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. TNTRODUCTION

‘

appl10d subgect with numO“ous approatlons 1n-ope ationﬂ
regearch, coding tneory, gane theory, physical and social
sciences (to mention only a Ffew), that it is not neccssary
to give a goneral introduction to 1t. Instead we givc' |
below o summary of the results contained in thisg thesis

chapterwisoce

)

Thié thesis contains five chapters which are, norc or
legs, indopendent of each-other. In Ghaptor 1, we study
the exigtence of leocally re stric ted graphs, that is graphs
having a prescribed property with given deg"eesa In
Section lel, wc obtain neccess sary and suffic iont conditions
Tor the ozﬂstenco of a p-connccted graph w1tp given degrees
for p=3 and state two conjectures in the general case.
The coneept of k~factoiable sequences in introduced in
Section 1.8+ A k~Factor of a graph G is a partial graph
of G in which every vertex has degree ke A geguence ig
called k-factorable (comneccted k-factorable) if'theﬁe exiats

a graph with a k-factor (a graph with a connected k-factor)
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with the given degrece scquence. We obtain a necegsar

and sufficient condition for a k-factorable scguence

(k > ) to bc connceted k-factorable which turns out to
:bg indOpcndént of ks Since a conncetéd ZeTactor is a
Hamiltonian cycle, this condition ig necess arj and guffi-
cient for a 2—lacto rable scquence to be the deg:ee gseque-
ence of o Hamiltonian graphe We prove that cvery k-fac-
torable sequence (k > 2) is (k-2)-factorable, 2-facto-
rable and 1-Tactorablcs We further ghow that a 4-facto-
mable gequence ig 3-Tfactorable provided n  ig cvens IF
{cii} ig a k=factorable scquence thon there eoxists a
graphr G with degirece scquence {(lf} naving a connected
parvtial graph in which two.vcrticcs nave degreecs k-1 and
the rept have degrees k. Thig proves, in particular,
that every Z-~factorable Bcquence is realisable by a graph
with o Hamiltonion ehain. Although, the general problen
of characteriging the k-factorable scquences is left
unangwered we present two conjectures, onc of which for
X = £ was nentioned by Prof. Be Grimbaun at the
Combinatorics Confercnce, Calgary 1969 and prove that the
truth of conjecture 1 inmplics fhe truth of conjeceture 2
by proving that if {di } and {ai -k %

are graphical so ig {di - r } provided rn is cvén and
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»

0<r ¢ K Tn ‘Section 1.3, we solve the following problen
poscd by Ae Mes Hobbs in the book entitled, 'Recent Progress
in Combinptories! cdited by We Te Tutte [ 24] s For what
velues of n is there a planar graph on n  vertices without
loops or miltiple edges which has 12 verticeé of dcgree O
and ne- 12 vertices of degree 67 Some other related

problens are also solved.

Chapter & is strongly connected with the work of
Ranachandra Rao [ 19 1 who determined, among other things,
~the ranges. of the number of cut vertices and -cut edges in an

L
i

undirceted grapit on n vertices with n edgos."In
Sections Zely L3, we golve the corfcspdnding problens Ffor
strongly connected digraphs and chiaracterisc sone cextreonal
graphs. Thig goneralises some of the results of Gupta [6].
In Section 2e2, we prove that cvery strong complete graph
on n > 3 wvertices has at most n- 2 cut vertices, without
uging Camionts-thcorém, winich solves a problen posed by
Karwina[lé] in Rone Confercnces In Scctions 2e44, 2.5, we
find the maximun number’ of cdges in an undircected graph on
n vertices with . cut vertices (s cut edges) in which
mininun degree > 4 and give partial solutions to the prob-

leng of the determination of the maxirum nunber of
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eut vertices (cut cdges) in an undirccted graph on N verti-
cos with 1m .cdges in wiich ninimun degrec 2 d, congidered

by Ramachandra Rao [19] and solved in [19] fer a1l & < 4

In Chapter 3, we consider the k-th power of a graph,G,
dencted by Gk, definecd %} Ross, Harary, Karp, Tutie in
(231, (101, as a graph with same st of vertices as G and
two verticcs are joined in 6% if and only 17 there is a

chain of longth < k joining thom in G. In Scetions 3.1,

342, wo Tind ncecssary and sufficicnt conditions for o grapi

(e}

to bo the cube of tree and prove that T° determines the
tree T uniguely, up to igomorphism and give an algofithm
to congtruct the t?oe‘cubo r00t of a graph (if it cxists).
In Scction 343, gone nccegsary conditions for a graph to be

the (2k)-th power of o tree are obtained which goneralise

sone of the reguits of Ross and Harary [23]. Using thesc,

-

in Scction 3+44, we obtain g criterion Tor a graph to be the
Tourth powef 0f o trece In general, the trec fourth root of
a graph ig not uniques We give an algorithn to constzuct
all the tree fourth roota of a graph and characterise graphs
with a unique tree fourth roots The algorithms aforemen-
tioned utilisc a result of Harary snd Bess [8] for dotornmin-

ing the sot of all cliques in o graph.
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In Chapter 4 we solve a problem poscd by Oxe 5], A
graptt G is sald o have the property Py (aftexr Ore
who poscd the problen) if for every maxinmal troe T (iace
h*‘-:;;pa‘rmirlg tree) of G there oxists'q vertex am € v(a)
such that dp (aT, x) = 4d (aT, x) Tor cvery X6 V(G), where
i (xl, x,) donotes the disbance in G between X, and  Xoe
We show‘thai, in fact, there arc only two classes of blcon-
‘nected graphs having the property Py Further, we detor-
mine the etructure of all finite connceted graphs having the

property  Pe

The lagt chapter ig concerned with some extremal
problens concerning radius and diameter in digraphs, In
Seeticn Sel, we Tind the maxirun number of arcg in a digraph

L

(not neccessarily strong) on n vertices with radiug = and
characterise all cxtrenmal graphse Tho analogous results in
the undirected césc wexne obtained by Vizing [251. Purther,
we obtain an expregsion Tor the naximunm number of arcs in a
streng digraph on n vertices with radius » Tfor = <3
énd state a conjeecture in the general casc. In Scection 5.2;
we oxtend the results of Ore [16] to digraphs. A digrdph

is ealled diameter erxitical if the addition of a now aire

decreascs its diameter.We characterige all k-connected
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N b
diameter eritical digraphs, detorﬁine the maxirum nunber of
arcs in a k~connccted digraph on n  vertices with diametor
d and characiterisge all owtronmal graphg. Finplly, in
Bcotion He3, we give a partial solution to the Tollowing
problen of Murty [14]¢ For what valucs of n  ig it pessible
fo orient the complete graph on n  vortices in such a way
that the resulting tournarment Eiass Aiamoeter 5 2 and the
tournament obtaincd by removing g or fower vertices has

alse diamectex {2, where s ig a fixed non-negative

integer®
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CHAPTER 1
LOCALLY RESTRICTED GRAPIHS

Throughout this thesis we congider only finite graphs
(undirccted or directed) without loops or miltiple cdges

(avcs)s If G i a graph. Tgm v(¢), E(¢) dcnote the

vortox sct, cdge sct of &. TFor notation and terminology

Berge [2] is generally followed.

The degrec scquence of a graph G 1 the (finite)

scquence of degrees of the vertices of G. A scquence of n
non-negative intogers 1lg sald to be graphical it it is the

degroe scquence of some graph G

El

call & graph D - connccted (p-coherent) if it is

connceted and the removel of any p-1 or fower vertices

(cdges) docs not -discomnect the graphe In Scetion 1,we

)

obtain nccecssary and sufficicont conditions for a scquence of

positive integers to be the dagree gequence of a J=conunccted

grapite

v

A k-factor of a graph G 1s a partial graph of G
in which every vertcex has degrce ke A graphical scquence

ig called k-factorablc (comnected k-factorable) if there
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cxists a graph with a k~factor (conneccted k-factor) and with
the given degree scquencee In Scetion 2,we give a neecessary
and sufficient condition for a k-factorablc scquence to be

connected k=factorables We algo prove that every k~factorable
sequence ig (k-2) = factorable, 2-factorable and l-factorable,

» Turther show that overy 4-gactovable scquence ig 3-facto-

o

rable. If { di} is a k-factorable scquence (k 2 2), then
there oxigts a graph with degrec sequence { di} and having
a connceted partial graph in which two vertices are of degree
k=1 and the rest have degrees k.o Purther some conjectures

are presented and it is alge proved that if { dﬁ} and

{4 -k} azc graphical then so ig { d;=r} for 0 <7 ¢ ke
In the book entitled, 'Recent Progiress in Combinatories!

cditod by We Te Tutte {84] the following problen was poscd

e

by Ae Me Hobbse Forr what valucs of n ig there a planar

>

graph without loops or multiplc cdges with 12 vertices of

degree 5 and n-12 vertices of degree 67 In 8ection 3 we

golve thig and some other related problenge
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1,1 Bxigtonce of triconnccected Tapils Wit
presciibed degrees

Necessary and gufficicent conditions for thie cxigtence of
a p-coherent graph with prescribed degrees were obtained by
Bdmonéds [4]). Hecegsary and qufficiont conditions for the
rigtence of a p-connceted graph with prescribed degrees arrc
known for p=1l, & (scc [7] and [161)s In thig scction we
golve this problenm for p= 3.?%Furthor gome conjeccturesg in

the general case are prescenteds We start with a simpic

cogulte

Let { di} = { &y dg,..., dn} where cach d. d1s a

ositive integer and lot 4y £ ds £ eee £ 4.

Fut

Lorma Lelsle If a triconncected graph cxists with

S

4

degiroe scquence { d; } , then

(1) 4, 2 3.
() ig a graphical scgucnce .
£ray a
n
(3) a, dn { men+4 where 2m = 21 ds

Proofs (1) and (2) are cvidente To prove (3), 1
Xnt Xl o the vertices of G with degrees dy, and dn—l

regpectivelys Then the number of edges in , G—{:;n; X1 }.1m

(a, + 4y - 1) or m - (4, + d, ) according as X,
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are adjacent or not adjacent in G. Also, since G ig

triconnected, G - {Xn’ Xﬂ_j} is comnected, so (3) followse,

Ihig completes the proof of the lormas

Theoren lele2e Conditions (1) Hoe (3) of Lemna lelal

=)

are nceespary and sufficicnt for the cxistence of a tricon-

nocted graph with degrec scquence { di} .

Proof. HNecogs wag proved in Lemma lelels To prove

At e et

ck

|_"J‘

ity
sufficicney, first let the conditions (1) aand (3) be satis-

+

fied and 1let dn dn_1'= Mmen + 41= n 4+ Ae Since
n
Pno= =4, > + + 3(n-2) =m+ 2n -2, and
Ny Ay + 4y ) ’

d; £ n-1 it follows that 2 ¢ A < n-2. Lot k he the

nunber of d;'s such that 1 i { n-2 and 4, = 3. Definc

e, = d;=v Tfor k4l £ i { n-2.

Then we have

Led
a-,o - et -
igl di = 21 - dn én-l “lEn + A - 8
n-g y
L C, =304 N ~«8 -3k = 2(nm=2=k)
Tkl T

=N 4 A=K - 4,

Define now # =R «2 ~ X and € =Kk = m.

Then n 2 0, and g 2 2 sincce
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Emzm-nﬁrég-Sk—t—é(n—E-k)

=T 4 O m K o= 4 »

and g0 A =@ - Zn 4+ 4 2 -k

Write now

3 For WL E £ 6
oE = 2 i‘o:*e+l_<_i$_k
= 2 for k1l i { n-2 .

D=
hon T e, = 2{(n~3) and so therc oxists a ’gioc T with

degroes Cqy Coseees Cp o attained by the vertices Xy 9Kgpeee
T w0 (say), in that order [19]. Take two more vertices =X 39
%, and join then. Also join each of X1 Xy to Xy for

i =l,eeeyCy k'!‘l,.an,n"'go 0f the n VCTt:’.‘_CCS Xé-f'l,...,xk' jOin
Gy 3= l=GeniR+k TO ;g and the rest (dn—l-e-n+2+k in nunber) to

X Hote that .
dn_l-l—e—n+2+k=dn”1—.l-lg_o.

The graph thus obtained has degreco scguelce { a, ]; and ig
triconnceted since any vertex of T with degree in T less

thon three is joined to either x5 T X,

Toxt 1ot conditions (1) and (2) be satisficd and lot
qy+ 4, 1 L@ -n+3s Then 4, <1 -n+ 2, B0 thewre ecxialy

a biconnected granh G with degirece scquence -[d_-,} :

2N T m
S Vo8 AN 1984


http://www.cvisiontech.com

f & is not triconnccted, let x., Xj Jsle’

(sce [7], [291).

I

two vertices guch that G - {xﬁ, ‘J } ig digceonnecctede Lot
Gl’ 02,..., be the connceted components of G - {Xi, Xj }.
By (1), |cg[ 22 for g =1,2,ee. o Also by hypothesis,

mn=-d;, - dj 2n =3, go it follows that one of the components,

say Gl’ containg a cyclce

&

We fivst prove that there exists an cdge (x,y) in O,

of ' & connceting % and ¥y such

-

and two chalns py,

1 - M . o . -~
that (x,3), #y9 ¢y arc digjoint excopt Igi x and y, and

9

Hy. 1o contained in C,s Obgerve that, sinee & i blconnec-

tod, tliere always cexiste a chiain connceting Xy and Xj with
all invermediate vertices in Cse  If now twoe vertices x, ¥y
with degree £ in Gy arc adjacent and belong to a cycle of
Cl, the reguized edgo is (x, ¥)e So we may assune that no two
vertices of degiee two in Cl can heleong to a block (on more
than two vertices) and be adjacent; Let B be any block of

.

Cq which ig not an cdge. If some cycle of B has a choxrd

(x,¥)y thon (x,y) is the required cdges Otherwisc, by the

’1

resu of EE?], two vertices ¥y, z of ddgree two in B

.

.
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= 13

will be adjacent to a vertex x of degreec thrce in B. If

¥ ig another vertex of B adjacent to x, then there is a

1o

chain connecting w to y in B - {x} » Thig chain together
with (x, W) nay bc tsken as My To get uys &¢ from X to

z along {(x, z), from =z to x

g
e

or Xy (through: another

block of C at =z if nccessary)then to y (thromgh another
block of 0y at y if necesgsary)e Thus (x, ¥) is the

required cdgce ' 3

Lot now (x, y) be an cdge of ¢, chosen as cxplained
aboves If C, 1s a tree, tuke any cdge (u, v) of Cgoe Then
(uy, v) 1is a chord of a cyele of Ge IF % ig not a tree,
chooge an cdge (u, v) of Co guch that there are chaing
ko My Of G connecting u and v, such that (u, v),

o, Mo arce disjoint cxeept for w, v and ug is conbained

We define fg (s, t) to be the number of components
of G - {s, t } e low we will nmake a modification on G soO
that the degrecs of the vertices arc unaltered, i‘(xi, Xj)
dceveases and f£{g,t) docs not inecrcage for any two vertices

a and Te

Pirgt we associabc with x, a subsct MNx) of

-

'[Xi’ xj‘} by the following rule: X; € AMx) if and onmly if
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Fi 11

there is a chain © n connecting x to - Xy with all intere ..
mediate vertices in Cy -such that n is disjoint with (x,7)
and g, excopt for x. Similarly A(y) is defineds If Cs
ig a trec, put AM) = Alv) = ‘[Xi’ Xj} s Otherwisce Aw),
A{(v) arc defined in a manncr similar to that of A(x) and

AMy)e Tow A(x), Aly) arc made nonempty by a proper.choice

<
=

Hyy and Alw), Alv) are made nonempty by a proper choice

of us (in case Cp is not a tree).

ow suppress the cdges (x,¥) ,(u, v} and join x to one
of u, v and y to the other ag followse dJoin x to u Aif
Mx) £ Alw) and  Aly) # Alv) whenever such a choice ig

possiblce Let thie new graph timg obtained b& He To be

4

ipecitic we take that x ds Joined to u in He

T

We prove that H is bicomnected. Obviously

Gy = G -'(-x-,y) ig biconnected. Now we gshow that (u,‘v) is

Y

a chord of a cyele of H + (u, v)e If Cs 1g & trce, then the

cyclce ig

y 2+ gy lxy 1+ (5 v) #+ [vyeeey 21+ (0, #i) + (x4 pp)+
+ [Pg: Uumﬁ.}s

where pyy Py are stitable pendant vortices of Coe Ofher-

' | ) t 3 .
wisc the cycle is  Moluy v1 + uolw, w] where *f Ko contains
(¥ [ n . ) N

\
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the cdge (x, y), thén (x, y) is wveplaced by (=, y] and
the regulting cycle is made clementary. Timg H ig biconnec-
tede

Trivially now fulx;, x5) = (%, %) + 1ls Hext we will

show that

for any two vertices s and te For thig it is cnough to

show that x, ¥y are connected and u, v arc connccted in

H - {S, L] };o

First lct o = x;« Dow =x, ¥, wy, v bclong to a cycle

)

in H = .[ZX‘__L }, so (4) followss So wc may assume that

{s,t} i} {Xi’ xj}zﬂ.

llow let & = xe Then to prove (2) it i?enough to show
that u, v  arc connccted in H - {x, t} when t #u and
t £v.e This ig cvident if Co iz atrec or t £ poe So lot
t € Ho and Cp De not a trece IF A(w) 0 Alv) #£ &, there
is a chain comnceting u, v in H -{ X, 5} So wo may
take without loss of generality and write without brackets
that Alw) = x; and A(v).=xe¢ If now x5 € Aly), then
u, v arc connccted through Xy oand  y in H-{X, t}. So
we take Aly) = xye IT X £ Alx), then y would not have

been joined to v, so A(x) = x,s Wow in Gy X ig connceted

-
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= 18

to sone vertex z  of H by a chain with all intormodiate
vertices belonging to Oy but novertex to p,l-Now we obtain a
chain connceting w, v in H - { xy, t } by going from u to
x5 :cj to zy z to ¥y along s 7 to ve Thus we nay take
that .[ 9y ‘t} n {Xi, Xj,-ﬁ, 'y} = Je

Next let 8 =us If t ¢ ty» then (4) 1g trivial, so
let % € wye Supposc firet that 02 ig a trec. Then we .
obtain a chiain conncecting x, 7 in H - {u, t} by going fronm

x te =x, o@ X5 then to v  through a suitable pendant

4

vertex of €, and then to ye  If €, is not a trece, the
“ £

situaticon dig similar to that of the preecding paragraph.

Thug we toke {s, t} o {Xi’ X50 Xy ¥y Uy v} = B

g trivial.

B3

If none of g, t belongs to puy, then (4)
S0 et s¢ Mo e Supposc nmow that Co 1is a trec. Thc} TOE..
any fixed t, there are chaing in H - {s, t];_ from one of

Uy, v to beth x, and x.;, and a chain from the other (of

i i?

the vortices u, v) tc x, or Xj‘ Hence u, v arec connce-

ted in H - {s, t} and (4) follows. Suppose next -that

0o 1s not a trce. Obviously wo nmay take that 8 €ty and

[

te e If mow A(x) n A(y) # ¢ or Alw) 0 A (v) £ 8, then

again (4) follows. So we may take that A(x) = Xy,
« HNow we obtain a chain

AMy) = Xy Alw) = x. and Alv) = x

J

s
a
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““ 17

connecting x, y in H - { S t} by going from x to u, u

to Xj,

xy to ye This proves (4) complotely.

How by a Tepeated application of the above procedurc we
reduce the graph until finally f(g,t) =1 for any two ver-
ticenss The final graph thus obtained has degrec scgucnce
{ di} nd ig triconnected and this completes the proof of the
theocite |

The »ogulits of this scction appcarcd in o1 1o

™o method uscd above docs not scem to work in the gone-

ral casce Howover, we take the risk of conjecturing the

Gonjecture 1. If { dﬁ} ig a graphical scquence with

¢; > p+l for cevery 1, 1 <1 < n, then there oxistsQ&

p-connceted graph with degrce scquence { di} .

_Cénjgcturo €sa Lot d; L4y < wer K d,- Then there

oxigts a p-comnected graph (p > 2) with degrec scquence { 44}

~

i and only if

[N

d; 2 Py

tJ

<1 £ ne

d.} is a graphical scquence.

¥ & 150 -n +(£) + 1o
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L |

Tt can be casily scen that the truth of conjeeture 2

-

implics the truth of conjecture 1. Purther if p =2 or 3
then conjecture 2 ig tirue by previously known result and our

Theoror lelals

1a2 On factorable degrec Sequences.

A k-factor of o graph G is a partial subgroph of &

in which cvery vertex has degiee ko A graphical sequence is

callcd k~factorable (conneceted k~factorable) if there cxigts

a zraph with a k-Tactor (connceied k-factor) and with the

St (9
givon degirce soquencee X’
If ¢ is a connected graph, denote by Alx, C)
(respeetively Blg. 0)) the set of all vertices at cven

(vespectively odd) digtance in ¢ from e If G, 1s a

=

conncetod partial subgraph of & and 02 ig a partial sub-
graph of G with V(o) 0 V(0,) = #, then we write G, -> Gy
if there exists x € V(Cl) guchh that the subgraph of €
spanned by A(x, Gl) ig complete, every vertex of  Alx, G)
is joined in G %o all vertices of Cp, B(x, ¢;) is an
independent sct in ¢  and no vertex of B(x, ¢ ) ig joined

5

in G to anv vertex of Cae

i
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A g:g_js ‘A of .G is a noncmpty proper subset of V(G).
m(:&!‘ B)
vertex in A and the other in B where A 0 B = @. The

denotes the number of edges of G with one cnd

valuc of o cut A of G is cqual to n(4, ¥(G) - A)e A

connceeted graph ig p-coherient 47 and only &f there is no cut
with value j p-l.
A vertex x {edge u) of a graph G is called a cut

verfey (Cut edgd) if the graph G- x (G- u) has more componente

than Ge

We start our investigation on k-factorable degrec

scquences by the following

Lomna le2ele Lot G be a graph with a k-factor ¥

B

conglsting of two cemponents ¢; and Gy, let k > 2 and

%

Cy» U5 be bicoherente. If the degree scguence of G\is not

connected k~factorable then cither Gl ~> 0o o0 Oy => 01.

