, n') = - V(m") | (4.2.10)

cv(n', ') =cv(n', g') = 0

ovin', g') = CV(a', ') = C.

In terms of (4.2.9) and (4.2.10), DeGroot wrote down the expressions
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of the variances and the covariancos of the estimates of +the ghromosmme

frequencies.

DeGroot and Li (1960) presented yet another method which ie
eomputgtionaliy'much gimpler and ye? almost as efficient as the
maximum likelihood method. Like Mourant (1954) they also estimated
m and 8 By means of the expressions (4.2.2) and (4.2.4) and then

mand ns were eatimated by

5 i,
m; = (-2—21—;;—'-@) g! and n; & (..Z_NR'*'—MH) gt (4-2‘“)

Variances of these estimates were obtained as

2 i

V(s') = b = o
4 2 2
(1) Ag Mg Py g 1 - 52
-V m: = k=l +‘ .
- 2G 82 52 52 4
2
( ) m_n ng 4 S2 iz (l . 12)
V 1’1’ = + . 1 < *
s 5 S? SZ 4G
nlm, - o )
b 8
vy e
V(ms} = V(MS),..,—I- oG
mi(n, - n_)
iz =l 1 n s TR
v(n') = V(nl)-+ —5g J

3

From (4.2.8) and (4.2.12) it is evident that
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(m, = ns)z
Wigner's V(m') = DeGroot's V(m!) + ————
° 5 16 ¢ 8

and thus unless m, = nB,.DeGroot énd Li's estimates are more efficient
than thnge of Wiener's. However, such a general statement sheuld be
made only after eompsring the generalized variasnce of the estimates
analytic solution of which is yet to be in literature. Analytic
comparison of these methods with the maximum likelihood one also

does not appear 4o be published ti1li now. DeGroot and Li, however,
geve an illustration to shov that the standard errors of the estimates
obtained by their method, though larger, but very close to those of

the maximum likelihood egtimates.

4.,2.2 BEstimation of chromosome frequencies under Moder I population

gtructure : phenotypes detected by 4 sera

Use of anti~s sczrum enables us to identify as many as 9
phenotypes. Only the genotypes MSHs and MeWNS are not distinguishsable
{see Table 4.2.7). Because of the heavy amount of labour involved
fo&rcomputing the maximum likelihood estimates in certain cases,
particularly when it is sufficient to work with zn estimate considerably
close to the m.l.e's, it 1g necessary tn get a quicker estimate which

may not be that efficient as the one already told about. BSmith (1957,
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1967) discussed the gene-count method in general for multi-allelic
systems. Herein we develop a counting method to bbtain the estimate

of the chromosome frequencics. Though, strictly speaking, the estimates
thus obtained are inefficient, but advantage of this method lies in

its computationzl simplicity.

In a sample of G unrelated individuals from a Model 1
porulation, let the observed and expected frequencies of the 9 phenotypes

are given as in Table 4.2.2.

Now, the estimate of m 1is easily obtained by counting as

L) %_'2 dn1 + 2n2 + 223 + r.l,4 + n5 + ns
2G 2G

(4.2.13

where E1 = Mumber of M-gene in the sample.

and so0 n! =1 -m',

The variance of wm' and n' are same 28 Iin the expression

(4.2.3).

Egtimation of g a2nd 4 ¢ Let E3 and 34 denote the number
of Ms and Ns chrouosome in the sample respectively. Now from Ms,

¥Ss and Ns individuals we get a contribution of n, + 2n3 + 1 %o

B

By and from Ns, NSs and MNs individuals the contribution being
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+

ng + 2n to EA'

n6 9

From individunle of +type MNSs we have the contributions to

E E i y
3 and 4 in the ratio .

g(1-d) ) d(i~z)
g(1-3) + a(1-g) * g(1-a) + a(1-g)

Thus, from the whole sample

A}
N g(1-4) '
EB = HE + 21’15 + 1'16 + n5 . g('l-@ n d(1-g)
2(4-a) (4.2.14
7 B =&
E4 = ng + ng + 2n9 + n5 . g(1-d) T &(1-g)

These expressions being dependent on g and & cannot be
computed unless we have some provisional estimates of g and 4&.

Fairly good provisional estimates of g and d are given by

——

n n

5
;l.l ¥ ﬂ2 + I‘l5

snct 2y =\/n7 + g +ng

Using these we got the chromosome count nf HMs and Ns by

formilae (4.2.14).

The improved estimates of g and d are given by
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TJALBLE 4r -2 02

Observed and Expected frequencies for all phenotypes
Lrx M3s system under random mating

Obaecrved

Phenotype Proquencies Bxpscted proportions
M8 n m52 n° (1=g)?
M3s n, 2mem 2m2g(1 ~g)
Me n5 ms2 m2 g2
MNS n, 2mony 2mn(f-g) (1-a)
HNSs ng 2(mgn_+m n.) 2mn(g+i-2¢d)
MNs né ZmSns 2mngd

2 2 2

NS ng ng n“(1-a)
NSs ng 2angn 212 (1-4)
Ns n9 n52 n2 dz

Total : G 1 1
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z, (1) B, (1)
" F M T R

where E5(1) = Nawher of Ms chromosome in the sample (with provisional
gstimates g(1) and d(1)).