Procfs Let G Pe a graph satisfying the hypothesis of

the lermas. If (%, y) and (u, v) arc cdges of C, and C,
— L b

respectively thoengone of the vertices x, v, u, v dg joincd

to the remaining threc vertices in ¢ for otherwise, by a

simple interehange of cdges C¢; and Cy can be combined into

jas]

gingle componenta. 8o let without loss of generality x~be

1=

adjacent to u and ve If mow y is joimed to u or Ty
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again Cy and Gy Can be combined, so y is Joined to neither
unor ve 1IFf z ig any vertex adjacent to x in Cl then z is
joincd to neither U nox ve Proceeding fﬁrther we get that
avery vertox of A(X,Ol) ig joined to u, v and no vertex of
B(x,0,) ig joined to u or ve If w ig any'vc?tex adjaccnt to u
in Qo then by the same avgument, cvery vertex of Alx,0;) 1o
joined to w and no vertex of B(X,Cl) ig joincd to We Proqcc—
ding further we Tinally get that every vertex of Alx,Cqp) ig
Joincd to all vertices of (, and no vertex of B(x,cl) ig joined
to any wortex of Uos MAlso Alx,C;) and B(x,C{) arc indcpendent
ety in Cq. Bince C; is regular of degree k(> 2) it follows

that [A(x,09)] = |B(x,0¢) |+« Thus [V(Cy)| is cven.

If now two vertices z; and zg of Alx,C;) arc not
adjacont in G, then let Zeg be a vertex adjacent in €y to
z o Then zg € B(X,Cl). Now choosc an cdge (u,v) of Co

rorr G and add

[

then weoneve the cdges (21,23) and (zg,ﬁ) ]
the new cdges (zz,zg) and (zz,u). Thon we got a graph with
a connected k-~factor obtained from the original k~factor by

deleting the cdgos (zl,zs), (u,v) and adding the cdges (Zl’v)
and (zg,u). Thig contradiction shows that the subgraph of G

sparncd by Alx,0) is complete.

If two vertices Z) s %o of B(x,Gl) are adjacent in

&, then 1ot ZB. be a vertex adjacent in ¢, to 3z, lct
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for

5,y 2z bc vertices adjacent in G to oz, and 1ot (u, v) be

an cdge of C,e Consider the k-factor F' of G obtained
from the original k-factor F by deleting the cdges (zl, ZB)’
(25, 2,)s (u, v) and adding the cdges (zy, u), (z,, W),

g not connceteds Henee

4

(z,4 25)s By hypothesis, B!
C{ = 0, + (Zl’ Zey) - (Zl’ Ze) - (zg, z,) is algo not comnceted
and since Cl is biconerent, c hag exactly two components
Ay Ae Algo 2y, 2z belong to Al(say) and then 2z, 2z,
belong &0 As (bocause ¢] is not connceted). Now ovidently
. the k-factor ,Fh of G c¢btaincd from F by deleting the
cdges (zl, Zﬁ)’ (zg, z5), (u, v) and adding the cdges (ZS, R
(25, ), (Zl’ zg) ig connceted, a contradiction which shows
that B(x, C;) is an independent set in G. Thus C; -> Cg

and the lema is proved.

Lemaa 1e2e2. Dot k > 2, { 4;} be k-factorable and p

be the minirum nunber of componentg in a k-factor of a graph
with degree scquence { di} » Then a graph with the degree
sequence { d; } can be choscn such that it has a k-factor

]

with p conponents cach of which ig bicohereont.

Proofe If k 1is oven the lema is trivial. 8o 1ct
k be odd and let & Dbe a graph with degree scquence { 4}
and with a k=factor consisting of p components CiyCoseenygC e
‘ 172 P
I¥ C; is not bicoherent we will show that the subgraph of
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¢ spanned by V(C,) can be modified so that the degrecs arc
unaltered and the new subgraph hae a bicohersnt k-facton.

Let Dl’ Dy be two terminal blockg of Ci geparated by sone
cut odge of Ci and lect a5 8g be the cut vertices of Gi
belonging to Dy, Dy rcsp-loctivolj;. New let (%, v), (u, v)

be edges in D,, D, respeetively where x, ¥y airc different

- [

~

fron & and u, v arc different from 8o Then onc of X,
¥y Uy v ig joined in & to the remaining threce vertices for
otherwise a simple interchange reduces the number of cut edgés
of 0Oye Lot without loss of generality x  be adjacent in G
t¢ u, ve Thon as in the proof of Lema l.2.1, we can show
that if the number of cut cdges in C; can not be reduccd then
Alx, Dl)’ B{x, Dl) arc indcependent sots in D+ Thus Dy

is bipartite, in D, all vertices cxcept 8, have degrees k
and the degree of & is { k-1, a contradiction which proves

that the subgraph can be modificd until

fta

A

It may be remarked that Lerma 1.2.2 1g the best possi-

=]

-1

1,
i

ig completes the proof of the lema.

bic with rcapect to the cohe crsivencss of a k-~factor of a

<

graph with degzree scquence { 4, } « To show this we give an
cXaiiples Lot n be an integer > 3k+1 and n coven if k
Ig odde Lot V = { 1y Lgre.n }, A = { 1, 208y k }

= {1,000y 2k }, C = { k41,00, n } o Dofine a graph

beccomeg bicoherent.
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G with V(&) = V in which AU ¢ dis complcte, B ig an
independent set, covery vertex 1, 2 < i _g ¥, of A is
jofned to all vertices of B, 1 ig joined to all J,

ke 2 _<_ 3 £ Rk; and k4l ig Joined to 2k+1 . It ig casy to
soc that if H dis 7 graph with the degroe scquence { ds },
sane as the dogroc_soqucnco of G, then H is igomorphic to
Ge Further {di} ig commccted k-factorable and in any
k-factor of G, the cut € has value cqual to 2. Thus no

kefactor of the graph G is h-coherent with n > 2.

In what follows we assunc that { d } ={d—, ,dp'--sdn}

and dlzd;:z."‘ zdn'

’%‘heorom laiZads { } is connceted k-factorable if

and only if {dj. } is k-Tactorable and the following condi-

ticn ig satigficd whenever g < % ’

L]

3 S,
z d, < sln-g-1) + ¥ 4 .
Ty = ) d=o 1= (6)

aphical, let G be any graph

j
3.
®
7
e

Proofs If {a,}
] ot A - - .
with degree secquence {di]; « Let 4 be a sct of g verti-
ccg of G with degrecg dj, Ansens, dr and 1let B be a sct
= [ >
of s vertices digjoint with A and with degrees

-ﬂn- 12000y G0 How obsmorve that the Tight hand cxpression

(6) 14
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_ gl
1Al {V(G) = A - B} « |Ale (lAl= 1) + jEO dn—j’

honce the loft hand cxpresgion of (8) docg not cxecced th

= n
right hand cxpressicne If now cquality holds for some 9 < EE

then cvery cdge with one ond vortex in B has the other cnd
vertox in A and ginece 14| = |B] < & it follows that G
décs not have a connccted k-factor., Thig proves the neces-
sity of (6)e

To prove sufficicncy, ict { d_,i], e k-Tactorable and

lot (6) be satiasficd whencver s < %» Let G be a graph

14

[/ }a)

5
g
I Py
£
i}
ot
=
o

with degree scquence { d_i} and with a k-factor he

minirgn number of componcnts. Let © Coswsay Cp be tn
2

l!

components in this k-factor of G. By Lomma leRed, Wo DOy and
do gogure that cachh C ig blecohercents We will prove the

leads te o contradiction. So

t
s

N

]

1 - =~ h] . bl
neoren by showing tha

let p 2 2o

R

Congtruct a dircefcd graph D with Cl’ 02,..., Cp
ag its vertices, an arc gzoing fron Cy to Cj if Ci -> Oj
in Ge By the definition of p and fronm the proof of
CLemna legel, it follows that D ig a complcete dirccted grapha
Honce tho vadius of D < 2 (see p.i21, [2]). Thus either

there ig o civeuit on 3 verticeg in D or there ig a Cj.
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such that C, => Cj whenever J £ i. We congider thiese two

cases scparatcly.
Casc (i) e Oy => G5 => Gy => Cye  Then cdges (u, v),
(wy ), (y, 2z) can be found in C,;, C,y Oz Tespectively
— s
such that (v, w), (x, ¥}, (z, u) avrc cdges in G. Thus the
components Gy Co, CS can be combincd into a gingle compo-

nent, a contradiction to the definition of pe.

O:’." all i = 2, [ X ] LI ] p. Fj.l"St

C
23
L2
pes
—~—~
|-
t -t
g\_f
L J
Q
1
L\
(9
h

lot o vertex x of C; be adjacent to all vertices of G,

and to ne vertex of C Tor gonme 1 and Je HNow cither

a single component as in case (i). Next let a vertex =x of

and we can combine Cj, Gy, Cj into

C1 be adjacont to all vertices of C;y 1 = 2,4s4, po Then
if we write A = A(x, Cy), B = B(x, Cy) and ©C = V(G)~ A~ B,
we goet from the proof of Lerma le2.1 that |.A.| = IBl < %,
the subgraph spanned by A ig complete, cvery vertex of A
ig joinced in G to all vertices of C, B ig an indepondcnt
get in G and no vertex of e is joined in G to a,ny

vertex of Ce But this gives a contradiction to conditien
(6) and the theorenm is proveds

It nay be pointed out that condition (6) above is
necessary and sufficicent for a 2-factorable degrec secquence

%o be realisable as the degree sequence of a Hamiltonian
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Thooven 1,244, If {4} 4s k-factorable with k 2 2,

then {dj.} ig (k-2)-Ffactorablc.

P 00fe If k dig eoven the theorenm follows Tiom the

fact that any regular graph of cven degiec has a 2-Tactom

(scc pe189, [21)e If Xk ig odd,lct p be the minirunm number
of components in a k~factor of a graph with dcgrec scquence
{ai} o By lomma 1.242, there oxisgts a graph G with

degreo scguence {di } and with a k=Tactoi consisting of p
being bicoherent. By

components  Cyy Coyeewe, Cp, cachh O

s
&

a resuit of Bacbler (see pe 189, [R]), cach C; has a

Jefactors Hence the k=factor of G has a 2~factor and

'y

thorcfore a (k=2)=foctor. Thig proves the theoren.
The argument in the procf of Theorem le2.4 proves the
foliowing

Corollary. If { &, } dis k-factorable with k > 2, then

{ d

} ig 2~Tactorablc.-

[t

Theorerl LeZeDe  IF { ]; is k~Tactorable, thcn{ d, }
n

ig I-factorable provided

Proofs By the corollary to Theovenm 1.2.4 we nay take

k=2 Let then G Dbe a graph with degree scquence { 4, }

and with a Z~factor having the minimum number of componentse
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= e

Lot Cl’ Coranes C be the eyeles in this 2«~factor. Now

by Lemma Le2ely cither €, -5 Cj and C, is an oven eycle

or C. -> C, and. Gj ig an even cycles Hence all G

3
except possibly onc are cven and sincce n ig cven cach Gy
ig ovelle Thus the 2-Factor has a l-factor and the theorenm
is proved.

Theorerl lelabe Ii‘{ d } is 4-factorable then {d,! }
n

ig 3-factorable provided

Proofe Lot p be the minimgm number of components

e

in a 4-~Tactor of a grapk G  with degrec sequonoc{ 4, }

Lev Cqy GP"”’ ¢ be the components in this 4-factor of

P
Ge As in the proof of Lerma le2e1 (sce also Theorem 1a2e5)
it can be proved that cach C, 1is cven. Replace the sub=-
graph of G spanncd by V(C,) by a graph with the sanc

degree sequence and having a bicoherent 4-factor with minimum

mumber, 3, (say), of cuts of value 2. Now if 3, = O for

gome i, then C; is S=colhicrent go this C; hag a l-factor
e, i
b:,f Theoren 6, ps 182 of [Ej‘. If 3, > 0 for sonme i,
P ul

w*tncut loss of generality assume that 1 = 1. We show that
0 has a l-factor by using Tutte's theorem (sce p. 182, {21):
The necessary and sufficicnt condition for a graph H to
possess a perfect matclling (L-factor) is that i (8) £ |3|

for every 8 C v (H), where pj.(S) denotes the number of odd


http://www.cvisiontech.com

- 28

components of the subgraph of H spanncd by V(H) - S. To

prove this for €y we procecd as followss Lot & be a non-

ompty proper subsct qf V(C.l) and  Dy,Doseses Dp_i (s) be
the componcnts of odd order in tihe subgraph of C, spanned

o)

143 _g_ Dy {8), such that m(V(Dj), 8) =2, We firgt show

fhat © _g i. Supposc. & > 1 and assune that

n(v(d,), 8) = a(v(D,), 8) = 2¢ Lot Dyqy Dyprsers Dig be

the maxinmal bicoherent subgraphs of Dy, 1 = 1,24 Clecarly

Since

V(Dﬁj)‘s, 1 €3 £ 8,y are pairwisc dis oint,

il

i

J
m(V(Di)c,S) 2 and C; is bicoherent there arc at most two

cut cdges of D, containing a fixed vertex of v(Dy), sO

IE]

V(Dﬂ.j)'s, 1¢3j < 8,, partition the vertices v(D, )

Further the valuc of the cut V(Dﬁj) in Cl ig 2,

i =1,2. Now gince V(D,)'s arc odd we can

ok

.i’

13 ¢
oag of generality aseuds that V(Dll) , V(D,,l) arc

|-

without

‘odd, Choosc minimal cuts E, C v(dyy)s 1 =142, of valuc

3

2 in Gy Since C ig regular of dcgrec 4 the valuc ol

gy cut in C; is cven. Now it can be casily proved that
the gubgraph of Gl spanncd by Ei 35 3-cohcrents 'Lot

(v, 7, (u, v) Dbe cdges in the subgraphs of O, spanncd by
El, B, respectively. Then one of x, ¥, uy, v d1g joined in

to the other thrce for otherwisc by a simple interchange
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we can get a graph with degree scquencc same as the degrece
scquonce of the subgraph of G spanned by V(Gl) and having
a bicoherent 4-factor with nunmber of cuts of valuc 2 < 51, a
contradictions Without logs of gencrality assume that =x  is
joined in G to wu, vs Now as in the proof of Leomia Lle2els
it can be proved that Alx, Dyq), Blx, I41) arc indcpendont
gcts in Gl' Since the valuc of the cut V(Dll) in ¢y is
2 and §q dis regular of degrec 4 it follews thab

|Alzy D30 1 = |B(x, Dll)l’ thus V{Dy;) is cven, a contradic-
fions This proves that 6 < 1.

How it follows thatb

pi(S)
dlsl 2 2 alv(d), 8) 24 (5, (8) - 1) + 2,

which shows that 1p,(8) < |S|, By Putte's theoren ¢, has a

l=factor, s0 C, has g 3-factor. Thus cach C; has a
3-factor. Fonece é‘é“ ig 8=factorable and thig compleotes

the proof of the thecrcnma

Leima Lee7e Lot C, bc a connceted pavtial subgraph

of G in which two vertices have do crrcen k-1 and the rest
have degreces k  and lot C, Dbc a bicoherent partial subgraph

of G which ig regular of degree k. Also lot V(Cl) and

7(Co) partitiom +tho vertices of G . Then iFf tho degree
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sequence { d, } of & ig k-Tactorable, there cxists a
graph H with degrec scquenct {dﬂ.} and having a conncected
partial graph in which two vertices have degree k-1 and

the rogt have degirees Ke

Proofe Supposc, if possible, that H docs not oxighe

If serme vertex t of O, is joined in G to both vertices
Y

of sone edge of Gy, it can be proved ag in Lomma le2el that

=ty

t ig joined in G to all vertices of Cq. This ig a con-
tradiction pince if u is a vertex with degree k-1 in Ol
and z ip a vertex adjacent to t in Co, then

Cy + Co + (u, t) -~ (t, z) dis a connccted partial subgraph

of & 1in which two vertices have degrecs k-1 and the rest
have degroes ke Thus we nay take that some vertex x of Cl
ig adjacent to both vertices of gome cdge of G, 1o Ge Then
s Tofore we con show that every vertex of  Alx, Cl) is

joined in G to all vertices of Op, no vertex of B{x, Cl)
ig jeined in & to affe vortex of Co, Alx, Cl) and  B(x, Cp)
are independent sets in Cye Further the two vertices of Ol
with degree k-1 belong to B(x, Ci)e Now it is cvident

that k¥ =2 and |A(x, 0| = |B(x, ¢)| - 1. Purther it

can algo be proved that G -> Coe As 1n the proof of

hoorerl 1243 1t follows that, if G6* is any graph with

degree gequence { d, } then its vertiees can be partitioncd
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b

ints nonompty scts A, B, ¢ such that |A] = |B| ~ 1 and

ovody edge with one ond vertex in B has the other ond

actorable, a contradic-

t

vertex in As Thus { &, } is not 8-

tion which proveg the leomma.

Theoren 1e2¢8. IF { dj.} ig k~factorabic, then there
exists a graph: H with degree scquence { di} having & cone-
neeted particd graph in which two vertices are of degree k-1
and the rest have degrees K.

Proofe Thig theoren follows canily from Loma lele2

and Torma Tele7e

o

Taking k=2 wo¢ sco that

-4+

} ig E~factorable,

f{d

then it ig traccable, ie.ce, there cxists a graph with degree

ol

sequence {d_; ], and having a Hamiltonian chain,

The probien of finding nccessary and sufficiont condi-
tions for a graphical degree scquence to be k=factorable soceons
to be much deepers  In this conncetion we make the Tollowing

conjecturcs, N

Conjecture Je A graphical degree scguonce { d, } i
k-factorable 1f and only 4if { d, =k } ig graphicals

Conjecture 2. If is k-factorable then { d; }

ety
o C
=
B e

ig (kml)~factorable provide i e
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Dre Jo Ae Pmpdy kindly informed that conjecture 1 fow
k'= 2 was also mentioned by Prof. Be Grinbaum at the corbi-
natorieg conference held in Calgary in Junc 1969. We prove
below that the truth of conjecture 1 implicg thie tiruth of
comjecture 2o Turvther, by corollary to Theoren le2+4 and

Theorens 1e2e5, 1e2e6, it follows that conjecture 2 ig true

.
2
R4
]C,D
[—1
|
=
In
>
™

heoren leZ2e9. Lot { d;} and { d_i-k} be graphical
soquencegs  Then {d -* } is a graphical sequence provided

0{» <k and rn is cven.

E’z‘oofl‘ Let bi = i-—k and  e;=d;-1 for 1 _g i _g N
That ﬁIEI_l ¢y 1is cven is cvident. So by a theorem of Brdds
and Gallai [5] (scc almo Beinecke and Harniv D), we have only
S e )
%0 show that .;:_l oy 2 ';'r c; Tor 1 < s {=n, where C"S* is
o=l == Sla==dfL 1 ==

the nunber of 3 suen that 1 ¢ J and e, 2 j~1 plus the

maber of 1 guch that 1 > 3§ and e, > Je TFor this it ig

3 B 8 5

ok ok %
X €y + s > ni £ d Z b, 4+ ks 7
i=l = {i:l i i=1 * }’ ( }

Congtruct now the (0, L)-matrix A = e

1]
1 where 84 = 1 if and only if i < j and 4 2 j=1 o=
1> and d; 2 J. BEvidently then ;¥ is the i-th column
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Wy
sun of As DTet us now put in the i-th row of A two marks,
5 rod mark immediately after the (di—k) ~th 1 and a bluc
mark imediatcly after the (d,-r)-th 1 for 1 _<_ i _g ne For
any s with 1 < s <n, let A denote the n X s mnatrix

consisting of the first s columms of A

Cage (i) »

Then the numbex of 1ts to the right of red narks in Ay £ ks
L

[ =5

Hence the number of 1's to the w»ight of blue narks in A L T

-

for otherwise, a occurs to the right of bluo marks in at

-3

least o4l Tows o Ay hence the number of 1t's between

the red and blue narks in AL > (k-r) (s+1) and the number of
J

1ts to the »ight of red nmarks in Ay 2 ts + 1 + (kwr) (841) =

ks + kX - r + 1 > ks, a contradiction. This proves (7) in this

CasSCe
3] £ e
Cage (d1) , » a%* > = b, + ks, |
b 1] i=1 -

Then the number of 1's to the right of red marks in Ay > ks,
Henece the number of 1's  between the red and blue nmarks in

Ag > (k=Yg for otherwise, the number of 1's to the might

=

0f blue marks in Ay > Ts, hence a 1 occurs to the »ight
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of bluc marks in at lcast 53l wows of A, and the nunmber

5.

o

of 1%z Thotween tie rod and bPluc marks in A ia not less

than (k- ) (s+ 1) » (k- »)s, a contradicticn. Thig proves

{7) in thig case and the theoren is proved.
The results of this scetion are to appear in [20].

Remaske: A k-fgetor of o digraopn & is a partial

Q

graph of G in which the indegree and outdegree of covery
vertex is ke Call o demi-degroe scguence SQ@"T’ dfg

kmiacterable (strongly connco*sd k-Toeterablc), if there

existe o digraph with a k-Tactor (strongly connceted k-factor)
and with the given demiedegrec scquence. With thesce defini-

tions, it would be interesting to eoxtend the resultg of this

geetion to digranhs.e Are the “ollowing statements true?
1 =

) ] + - :
Le grapiical demi-degiree scguence {dq., dj.} ig
o . pe A - : X3
k=Tactorable if and only iX y & -k, &, - k} ig grapnizal.

2s A k-factorablc doemi-degirec scquence ig  {(ke1)-

factorablcos.
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1e3. On planar degree SCgRCNCeS

In tiie book cntitled, 'Recent Progress in combinatorics!,
edited by We T. Tutte [24] the Tollowing problen was poscd by

Av Mo Hobbg (sece problen 9y Do 344 of [24])., TFor what valucs

-4

of n g thero o planas £7aph on n vertices without loops
o multlple édges which has 12 vertices of degrece B and n-12
vertices of deg¥ce 6?2 He also cbserved that such g graph
cxisfs for n = 12 and none ¢xigts for n = 1%. In thig

section we solve thin and some otiwer rclated problens.

o

. A graph ig said to bo enbeddable on a surface § if

..t

l_l-

can be drawn on the surface § such that no two edges intor-

gect. A pianar g2aph 18 a graph which cen bo cobeddable on

e

the plancs 4An Lubedding of a planar grapi on the

calied a Planar realisation of the g aphi.

Let G be a graph, Wy ) be an cdge of G  ang

8

fr Toseesy W be vertices net in V(G). A subdivision of

jote

the edge (u, v) of ¢ by W, Wioseeoy W consigtg of
I~ K

onitting the edge (u, v} of G and including the cdges
1+1), 1 1< s-1, ana (Wq, v)e A double wheol

0 n+ 2 vertices conglsts of g cireuit € on n verticeg
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with two additional vertices adjacent to overy ve V(E).

A p_a:au g""'lpl’ on n vertices is said to have the

property P(3, 3).; i<mind5, j}, if it has k vertices

* anm—

of degree 1 and n~k vertices £ ucgrece j, where 1, j, k

arc conncebed by tihe relation
(n=k)j = 2{(3n~ 6).

In this section we comgider the following problem. For what
valucs of n  ig fthore a planar ,gl,';qph,on n vertices with

property P(1,3)? If 41 =5 and j =6 then k = 12 and
thig i the problen of Hobbse C1 carly a planax g a0 Wlioba Ml 1}

vertices with property P(i, j) t1iangulates the nlanc.
We seclive 'tho problen of Hobbs by proving the following

Thoorcm leBels  For all values of n > 12 and n # 13,

there oxists a planar graph on n  vertices with property
rocf,  Weo comnstruct the reguired planar graphs induc-
tivelye For n = 12, 14 and 16 the graphs Gl’ Gs and G

fo

-~ 7 L ] T =n ] i . 'l
of Figured 1, 2 and 3 regpectively are the roquired graphs.
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alisation Figs

cribed in Fig. 4

We Ohgerve T
é faccg hovi ng tinc
1t bhen has

trueture dos

1

o4}

fhere arc Io¥r Iac
in wiich each vertox x;, 1 < 1 {6, incident

degree 5 din ‘ Gl
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13

Fig- Figa Bl

Now we congtruct a planar graph H on 15 vc.rticos with property
P(5, 6) having four faccs with structure deseribed in Fige 4o
To get H Iron Gl’ subdivide the edges (}:4:, }:5), (x5, Xs)s
(XGs Xé) of Gy by Y19 Jps ¥z Tespeetively and join yy
to X9 Tor T3 join Yo to Xos Vb and joi:q‘: Ve to Koo .Now
in H there are four faces (sce Fig. 5) za\rllﬂg tie structure
described in Fige 4 in which cach vé:n'*tex indident with then
hag degree 5 in H.  Now repeat the congtruction with thesec
four faces on He Thus induetively it follows that for all

nol the form 12459, where g is a nonmnegative integer, there

ls a planar graph on n  vortices with property P(5, 6).
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In the planar realisations Pig. £ and Fig. 3 of Go and
Gg thore are nine Taces naving the structurc described in
Fige 6 in which cach oI the vertices Xy Xg» Xz Xy Xgs Xg

hasﬁ-\dogroo 5 in Gg_ and GS'

Fig. Tins

How we deseribe a proccdure by which we can get planar grapihs

- H? and H5 on 17, 20 and 23 vertices respectively cach
1!
having the property P(5, 6) and HS ngving ninc faces with

structure degeribed in Fige 6, To get

fhe odgd3 (255 %)y (K55 Eo)y (4 X5) bY 20 2o, Zg
X

R 1o iy ¥ 1 Y - . Pt r
regpectively and Join Z to X1 Ty Zzy Join Zg to Xy

Zzy and join Zo o Xge Bince the degree of cach of the
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9]

5, I, is a planar graph

vortices Xy9 g9 Xg in Gg i
on 17 vertices with property P(5, 6). We construct Hy fron
H, ag followss Subdivide the cdges (XlO’ Xé), (Xé, XG),

(XG, Klo)'Of Hi by Zys Zgs Bg reppectively and Join Zy
to Zoy e Bgd Join g to X5y zﬁ;and join Zg to Xy o Then,
since tnc degrec of cach ol the vertices Zoy gy X in H

is &y H. 18 a planar graph on 20 vertices with property

5]
Xy Xg) (xgs %) of Hy by zm, Zgy zg Tespectively and

[

P(8, 6)e To got H, Tfrom H,, subdivide the cdges (xlo, X?),
(

i P Tk | a g joi: T
Join 2y To Zgs Zgs Fgy Join zg to Xgy Fgh and Jjoin zg to
Zze How gince degrec of cach of the vertices Zgy Fgy g in

H, %s 5, H

()

z 18 a planar graph on 23 vertices with property
P(5,6)e Further in Hs there are nine faces (sec Fige 7)
having tiie structurc described in Pige 6. Now repeat the cons-
truction with these nine faces of HS' Tnug for all n of the
form 14 + 38, whee 8 1 g non-negative Integer, ticre is a
planaz graph on n vertices with property P(5,6). Starting
with the nine faces in Pige 3 of G3 naving the structure
degeribed in Figs 6, we can sinilarly construct planar graphs
on 1 vertices with property P(5, 6) for ey R, BT thne

3
fomn 16 + 38 as wolle Thus

s

or all n > 12 and n £ 13, thore
exigts a planar graph on 1 vertices with property P(5, 6)

and this completes the proof of the theoren.
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Remark., If n(> 12) is an oven integer and n £ 14 let
¢ be the planar graph with property P(5; 8) congtructed
abovce It can be casily verificd that in the subgraph of &
ginerated by degrec 6 verticeg off (G there is a perfeet natb-
ching (1~ factor). Removing thig l-factor frem G we got a
planar regular graph of "degree 5. Thus a planar regular graph
of dogree 5 cxists Tor all even n (> 12) and n # 14. This

. . - . ’ ,.,
reoult was carlicr proved by Chvatal [31.

Theoren le3c.2. Let j(> 6) %be odd, Then a planar

groph on no vertices with property P(4, j) cxists if and only

i 326 and k = —3—(—3’—3—{§

00T The necessity that n > 6 and k ig an inte-

;_.l.

s a positive intcger.

ger ig trivial. To prove sufficicney, we construct the rogquired
gropis inductivelye For n = 8  the double wheel ¢ on 6
vertices has the property P(4, j) and has two faces with struc-
ture described in Fige 8 in which cach of tho vertiees

%y Hoy Xg Ihag degrece 4 in G,

ir

P

.
R
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Ol . .
To got a planar grapih H on  j+2 vertices (the next admige

[N
]

gibtle valuc of n, lece, the next value for which k a

pogitive integer) with property P(4, j), subdivide the cdge

(%0, xé) of G By Zys Zosee., 250 and join cach of them to

v

Ty Xz Clearly thien 1O has two faces with structurce degeri-
bed in Figy 8 (sce Fige 9)e Thus inductively we can constiuct
plana graphs on n  vertices with property P(é, i) for all
np 6 whenover k  ig a positive integer and this completes

tiie prool of tic theoreon.

An argunont similar to the argument usod in the proof of
Theoren 1437 proves the following

o

T T oMy 3 . "
Coxollomye. If J (> 8) is oven thon a planar graph on

nvertices with propexrty P(4, j) exists whenever n  is oven

( -6 Il+1t.‘; P
7 is a poaitive integer.

and n 2 6 provided k >

=

Theoren Te3e3s Lot j = 2(mod 4) and 3 > 4e Then a

pronar grapli on nm vertices with property P(4, j) oxists
o
-~

whenever N ig even and n > 6, or n ig odd and D ) %— +&
previded k = Q_,lr_)_nﬂ is

.‘}?E"‘oof. By Corollary to Thcoren 1.3.2 1t ig cnough to

o]

a positive integer,

congider the casc in which n  ig odd, So lct n Dbe cdd and
3

o for

+ 2

s

n %— +2.  How we construct g planar graph G on
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-

(which ig obviowsly odd since j = 2(mod 4))vertices having

two faces with structurce deseribed in Figs 8 ag follows:

1 -
r

Take o wheel on  J+1  vertices, 1,2,es., j+t (8ay), with J+l

5

it el b ) L) . - ) .'"‘ﬂ_'.'
being the centye of the wheel, attach chiaing of length -3-2—-,

a a N say at cach of the vertices
on cs’ly Ls’g’o ’ S, '_4 (:r‘_‘lg), H &y . b

£
o

56{2, Lyonees j} , Join cvery vertex of the chain attached at
s to s-1, s+ (mod 3J), se¢ {", 49005 §} and let H be
thic graph. Then take a new vertex x  and join it to

1" 5,"0, j"l‘l’ ae, LA | Q= -;—4. Lct G’ bo tllC

R

¢ [ (]

- reswibing groaph (sce Fige 10 for the casc j = 10, in which

only M dis given).

&0

Toen G is o "Planar graph and hasg’ %— + 2 vertices

out of whiegiL 1@ + 2 arec of degree j, namely 1, Sye.ey J+l,X
[
B

and the ronnining a¢ o degreC 2e 80 ¢ ig o planar graph on %.,.g

Ps
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vortices with property P(4, j). Purther G has two faccs
with structure deseribed in Fig. 8., Now,as in the proofl of
Tooren le3el, planar graphs on n  vertlices with property
2
p{4, j) can bc congtructed for all n odd and n *%7 + 2
provided k is an integer and this cormpletos the proof of

tho theorome

Perhaps these arc the only valucs of n  for which there
oxict planar graphs on n  vertices with property P(4,3)

whonover  J = 2(mod 4) and > 6. ‘ ‘

Woen  J = 6, the planar graph G

=

of Pige 11 on 9

A%

vertices hag the property P(4, 6) and it can be casily proved
that there ig no planar graph on 7 vertices with property

2(¢,

Flgc 11. G’d
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This observatign coupled with Theoren 143.3 foxr j = 6

yields the Tollowling

Theorem lede4. A planar graph on n  vertices with

property P(4, 6) exists 1f and only 4Ff n > 6 and n #£ 7.

Theorerl 1e3e5. A planar graph cn n vertices with

property P(3, 6) oxists for all even n > & and n # 6.

Proors For n = 4, the complete graph on 4 vertices

e it

and for n = 8, 10 the graphs G5, GG of Pigures 12, 13
P Y
are the required graphs . G2 }Xé \\‘\
el i
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Let x, X, e the vertices of degree 6 on the infinite face

of Fige 12 of Gg. Then the infinite face of H = Gg={x,%p)
is o L~cycle with two nonadjacent vertices of degree 3, -

Xy By (say), and two vertices of degrce 5. Now to get a
planar graph G on 18 vertices with property P(3,6) fronm H,

take threc noew verdices 2, Zes Zig and join caci of them to

- (%]

XS-’ jOlIl Zl tO .'X,-! [] Xf‘r, Z:-z, ZS:’ jOlﬂ ZS to XB! xé,zz"’ and

talte one nore vertex =z and jein it tc  x,, Zy Boe Now the

4

infinite face of G -(zq, Z.) 1is a 4-cyele with two nonadja-

¢cent verticcegs Zes Zy of degrece 3 and two vertices of degrec

Je Binilarly we can congtruet a planay greph K om 14

verticos with property P(3, 8) Fron Plge 13 oT GG with the

inTinite face of Kw(zﬁ,zo) naving the structure deseribed
avevce Timg inductively we can construct planar graphs on n

verticesg with property P(3, 6) whonever n ig even, n > 4

and Il,éGs

low we conjecture that there is no planar graph on n

vertices with property P(3, 6) whonever n is odde

We conciude thig scetion with the obs iervation that there

iz nd plannr graph on n (2 4) vertices with property P(i,3)

< 3

i i =1, 2 and the Tollewing list in whose third colurm
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-

the ouly values of n  Tfor which there arc planar graphs

n vorcice

s with propexzty P(i,j) arc given.

49

on

i J n )
55 12

L 5 6y Ty 8, 9; 10, 12

3 5 By 2

£ Z 6

5 4 4, B, 6

5 3 4
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CHAPTER 2

STUDIES ON CUT VERTICES, CUT ARCS
AND CUT EDGES I GRAPHS '

In [19], As Ramachandra Rao deternined, among other
things, the ranges of the number of cut vertices and cut
edges in an undirceted graphr on n vertices with nm  edges.
In tnis chapter we solve the corresgponding problenms Toi
ptreng dizceted grapise We also give partial golutions to
~the problems of the deterninaticon of tie number of cut verti-
ces and cut edges in an undirected graph on n  vertices and
nociges in wiieh mininunm degrec E d, considecred by
Renachandra Rao [19]. Moxc procisoly, in Scctiong 2.1, 243,
we determine the ranges of the number of cut vertices, cut
arcs in o strong digrapii on n vertices with n  ares and
characterise some extremal giraphse This algo goneraliscs gome
of the regults of Gupta {6]. In Scction 242, we prove that a
streng complete digraph on n(>3) vertices has at most ne-
cut vertices, without using the existonce of a Haniltonian
cire it and thig solves a prohlem raiged by Korvin [18] at the
Rore Uonforencce In Scotions 244, 2.5, we Tind the maxirmum

muiber of edges in a connccted undirceted graph on n  vertices
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a1

- | T 3
with = cut vertices (s out edges) in which minimun degice
> 4 ond give partial solutions to the problems ~F
Romachandra Rao [19].

A vertex (are) of a strong digraph is called a cub

vertex (cut are) if deletion nakecs the graph not strong.

its
n{G), Q(G), f(G), S(G) denote reospectively the number of

vertices, arcs, cut vertices, cut arcs of Ge Also R(G)
denates the got of all cut verticeg of G.

M oare (x,7) of o digraph G ig gymmeteic i (y,x)eG.
A symetric groph wihioge associated undirceted graph is a tree

ig cailed o symmctric treec. G denotes the partial subgraph

of G consgisting or all the gymetric arcs of G &E(x), .
déhﬂ denotes the outdegiree gnd the indegireceo of x in G

rogpectivelys The dogrec of x = dg(x) + dé(x). The converge

|~
0

of G hos the sanc get of vertices as ¢ and (x,v) an

-

are in the converse if and omly if (y,x)eG.

H;

A vortex (edge) of an undirected graph G is called a

'.J
s

cut vertex (cut cdge) itg deletion incrcagscg the number oF

comenents of | Ge A pondont block of a graph G 18 a block

of G which is incident with eoxactly one other block of G.

Lee ! x be o vertex of & and € a component of G-X, then
N

the subgroph of G  generated by V(C)U'{X} is called a

piecce of G . with cgpeet to e
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C el The number of cut vertices in a

strong dirccted graph

In this ccction we determine the naxipug number of cut
vertices in o ctrong dirccted graph on n vertices with n

aroge  Threouziout this scetion by a maxinal graph onm n

vertices with © out vertices, we ncan a strong directed

graph such Tiat the addition of any arc decrcascs the nunbei

e

of cut verticos. An extremal graph ie a graph with n verti-

cos, = cout vertices and with maximum number of arcses

Toima Seiele If & i3 a maximal graph and there are

two vertex digjoint p'ﬁ?l: from x to v, then (x, ¥)E Ga

Proof  IT (x, y) +£6, add the ave (x,y) to G. If

thig convertg some eut vertex u of G into a noncut vertex,
then u  belengs to overy path from x to y in G, a contra-
diction.

Tomin 2els2e Lot G be .a maxinal groph and x o noncut
vertex of (e Then  R(G~ x) (_ R(G)+ PFurthor if

ve R(G) -~ R(G=~ %), then either a¥(x) =1 and (x,7)e & or

ol SRR P
¢{x) =1 ané (¥, X)€ Ge
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Proof, Supposc some noncut vertex z of G
vertox of G-xe Then there cxist vertices u, v such that
evory path from u to v in G-x passcs through  Ze
z ig n noncut vertex of G, there ig a path =7
v in ‘G-z; Let g = [u, Uy gesasly 39 By Upgqoeecs v] be a
path Tromn u to v in Gexe If u and 7 arc vertex dis-

L

a maxinal graph. Even

0

joint them (uy v)E G since G 1
otherwise {uy, uj)e G for some i < k-1 and some j 2 k4l

g o path fromr uw to v not passing through =z

-

Thug there
in G-x, a contradiction.
wow 1ot ye R(G) - R(G~ x)e We consider two cascse

asc (i), Every path from x to gome vertex v in G

-

passos turough ye Now if u  ig any vertex other the v

and (x, u)e G, then since G = & -{ x, y} is strong, therc

-3

iga pathh from uw to v in Gy« Thus there ig g path from

x to v, not passing thiocugh ¥y, in G. Thig contradiction

Cose (id ) Every path from gsone vertex v to x in @

passos birough ye As in case (i), it follows that 47 (x)

and (3, :)EGe This completes the preof of the lommae.

T o s .
Loma Celede Lot G be a maximal graph and x  a non-

cut vertex of G such that R(G) = R(G-x). If the degree of
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x in G ig ot least 2n-2-k, thon ©(G) £ ke

f k =mn-1, the lema is trivial. So let

. =

av]
L]
1 O
[ O
1~y
=

kin- Ze Ividently now there exists a path {x, ¥, z] in G
suck that (x, ) ¢ G. Since ¢ ig naxinal, it follows that
¥ 1s a cut vertex of G and ig a noncut vertex of the graph
* obtaincd from G by adding the are (x,z)« If G* ig not
maxinal et I Dbe a maximal graph containing G* guch that
R(@*) = R(H) = R(G) =~ y+« By Lorma 2.1.2, R(H-x) C R(H).

Let now w  be a noncut vertex of H-x. Then H - { X, u}

ig stronge So if u dig a cut vortex of H, then cither

QE(:&) =1 or drlx) = 1. Now dﬁ (x) is not posgible, s0

d;I (x) =2 = dG(x) « Since k _g n~ 2, by hypothesis,

itz 2 =1, a contradiction since (x,z)¢G. Thus u is a
noneut vertex of H and R(H-x) = R(H). Now H satigfics
the hypothesis of the lemma with %k replaced by k-1 and the

proct is completed by using induction on ke

Lomma Celeds Lot G be o maxinal graph, X a nmceut ver-

tex of G and let »(G) = n-1. Thon the degirce of x ig at

\HOS—I: l’l-—l.
) E:i??.f.p ~Thig lemma follows from Loma Seled  if

Bom) = R(E)e I r(@) = r(G-x) + 2, thon by Lomma 2elel,

+
(x) = a"(x) = 1« So we may take that R(G-x) = R(G) -~ ¥


http://www.cvisiontech.com

- 29

whore vE R{(G)s Now wc prove the lerma by induction on n.
The lemmn ig trivial for n= 3, so asgume the result for n-l
and et G be a graph with n  vortices and satisfying the
hypothesis of the Zema. Without loss of generality we take
i*(x) =2 and (x,7)6Ge If posgibic let the degree of x > n.

Then evidently d7(x) = n-ls. Since G d1g maxinal and Ge-x

ig strong, it follows, by Lomma 2.le1, that 4" (y) = n~1l.

First we show that G-x ig nmaxinale. Otherwige add an
are ¢ to Ge-x such that the rosulting graph has the same
cut vertices as G=-xe Let H be the graph Geo. Now
RH) C 2(8)e If possiblc let ue R(G) - R(H). Since

o+
dﬁ(:—;) =1, ye R(H) and u £ y. Supposc now that @u is

)

Y]

y Vo arc two vertices of He
L]

such that overy path from w o v, in H=x posscs thirough

-} 2
ve Since ug R(H), therc is a path u fronm v, to v, mnot
containing u in He Evidently now xe te Now the vertex
gaicoceaing X oon ¢ igy and if z. ig the vertex prceeding
x on oy then (g, ¥)& H Bince d;{(y) = N~ 1, Thug there ig
& path from v, to v, in H- x and not containing ue. Thig
corradiction shows that uw  is a noneut vertex of He- . By
tltc-.eﬂ_minition 0L  ay u 1 a noncut vertex of G-x and go of
Go  This contradiction shows that R(H) = R(G). But then ¢

+

.:_: ”,"\')'l' ;4"."<<~':.‘ 2 * < -y - bl .
i nev maxitiale  This finally preves that Gex ig maxinale
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Thooron 2.

_ = a6
Since r(G¢) = n-1, v{G-x) = n=~2 and y is a noncut
verbex o G- e Honco) by induction hypothosis’,'tho degree of
7y in Gex 49 at most n- 2. Thig is a contradiction gince
G-~ x ip strong and the indegree of vy in G- x is n- 2.
Thug our gupposition that the degree of x :L:d G E n lecads
to a contradiction and the lemma ig proved.

digraph with n > 4 vertices and

el
2

@)

n

@)
Further th

cut vertices are

.t

X

1

as tie v

,Gi(n)

ko @ (03,

r 1= Jj+1 ox
I G{(n)s

i j4¥1 or 1<
e | L
1{J<£n=-24 o

1,5 The nmaximum number of ares in a strong
T cut vertices is

) + 3 if »=n

+ 1 if »p=n -1

11- i o )
+ (T ) + 1 if = {n = B
¢ cxtrenal graphs with n  vertices gnd o
crticeg 1, 27’.-‘,’ e

(i,3) is an are if ecither 1 i< j<n=-2
i=1 and Jj=n or di=n-1 and J= n,
(i,3) is an arec iFf cither 1 i< j { n=-4 oxr
in-3 and j = n-2 o i = n-l and

1 =0~ and j=n or 1=1 and j = n.
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GB(H) is the converse of G,(n).
In. G,(n), (4, J) dis an avc 4f cithor 1 <1 ¢ j < n-l
ooz Je e T k= 1 andh § £ ng

In Ggln), (i,J) ds an arc if cither 1 < i < j < n-2

or i = Jj+l or 1 =mn-l or i

]
=t
g
[>T
[
il
[
L ]

. In Gpln,»), (1,35) 45 an ave if cither 1< 1 < j <n or

integer sueh that 1 Lk L{r+1a

It may be noted that G,(n) has n or n~l cut verti-

A

¢es according as 1 (1.3 or 4 < i (6 and Gv(n,r) has

r cut vertices.

Proof, Wc prove the theoren by induction on n. The
theoren is casily verificd when n = 4 using tihe ligt of
digraphs on 4 vertices given in [9],[{11]. So assume the result
for n~l and let G be an oextrenmal graph on n > & vertiges

withh 1 cut verticese

The graphs described in the statement of the thicoren have
'A(ngr) arcs wikere n  ig the number of vertices and 1 1g the
miab?ts of cut verticess Thus ¢ has at least Aln,v) ares.

Wc now prove that ¢

s
f»
£
ot}
o

t most A(n,») ares and ig one of
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he graphs described in the trneorerl,

Pirat lot r=ne Let x be a vertex of Ge Then
thore exist vertices .y and  z such that (y, x) and (x, 2)
are avcs of @G, and cvery path in G from ¥ to =z passcs
through = Let H be the graph obtaincd fron G by adding
the ame (¥, z) andé dropping the vertex X. Since G is

mayingl, 2 ig strong. Bvidently any vertex of G other

than %, ¥y 2 18 a cut vertex of H aloo.