E,(1) = Number of MS chromosome in the sample (with provizional
& )
satimates g(1y and d(j)),

=By - E3(1).

E_(1) = Namber of Ns chromosome in the sample (with provisional
5
entimates g(1) and d(1)).

and Eé(i) = Number of NS chromosome in the sample (with provisional
estimates &(1) and d(1)).

= E2 - E5(1).

. o+ EE being equal to 2G.

This proccs= con be repeated unless g and 4 values are
stable. But the mmber of steps can be reduced by using the ordinary
poximum likelinhood adjustments. This pracedure involves the
compuation of hidden variance matrix and the infrrmatlion matrix, detailed

indication of which is given in Ceppellini et al. (1955) and Smith (1957) .
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Numerical Example

Por illustration let us consider a somple which was tested with
four sera by Race and Sanger {(1951). The phenotypic frequencics being

ny =18, ny = 45, ng = 19, n, =5, ng =45, ng = 51, ny =2, ng = 11

and n9 = 33,
So B, = 265, B, =193
26 = E.1 + E2, = /58
E,
Consegquently, n' = == = 0.57860%

2G

and -n‘ = 1 -m' = 0,421397.

Mhe estimatc of their error - varianpes are given by

9'95' ~ 0.000532.

The provisional cotimates of g and & are

19 5 1
81y ~ \//18 + 45 + 19 0.47135

and d(1) = \/‘2_;‘17%'7‘3'5' = 0.84699
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znd hence E5(1) = 140.24267
B(1) = 124.75733
E(1) = 166.75733
E6(1) = 26.24267 .

The improved estimates of g and d now are

140.24267 0.52922

82) = T 265
and a4y = 1§§%%§1§57 - 0.86403

With these estimates g(g) and d(2) the total hidden

covariance matrix is found to be

»
574726 ~5+74726 ~5.74726
5.74726 5.74726
574726

. from which the information metrix is obtained as :

5.74726

-5 -74726
-5.74726
5+T4726

p—i

(W)
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[ 482.075 23,068 12.569  -79.870 |
534 .615 -14.129 89.784
' 214.975 48.920
o 1136,775

In both of these matrices the columns as well as zTows correspond
to EB’ E4, E5 and E6' From J we get the covariance matrix corresponding

to the cstimates of g and d as:

-

" 0.001064 ~0.000167

=

558 K 1G5

v v -0.000167 0.000824

| 53 55 _] i

In 2ddition we find the scores

B B
U* = = -—4& .5 0898
3 g 1~g

i B
US* = '—d',i. - 7 fd = =4,4410 .

The further improved velues of g and & are then given by
g(5) = g(z) + V53 U3* + V35 US* = 0-53219

d(3) = d(z) + V55 U;* + V55 US* = 0,86002
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The process ig now xepeated only chenging the values of g, 4
and the E-values. The other things, in prectice, can be kept the mame.

The eventual estlmates aro
g' = 0,53221
and d' = 0085992 .
The estimates g', 4' have error-variances equal to V53 and
V55 {at final estimetes) respectively. In particular,

v(g') = 0.001069

and v(a') = 0.000867.

Now we obtain the estimates of the chromosome frequencics and

their error-variances as

2! =am' g' = 0.307938

<)
]

m' - m' g' = 0,270665

s—
[

n' d' = 0.362%68

ni =n'" -n' d' = 0.,059029

i

end  V(m!) =g V(n!) + n'® V(g") = 0.000509

i

v(my) = (1 - )2 v(m) +m? ¥(g') = 0.000474
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'
v{n!)
V(né)
A% last we compare thesc estimates with those obtained by Rao

(1969) with the same data.

by the two methods.

(1 -a)

2

Table 4.2.3 gives the estimates obtained

ar? vin') + nt? v(d') = 0.000547

T{n') + n'2 V(') = 0.000164 .

The comparison shorws that the estimates of the

218

chromosome frequencies agree more or lese with the maximum likelihoed

egtimates but the

except for e - chromosome ,

TABLE 4.2.3

Comparison of estimates and their variances

with max. likelihood method
C hromosomne Gene'Count, Max. likelihood
frequencies method method
m 0.307938 0.000509 0.307938 0.000371
g 0.270665 0.000474 0.270665 0.000337
ng 0.362368 - 0.000547 0.362367  0.000167
ng 0.059029 0.000164 0.059030 0.000216

4.2.3 Estimation.of chromosome frequencies under more general set

up | ¢

Recently there have been attempts to obtain the chromosome

error-variances are slightly but consistently larger,
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frequen9ies under Mnial II population struc%ure (Ran, 1969). But since
the problem nf reliability of the estimate of F 1s very much there

we are not going to discuss the method here. The validity of the
maximum likelihood estimates for populations with valuss of F in

the viceinity of zero is s8tlll to be explored.

However, the use of the restricted random mating model can be
made with profit since the reliability of such estimates are not
subjected to any guestion. The actual estimation procedure, being
a routine applicetion of the methodology developed in Chapter II, is
not presented here again. As a last word, 1t ocan only be mentioned

that these estimates are also fully efficient.

—y

(e
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