1¥ »(H) = n~- 1, then congider the grapk G' = G+ (y,2).

graph containing G' with R(G¥) = R(G'),

,_,
s
o)
%
[.I
2
o)
i
&3
-
E
=

then by Lomna 2eled, the degree of x in G*  and zence in
¢ i at nest ne-ls Now by induction hypothesis, H has
(J hA'A

at most } + 3 arcoe Thus G has at mogt

(ngfg +3 + (n-1) -1 = Aln, n) ares. Now it also follows
that H is an extronmal greph and the degirce of x in & is
nels We congider the case H = G,(n-1), the other two casecs
can be fignoscd ginilaxly. Now the only cut ares of Gg(n-l)

are (1, n-1) and (i41, 1) where i £ n-3. Thus (y,z) is

# n-3,

I~

(1, ne1) or (dal, 1) with
+

If 1" = n -2, then

R
H

ig not adjacent to any of the
vorticcs 1, R,ee.4y n=3, for otherwise n-2 or n-1 will be

a noncut vertex of G, Tils is a contradiction since the
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Yy unity with the vertex x. Tms G = Go(n). Thig proves
that if =(H) = n-l, then G = G
flow et =(H) 5. n-2. Then we nay take that y i a
nopeut vertex of H, for, the cage % is a noncut vertex of
H is gimilar. Evidently then & -{ X, 3;} ig stvong. If
a7 (x) _:: 2, then ¥ is a noncut vertex of G. IT c‘za'(y) 2.9,

to z and not using X

Q2
I~
5
Q
=]
A
&l

then there ig a path in

dF(y) = 1. How 1ot ¢, be the graph obtained

]
-
et
t=]
(]
——
i
—
i

from G by amglganating x and ye Let X, denote the

=)

vertex of G, obtained by amalgamating x and y of G. I

any vertex w  of GO other than X, ig a ncncut vertex of
Gy then u  dig a noncubt vertex of G also (since (y, x) is
the only arc incident into x and is the only arc incident

out Trom 7)e Thig contradiction shows that r(GO) = N2,

[
i)

We now sicw that G & 15wl fale | TF GO not maximal,

let the adiition of an are (a, b) not affecet the cut vertices
o ; mit . iy fiys . b =
of G,o Thon consider the graph 6 + (a,b), ¢ + (a,y) oz
¢+ (x,0) according as a #£x.  and bf£x, b=x_ or

0 o 0
=X e Mhig graph hag the samne cut vertices as G, a
-contradictions Thus & ig maximal and by Lema 2al.4, the


http://www.cvisiontech.com

60

b in & ig at rost n-2.

degrec of s -

= Ll o} . _ . ,
If now dGO(xo) =1 and dy (x,) =1, then G {x,y}

o]

nas at least ne- 4 cut vertices, henes by induction hypo-

-0 re 1,
host o G- x has at nost (ne‘“) + Ne= 3 arcg. s
Lu..:, ) £
¢ has at most  (Pf ) 4 n-3 + 4 = An,n) arcs., It also
E ) [

Cfoliows that @ -—{}:,y} nas cxactly n- 4 cut vertices and

ig oextiomal and G = G, (n).
== -
If 4z (x) 22 or ak (x,) 2 2, then € -{x,y} nas

C :

at lecagt n=3 cut vertices, hence by induction nypot hesig,

) : n- L) 3
G- {x,y} hags at nogt ‘“) + 1 arcge Thus G has at
: l’l-—g\ [») Pl -+
nost 2 + 1 4+ (n-2) + 2 = Aln,n) arcs. It also follows

that G -{ :v:,y} has n-3 cut vertices and is extremal. To

be specific, lot d(; (XO) 2> 2S¢ If G-'{ X,y} ig G5(n-2),
0

then it follows that da' (Xo) =1 and (x, n-4)e G. If

0
g a noncut vertex of G. So (i,y)ec

[de

(n=~2, v) & G, then n-3
for 1 _g d _g n=3. Thus G = Gg(n). if G- .[ y} = Gé(n-ﬁ),
then agein dy (x)) =1 and (x, n-2)gG. If n 2 6, then

(i,7)eG for sgmc i with 2 ‘Z_ sl 2 n-3, hence 1 ig a noncut

vertex of Go Thus n =5 and G = G,(5). The casc

T

G- ‘[ X7 F=Cg(n=2) is similar to the case ¢ - { X,}"}..F

o P ] a rarl + = . + . o
Gs(n-—u). Further when dGO (:xo) _>_ 2 also the proof ig similar,
fmg we have proved that whem » = n, G = @,(n) for some
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bi

»

Hext let 1 { n-l., Then G hag a noncut vertex X.
By Lot Sele2, (@) > (G- x) > r(G) - 2. 7Thus we have

tiree cascos

dase (1)e (G- x) = 7(G)s Then by Lemma 2143, there

are at ro0et 2n-2-r arcs of G incident with xe. By induc-
tion hypothesis, G=x has at most Aln-l, ») arcse 8o G
hag ot nost  Aln, T) avcse It also follows that © £ n~- 3,

Ge x ig cxtrengl and the degree of x in G ig Z2n-2«D.

-

.

By induction hypothesis, G~ x 1ig G,?(n-l, )e Now obscive
that 3 ia a cut vertex of G7(n-l, ) if and only if

25:1 ;< ¥ or k 4+ - e 2 _2_ i _<_ n-2. Also if (x, 1), (x,3)
are symetric ares of @, then all vertices A with 1 <A <
are noncut vertices of G- xo Now gince the degrec of x in
G iz Sn-Ler, there are at leagt n-1- gsyrmetiric ares

intddent with Xe

If © = n= 3, evidently therc arc eoxactly two symectiic

aes (x, 1) and (x, i +1) incident with x and since

¢ is extremal, (3, ﬁ)eg for 1 < j :_E_ io-l and (X,j‘)GG
for io-i- 2 _<_:‘ p| _{n-— le Thus G = G7(n,1«),

~ - .
It = £ ne 4, then there is no gymmetric are (x,1)

whencver 1 <k on

(x,1) dis a

J=ke
v
=
-+
)
1
H
1
o
*
3
=
£

4]

syimictric are for k £ 1 { k4 ner-2, (i, x)eG Tor
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i { n«l. Thug

ot
A
I
~~
=
1
|_1
B
[T
&
12
S
(@]
Q@
Ity
)
]
=
+
[}
1
H
|}
[
A
I

gasc (11)s (G- %) = 7(6) - 1. Tot yeR(E)- R(E- x)s
Men by induction hypothesis, G- x has at mos?t Aln-1, »=1)
arese DBy Lerma Rele2, we nay take, without loqs of gcnm*al"ty,
thet at(x) =1 and (x,y)eG. So there arc at most n ares

of ¢ indident with e

If now » { n~-2, then G has at most Aln,r) arcs. It
~also follows that the degree of x ig n and Gex ig oxtre-

nale 80 Ge=x = G,(n-l, r~1) and evidently either y=nel or

o
k=2 <y» Thus @& = G,? (m,2Ys
If » = n-l, then by Leorma 2e1.4, the degree of x  in
6 15 at most n-l. By induction hypcthesis, G-x has at
wst  Aln=l, n-2) ares. 8o G  has at most An, n-1) ares
and G-x ip oztromale If now G-x = G,(n-1), then the vertex
1of G-x is a noneut vertex of G, a contradiction, IT
G=x = Gg(n= 1), then (n- 1, x)¢G, hence (i,x)eG Zfor
ne 2¢ Thus G = GS(n). It G-— X = G6(n-—l), then

(1= ©, %) #G,%honce (i,x)eG for all i # n-R. But then 1 is

oy

[ P

s noncut vertex of G, a contradiction. This completes the

cage (ii)e
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age (dii)s (6= x) = »(G)~- 2. Tet vy, ze R(G)

N

R(G- x)« Then by induction hypothesis, G- x has at lcaat
Aln= 1, »~ 2) arcgs Algo G=x has at most A{n-l, v~ R2)

arcse  Alsc by Loma 261.2, d7(x) = a7(x) = 1. Since &

b
%Y
]
ik

t least Aln, v) arcs, it follows that == n-1 and
Gex is oxtromal.e Thus G- x 1ig G,?(n—l, n-3) and

= G,(n)s This completcs the proof of the theorem.

Thooren £el.6. The maximunm nunmber of cut vertices in a

ot °ong aph with - n wvortices and n aves dis r = r(n, n)

Wnere

-

r{n, n) = nax { q: m< Aln, .} -

P‘“om By Theoxem 2.1.5, it follows that the number of

cut vertices in a graph with. n  wvertices and n arcs ig ab
4 o
mst ©(n, m)s To show that the bound is the begt possible,
cons gider the following graphe Take a graph on n  vertices
with * = r(n, n) cut vertices and with A(n,») arcs. By

EIhccrom ZeleDy, 1t has a Hamiltonian circuilt and the dolet

=
O
&

of M, ©) - 1 aves not belonging to the Hamiltonian circuit
ives the rcquirod graphe Thig ccompletes the proof of the

%he CICTle

ow 1t Zg not difficult to prove that the range T, the

autber of cut verdtices in a graph on n  vertices with n

prcs ig
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Q& ® el o »Af b 2ng
Pn-m {r Kvin, m) if n<<m< 2n-1 and n # 2n- 2,
1 {r <r(n, n if B\ Bnede

td
It may be renavked that if » < n= 2 then in cach of
Ly A

the extrenal graphs G7(n, r), the indegree and outdegrce of

overy vertex is gircater than 1. If r» =n or n- 1 thon

in each of the oxtremal graphs G,(n), 1 < i < 6, therc ave
vertices with dindegrce cqual to 1 and there arc vertices
with outdegree cgqual to 1. In view of these remarks it would

be interesting to know whether in any strong graph G  in which

the indegree and outdegree of every vertex is greater than

e, there ig a noncut vertex or not. IT i addition the

b

n
graplt & has a Haniltonian circuit then it is casy to sce

pe) K

that it hag a nencut vertoxe
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2#2 The number of cut vertiecs in a

strong complete graph

ot

in {82 ], XKorvin has askod for a prcof of the fact that
any strong complete graph on n > 3 vertices has at most
n-t  cut vertices without using Camion's theorem.  In thisg

'3

gection we give a simple nroof of the result using induction

3
S
jor
o)
1
1=

reglit is casily verified for n = 4, so assume it
for n-1 and let G be a strong complete graph with =n
vertices where n 2 e Wec nay assume that G ig o daxinal
groph, leCe, the addition of any arec to G converts gome cut

vertex into a noncut vertex. We consider two casts.

-

Casc (i)« -G has = noncut vertex %. Then by inductioh

hypothesis, G- x has two noncut vertices ¥y Ze B8ince

dgbd > Iy <105 dg(x) > 1, it follows that onec of vy, z is a

-

roncut vertex of G. Thus G has at lcast two noncut verticda.

)

Case (ii)s A1l vortices of ¢ are cut vertices. Tot = J

be any vertex of Ge Then there exist vertices y and z
such That overy path from y to z in & passes though x
and  (y,x), (x,2)e Ge Lot Gy = G+ (y,2)« Since G 1s maxi-

maly, x 18 a noncut vertex of Gl. By induction hypothcsis
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G~ x has at lcas? two noncut vertices. ZEvidently, y, 2

arc noncut vertices of G,-x and as in casc (1), it follows
that onc of ¥y, z ig a noncut vertex of G, a contradiction.

Tang casce (ii) docs not occur and the proof is.complete.

2e3 The number of cut arcs in a strong

dirccted graph

In this scetion, by a maxinal graph on n  vertices
with 8 cut arcs we mean a graph such that the addition of
any arc decreascs the number of cut ares. An extremal graph
is a graph with n vertices, s cut arcs and with the maxinun
nuber 0f arcie

It is convenient to notc down the following facts which
will be uged repeatedlye If G is a gtrong graph and the
addition of a new are {x, y) converts some cut are (u, v)
into a noncut arc then (u, v) bclongs to every path from x
to y in Ge Purther in G, thewve are paths from u to x
and y to v not including the are (u, v). If G is a
strong graph and the removall of a ncneut are (x, y) converts

sorec noneut are {(u, v) into a cut arc, then (u, v) belongs
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' to cvery path from x te ¥y in G- (x, ¥) and (%, y) bclongs
to overy path from m te v in &= (u, ¥)s An ave (u, ¥)
. dg a cut are of & if and only i¥ (v, u) is a cub arc of the

Ceonvergse of  Ge

Tofma 2e3ele IEf there are two are disjoimt paths fronm

oymsmeT s, com

! a vertex x %6 anethe® vertex ¥y in a maximal graph G

then (x, v) belongs to G

Proof. Thig lemma %s an immeédiate conscguonce of the

Cfirat obsmervation made abovoe

Lomia Ze3eR2e If 6 dis g maximal graph there is no

-

b

circuit of lengtlhy > 2 without chordg.

Proofla I pOSSiblO let & =2 [}{'.1 3 Kgya .o .er.y XI{+1= :X:lI

be a cirveuit without chords and k > 3. Then add the arc

(%5 X, )s Since & is naximal thig eonverts some cut are
E v —

{u, v) of ¢ into @ moncut arc. Thon {u, V)0 and there

- ]

exigt paths in G from u to x, and Xy to ¥ mnot using

the are (u, v)s Hence by Lorma £e3 1y € has a chord, g

TR TCT D D T T

s contradictions

T

Now we prove the following important lormae

Lomia Sededs fllhcre_; exiots an oxtromal graph containing

a gymmotric tree on n e n-l  vertices according ag

8 £R0-3 o § = 2n-3,
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Proof, We start with any extremal graph with n

Yortices snd © cut aress If G does not contain a symc-
tric tree as stated in the lemma, we describe a proccdurc by
which we can increase the maximunm size of a syrmetric tree

contained in Ge Let T Dbe a maxinal symmetric trec con-

tained in  Ge

Suppoge there ig a circuit containing cxactly onc
vertex u of T, Then we can chcosc the circuit such that
it has no cho>d incident with ue Lot this circuit be

¢ = [u, R AL R xk’ ul.

Firgt let there be a chain n =[xj,yl,-..,yp, v ]
conneccting some vertex of € and a vertex v #u of T.
If mn is nct a path, we may agsume withomt logs of genera-
1ity that (3 pel? y.p)eG and (v,yp)e{}. We call verticeg like
gtinguishicd vertices of m o Now congider a path p
fron yp to ue Lot z be the firgt vertex on this path
belonging to V(YU V(M. If z € Vv(¢) ~ u, then we have the path
z] instead of the chain n . If z€ V(T)-u,
we hove the chain M [xj, yp] + u[yp, z] and this has fower
digtinguished vertices than n e Prococding further we scc
tiiat we can take 7 to be a path from =x. to ve Then by

. J
Lemna 243eL, (Xj, w)eG, hence j = k. Now add the new arc
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E(x,l, u) to Ge If any cut ave (x;, Xi+1)’ 1 <1< k-1,

Leconverts into a nomcut arc, then (u, X, +1)6G, a contradiction.

iso (x., u) is a noncut arc of G, so the new graph has the

sanc cut ares as’ Gy a contradictione.

i there. ig no chain connccting a vertex of V(G)-u and.a
yortey of T-u, then u is a cut vertox of the undivected .
graph: {1 associated with G. Let L be the picce of H
with rcgpect to w  containing the vertices of Ce Then by
Lerma, 2‘;.(:5..‘-3, I containg a symetric arc. Now turn the -
picco of L (in @¢) at w guch that a gymetric arc becomes

*

inecident with ue Then the sige of the tree T ig increcascd.

s we may take that there is no circult containing
czactiy onc vertex of the trece To Lot u = [ul,uo,‘..,up:]
s [ 3

be tic chain in T connccting the veirtices uq and up of

7 and M = [“1’:"'1’}::3’”'-’ Xy up} a path from 1w to uy
with a1l intormediate vertices outside T. We can choose the
patiis ¢ and M such that the only avces of the type (u,l., Xj')
cr (:«:j, ui) are (ul, X._L) and (xk, up).

Uow c‘onsider the graph Gl = G+ (up, xk).' If some cut
arc o G belonging to u  becomes a noncut are in Gy, WC
get o contradiction. If ono of the arcs (Xig Xi+i)’

11 <kelyis acut are in G and a noncut arc in Gy, thon
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{2, up)eG, a contradictions Since G 1s cxtremal, it follows
9

toat (wqs %) is a cut are of G ond a noncut arve of Gy

Now let k4l = lcength of n 2 3. Then (Xk, }L_L)E:G .

Now construct the graph G* from G by ‘dékeding the arc

|-
o]

(w5 x;) and adding the azc (u, , xk). Bvidently G
strong and  (uy, %) is a cut arc of G*. If some cut arc
(x, ¥) of G Tbecomes a noncut arc in 6%, then

(X, ) = (‘%. s X for gsome i £ k~ls Also then there isg a

Bl

path from x, to wu,, hence by Lemaa 2431, (xi, up)eG, a

contradictions Thms no cut arc of G bocomes a noncut arce

in G*s Sincc sa(ox) és((}) and  m(0*) = (@), G* ig

extrenals Next lot a noncut are (x, y) of G become a cut

are in G*, Then since [u_‘ X xl] is a path from u to
) (Xk’ X]_)'

How construct the graph G** from G* by adding the now are

X oin G+ (u.,, %), it follows that (x,
(up, % )e It can be scen that this does not convert any cut
arc of G* Telonging to u to a noncut arc in k%, Also

+

(u.l, KK) is a nenecut are in  G*%*, Thus

5(G) = s(6%) - 1 = g(oxx),

This is a contradiction since n(@**) = n{@)+ 1. Th
s{0*) = 5(3)s Tn the graphh G* we have the path [u_| ’ Xqes u ]

from u, %o u,« Thug we may choosc the path 7 in € With
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T
G

e

o

Mg the

may asgunre thaot

pe L =

change the nunber of

Tet p

R

[

.
g
18

Hely

connceting  x,  and

vertices outplld T,

there ig a path with the

U
5 )\ 1.11)

the ag tion that

Mg

cither

fhe undirected graph

Gl sl

apc .,y

) a piece of H

inciude any voertex of

picce can be transfe oo

Tirst reduce its length

+ (uD, X,) has the samc cut arecs as

! Xn) and delete
cut aie

the tirce can o

a chain,
a vertex of

+then

with

71

frel

18 a noncut arc of G, then

G, a contradiction.
arc cout

the lengtih of

and AR
, (i-l ’ p)
n 2> 2, add thec new

X ).

tiie graph

the arc Thia docs not

s in gsinece (ul, up)BG.

increased when p 2> 3e So

-(u-| ’

other than Xl) and (Xi’ ug)

m

and with all intcrmediate

as beforc it can be shown that

same properticg. This contiradicts

ond are cut areg.

(Xl’ ug)

1 ow is o cut vertex of

|
iated with

X.|

Ge In the latter

regpeet to - which docg not

T contains a symmetric ave and this

a (in @) in such

tako

to a vortex of T

the tiree increages. Thus we

o

nay

any path connececting two

intermediate vertieces outgide T, we

2

to and theon nmake the indegree and
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the outdegree ‘of the middle vertex unity. Thus we toke tna—’cl

it % i any vertex outside T, then there arc exactly two

— D

ares (n,, x) and (x, w,) incident with x and u,» Uy

1

Care adjacent in T

Lot mow q be the number of vertices outgide Te Let

J be the subgrapk of G generated by the vertices of T.

n(J) =n - q, n(d) = - 2q.

gigo 1ot s(J)

]
g

s(G) = 2q + B. Clearly B <ge Now consider
o extronal graph J; on g + 1 vertices with Rq-f ocut
avcss LEvidently such a graph oxists and has at lcast 2q
ares unless g = @ = le Now attaching Jy sultably to J,
we got o graph with the same number of cut ares as G and

the sige of the trec ig incrcascd,

If g=p =1 then let x Dbe the vertex outgide T

and 1ct  (u;, x), (x, up)e Ge Sinee g =1, (ul_, uy) is a

3

cut

[

we of Je IT (up, 'ul) is a noncut are of J, then
replace the aro (ul’ x} by (=, ul) and add the new are (Upy X) e
The mcsulting gPpaplh has 'tho sarme nunber of cut arcs as G,

tms G is not oxtromales Thus (u,, ul) ig a cut arc of J,
then each of the veortices, U Us is citheir a pendant vértox

of T o3 a cut vertex of the undirected graph H associated


http://www.cvisiontech.com

73

with Te If J has an arc (u, v) rat belonging to T, wo
nay assume that u, v belong to that picce of H with
m

regpeet to u, which docg not contain uge locn thig piecce
_ [

can be turned around at Uy (in @) guch that the arc

(u, v) Tbecomes incident inte u,. Then (u, uy) 1is an
arc of, and f = O for, the new graph. Thus we can increcase
the size of T unlegs g =1 and T = J, 1eCoy 8 = 2ne e

This complcetes the proof of the lemma.

It is easy to deducc the uolWOWﬂng

Corollary. The maximun nunber of cut arcs in a strong graph™

graph on n vortices 1g Bn=2.
Thig resuit Was proved carlicr by Gupta [61.

Theorcn Seleis The maxirmm number of arcs in a strong

dgraph with n vertices and with s cut aresg is

-] A N
P8+ ) +n-1 if 0<s <n-1
B(I’l, S):
t‘.;—',;""l * 0 )
ngq ) + 8 if n<{s £ in-2.

Proofe If © = Sn- 3, theire ig no graph with n
vertices, 8 cut arcs and with a gpanning symetric trec.
How by Lemma Ze3s3, there ig an extremal graph, with n-l
vertices generating a gyrmetric trece and with the indegree

and outdegrec of the n=th vertex being unity. Thus the
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fheoren ig proved when 8 = Zn - 3.

So 1et © # 2n = 3. Then we prove the theoren by
taduction on ne The theoren ig:trivial for n =2 and

pgsune the result for ne- L. By Lomma 2e3.8, there isg an
oxtronal graph G with n  vertices, 8 cut arcs and with a

pponning symmetric tree Te Lot (x, y) be a pendant cdge

o T and x a pendant vertex. We have fouir cases
- -

age (i)s Both (x, ¥) and (y, x)arc cut arcs of G

ey

MTen a%(x) = d7(x) = 1« Also by induction hypothesis, G- x

4]

nas ot most Bln-l, 8-2) arcs and so ¢ has at most

B{n=l, s-2) + 2 < B(n, a) avcs.

case (iide (%, ¥) dis o cut are of ¢ and (y, x) is

not a cut arc of G. Then d+(x) =1, Algso G~ x has at
least s-1 cut arcs and so by induction hypothegis has at
nost B(n-l, s-1) arcse If @ _2 n-1, then there arce at nogt
n @red ipcident) with g dn Ga "IF @ 2_. T, SPheM e FaRe
at leagt s-n+l cdges (u, v) of T-x such that both

(u, v) and (v, u) arc cut arcs of G. If now

[%y seey uy v] ig a chain in T, then (v, x)f G. Thus we
gee that it q_E n, there are at most 2Sn-s-l arcs of G

incident with xe Thus G has at most Bln, s) arcse
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Gage (iii)s (x, y) is a noncut arc of G and  (y, x)

s o cut arc of G. Thig is similar to casc (ii).

gase (iv). Boeth (x, y) and (y, x) arc noncut arcs

of ¢, Thon G- x has at lcast & cut arcs and co has at
most Blne- 1, 8) avcs. Now lot [x,ee., U, v] be a chain

£ 7, If (u, v) is a cut arc of G, then (x, V)¢ G. If

[w)

G, then (¥, x)¢ G. Thus therc are

[RS8
m
m
Q
=
ot
filJ
0
O
!

(Vs )
at tost Snes-2 arcs of ¢ idncident with x. So G has at

mst Bla-1, 8) % 2n - s-2 < B(n, s) arcs.

To show that the bound B(n, s) 1is attained, consider
the foilowing graphs H. (n, s) defined on vertices
1’ S'..v L l’l.

In H(n, 8), (4, §) s an avc if either 4 < j or
or k< j<ik«+n-g-1 where k 1s a fixed

integer such that 1 <k {8 4« 1. Here s <n - 2.

n Hy(n, 8), (i, ) is an are if cither 1 < j ov
[

i=j+1 and 1 £k +1,k+2 or i=k+2 and j=k
or i = and j =A -1 where k, A arc fixed intcgers

puch #iat 1 <k < ne?2 and k+1 <A <k + 2. Howe
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B(n, 8) is the graph obbained by atbaching symactyic

]
E trees with a total of Rk arcs at some of the vertices of
2
the following graph He H has vertices 3, 2,...,0-k where

e s LS - a

0¢k<s+1-n and k<n-3 if g =2n -~ 3. In H,

(i’j) ig an girc if ecither 1 { i< j<2n~-98 -1 or

i=j+1 8 -8 - 1ls Further for cach i with

[aw]
3
1
I~
~N
=
1
=
n
o
o~
!_lo
e
]
u
sl
———
|_I-
; S
I
f=a
B
o]
-
I~
o~
[
(]
-
-
e
-

Thig completes tiwe proof of the theorene

It nay be renarked that Theorenm 2.3.4 can be proved
without using Lomma 24363 1if it can be proved that there is
an extremal graphon. n vertices with g cut arcs and with
a noncut vertexs Also if cvery extremal graph has a noncut
vertex then 3t can be proved that H (n, s), H,(n, 8),

i3 v

‘I—L,d(n, 5) are the only cxtremal graphs.

Corollavye Any strong graph ¢ on n  vertices with

o

- T cut ares  is a symuotric trec.

_E“jpl. By Theorem 24344, G has at most 2n - 2 arcs

thus G is extromal. By Leomma Re3e2y, G has no eircuit of

length greater than 2 ond so G ig g syrmetriec tree,

Mhis was proved by Gupta [6].
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Theororn ZedsDe

strong digraph with n

5 = s{n, )

wihor

Q]

vertices with

The maxirun nunber of cut

Il arcs

s(n, n) = nax {q: g £ £ Bln, q) }.

Proote

ki

graph with

Te stiow that the
following grophie

n vertices

4

19

bound
If m <

attached

If a2 80~ 2, take a gn

with n

B(n, 8) ares

verticog

and del

y Wi

o

e
1

2t

O

with

the best pogsible,

25, =

gyrmetric path of length

i— )

B(n,

he sponning symmetric trece

the theorone

B
i artg 1g

Theoren 2e3.4, the number of cut arces

2, congider

at nost

s(n, 1)
congider the

a ciircult on

Ow N

(n, ) cut arcs and with

in any

- o

Rrn-mn

aph with a spanning symmetzic tree

8) - n arcs not belonging to

Thig

How it iy not difficult to prove that the range of

the nunber of cut arcs in a digraph with n
n arcg, is
0 <o < oln, ) it n > 2n,
En—n1+ 1L £ omn, &) if n+l<n < 2n-1,
8 =n it 1= n,

verticoe

g wit

completes the propf of

5y

n
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Cut wertices in undirceted graphs

ey

A vertex x  oFf

yersex iT Gex

s — o e

to have the property

o o i
grant 1g sald

an undirected greapih is
hag morc cormoncnts than

P(n, =, )

called a cut

G. A connccted

if it has

(exactly) n vewrtices, =

vortex 2 de

in a grapk with property

octherwiscs An cxtronal

L]

Pln, v, @) and -with

g0

o
+¥

detormine the value of #{n, =, a),.

tlay v, @) cquals (Zy  whenever n

S0 wo assume that = > 0 IT x is
removing o picce of G with reapcet

et i(n, z, d) %be the
P(n, », @)s
girapn ig

f(n, =, 4) cdges.

cut vertices and degirec of cach

naxirmun nunber of cdges
onc such c¢xiogts and
a graph with property
scetion we

> d and zero othorwisc.

a cut vertex or G, by

to x wo mean rTenoving

the cdges and verticem of that picce

] ]

iteolife

e obgorve the

graph with property Pln, », d). By
block of G we again get a graph

If thore are moxe than two blocks

-

of ¢ then, by combining any two

compieting i, we have another graph

weicn hag rore cdges than Ge. Thus

with property

blocks ceontaining x

witn property

cxcepting the vertex =

following simple facts. Let G be a

adding a new cdge to a

P(ny :':". d)i

containing a cut vertex =x

and

P(n,r,d)

in an extremal graph every
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hert ar 2 v tw i tainin
Wlock ig complete and therc arc exactly two dlocks containlig

ay cut vertex xe Tous the block graph ¢ of an extrenal

graph G is a tree, where tho Dblock groph G of a graph
¢ is o graph whose vertex set is the sct of all blocks or
&y two blocks arc Joined in GF i and only if thiey have

non~copty intersccetion in G {111,

Lorma 2e4ele  In an oxtrenal greph G, there ig no block

of sige p, with 3 £ p £ &~1.

roof. The lemia is vacuously truc if 4 < 3. So lot
d >3 and, if nossible, let A generate a block of gize p
in Gy 3 <p < d-ls Clearly, cvery vertex of A 1g a cut
vertex of  Ge Supposc now, if pessible, the degrec of cvery
vertex of A iz > d +1 in G and x g vertex of A
Then, vemove the cdges intident at x  in this block and join
x to every weoertex of a pendant block of G in the picec of
¢ with rcspeet to x not containing A. Since, a pendant
Plock has at Least d+1 vertices and p > 3, the resulting
graph hag the nroperty Pln, =, d) and has morc cdges than
&, n contradiciion, which proves that some vertex xp (say)
of A has dogree & in G. Since, =, is a cut vertex of

¢, there ave oxactly d-p + 2 (> 3) wvortices in the other
p 2

block 01 (say) containing X Now, if thic degree ol cvery
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vertex in Ol’ other than X;s in > d+1 in G +then,

reneoving the odge ineident at X in C and, as abovo,
joining X to cvery vertex of a suitable pendant block,
regults in a graph with property P(n, », d4), since

d= p+ 2 2 3, having more cdges than G. Thgs at least one

of the vertiecs x, (say) of (,, cother than %, » has degrec

2 1
d in G, x5 is a cut vertex of G, and the sizc of the
o
other block 08,(say) containing Xo 18 Do rocceding as

abeve, sinece the graph ig finite, we Tinally get a cut vertex
% (say) of G such that onc of the two biocks Oy, Oy
containing x has size p and the ethor d- p+ 2, the

degree of every vortex of Ok’ otner than Ty s ig d+ 1 in

T

Ge Modifleation of the graph deseribed above yields a graph
with property Pln, =, Q) having norc cdges than G, a contrad

diction. Thig completes the proof of the lerma.

Lomg Sefefe Lot G be an extrenmal graph. Them the
iowing statements are tiue.
| (1) There is no chain [Ii, Dos Do ] in the block glrapi
G¢ of G with [V(n)|, V(Do) | » max {2, 4} ama [p,] > 3.
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Proof. To prove (1), let if possid I:D'l Do DSJI

be o chain satisfying (1). PFurther let {Xl} = V(D) V(Dg)
and ¥} = V(D,) 0 V(DS)' Clcarly them x;, X, avc cut

b

vertices of G. Then remove all cdges in Dy adjacent to
Xy Eo gxeept .‘thc cdge (xl, X‘?) and join cach vertex of
V(DB) -'{ Xy Xy } to cvery vertox of a suitable pendant
blecks Since ]Dgl > 3, %, X, are cut verticcs of the new
graph as woelle, Further x # X s X, 18 a cut vertex of the
newi graph iT and only if it is a cut vertex of G. Further,
3 )| > nmax { 2, 4 } the now graph has the
property P(n, v, d) ond has more cdges than G, a contra-
dictions If d = 1, this proves that ail but onc pendant

bleck are of sigze 2.

Tc prove (2), let if possible, (Cl, CB)’ (CS’ 04) be
two digtinct pairs of intersceting blocks sueh that
|v(ci)l > nax .[ ©y 4}y ¢ i < 4, If twe of these Tour blocks
coincide then, by (1), we get a contradiction. Thus thege

four blocks arc distinct. Since %, the block grhph of Gy i3 o

tree thore is o unique chain  u, without loss of generality
: the '
Ve con agsunc that it ig
k8 LRI R b _t w3 lZTO [Ol, O‘-), D ,-..u, Dk’ Cn, Cé‘]

in G*, where k > O0s If k = 0 or RA D1)I > d (> 3y by

J

hypoticsis), by (1), we got a contradiction. So k > 1 and
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IV(Dl)l {.dele Then, by Lorma 2.2 IV(U Y] = Since,
minimunm degree in G > 4, ]V(DE)] > d- 1 80, by Lema Zedel,
|7(D,)| > de Now suppress the edge of I, analganmatc the

two end vertices of thig cdge and using this cdge scparate

¢, and Coe Again we get an cxtremal graphr He Since,
[

\V(GE)\ > a anad )V(Dg)l >d in H, as above, lV(DS)i

and ]v(34)| > ds Thus procceding, ag aboves we Finally get
an extrenal gztph with property P(n, », d) and a chain of
tirrce blocks caecll of sige 2> de Thig is a contradiction by

(1), and thig completes thc proof of thic lermlae.

,

How we start with an cxtremal graph G and describe ¢
procedure by which we can get an extrenal giraph Hb having

the following structurc: H  consists of A complete graphs

1
—!

cacih of gize d separated vy A - 1 edges with

A (d=2) +1 of the [ (@ 2) + 2 terminal chains consisting
of a cut cdge and a complete graph on d+l vertices at its
end where A is given by the following »clation

i SRS 1%—5, 0 {8 {=d~ 3, and the cxceptional

chain has e(8) vertices (not counting the vertex & (aay) by
wiich this chain is attached to the rest of the graph), 3 cut

Ip)
verilees, where n = (d7=2)s A + 4 + 1 + €(8), and is of the

structure deseribed below provided d > 3. IF af = .0, i
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ehain is the complete graph on > 4 vertices. Otkerwise,

the stmactuze ig ag shown in the Figg. 1, £ in which cach
a1 <1 <1 3 ] ig of size d+1 and A 5 hag sige
1 - - F) [}5]4.1
v G4l e
I T .\\ ) -2 “*\\ r__. "ws_»,__\\.
3 ‘ T . R
PRl S Al _‘Wwwwm - N L H T p..——-...,..-.-._.: B 2 +1\
. 5 ) _
" o ~ _',/ \ o .-\“"--‘.,_,___,__...,-/)

Fige 1o« 8 dig cven.

w F ¥ &

Let G be an extremal graph with property Pl(n, », 4).

It d=1 +then, by Lemma £.4.2, cvery block ef &

cxeept
possibly onc, has size £ and hence itg gtructure looks like
r/’- A
'.f }...‘..-._............._... —— + . - G ]S e s SOTER J—
a\- 1/ e
o 3 & 1
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£ ) , i =
“Plocks of Ge Purther, onc pendant block hag size o and

& -

b : .

"tuo scoond pendant block has size > 3 (gince G is extrenal)

fand every other block hias gige 24 Thus its structure is

cgiven oy

i /”\\

\\G/ n damas Cwme amo el 4 . L3 % ‘: T im0 s >
i 5] 2 |

|~

8o gtart with an extremal grapn G with property

pln, v, @), where & » 3+ Tet D be a block of maximun

i

size in G. Clearly, |V(IJO)I > d+1 and the size of any

g not a pendant block of

-

other block ot G < d+l. IT D

G then we get an extremal grapn &y having Do as a pen-

dant block as follows: Chooge and fix o piecce of G not

containing DO witii regpecet te a cut vertex X of &

“betonging to DO. Then, Temove all the piceces of G not

gcontaining DO with regpeet to other cut vertices of G
?belonging to D and Jjoin then chaihwise at a pendant block
of the fixed picce of G with respeet to e Tho new

; 1

graphk Gy is an extremal graph with property P(n, r, d)
;;havizg D, as a pendant blocks Further, in G, overy
otnor Block has size < G+l
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o Im Gy 31T thie nunmber of nonpendant Plocks of slze
d+1 ig greater than cone, we further modify Gl to got an
oxtrenal graph Go which has exactly onc nonpendant block
of gize > d+¢ls BSo, supposc that El’ ES are two nonw=-
pendort bleocks cach of sige > d+1  in Gl' Lot
(B1» Ty Taseers Py B,] be the unique chain in G con-
necting By to Ees We conslder only the case k » 1, for
the other casce 1s similar. Let then

1

Fk) D_V(ES) and

Ly Eosene Xp be the cut verticesm of Gl belonging to El-
Furthic> 1lct Di-l be the picce of G1 not containing By
with regpeet to x., 2 <1 < pe Now at the firgt stege
remove the picee I, and abtach it at seme noncut vertex of
G; belonging to Eqe At the j=th stoage, ] {p -1, remove
the piece Dj and attach it at some nonecut vertex of Gy
belonging to EQ at which Dk's, 1 <k j-1, arc not
attached, TT there is no noneut vertex svailable at sorie
stage 1., L io $ p=1l, we get a graph with property

Pln, , d) having more edges than G, as Follows: Chocsc a
et vertex v £ 71 belenging Yo E2 ol the graph at the
(io' 1) =th gtace such that the othe- bleck containing vy

does not belong to the same picee of

thig graph with regpeet
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o y as Do‘ Then guppress the cdges inecident at y in

the othet block centaining y  and join y  to every vertex

2

of D,e. Since |7(Bo) | = a+1 and |V(Do)l ig naxioum, tho

ney grapit hag the property P(n, v, d) and has nore cdgos

than G-, o contradiction. Thig proves (repeating if

necesgazy) that G, can be modifiecd to get an cxtremal

groph G widch bas at nost one nonpendant block of size

d+1 and whicnk hags D as a pendant block. Further, covery
[

pendont block £ D of Gy has size equal to d+l. Thus

we hiove two cascg.
Cage (1)s In G, there ig no nonpendant block of

size d+1. Thncn Go s by Lorma 24442, has at nost one palr

|-de

of intezmecting blocks cach of size > d. IT there ig no

such pair take Hy = G« H_ has the structure described at
o

the beginning of thig reduction proccdure by Lommasl.4.1

o)

and Sedel  with the cxceptional chain consisting of a cut
cdge and a complote graphr on » d+1 vertices at its ond..
So agoune that G, nas o pair of into:scctwng biocks ¢ Ql,

6, (say), cach of size > do Assume © (the number of cut

L9

vertices) ig > 1. Now we con ido two subcages, firgt in

-

which one of them @&y (say) ig a pondant block of Gn, and

&2

the gecond in which both of them are nenpondant blocks of
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-

oo In tiho first subcasc,” C; and D (the pendant block

maximun size) can be interchanged in an obvious way and,

5

O?
by Lommas Dedel, 2448 and by nypothesis, the now graph has

the réguired structure with the cxceptional chain consisting

of tho complete graph Dy« In the scoond subcasc, by

T CIE [Py A oIS [V(Gq)l = |v(c,) ] = do Thon these two blocks
- ~
can be separated as shown in Fig, 3 and vepeating thig

suitably, we get a graph having the required structure with

the oxceptional chain consisting of the complete graph Dye

Thig complctes the prool in casc (1).

Cgee (ii)s  Thewre is cxactly onc nonpendant block C

(say) of size d+1 in G, Tocn, by Lemna 2.4.2, there is

at nost one pair of intersecting blocks cach of size > de

First guppoge that there is no such pair of intersccting
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‘blockse Lot thon X,y Xesess, X, be the cut vertices of

Go bolonging to C. Since € 1is a nonpendant block

p > e Purther p < d- 1, for otherwisce removing all the
cdges incident in C at some suitable Xy and joining X4
to every vertex of D, we have a graph with property

. ?(n, », Q) having morc cdgeg than Goe  Since there ig no
pair of inmtersceting blocks cach: of gsize > 4, the other
block containing x, containg only oﬁo other vertex ¥,
(say), 1 < 1 < pe Without loss of gonerality we can assume
that the picce oF Gp not containing € with rcspect to

X, 1o not the graph consisting of a cut odge and a complete

=J

graph at itg cnd feor g s 8 Pz 1 RAECHT
= ; /-—--

i
5

Fig. 4.

How we censider the case 2} > 2 (the other casc ig similar).

Let tnen 2z be thie nearest end vortex Tronm x o o Tarthost

f=te

i

- .

cut cdge from x; in the plece of G, containing y, with
18 o 1
regpeet to x,, 1 <1 ¢ by s Further let D, be the picce of

GE not containing ¥: with respcet to =z
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L/ + |
then arrangc thne pleccs

"p’:)l
o0

o

~——

(‘zaa}’e.@), 2 ¢ i S-Pi"l’ (z

-

i ] inin ¢ with
Diy 2 5_ I Py s ond the pie G:?, not containing
regpect to the ethier cut vertices ;s By +1 <1 {py In tie

form of a chain as shown in Fige B and attach it at e

We can without loss of generality assume that Dp = I)o. Let

H, ~Dbe the new gr aph thusg ebtained. Thon H oy Lemmas Cedel,
2ehel, Nag the required strxucture with the cxeeptional chwain
consi wlng of biceck C togetiher with the chain descyibed in
Fige 5 in which the number of cut verticcs < 24-4 (since

p S d-"' 1)' &

Tow assurie that Gy has a palr of intersceting bldcks;,
0,y G (eay), cach of size ) d. Then, naking the modifica-
tions as sicwn in Flg. 4, if necegsary, we can take that onc
of then Gy (say) is the block U. Now, as above, it can be
proved that we can get an exirenmal graph with the required
stmucture in which the exceptional chain consigts of C

fogothior withh the chiadin dos

L)

(@)
=
1A
o
%]
jo !
|-
=
=
I
024
.
[0
-
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Fig. Ga

Here the oxceptional chain has < 2d- 3 cut vertices.

Thus always we can get an oxtremal graph with structure

DeXine

g, (8) = (g +1)d + g ‘

AL A : Ten- Ad- (2 £ + 2d- 7+ £) (a+1)
b o— + bt

5+ =\ &
-] [ Fur

‘ml(@)

It

o

bt

LY

Now counting thc nunber of vertices, cut vertices and

cdges in HO we have the Tollowing set of relations.
r =20 A +1 43, O K 2d- 3 (1)
n= (a2 +ad+1+¢e(3) ' 2)

is cven

(3)

! -4
H,
[o}]

e, (3= 1) +1 ig odd

("“'\_ﬁ \/\

4]

J

~—
(@ }]
R
14
-
@

Further by constiructing the grapn H, we have tihic Tollowing
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Theorom Saked-

f(n,r,d) = (g)-K + A -1 % 2 A 424 -7

( 2 Lk Edo- ’?)(d-}-l))

+ + m(a)

provided n,r,.edd) Satisfy the rolations (1) to (3) above and

gero otierwipe, wnero

&
o

&
!
i

.,
i)

I"l(a) = ‘
,? e (S T S
A

—

B
l__l
—~
Qr
S
|-
iy
(@3]
1=
o}
@]
<
Q
H

1=
4
(@3]
IJ-
o
<
foT]
ol
a

Now we axe able to give a partial soiution to a problen

of Ramachandra Rao [19)s Let Aln, m, d) be the maxinum

£ b
mnber of cut vertices in a connceted graph on n  vertices
with m  ecdges and with ninimun degree > do  Thon we have

the following

L

Thcoren £edels i, @, d) < 2

wd

0 ')
where T = nox {r 20 ny @ KW (my &, d)}. Further the bound

is the best possible whenever f(n, o s dy £ O

Procf. Clearly Mn, n, @) < v . To show that the

o®
bound is attained whenever f(n, »_ + 1, &) # 0, consider the

graph I with property P(n, v o, d}s Now it is cagy to
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=

check that we can *enove cdges, one by one, Tfiom the cxeep-

tw onal chain and the block of sige > & + 2 (exicts since

Hng B . @ s

Ilny 7, + 1,

‘such that at

l"o,l, ﬂ) .

corpletes the

dir Al B H ~to get a graph with
d) = 1 edges and with property Pln, Ty a)

cachh stage we have n graph with property

Thus the bound ig the best posgible and this

proof of the theoren.
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Ced Cut cdges in undirccted graphs

A connected graph ig said to have tho‘propcrty

Qln, gy @) 1if it has cxactly n vertices, s cut cdges and

minimun degree > d&s Lot gln, s, @) ber the maxinun nunber

)

\
of cdges in a graph with propexty (n, s, 4) i such a

graph cxigts and zero otherwisce An oxtrenal giaph is a

graph with property Q(n, s, 4) and with g(n, s, 4) cdges.
Clearly, if s =0 then gl(n, s, d) = (g) witenever:r n > d
ang zero otherwisce S0 we asgune that 8 > 0 I x is a

cut vertex of G, by removing a picce of G with respeet to

4

X wc mean removing the cdges and vertices of that piecce

excepting the vertex x  itsclf.

=3

ne following facts can be casily proved. In an cxtre-
LY
nal graph G covery Block ig complete and there ig at nogt

onc block of size > 3 containing a fixed cut vertox.

Now we prove the non-cxigtence of blocks of certain

siges in an extrewmal graph by proving the following

Leimin Zedels In an cxtrenmal graph G there is no

block of size Py, 3 £ p £ Q.
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Proofey Let, if possible, A = {}ﬁf Koyeery Xp} .
3 S p £ &, generate a o block in G. Then construct a new graph

H from G Dy shrinking A to a vertex, 31 (say), and com-

leting a pendant block of G by adding the vertices of

e

A .{'xl } to that blocke Clearly, H hag no multiple cdgos
and has n verticese Since p > 3, no cdge of the block A
is a cut cdge orf .G s0 H hag the sane number of cut edges
as Ge Purther, sinee p(d - p~+ 1) > & and a pendant block
nas at least d+1 vertices, it follows that the ninirmun
degree in H dig also 2 de Thus H has the property

aln, s, @) and n(H) > n(@), a contradiction. This comple-

! i &
tes the prooX of the lerma.

I~
3
I
[T}
]
]

L ]

Lommn 2eBele Let 1

Then

o v o)+ (oale)

$ 4 8 it n > (s+1)(a+1),

g(n, By Q) "'*)\
0 otherwiac.
Proofs Let G Dbe an cxtremal graph in wihich s £ d- 1.
Since =8 ﬁldm 1, there ig exactly onc block _!’L,‘Jk (Say) I gige
> 3 containing a cut vertex =x, by the obscrvation made at
the beginning of this scction. Now, by Lonna 2.5.1,

[7(Ag) |2 d+1, Then arvange the blocks of G in the Torm a
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chain in which blocks of size E d+1 “arc scparatcd by cut

cdges of Ge How in the new cxtromal graph cvery block of

gige é 3, oxcept poseibly onc, has size cqual to d+l.

Counting the number of vertices and cdges in this graph we
(

' 1 negld+l
nave n > (s41)(a+1) and g(n,s,d) < s+ s dg‘) + ( 2( + ))-

To show that thc bound is attained, construet a graph
¢ on n wveriices as followse Partition the n vertices

into s+l ®ots Ayy L < i < g4l such that A ]| = &+,

1 —
118 anc ]As+1| > d+1l.+ This ig possiblc whenever
n > (s+1)(d+1). Take completc graphs on A, 's and arrange

them in the form of a chaln where Ay's are scparated by
cut cdgess This conpletes the proof of the lemma.

Lomma 2edede If s > d, then in any cextrenal Eraph &

there is a cut vertex x  such that every block containing =

1.
4]
@]
4

size cqual to 2

Proofs Supposc in gome extremal G  there is no cut

vertex with the proverty statéd in the lemma. Then, by

Lema Zedely there is cxactly onc block of sigze 2 d+1 con=-
taining any fixed cut ¥ortex. Choose and fix g cut vertex

X, of G and collcet all the cut cdges of ¢ to the vertex

X, as followse Let (u, v) be a cut cdge of G with
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oy X, Eﬂi’gilout logs of gencrqlity asgune that thc.
picco of G with vespeet to u  contalning Vv docs not
contain X e Romové thig picce and attach it at x « The
new graph H thus obtained is altso an cxtrenal graphs Thus,
repeating if necessary, collcet all the cut cdges at X

8ince ‘s > d, the degree of X, in the new oxtrenmal graph

ig 2_ 2d%x 1o Now remove the picce of G with respeet to
};o which containg the block C (say) of sigze _?_:d+1
contalning X, and attach it at a poendant block B by
joining every vertex of C -{ Xo} to those of Be We thus
cet another graph with property Q{n, s, d)es Purther, since
a pendant block has at least d+l vertices, this graph has
ncre edges than G, a contradiction and this conplectes tine

proci of the lermde i

Now we proceed to find the value of gln, s, d).
Wo start with an extremal graph: G and deseribe a proccdurc
by which we can get another extremal groph H in witleh all
" the cut cdges form @ trce T on 8+l vertices, the degrec
of cvery nonpendmt vortex of T, cxeept possibly onc, is
cnindl to max{ 2y d} and the degree of the exceptional

vortox lics between d and 24-2. PFurther H congists of

corplete graphs on A+l vertices attacied at all but onc
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pendant - vertex of the txce T and a complete grapi on

> a+1 wvertices attached at the excepticnal pendant vertex

of Ty Whenever @ 2 C.

So we start with an extremal graphr G in which 8 2> de

Firgt we modify G  to get an extromal graph in which cvery

I~y

3]

fde
1o
o}

block o gzc 2> 3 a pendant block. Supposc,in G there

ig a nonpondant block € {(say) of gige > 3 Since s 2 4,

by Lemia 24543, there ig a cut vertex X, of G guch that

1

every tlock of G comtnining x g of gsize 2. Then,

0
remove all the pleces of & with respeet to cubt vertices of

G in C, ecxcent the picce containing x,» omnd attach thien

at X e The new extremal graph thus obtaincd has leoss number
' = -
nonpendant blocks of gsige > 3 than G. Thus, ropeating

Q
(=

[
I~ .

necessary, we can get an cxtronal graph in which covery

gize > 3 ig a pendant block of G

lock of o
Thus we noy and de agsune that in G itsclf cvery block

of sige > 3 ig a pondant blocks Clenzly them the s cut
edges of G foxm a trec T (say) on s+l verticces. Choose
ané Tix o nonpondant vertex X, ©
vertex y £ x of the tvee T hag degrec i d+1 din T

-

¥ the trece 7. IF sone

remeve all but 4 picees of G with regpeet to ¥y not
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containing x_ and attach thoem at X, Let H be the new

O

extrenal graph thus obtainede In H also cvery block of sgize

'S 3 ig g pendant biocks If now the degree of X, in H is8

“tree T formod by the @ cut ecdges of He Then, iF

greater than 2d- 2, vemove all but d picces of H with
respect to x, and attach them at a pendmt vertex ¥, (say)
of the tree Formed by the cut cdges of He Then remove the

plece of H with respeet to ¥y, containing the block of
sizc E 3 at Yoo add it to a pendant block of H and con-
plete ite. The new graph has the property Q(n, s, d) and
has morc cdges than G, a contradictionw Thus, in H the
degree of X, LRd- 2 Furfhcr¢ since H is cxtremal cvery

pendant block of H, cxzcept possibly onc, has sige d+1 and

thug H has tie stiueture degeribhed above.

Let now p be the number of pendant vertices in “the
a

e o [ 8=l
p = (u+1) [ d"l ] a-nd-
n > dp+ s+l = (a41)(s41) - [ 252 ] a.
It d=1, p=2 and n > s+l, Now counting the number of

cdges in H  we have

a(H) = gln,s,d) < s+ (p-1) (dgl) + (n-s-g(p.-}_)),
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L] 5 o }."’1 E
whenover n > (d+1) (s41) -~ { %:I-]d- and & > T,
. Neg - -
glng 84 d) <8+ (Tp ) whenever n > g+l and 4 =1

g{n, s, ) =0 otherwisc.

.

To ghow that the bound ig attained,construet a graph G

s

on n vertices as follows. If d=1, take a ckhain on s+l
verticcs and attach at onc of its cnds a complete graph on

n - g =Lverticcse So let 4 >1 and n > (d+1) (g+2) ~ [ ]G-

A nonpendant vertex x of a tree T is called a next vertex
i every vertex, oxcopt possibly onc, adjaccent to it is a pen-
dant vertex in To Lot T ={1,2,se, n}. Construct a trece

T on A = {1,’ 2y-esey N} in which degree of every nonpendant
vertéx, cxcept possibly one next vertex, is 4 and the degree
o7 the cxceptional vertex ig between 4 and 24d-2. Lot

Xy Kgyeers X be tie pendant vertices of T  where

1t

P {(s+1) ~ [ a:% Je Partition V - A into p sctg A

1_<_i_§15, with [A,] =d for 1 <4 < p-1, and Inplg_id.-

Since n 2 (d+1) (s41) ~ [ =1 S"T ld, such a partition is possibleoe !
Now take complete graphs on 4A; and join x, 1To every vertex

of Ayy 1 £3i<p. Let G be the resulting graphe Then G

has n vertices, 8 ocut cdges, nminirun degree > 4 and
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8 + (p=1) (d%l) + (n—séd(p_l)) cdges. We modify the struc-
tuxe 0f G tc get anothor extremal graphh Gy (which will be
used in the proof of Theorenm Re5.4.)» Let x,  be the next
vcﬁtcx of thé tree T Suppose degree of . > da& in Ge
Remove all but d piceces of G with 140513001: to Xy nct
containing the vertex of degree > 1 adjacent to X, (i any)
and arronge then in the foxm of a chain where blocks of sigo
> 3 arc sopavated by cut cdges and attach this chain at a

pendant block of G

e

hus we have the following

Thooron Tedede I g > d, then

s+ (9 - [dﬂ])(d*'l) + (n—s-—d( - [8—1 ]))

! whenover n}_ (a+1) (841) = [.%é%.,]d- and 4 > 1

g(nyﬂgd) 1
neg .

s+ (2) if n > s+l and 4 =1

0 otheirwise

Now we give a partial solution to a problen of

Ranaciiandra Rao [ 19 1. TLet B(ln, n, 4) be the maxirun
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]
nunber of cut edges in a graph. on 1 vertices, n edges

having minipun degree  de

Thooren 24548, Bln, m, d) < s,

where 5, = BEL.X{S : s <n-1, n < gln, s, 4 }

Furtiicr the bound is the best possible whenever

gn, s. +1, 4) £ 0, oxr 5, <4 =1 and m >#& +1 if 4

ig even, or 8 < d-1 and n > (so+ ) (d+1) + 2.

Proof. It is evident that Bln, n, &) ¢ s, We
prove the cquality in the case gln, 5.+ 1, a) £ 0 and
g 3 de Lot Gy be the ox’tromél graph with property
Qln, g9 d) described above. Then it s casy o ‘chock that
we can remove cdges, onc oy onc, from the exceptional chaln
(i ony) and the block of size > d+ 2 (exists since
g(xn, 8,+1, d) #0) of G, until we get a graph with
a{n, 8 31, d)=1 cdges such that at cach stage we have a
graph with proverty Qln, By d) « Thus the cquality holds in
this casc, Sindilarly the cquality can be proved ia the other

cascs and thig completes the prooef of the theoren.
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OHAPTER 3 I
ON THE POWERS OF A TRED

Phe concept of the square of a graph is.duo to Ross
and Harary who introducced it in [ 23 ] and obtained a cri-
terion for a graph to be the sguarc of a treca In (13 i
Mukhopadhyay obtainod nccessary and sufficient conditions
for a graph to be the sguare of gome grapn. The n-th power

of a graph wag defincd by Harary;.Karp.and Tutte in [10] and

they obtained a criterion for the planarity of the m-th power
of a graphe In this chapter we obtain ncecgsary and suffi-

cient conditions for a graph to be the cube of a tree, the
) LN
fourth power of a trcce In Scection 1 we cobtain necessary

~

conditions for a graph to the cube of a tree and prove that

3

=]

determines the tree T uniquely, up to igomorphisme In
Scction 2 we give a criterion for a graph to be the cube of

a tree and an algorithm to determine the trec cube root of a
graphe In Section 3 nccessary conditdons for a graph to be

the 2k-th power-of a tree arc obtained which generalisc sone
of the iosglfs of Ross and Harary [ 23 l. Using these resulta,

in Scetion 4, we obtain necessary and sufficient conditions
? o o
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for a graph to be the fourth power of a trec. We give an
a_gorltqm to determine all the tree fourth roots of a graph.
Finally graphs with a unique tree fourth root are characterl-
sode The algorithms afore mentioned utilise a result of
Harory and Ross { 8 ) for determining all the cliques in a

given graplie

Let X Dbe a positive integer. The k-th power of a

vertices as G,

Hy

grapn ~aphy denoted by G, has the same sct o

. . k -
and the vertices x and ¥y (x £y) are adjacent in G if
and only i? they ave jJoined in G by a chain of longth less

than or ecqual to ke

If A ig a subset of V(G), then G{A] denotes the
subgraph of G spanncd by Ae. A sct A of vertices is com-
L Y

plcto it G{A]l is the complete graph. A cliguc of G 1is a
maximal complete sct of vertices of G. Let ck(G) “be the

Y

set of all cliques of G with at lcast Zk+1l vertices. Let

L{G) be the sect of azl cliques with at lcast four vertices of

Ge TLet n(@) be the class of all complete sets of vertices

A of G with at lecast three vertices such that A = A 0 A,
where £, € L(6) and G[A] U Ay - A] is discomnccted. Lot
(@)

be the sot of gll vertices of G
cxactly one meumber of  m(G) and M.(G) the set of ail

wiichr belong to

I:‘.”-‘
=
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vertices of G which belong to at least two distinct members

Let T be a.tree and S(k, T) be the sct of all ver-
tices x cf T such that there are two vertices y, z at
A&gtance k from x din T and belonging to diffcerent picces
of T with respeet to = Let N(x, k, T) = { T dT(X,y)jfk})

dG(x, v} Qcnotes the digtance from x to y in the graph G

[

3el The cube of g trce

Lrd

Throughout thigs scetion we assume that G = 70 where
T is a tree with at lcast four vertices. Alsosdet N(x, T) =
Mx, 1, T, end S(T) = S&, T). Tn this scction we find
necegsary conditiong for G to be the cube of o troe, Further

L d

il B et 3 . .
we prove that T determines T uniquely up to igomorphism.

Lormia Selsls G is complete if and only if S(T) ig

crmptye
Yroof. We observe that G is complete if and only if

digmeter of T < 3, that is, if and only if S(7) 1ig erpty.

In what Tollows we assune that ¢ is not the complete

graphe
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»

Tormn 3elele ABL(G)  4if and only if there is a

vertex x in S(T) such that
i) N(x, T) is a proper subsct of A,

ii) A - ¥ix, T the set of all vertices at distance

|

two from x and belonging to a fixed picce of T with respect

O X

Proof. Let A be a sct of vertices and x, a vertex in
‘8(T) satisfy lg conditicns (i) and (i1) of the lemma. Then
by (1) \ \ 4 and by (ii), A is a clique of G. Thus
Ag L(G).

Gonverscly, let Ae L (G)s Then if y, z avc verti=-

[a]

ces in A, the maxinmadity of A implies that cvgry vertex in
thie unique chain joining y and =z din T dig also in A,
Therefore T{A] is a trcecs Since G is not complote, diame-
tor of TLA] is threes Lot [xo, X9 XKoo XSJ be a digme-
teral chain of T{ale It is ovident that onc of the vertices
X3 Xps Say Xy, belongs to S(T). 8ince GLA] is complete,
‘every vertex of A is adjacont to X or X, in T. Now
the gaximality of A implics that W(x,, T) C: A, 1 =1,2.

Thus toking x = %, » conditions (1) and (ii) of the leomma arve

satisficd and this completes the proof of the theorem.
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Qorollnry Bele3. IT AME L (@) then there cxists

bed

A€ T (@) such that A 14, € 7 (¢ o

Proof. Let x; be a vertex corresponding to A

given by Lema 3el.2. Since x,€ 5(T), there is a chain

v o v, u] in T guch that uf A, . To complete the pyoof
1 S 1

take A, = N(X-l, ™ U Ny, T)e

[

vertex x in S(T) such that A = H(x, ). Also then A

determines x uniquely.

Proofe Let Ae n(@). By definiticn, |Al > 3 and.
there are scts of vertices A, A, such that A=A 0 A

wWienrc L # Ay @nd AiB‘IJ (), i =1,2. Tet %, be a
vertex of  S(T) correcsponding to A; given by Lerma Belela
K 'z =X, then #A=10x , . If dT(xl, X5) = 1, since
Al 23, A im cither MW(x, T) or N(x,, T). If

dT(Xl, %) = 2 and if x is the niddle vertex in the unique
chain in T joining Xy Xp, them A = (x, T, IF

dT(Xi' Xp) 2 3, then |4l S 2y o contradiction. Thus theire
oxiglts o vertex x in S(T) such that A = N(x, T)e The

unigueness of x ig trivial.

Conversely, let x be in 8(T) and A = N(x, ™. Tect

X9 X5 be vertices at digtance two from x din T and

- L <3
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belonging to different pileces of T with respect to  Xe
Tofine D, to be the set of all vertices y such that
dalxy ¥) =& and y Dbelongs td the game picce of T with
piXs J g g

i=1,2 Let A, = N(x, T) U D,

regpect to x  ag X4

Then & = A 0 Ao and, by Lema 3.1.2, A€ T (@),

! =1,2s Thus Ae 7 (G) and this completes the proof of the

theoren,

crmg 3eleBe IT | 5 (@)] > 2, thon M, (6) = s(T).

Proof. I X s X arc vertices in S(T) ana

[xj, Xé,..., xk] ig the unique chain in T connecting Xy

to Xy then there exist vertices v # X, and g # T such
that (%, ¥) and (Ek’ z) arc edges in T, henee x, e 8(T)
for every 4, 8 <1 < kel, Thus T{S(T)] ig a trcc. Now

o . .
the regult follows casily from Lomma Beleds

[de
2

Lerma Selebe  Every pair of adjacent vertices of @

contained in a nember of I (G) and & ig connceted.

Proofe If =, ¥y arc any two vertices connceted by a
chain of length at most three in T, then two other vorticéé,
Zy v cxist such that =x, v, z, uw form a complete sot of
vertices in Ge  Now the lemma Ffollows from the definitions of

rr

L (&) ana 7°,
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Before proving the uniguencss of the tyec T, we prove
the following

Lomma Jele7s Lot T be a troe such that [S(T) | > 3.
Let 8,.(T) =T { (b, T): be s(T)}

(1) Two vertices a, b in 8(T) arc adjacont in T
if and only if there cxist A, B in 7(¢) such that
ALDlB = { Ly b } .

(2) Lot ae 8,(D) - 8(T) and bve () then a, b ave

adjacont in T if and only if the following conditions (1)

]-J

ond (i1) are satisficd.

~ i) There cxists ¢ in 7 (@) containing both & and
by and there isno B in 7 (&) such that a, b ¢ B and

-

both a and b arc joined in T te all vertices of B,

ii) If a set Be: 7(G) containg b thoen ae B or

£
j=
7

joined in G ‘%o overy vortex of B.

(3) Iic two vertices of S, (T) - 8(7) arc adjacent in

Proof. Statememts (1) ond (3) and the omly if part of
Casily proveds To prove the if part of (2) lot condi-
tiong (i) and 2(i1) be satisficd. Thon by condition 2(i),
dT(a, b) < 2e How if possible let [a, ¢y, D] bec a path o

length two in Ty Since a € 8, (F) - 5(T), £€ follows that
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ce (1) By 2(i), b is the only vertex of S(T) adjaccnt
to ¢ in Ts Purther, by 2(ii), ¢ dis the only vertex of
$(T) adjacent to b in T. Thus [S(T)| = 2, a contradic-
tion which shows that a, b arc adjacent in T, Thig conm-~
plctes the proof of the lermae

The following theoren proves the uniquencss of the
trce cubc oot of G

Theorenl SeleBs Lot T he g trce such that
3

is(m) | é le Then T° determines T uniquely, up to isoror-
Proofs The theorem can be casily proved when [8(T) ]

ig onc or twoe So we assumc that [S(T) | > 3. Lot

5, (1) =1 (%) U M (T%). By Tomma 80147, T[S, (D)1 1o

uniquely dctermined by %, et now be sS(T), Fyreees T

be the vor+icoé_of Se (D) = 8{T) adjacont to b in T and

dy e the nunber of pendant vertices of T adjacent to T4

im,, M. AL s i g‘k. Then the nonzero nunbers arong

dl”"’ dk arc the sizes of the cémpononts of TS[D] which

arc disjoint with S, {(T), where D 4ig the sct of all ver-

tices outside N(b, T) which are adjaccnt in T°

to cvery
vertex of N(b, T)e Thus T° determines T uniquely up to

isomorpilem. This completes the proof of the theoren.
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342 Choracterisation and algorithm

In thig section we give a characterisation of the cube
of a tree snd an algorithm for determining the tree cube

root of a graph when it cexistsoe

Tet G be the complete graph on n  verticese. Then
¢ 4g the cube of any tree whose sct of vertices is V(G)
and whose diamcter is < 3« The number of non-igomorphic

tree cube ‘roots of G . is cqual--to
. &

V(e | -4

o

+ AP

Thooren 3e2.1e Lot G be a groph such that 1 (6)

W
I~
0
5

oxactly one clement A(say)e Then G 1s the cube of a

t

-1
IJ

co if and only if the following conditions arc satisficd.

(1) EBvery vertex of V(G) - A is joined to all verti-

A

[

. Q
)
o]
bt

(2) Every conneceted component of G[V(G) - Al is

complote snd their number is < |A] - 1.
Proofe The proof is casy and is omittede Puirther 1t

can be proved that ¢ determines T wuniquely up to isonmor-

phisne
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The following theorem gives a criterion for a graph to
be the cube of o ticc.

Theoren 3ele2. Lot G be such that l n(G)l > 2. Then

¢ 1a the cube of a tree if and only if G satigfics the
following conditionse.

(1) ¢ ig comneccted and every pair of adjacent veriices
of G belongs Lo n member of TL(G).

(2) 1t L€ L(G), there cxists LSGL(G) such that
I, L Lee ™ (@) |

(3)a) Any two digtinet members of m(G) interscct in at
nost two verticese

b) If G* ig the graph whose wvertices are the menbers

-

of m (&), two vertices A ,A, of & being joined by an cdge

E o N Af =2, then G* ig a troc.

o
¥]
o]

¢) If Ajshe M(G) and {A 0 Al =1,
Gow (Aq 945) =2,

d) IT Aqses.,A arc all the vertices of G adjaccent

to some vertex A of G*, then A, QO Aj
b and this vertex is independent of 1 and 3, i £ J,

contalng cxactly onc

vortex

ill write then A = Ab' IT G* ig not an

-

i¢1<j <k, TWe
A

W,
edge and it is a terminal vertex of G* adjacent to Ay

then we will write A = Ac whoero

A% N Ak = { b, ¢ } « If G* has oxictly two vertices Mo

i
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ot

ond A, and A 0 Ay = {a, b}, then write 4 = A, and

(4) Let D, denote the set of all vertices of G
ﬁutsido Ay which avre joined in G to cvery vertex of Ay
Tiien

(o) IFf 4dg A, 0 ME(G) and @ £ Db, then Ag - { b, a1}
is a component of G[Db]. If a component F of G[Db]
interscets M, (G) U M, (G) then there is a vertex d in
i, (6) o A, such that & #£Db and F = Ay - {b, ate.

H;

{(p) I
G[Db], thon  plb) < IAbI o

Py, denctes the nunmber of -components of

(¢) If a vertex belongs to D, and D, with b #e

n (&)

I

tihien 1t belongs to sone menmber o

Proefs Firgt 1ct G be the cube of a trecc Te Then
conditicn (1) follows from Leomma 3ele68, condition (2) fron
Corollary Seled, and condition 3(a) from Thoorerl 3el.2,
Conditiong 3(b), 3(c) and 3(d) follow Trom Thoorerl Bel .4
and the fact that G* 4ig igomorphic to T[3(T)] and

T{S(T)] is a trec. To prove conditions 4(a) and  4(b)

[—

obscxrve that Db ig the set of all wvertices which are at

digtance two from b in T and belonging to the same picce

of T with respeet to be To prove 4(c), let =xe Dy 0D .
¢

Then since T{8(T) ] is a tree, some vertex y of 8(M™ is

A
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adjacent in T to x and xe A,.
J

To prrove sufficicney,lct, G bec a graph satisfying
conditions (1) to (4) of the thecorems Then we construct a
TB

tree T with V(T) = V(G) and prove tunt = G

First we obsorve that Ay {===> Db 1B a onc-onc coricg=~
pondance between members of 7 (6) and clenents of MQ(G)
guch that

ii) if A, aond A, interscet in two verticcs, then

Ay oAy = foy 0},

111) if b, ¢ € My(G) and b e A, them c € A

t_l'

1) and (41) fol

fron conditions ‘3(c) and 3(a)i

ow from econdition 3(d), (iii) follows

Step 1e¢ Find all the cliques of G, a nethod for

3 - - ‘ - ‘
which ig given in [ 8 ]+ Then determine the class 7n (@),

Step 2«  Constzuct a graph on the vertices of M,o(G)

£
42

follewse Jodnt two vertices b and ¢ if and only if

Dg>

ond A, interscet in two vertices. The regulting graph

3

;s is a tree by condition 3(b),

Step e Join cach of the vertices of Ml(G)Il Ay to

bse It the resulting trece  be Toe  The vertices of T, are

()
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the clements of Ml(G) U ME(G)’

§§gq L Seb Ii,IE,..., be the comnected components

(@]

of G[Db] which ar disjoint with the vertices of Toe Then
join all vertices of Dj to gome vertex ¥ in Ml(G) 0 Ay
the vortices y Dbeing differont for different components

D.e Thig is possible by condﬂtﬁonq and 4(b)e If a

g5 = (a)
vertex belongs to D, and D, then it belongs to TP by
condition 4(c¢); thus the resulting graph T ds a trec. 3By
(1) and (2), every vertex of G belongs cither to

Ml(G),U MQ(G) or to Dy for some b. Hemee V(D) = V(&)

Supposc now b € ME(G) and B is a componcnt of Dy

-) ig not an

If [y X1 %4 1s a chain in B and (x, Xy

cdge in G, thon A, U {Xi’ %o, } and Ay U-{ Xoy Xg } are
contained in two nembers of 1T (@) whose intergecction con-

tains Ay U { Xo }. Thig is a contradiction to 3(a)e Thus

1=

B is complctce

Let b be an cnd vertex of Ty« Sinee A€ 7N (@),
G[Db} has at lcast two components By, BEqe By 4{a), at
least one of By, By 1o digjoint with My(G) U Mp(e). Mms
by our construction there cxists a vertex of V{T)-V(Tg)

digtanoe two fxrom © in T. Hence cvery cnd vertex of Ty
and sc cvery veriex of T, belongs to S(T). By constiuc-
tion there im no other vertex in S(T), thus. S(T) = M,(G).
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It can be casily verificd that Ay = N(b, T) for all

‘Let now L€ L(G). Then by (2) there exists Lo L&)
such that I, 0 Lo€ n(G)s Lot Ay =1, 0 Lye Evidently
Ll - Ab C: Db' Let E bela compencnt of G[Db] containing
Ly = Ape Then E is complete in Ge If possible, lct

xe V(B) - (1.l - A)e Then ilU{X} ig complete in G, a
contradiction since I,€ L(@).Tmus V(B) = L= Ape £ v(B)
1 digjoint with the vertices of Tsy s fhon by congtiruction
and by Lema 341.2, I, = (4 U V(E) e 1(1%). 1f V(B)
intergccts Ml(G) U MB(G)’ then by 4(a) and Lorma 3412,
I, = (4 U V(E)) e T(1%)e Conversely, et 'L_le (1%, Then
by Lema 312 and condition 4(a) it follows that
Iy€ L(&). Twms L(G) = L(Ts)._ By condition (1) and Lerma

Jele?y it follows now that ¢ = $3. This:complotos the

proof of thie thcorcne
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3¢3 The cven powers of a tree

In this scction we obtain some necessary conditions for
o graph € to be the Sk ~th power of a tree where k is
a positivc integers So let k  be a fixed pogitive integer

: 2 ]
and 1let G =T k whore T ig a trece

Lemna 383l G is complete if and only if

Proofe G is complete if and only if -diametexr of

T < 2k, that is, if ond omly if |s(k, T)| < 1.

In what follows we assume that G is not a complete

grapite

Torma 3e3e2e T(S8(k, T)] is a tpoc~: - =
i o -

Proof. If two vertices belong to Sk, T) thon overy
vertex in the unique chain joining them in T also belongs

to S(k, T)e Hence T[S(k, ] is a trcc..

Now we procecd to prove our main theorem of this

geetion.

Thooron 3.3.3. If Ae qk(G), then there ig a unique
x in 8(k, T) such that A = N(x, k, T). Comverscly, if x

is in S(k, T), then W(x, k, T) belongs to Gk(G).
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? oofe LCt A be in Qk(G). Since A is maxinal,
every vertex in the unique chain in T Joining any two
vertices of A also belongs to A. Hence T[A] is a tree,
@learly, diameter of T[A] s 8ke If possible, let the dige-
meter of TL[A] be less than 2ke Since ¢ is not the con-
ﬁloto éraph there cxists a vertex x in V(G) - A adjacent
in T to some vertex of Ae Now AU {:c} 1s complete in
G, a contradiction. Thus diasmeter of T[A]} equals 2k
Let then x  be the unigue contre of T{Aal. Clearly x
belongs to S(k, T) and A = N(x, k, T)e The uniquencss of

X ig cvidonts

Conversely, et x be in S(k, ) and A = N(x,k,T).
Cleairly, IAI E £k + 1, and digtance in T bhetween any two
crticos 0di | & A E ke Hence A ig complete in G. Lot
X s ¥ be vertices at distance k from x in T and
belonging to different picees of T with respect to X
Now if y dia a vertex outgide A then dT(Xi, ¥) > 2k for
at lcast one i =1 or 2.‘ So in G no vertex outsido A
is Joined to all vertices of As Honce G{A] 1is a maxinal
complete subgrﬂph of G, _Thus Ae Gk(G) and thig completes

the proof.
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Lemma 3e3s44s Two vertices Xy Xg of S(k, T) arc

adjacent in T if and onmly if the only members of Gk(G)
containing u(x,, k, T) 0 1~I(x9, ky T) arc N(x;, k, )
i=1,2 and |N(x, k, T) 2 M(x,, k, )| > 2ke

Piroofe This Jorma follows Tiom Loma 343e2  ond

ThcoreTl 3ededs

Rcmaﬁk. If k =1, then two vertices X Xg of
8(k, T) arc adjacent in T if and only if
|W(x,, 1, T) D W(x,, 1, T)| = 2« This was obbained carlics

by Ross and Harary [ 23 l.

Lomma 3435  Every pair of adjacent vertices of &

belongs tc a menmber of Gk(G).

Proofe Lot (x, x,) be an cdge of Ge By definition
of G =1, dT(Ki’ Xg) < 2k. TLet u be the unique
chiain in T Joining T to x,e If there is a vertex 7y
of 8(k, T) on n then there also exists z of Sk, T)
on M such that dT(Xi, z) <k, 1i=1,2 and X Xy
belong to Iz, k, T) which by Thoorer 3.3.3 ig a member
of Gk(G). Thus the theorcn will be proved in thig case so

aggunic that no vertex of u bolongs to 8(k, T), Definc

By = min{ dT‘(xi, z) ¢ z¢ 8k, I}, 1 = 1,2,
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By Lemma 3;3.1; s(k, T) is nonempty = 34 is well defined
nd 3, £ ke Choose z,€ S(k, T) such that dn(xy, 7)) = 8,
1 = iy 2.- We now pirove that Z = Zge Let ¢ be the firgt
vertex at which the chain in T joining Z to Xq ncets
he Since ¢ £ S(k, T), by Lomma 3e3.2; 2;, Z; bolong to
the sane pioce of T with regpeet to Z. 3But then, by defi-
nition of..ai, Z; = Zge Since a3y é k, Xy %X, belong to
N(zl; k, T) which belongs to ck(G) by Theoren 3343 and

this completes the proof of the lommae

Remark. It cad be cagily scon that the results proved
in thig scetion are generalisationg of the leommas and thcoren

of [ 23 ], by toking k = L.

3e4  The fourth power of g tree

In this scction we give a eriterion for a graph G to
e fhe fourth power of a tree gad an algoritim for deternining
a tirce fourth oot of G when it oxistse Purtho» we charap-

terige all graphs with a unigue tree fourth root.

Clearly, if G is the complete graph then G ig the
i

with V(T) = v(¢) and whose
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Thooven 3efele ¢ If |Co(@)| =2, let A, Ay be the

members of Co(®). Then G dig the fourth power of a tree 1f
[ 2

and only if

(1) every pair of adjacent vertices of G is contained
in A r A, and G is connccted,

(2) 8= |a 0 Al 2 4

Further, tie tree fourth root of G

=
2

unique, up to

&

isomorphisn, if and omly if 3 =4, or 9 = and (V| =7,

Proofe The nccedsity is casy to prove. To prove

7y lot G be a graph satisfying conditions (1) and

[&)
5
-
| wd
o)
>
o)
A
O
A

2) of the theorcm. Construct a tree with V(T) = V() as

(
followse Join two vertices vy v, bclonging to A.I 0 Ay by

L]

an cdgece Partition the remaining set of vertices of Ay 0 As

into two scts '31, B2 and join v, to cach vertex of Ai’

J<»

= 1,2« Then join cachh vertex of Ay - A0 A to sone
vertex of B,y i = 1,2. Now it can be casily shown that
T = G and the above construction givea all the tree fourth
roots of Ge HNow the sccond part follows casily. Tilg com-

pletes the proofa

Lot now [Go(8)| 23 and A 's,1 <1 < p, bo tho

ds

members of Co(G)s Construct a graph G  with

v(ek) = { A, 1K1 ¢p} as follows. (4, Ay 1A, is
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there is no A k £ is‘js,

1
-y

an cdge of G 1if and only

containing A, 1 Aj.r Let- U. be the set of all vertices of

P

G wilch belong to A, and to no other mermber of GO(G),
. bt

and ay = 1U11’ Further let Qi be the degrec of Ay in

G*« Then we prove the following

ne fourth power of g tirec Iif

=
=
Q
o
]
Q
]
8]
. ]
[1.N
-
4y
-
[ep]
]—Jo
]
<t

and cnly if G satisfles the following conditiong.

(1) & has no isolated vertices and every pair of

adiacent wertices of G 1s contained in a necmber of C,(G)e

(2) The number of cdges in G* ig [C,(@)] - 1.

(3) ¢ [A; , A see.5 A, , A, ] is a chain in G*
=0 -1 “Sel -8

Then cach nmember ol Ynlmy ovsin oontaing Aﬁ i Aﬂ and
Y4 X

:; 911+-1 i
>0, +2 g =92 .
S 8 ‘_and ail> 0
A.
d

belong to  C,(@), lct

i
(=]
e
6
i~
oY . o

il
1
L]
m
=
(Y
2
1]

-
H
441
i
fav]

o

[N
&

¢

v i
o
l_...?
i+
m
i
[_l
L]

IAi o A
g
I

|
() If A

B(4;) = the sct of all ohaing in G*  of length Ffour

i!

whosce niddle vertex ig A
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=

o] Ty
¢(A,) = the sct of all chains in G* of 1ongtg
4 b

two whose nifdle vertex ig Aio

D(A; sA;) = the sct of all chaing in G* of length

[

three whaose sccond and third vertices

Care A

'
a3

. Aj regpectively.

Then the interscction of the firgt and lasgt members of every
clement of B(4,) 1is the same. Similarly for C(4A;) and

D(A,i', Aj).

roofe Mo prove the necessify of conditiong (1) to
{4) of the theorem , let G be the fourth power of a tree
Ty Then (1) follows from Lemma 3e3.5. By Loma 3e3.4, GF ‘is
igomorphic to T[S(2, T)] and condition (8) follows from
Lemmia 34348« To prove (3) and (4) we observe, by Thooren 3.3.3,
that the members of GE(G) are M(x, 2, M's with x in

8(2, ™.,

To prove sufficicncy, let ¢ uatlhff tnc conditions
(1) to (4) of the theorem. Then we give an algorithm to cons-

truet a trece T gueh that T4 = &,

Step 1. Pind all the cligues of G by the ‘method

deseribed inm [ g8 J. The cn, by condition (1), they avre members

of 0g(G). Let Aysy 1 K4 < Dy, be the members of G, (@),
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Congtruct the graphr G* with the vertex set { Ayy T L1 2 p}..
'‘By conditiocns (2) and (3), G* has no cycles and has p=1

cdges, o G¥ ig a trcce

Stop De Labeling of G*. We label cach vertex Ay

of G* with a label v, where v, 1is a vertex belonging

to Ay as Tollowse. We congider Thirec castse

cage (1)e Diamcter of G, d(G*) =2, Tet

[Ass Aj’ Ak] be a chain of length 2 in G*. Dabel all
Ayto, 1 3 1 £ py with any p vertices in Ay 0l A This is

possible beeause by (3), |Ai i} Akl > 93 4+ 1.

Case (ii). d(&*) = 3. Tet [4Ay, Ayy My Ay ]l bea

chain of length 3 in G*s Label A, and Ak witih distinet

vertices of A 0 Ag s This ig possible since |A;flAc | =2

by conditicn (2)s TLabel all vertices of G+ adjacont to Ay
in o*( #£ Ak) with digtinet vertices in (A~i n Ak)—(Ai n gx)
and all vortices adjacent to A in G (£ Aj) with digtinet

vertices 1In (Aj'ﬂ AK ) - (Ai I Ax).

Case (3ii)e alG*) > 4. If B(A,) 1is noncmpty for
gone 1 then, by (4) and (3) the interscetion of the first
and last menberg of any‘g;omenﬁfgf#Btﬁ;T'"bbﬁ%ainé'qxaﬁtly

one vertexe ~Label A, with this vertcex. Repeat this for

all Agts for which B(Aq) is noncmpty. If now 94 2 2 for
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gone unlabeled vertex then there ig a . chain of length 3 with
Ay s the sceond vertex, [Aj, Ay Akf AAJ (say),usuoh that
93 =1 and A 1ig labeled, for otherwisc da(G*) < 3. Label
A; with the vertex in (Aj n gx) - { Vi } « Reopcat thig

proccdure for all unlabeled Ay's for whlch 9y 2 2. IT now

«©

4 = 1, then there is a chain of length & with A; as the
firgt vertex, [Aﬁ, Aj’ &Kl'(sayb gucli that Aj 1s 1labeclced.

Then Label all unlabeled verticos of & adjacent to Ay

with digtinet vertices in Ai ﬂ_Ak wnich are not uscd previ-
ougly for labcling. Ropoat this proccdure ag long as there
are unlabeled vertices Ai for which Qi = 1l« Thig ig
posgible by (3) and this completes the labeling of G*. Iet
H be tie resulting graph thus obtaineds Then

V(H) = {vys Voseeey v} o

By conditions (4), (3) and by the labeling proccdure it
can be shown that if A, # Ay then vy # vye Let now

E. = N{v,, 1, H.

a

Step 3e If ¢, =1, congider any vertex vy at dig-

.
1

tance 2 from v, in H, then by (3) and (4) A, - Ao 3

4]

independent of such a gclection-of v and
1Ai "'Akl 2 ay * 1. Join now vy to every vertex of

(4 = ) = Use If 9, > 2, consider any chain of longth 2
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with middle vertex v, in H, {v., Vi vk]'(ﬂay)- By (3) and

dJ
(4) Aj oA ig indepcndent of such a sclection of the chain
in H end |A; 0] >9 +1 if oy > 0. Jein now v, o

every vertex of (Aj a Ak) -E;.

Step 4e Lot U, = { Vi10 Tipreees v_,a } - Join

IA
{=le
AL

e
-

l.é J S a, and 1 Obscrve that if a; > O, thon vy

=

vill be joinecd to g new vertex in step 3. This completes the

congtiuction.

Let T be a‘zcsulting graphte T 1is a ftrce with
T(T) = V(6). Using condition (4) it can be casily verificad
that 8(2, T) = { vy, 1 $i<p}. Purther using conditions
(#), (3) and the labeling proccdurc it can be proved that
N(vi, 2y H 1s a subsct of A, and no vertex in
A - N(vi,.ﬁ, H) ig uscd as a label in (*. Then we can
verify using steps 3 and 4 of the construction that N(vi,E,T)
15 o subset of Aye Noxt it can be shown that Aﬁ= N(v,s2,T).

Hence, by Thcoren 3,3.3, it follows that GO(T ) = CO(G)

Tich, by condition (1) and Lomna 3e3.5, it

Hs

urther follows

2 4—' 4 . i
that T = Ge Thig completes the proof of the theorom.
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Turther the above construction gives all the tice

~

fourth 1oots of G by Lommas 343.2, 3.3.4 and steps 3, 4 of

the constructione Now it is casy to prove the following

thcoronm which characteriscs graphs with a unique trec fourth

00tae

Theoren Beds3. Lot G Do a graph with a t¥ce fourth
root Ts et 8(2, T) = { vyy 1 3 i i D } « Define B, to

be the munmber of vertices adjacent to v, in T and not in

(2, e Then T dig unique, up to isomorphism, if and only

oy}

Bl

£f B, =1 whenever g, 2 Ze

|~
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CHAPTER 4

ON A PROBLEM OF ORE ON MAXIMAL TREES

A connoceted graph G is sald to have the property P,

(after Ore who posed the problem) if for eovery maxinal trec
(ivce, spanning tvce) T of & there cxists ag€ v (G)
guch that dT(aT, x) =4 (aT, x) for every x& V(G), where
dg (ks %) denotes the distance in ¢ from xq to Xge
The following problen was posed by Ore (sce [15], page 103,
Problon 4): Dotcrmfne.éll graphs with property P . In
‘Soction 1 we present o solution to thq above mentioned

problen in the finite caso, i.c., if |V(G)| < =,

Logl Two trneorens

5

The following theoren characteriges all finite biconnce-

ted graphs with propexrty P e

Theoircrl £elele A finito biconneceted graph G has

the property P, if and onmly if it is a cycle (Type I) o»
(G

a conplote bipartite graph K(S, V(&) - 8) with Is| =
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-

and  |V(G) - 8| 22 (Tupe IT).

Proof. Tt ig casy to check that the bilconnccted
graphs mentioned in fhc statement of the theoren have the
- property P e

Conversgsely, let G be a finite biconnéctod graph
with property P, ond a(e) dite diancters If A(G) =1,

then G 1s a triqnglollhenCG of type I. So aggunc that

d(G) > 2s We note the following facts.

(1) If 7 dis a maximal tree of G then

a(r) < 2a(6) and further if a(T) = 2a(6) then ay (given

by the property EO) is the unigue centre of T,

() Every partial subgraph of G which is a tree

can be cxtended to a naxinal tiece of Ge.

Let X0 T be vortidos of G such that
dglxys 7,) = dl@). Since @ igs biconnccted, by Menger's
theoren, there ig a clementary cireuit g containing Xos Yoo
-Without losg of generality assune that u = [xo, Kyseeey Xt’XoJ'
Clearly lengtih of py, hitherto denoted by L(w), is greater
than or Bqual to 2d4(G)e We show that L(k) < 2a(8) + 1.
Supposc not, then consider the partial subgraph u[xo, XtJ

whose length > R2d(G) + 1 and which is a tircc. By (2) and
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(1) we get a contradiction. Thus L(p) S 2d(¢) + 1. We

eongideir two cagcse

Case (i)s IL(w =2a(a) +1.

Let A= { Xy Xyyeeey Xt} , then we show ﬁhat A=VI(G).
For otherwige, lct ¥ be a vertex of V(G) - A adjacent to

goric vertex of A, say X, . Congider the partial subgraph
= (ys ) + nlxg, xo] + ulx,, x; 74 which ig a trce and
wihose dlameter > 2d(Gj_+ 1. By (2) and (1) we get a contra-
dictions Now we claim that ¢ = y. Otherwise, let (xy, Xj)
be an ecdge of G, with j different from i-1, i+l. Consi-
der the partial graph

T =y [x ,'Xj] f_(Xj? gi) v uIx , X,

o) el

tree of G and &(T) = 24(@). Sinece G has the property

P, ap 1ig the unique centre of T by (2). But it can be

oF "SI
caplly shown that there ig a vertex x in V(Q) such that
dT(aT, x) > dG(aT, x), a contradiction. Thus G(= p), is

a cycle {Type I).

Case (ii)e LW = 2d(q).

Lot ap above A= [X s X see.y X } o Dofine

B; = {y:yev(ﬁ - A and y is adjacent to x; in G

for every i, 01 <%,
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Purtiier lot. B = B,e If B is cnpty it can be ghown

i

it 9o

[0

o
. =t ) - - - 2 L
as in the proof of casc (i) that G = gs So agssume that B

1g nonenpty. We show that B ig an independent set In  G.

Lot if possible x, y b& vertices in B and {x, y) be an

cdge of G with y(say) in By « Then comsider the following
o
G,

=4

partial subgraph r o

. XG] + oL X » Xy -1]’ waich ig a tice

o o
and whosc length is 24(¢) + 1. Hence, by (2) and (1), this

go= (x, v) +p [x,

i

2

yicids a contradiction.s Thus B ig an independent set of

(8

Further, if 2z ig in B,, (z, x. .) and (z, x _4) arc not

B

41
cdges of G Since B ig an independent set and G dig
bioonnectedj z i3 jeined in & +to xj foir gone j,
0<Jj<t, and j# {i-1, 141} . Wow we prove that
a(G)y =2« If a(6) > 2, consider the partial subgraph £,

v

ey
=

preser Xy Zy Xy

] 1]‘

Xj—l’..., X-

e
J+1t %142 i

Clearly lemgth of ¢ = 2a(G). So by (2) and (1), ¥ can be
cxtended to a maxinal tree T and ap is the unigue centre
of Te But it can be casily proved that there is g vertex
x6 V(G) such that dplag, x) > dzlag, x), a contradiction.

rp "i
mus this proves 4(6) =2, go u = [xo, X1y KXoy Ko, XOJ.


http://www.cvisiontech.com

)
131

'+ Sdnce B 1s nonecmpty, at least onc of Bs» 0 3 i é 3, is
| nonernptys Assunce that Bo ig nonempty. DNow if x is in
”%(G) - A it ©belongs to B, and Bge Lot S = {XO,IXE },
taen @ = K(8, V(&) - 8), the complete bipartitc graph with
lv(@) - 8| 2 2, Thence of type IT and thig completos the

procf of the thicoreri.

Thneorer 4elee A finite connected girapn with property

?O on n vertices ig a tirce or congists of a subgraph H
om n, (3 <n, L) vertices of type I or type IT to which
trces with a total of n - n cdges are attached at some

vertices of Ha

Procfe If G ig a finitc biconnected graph with pro-
perty P, the present theoren follows from Theorem 4.1.1. So
we can agsunc that G has a cut vertex =xe Now it can be
casily shown that at mogt one piece of G  with respeet to x

is not a trec and cach picce of & with respect to x  has

.

the property P, How again Theoren 4.1.2 follows from -
Theorern 4elels -
Rewark.  Perhaps it is truc that G = K(8, V(&) - 8),

the complete bipartite graph with [8| = 2, ig the only bicon-

‘neeted graph with property B if |v(@) | is infinite.

The results of this scetion appeared in [22 .
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CHAPTER 5

SOMB EXTREMAL PROELEMS CONCERNING RADIUS
AND DIAMETER TH DIGRAPHS

In [25], Vizing found the nmaxirmm number of cdges in an
undirected graph on n  vertices with radius . In Section
5¢l, we obtain the maximun humber of arcs in a directcd'grcph
(not nccessarily strong) on n  vertices with radius » and

characterige thic extrenal graphs. Further, we ovrtain an cxpresg-

pion Tor the naxirmn numnber of ares in a strong digraph on n

H

oir ¥

I

vertices witihh radius 3 and state a conjeecture in
the general casCe In Scction 548, we congider diameter eritical
digraphgye that ig digraphs whose digmeter decercascs by adding
any new airc to them, and characterise all diameter critical
k-gonnceted digraphs and obtain an expression Tor the naxirmumn
nunber of ares in g k~connccted digraph on n  vortieccs with
diameterr de The analogous rosults in the undirected cnage were

obtained by Ore {16]. In Scction D3, we give a partial solu-

tion to the following problenm of Murty [14l. For what valucs

Jude

of n g it possible to orient the” complete grapin in such a way
that the resulting tournament has diameter £ £ and the tourna-
nent obtained by remeving any k  or fewer vertices nas diamectoer
<8 9 | |

f
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B¢l Maxirmum nunber of ares in a diagraph
withn given radiug

In {251, Vizing, Ve @ found the nagimun number of
cdges in an undirccted g "aphh with n vertices and radius .
Tn this scetion we determine the maxirmn number of arcg in
a directed graph withh n vertices and radius . Further
. we obtaln an expression for the maximun nunmber of arcs
a Strong d*ﬂoctod graph withh n vertices and radius €3 an@

state a conjecture for gencral e

Lomma B5elel. Lot G be o dirvected graph with n
vertiees, radius @ and'with naxirmn nunber of arcse IF

tlhere 1g a vertex ‘o

of ¢ with dg(x,) = 0, then G has
cxactly n(ner) + (?+1L( “2) e

AProOI. Let X ;,{ X }' y X ;'{ Xt d(xo; X) = i'}, and

g = !xilalx I<£r.e Since dE (XO) =0, x, is the unique

centre of G and X.'s, 1 <1 < p, -arc nonempty and

U X = Xe Lot now xe X and"ye Xj' Then gince G is
x i

extrenal (has moxirun number of aves), (x, y)e ¢ if
i>je1l>0e Since G is oxtremal and dg(x) =0 1%

follows that = $£ 1, and the lema ig trivial for

so let ¥ 2 3« If now X, contains two vertices x, ¥,
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then the graph obtained from G by adding an are {(z, ¥)

Joining & vertex =z of X, ., to ¥ has radiusg v, a
L
contradictions Thus n, = l. I pogsible let n; > 2,

ny 28 with li= 3] > 2 Shifting a vertgx fron Xy to X,
inercagces thc nunmber of arcs by 8 = E(ni_l + ni + ni+1) -

=
L

2 {3 - : 1 radd AR - 3
N(nj'l + nj + nj+1) and the radiug * ig unaltercd.

8ince G is extromal 8 { 0. How shifting a vertex fron
X, to Xj inercasecs the number of avcs by 4 - 3 > 0 and
docs not alter the radius, a contradiction which proves that

’

=1 for all i cxcopt possibly for . a i,+1 for

5

B4
gome 1 with 1 < io s T = 2+ Now counting the nunber of
arcs In the graph, the lerma is proved.

It may bc noted that in the proof of the above lema

we have actually determined all the extromal graphse

Lommg Delels An extremal graph G with n  vertices

and with radius = > 3, confains a wortox with indegrece in

G being cqual to zeioe

Procts Firgt we obsorve that

N . :'-1 +l 1“ "'0 »
(@) > n(n~ ) + ( %( 2) g is scen from the proof of
Loemmn Delels MNow 1ot X, be a vertex of @ with naxirmn

Outward degree inh G and § bo the set of all vertices
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not accessible Iron X e Bvidently dg(xo) >n-r4le
Sincc radius of G is v, § is noncmpty. Let © Do the

murber of vertices in  Se Now ovidently there ig no aic

from X -8 to 8. Let x DPcoa centre of G ,then clearly

%7€ Se How remove frerr G a1 the vertices of S-x; and
join x;, to ye X-8 if it ig not alrcady joined and 1f
there ig an ave in G from S to y. If g¥ dg tho !

now graph thus obtained, the number of arcs in @ dis ab

least n(@) ~ (6-1) - (8 - 1){(n - 8 - 1), since the outdegree

is

]
-y

[]

o

of any vortex of 8- x; is at most n -6 - 1. Thus

(@) < n(e*) + (6 - 1)(n - 8)s Now lct the radius of G¥ Yo

r -9 48, 821ls Since d¥(x) =0 in &%, it follows

from Lomma Selsl that

n(G*) g (n.' e+ n-98+1 -7 & e - 3) +

L o

(1‘-e+a+l‘})’(1"-9+a-2)"

Thug 1f € > 1, we will get a contiradiction by showing that

n{n- ) + ﬁr*'lé(r' 2)

, ¥- 0+ 3+1)(r-0 4+ 3-2)

+ (0 -1)(n - 0) +

roduced by at most © - 1 and the outdegree in G

>m-04+1)(n-2-34+1) +

b
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Simplifying, this reduces to
2n(a=l) + 2{(241) > (249=-0-1)(x# 9 » & -2).

Sinecc n 2 r -0 + 341 + {e - 1) =1+ + 3, it is enough to

show that
3la +1) > (2 ~-0)(6 +1).
Thig is truc if 6 i 2} since 9 E l. Thus we conclude that
® =1 and the loma is proveds |
From Lermas Hekel and 5,1.2 we get the following

Thecoren Deleds The maximun number of ares in a direccted

graph with n  vertices with radius » ig

£ Tl ) AT 3
nne~ ) + { f %( 2) Further any extrenal graph has a vertex

-

with indegrec zero and is of the forn described in the proof

0f Lerma Seleles

Thig thcoren alse solves the problen of deternining the
naximun radius of a direccted graph with n vertices with n

arcs, the answer being

n-l  if o < (

o)

[

o+

24l - /BoX 9 - dnl(a- 1)
4 - e Bk >
2 l— i > (,r) ) *


http://www.cvisiontech.com

137

! . R
Now we congider the problem of determining the maxirum

munber of ares in a strong dirccted graph with n  vertices

and with radius =
= 1l, for v =2 the

Tie problem is trivial for
angwer is n{n- 2). For =3 we have the following

Theorerl Seleda The paxirun nunmber of arcs in a

strongly connccted directed graph with n vertices with
radius 3 is nln- 4) + 4.

Evidently the naxioun nunmber of ares

Pl"OOft
> n{ne 4) + 4 ag the following graph shows:

In the above figurc AU{ 2 } and AU {n-z} arc complete

symmetiice
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Lot now G be an extremal graph with n  vertices and
with radius 3« Lot R be a vertex with the nmaxirun out-
degreca, BEvidently dg(xo) = ne 3, Lot B be thie set of all
vertices b such that (xo, ) and (b, xo)- arc arce, O
be the sct of all vertices € not in B guch that (XO, c)
13 on are, and let k = |C|. Let y, = be the vertices not

in {Xo } UBTUC.

£ (b, y) is an avc for some b £ B, then cverdy path
from x. to 2z rust pass through y (for otherwisc the
radius will be 2, x_  being the centic). Hence (y, z) is
an are and the »adius of G is 2, b Dbeing the centica.
This contradiction shows thab (b, ¥), (b, 2) afc not arcas
for a1l b € Be So let without loss of genorality (co, ¥,
(yy 2) be arcs for some e, € Co How we show that out of the

possible n{(n= 1) arcs, at lecast 3n-4 arc migsing in  Ge

Piretly thepe arc no ares from C U { v } to 'xo,
X.-{y,z}=.[xo}u BUC +to gz, and fron BU{XO} to
yo Thus (B+1) + (n-2) + (n=%k-2) = 2n=-3 arcs arc misging
in G, rther ecither (y, b) or an arc from b 1o some
vertex of BU ¢ - { b} ds migsing in G for overy be B
Thus n=-k-3 morec arcs are migsing im G. Next cither ¢

to ¥ or an arc from ¢  to some vertex of BU C - { c}
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.

ig i ¥ G Tem every © € Cw Theg % more a@es e

;

(61

»
nissing in Ge Tinally two arcs Trem 2 to X - {z } are
nisging in G since ﬂ+(z) < un- 3.« Thus 3n~4 ares ave
o
missing in G, henece n{G) < n® - 4n + 44 This completes

t

Fd

1c proof of the thcoren.

For » > 4, Wwe conjecturc that

=

f{n,r) = nln-8r+2) ¢ »(r=1) =2 4f n > 8ry, and an

oxtrenal graph looks like

rn-h—d-—-—"'--———-'.—‘ﬂ‘"- * v gt VI Sp—— ™ .'; [ P—Y i
[N
i < N1l n=1 n
LT e
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SeZ. Diagmeter eritical digraphs

Call a strongly connccted &lgraph k-conneccted if the

graph obtained by removing any k- 1 or fewer verticos ls
atrongly connccteds Call a k-connccted digraph G dianeter
critical if the addition of any neow arc decrcascs its dlame-
tore Let hin, k, d) be the naxirun nunber of arcs ir a
k-conncected digraph on n vorticos and with dianctex» de A
k-conneceted digraph with dimmeter & and with h(n,k,d)

arcg ig called an extrenal graphe Clearly an cxtienal

grapn G 1ig a diameter eritical digraphe. In this secction
we deternine thie diameter eritical digraphs and the value of
n(nyk,d)s The analogous results for undirected graphs were

obtained by Ore [16].

Let x, ¥ be vertices of a k-connceted diameter

critical digraph G with dG(X, y) = diamecter of G = de

Let A, be the set ef all vertices at digtance i from x

and n, = |A;]|, 0 < i< d. Since G is k-connccted,

n, 2k for every i, < i d= 1., Further ,since G is

1
diametor eritical , A, U AH+1 ig complete symmetric in G

As in the proof of Lemma Selel, it can be proved that

ng =1 andif xe A,y ye A, thon (x, ¥) is an avc of &

i
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i - 1> ] and (%, y) 19 not an are ir 1 < j- le Now if
G 1s an cxtremal graph with diamcter 4 as in the piroof of
Lemia S4lel it can be shown that all n, =k cxcept pos-

sibly for i = 1, 1,+1 where i, 1is a fixed intoger
between 1 and d- 2. Now the following two theovenms can be

proved casilys

Theoren Halelw A k=tonncetod digraph ¢ on n ;erticos

and with Glametor d > 1 cxists 1f and orly if n 3 2 4 k(d-l)
and ig dlameter éritical if and only if the vertices of @

can be partitioncd dnto del scts A., O 5 i, _<‘ d, such that
(A ] =[] = 2 and Aol >k, 1 <1¢d-1, andir

%€ As» YE A, thon (x, y) is an ave of @ if ang only if

i3 g1 ,
2 2+k(d-1)

Theorer FeRe2s A keconnected digraph & on n/ ver-

tices with diameter 4 is extreomal if and only if the vor-
tices of G can be partitioned into dsl  sotg A, 0<iga,
such that IAOI = 'Ad‘ =1 and IAiI =k for i1 bxgopt
pogsibly ,io’. io-v~ilj where io is a fixed pogitive integer
such that 1 ¢ 1,84 -2 and if xe Ay Y€ A, thon (x, y)

J

is an are of G if ang only if 1 > j= 1, Fuprther

o) + @)D+ O EDELy) L gy sr a0

n
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Sede ricntation of thie conmplete giaph

In his thesis [141, Us. S. Re Murty asked the following

questions For what valucs of n does there cxist a

Dy (n, Ry 2, &) _where Dy {(n, X, A, s) dcnotcs a tournament
(an oricnted complotc graph) on n vertices with diameter
g.kf guch that the diamcter of the tournament obtained by
romoving any s or fewer vertices is £ L 7 We obtain a par-
$1al golution to thls problem.

Firgt we nake gore obgervations.With any tournament G

We can associate its adjacency nmatiix N of order n  whose

(iy j)~-th clement is 1 or O according ag there is an avc in

G from vertex i to vertéx J or nobt. A temrnancent ¢ on

Fs

n vertices is a Dy (n, 8, 2, ) if and only if

[_l
Hy
=
O

: :
New Nyw - Hya 1\13* 2 s+l i 13

where N,, denotes the i=throw of W. Call a (0, 1)-natrix

3%
A = ((aﬁj)) of ordei» n gkew gymnetrie 1if a4 = 0 4if and
only if 'aji =1 whenever 1 £ j, 1 <i,j < n.

o]

Lorma Sedels N 1
Dy (4843, 2, 2, s)

ig the incidence natrix of a (48+ 3, 2041, 8) - configuration.

s the adjacency matrix of a regular

7

|-1s

f and only if it is skow-syrmotric and
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Proofs Supposc firgt that N dis the adjacency natrix

‘
v

z -

of ¢ which ig a regular Dv (4s+ 3, 2, 2, 8)s. Then ig
skew symetasic since G is a tournamont. Also G 1sg regular
Ag43 ,
of degirec 25+ 1ls Now consider T Niy Nipe Thi
B 4 % J
J# T N
. . . . n
cqual to 28 (2s+ 1) since there are 2s+ 1 1l's din the 1

i

]

&3

k.

r

¥

row, and cach coluxm sum is 28 + le. Now since there are

exactly 28 + 1 1's 4in any row, wc get by hypothesis,
! 2 ]

Tj* < s for all j # i'. Henece we have Ni Nj* = &

=
3

-
for all 1 and j with 1 £ j and N ig the incidence
8)

natrix of a (484 3, 28+ 1, configurations

Lot now N be gkew-gymmetric and let N be the inci-
dence matrix of a (4s+ 3, 28+ 1, s8) - configuration.

Evidently then N is the adjacency natrix of a regular tour-

L

-

nanent G on 4g+4+ 3 vertices. The diamcter of G < 2, since
the nunber of paths of length 2 from vemtex i to vertex

' ' 1
I ils Wiy N5y = Ni* Nj* = 8+ 1 > 0 whenever nyy = 0. It

algo follows that the:tournament obtained by romoving dny 8
or fewer vertices -from G has diameter < 2, completing the

probf of the lemmae
Lemma 5¢3¢2. Lot G be a tournament with diameter 2.
; _
7

Lot €54 = Ny Nyy = Ny
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r

s(¢) = nin { €14 Ryg = O} -1 and .

e (@) .~.—.mi,n{ E:_ij- 1:n,., = 1]. where

and

tile adjacency matyix of G. FPurther let
N I+H I+ 29
i i A8
oo e 0 0
s/
R ¢ R R |
= L) m a2
1 984 010
9 L 1 0

Thcz_l N‘.F ’ I‘-I:3 and HE are the adjacengy natrices of tournaments

Gq 0 G‘g and G, respeetively, whewe

(1)
- (2)
(3)
(4)
(%)

(6)

e(6y) 2

.8(Gy) 2

elGy) 2
S(GS) >

e(Gz) 2

nin {s(8)+6(@)+1, 2s(6)41, a*(a), a7(6)-1}

my {s(8)+e(®)41, 2e(6)-1, a*(6),a"(@)-1}

1iin {,s(G)+e(G)+1, 25(@)+1, at(®), d".(G) } 5

min {s(6)+e(e) 4, 2e(¢)-1, a* (@), a~(@ },
min {5(6)+8(6)+1, 2a(6)+1, a*(e)-1, a”(e) },

nin {s(6) +€ (@) 41, 2¢(a) -1, a¥ (@), 4~ (&) ¥


http://www.cvisiontech.com

145

Proof. It is cvident that IT, Né and N, arc the
adjacency natrices of tfournaments Gy, G, and G5°‘ We will

now prove (2), the rest are proved gimilarly.

Let us nunber the rows and the colurms of G

fav]
f‘é

1,2’.¢e’ Il',»l', 2",—..0, n' il'l t}lat O:‘d 1"’. If 1’1_1 =) = l,

J
. +(a
then eij(Gl) = Eeij(G)" Aso €y5,(G) = dz{i) + 1.. e
‘ # (s . i
nij =1, tHon eij,(Gl) = dG(l) +1. If n;; =1, then
esvy(@) = a5(1) e If nyy =1, thon €4.4:(Gy) = eji(G)+eiJ(G)
i s(@) +1 +2(@) +1 =29(@) +e(3) + 2. This completes the

proof of the lermae

Corollary, . If Iv(n, 2, 2, 8) cxists then
D;(2n, 2, 2, 8), D (2041, 2,2,041) and I, (2n+2, w,fz,u) cxigt.
If the mininum #ndegroc in g Dv(n; N ) 3 s+ 2 then
DV(Bn, 232, g+1) cxigtse If the minirmum outdegree in a
; Dv(n, Ry 24 8) > g+2 then Dv(~n+~, 2,2,841) oxists.

The following 1omma canl be casily proveda

Lorma Se343. IT Dﬁ(n, 2, 2, ) oxists, then

Dy(n-l, 2,2,5-1) cxists.

Let 8; ={ m: Dyln, 2, 2, 3) exists }, 4, 0.

How weoearc able to prove the following
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Thoorell Dededs

Dv(n, 2, 2, 0) cxigte if and only if

53 orn 2 8. Dyln, 2, 2, 1) cxists if and only if
n="77 or n29%.

_Eroof:

“Bvidently 3, S5 € So as the following graphs

Hence by Corollary to Lorma 5e3.2, we sce that 10€ Sy 80

9e;Soq‘ How applying the sane Corollayy we can prove that

5y, 6, 7, 8, 9 € Sqr hence {n t'n=3, orn>?5b } C Sqe
cquality it is cnough to obscrve that Dv(é,E,S,O)
does not cxigt.

To prove

It nay be remarked that the sget

So wag- deternined

cavlicr by Murty £léj'by an cntirely differont methode
Now we show that 9g S, For this consider the graph
G defincd as follows: G has vertices 1, 2,e.., 9 and
) 1 = " ‘ [ R
(.113,)..1_82&11 a3re

i"-j:

1, 2y, 4 o 6 (mod 9)e


http://www.cvisiontech.com

147

@ ig a tournament since (i, j) is an arc if and only if

jei =8, 7, 5 or 3 (med 9). Sinecc G is regular of degree 4,
it ié cnough to shbw that for amy arc (i,3), ZN(1,3) £ 2,
wiere }L\ (i,3) is the nymber of vertices k suchh that both
(i, k) and (jsk) are is of .. ~Gs- - For this wec nay

take without loss of generality that 1 =1 and a simplo

rerification gives the reoults.

By using Corollary to Lemma 5.3.2, we can now show that

{n: 9 <n g 17} C S, , henee

{n: n=7 or n2 9} C: Sl' To show equality we now pirove
that 8¢ S« Take any tourmament & on 8 vertices, say
1y 2yaary B¢ Then it has a transitive subtournament on 4
vertices say 1, 2, 3, 4 where 1 -> 2 => 23 > 4.

Lot now G = DV(S,‘B, 2, 1)s Then there exist two paths of
jJength £ freom é to 3, say 4 -> 7 ~> 3, 4 -> 8 => 3, Since
there are txo pai 3 of length 2 from 3 to 2, we mmust have

3 ¢> 5 —>8 and 3 => 6 => 24 Congidering paths from 2 to 1
we get Zo->7 «>1, 2 »>8 ~>1. C(Considering paths from 3 to
1 we get 3 w> 5 ->1, 3 ~>6 ->1, HNow it is cvident that
at most one path of Length two from any vertex anong 5, 6, 7, 8

to any other can usc 1, 2, 3, or 4, hence the subtournament
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’

on 5, 6, 7, 8 st be a Iy (¢, 2, 2, 0), a contradictions
1
Thus 8 f S;e A sinilar argument proves that ‘2, 3, 4, 5, 6 .

£ 8« This completes the proofe

Now let ug consider the get S?. Since there exists a
perfeet difference set namely the quadratic residucs in the
ficld of residucg ﬁodulo 11,-it fellows that 1l¢ S * To snow
that 153'82, congider the giraph with vertex seot

e

{ Ly 2eeesy 13} y an arc going from i to j if and omly if

ieje {1, 2, é, 5, 6, 9} modulo 13, This is a tournament
since (i, j) is an arc if and oniy if

€ '{ 12, 11, 10, 8, 7, 4 } mnodulo 13, Also the graph
1o reguliar of degrec 6 and it can bo casily verified that
D (1, 5) g3
n, (13, 2, 2, 2) an

Lema 5342, 14, 15, 16¢ Sge Sincc the Iy (9, 2, 2, 1)

=

or all i #£ j, honce the graph is a

oy

13¢ See Since 7€ 5;, by Corcllary to

given in the proof of Theorenm 5.3.4 ig reguiar of degrec 4

and has €=1, it follows by Lomma,5.5q2,“that1183133,fhcnec.

17, 18, 19, 20 ¢ 8,« Sincc 10, 11, 12 ¢ 9,9 1t follows that

o

21, 22, 23, 24, 25 ¢ S.s Hence we have
oo I

{n: m =tk 0F o 2_ 13} C Sce We now show that if

¢ = Dy (18, 2, 2, 2) cxists then © can not eontain a
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=

transitive set of 5 vertices. For suppose thdt the vertices
ef B ave nunbered 1, & ey 12 BUel Shats Le 2k ke .5 B
forms a transitive sct and 1 -> 2 => 3 => 4 > 5., Cleavly, if
X =>y 1In G thon there arc at leagt three vertex digjoint
paths of lengthh two fz ol ¥ to =xe Tihus without loss of
generality we may toke 5 «> 12 => 4, 5 => 11 -> 4, 5 =>10 =>4
and £ «>. 9 =23, & > 8 > 5, £ -> 7% > 3, Since 2 -> 3 in
G, at lcast three vertices of § B, 7, 8, 9 } arc joined to 2
in Ge Also, ‘noo 2 =>4 In G, at lcast two vortices of
{10, 11, 12 } aze joimed to 2 in G. Tims in all at loast
five verfices of {6, 7yeeuy 120} are joined to 2 inm G. But
1 e & in‘ G and there do not cxist tp“oo vertex digjoint
pafhs of length two from 2 to 1, a.contradiction. Thus G ecamn

not contain a transitive set on five vortices.

We thirk that Dy (12, 2, 2, 2) docs not cxist.

We concludc this thesls with a more genecwral conjecture that

n:, n=4%k +3 or n i:é kK + 5} .
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