RESTRICTED COLLECTION 18/1/84 # CONTRIBUTIONS TO THE THEORY OF DIRECTED: AND UNDIRECTED GRAPHS SIDDANI BHASKARA RAO RESTRICTED COLLECTION A thesis submitted to the Indian Statistical Institute in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy. Calcutta 1970 ## RESTRICTED COLLECTION ## ACKNOWLEDGEMENTS It is a great pleasure to express my deep sense of gratitude to Professor C. R. Rao, F.R.S., Director, Research and Training School, for supervising my research work and for the constant encouragement I received from him. My indebtedness to Dr. A. Ramachandra Rao for many inspiring discussions, useful comments and constructive criticisms throughout the progress of the work can be understood by me and him alone. I am also thankful to him for his kind permission to include some of our joint work in this thesis. I wish to thank Mr. N. Vijayaditya for his patient hearing and stimulating remarks. Professors, C. Berge, P. Erdos, F. Harary and Doctors, U. S. R. Murty, D. P. Geller had been quite generous in spending their valuable time on a major part of the results contained in this thesis and offering useful suggestions and encouraging comments. I wish to record my sincere thanks to all of them. It may not be out of place to express my heartfelt thanks to my wife Vasanthi, who has been a constant source of inspiration throughout this work and who has cheerfully put up with all the inevitable inconveniences. Finally I wish to thank Mr. Gour Mohon Das for his cificient typing. S. B. Rao ### CONTENTS | | | Page | |--------------|--|------------| | INTRODUCTION | | 1 | | CHAPTER 1: | LOCALLY RESTRICTED GRAPHS | 7 | | 1.1 | Existence of triconnected graphs with prescribed degrees | 9 | | 1.2 | On factorable degree sequences | 18 | | 1.3 | On planar degree sequences | 35 | | CHAPTER 2: | STUDIES ON CUT VERTICES, CUT ARCS
AND CUT EDGES IN GRAPHS | 50 | | 2.1 | The number of cut vertices in a strong directed graph | 52 | | ଛି•ୁଛ | The number of cut vertices in a strong complete graph | 65 | | .2 •3 | The number of cut ares in a strong directed graph | 66 | | 2.4 | Cut vertices in undirected graphs | 7 8 | | 2.5 | Cut edges in undirected graphs | 93 | | CHAPTER 3: | ON THE POWERS OF A TREE | 102 | | 3.1 | The cube of a tree | 104 | | 5.2 | Characterisation and algorithm | 110 | | 3 • § | The even powers of a tree | 116 | | 3.4 | The fourth power of a tree | 119 | # [<u>ii</u>] | | | Page | |--|--|------| | CHAPTER 4: | ON A PROBLEM OF ORE ON MAXIMAL TREES | 127 | | 4.1 | Two theorems | 127 | | CHAPTER 5: | SOME EXTREMAL PROBLEMS CONCERNING
RADIUS ANT DIAMETER IN DIGRAPHS | 132 | | 5.1 | Maximum number of ares in a digraph with given radius | 133 | | 5.2 | Diameter critical digraphs | 140 | | 5.3 | Orientation of the complete graph | 142 | | אין די | | | | REFERENCES | | 150 | #### INTRODUCTION Graph theory has become such a well known and widely applied subject with numerous applications in operations research, coding theory, game theory, physical and social sciences (to mention only a few), that it is not necessary to give a general introduction to it. Instead we give below a summary of the results contained in this thesis chapterwise. This thesis contains five chapters which are, more or less, independent of each other. In Chapter 1, we study the existence of locally restricted graphs, that is graphs having a prescribed property with given degrees. In Section 1.1, we obtain necessary and sufficient conditions for the existence of a p-connected graph with given degrees for p= 3 and state two conjectures in the general case. The concept of k-factorable sequences in introduced in Section 1.2. A k-factor of a graph G is a partial graph of G in which every vertex has degree k. A sequence is called k-factorable (connected k-factorable) if there exists a graph with a k-factor (a graph with a connected k-factor) with the given degree sequence. We obtain a necessary and sufficient condition for a k-factorable sequence (k > 2) to be connected k-factorable which turns out to be independent of k. Since a connected 2-factor is a Hamiltonian cycle, this condition is necessary and sufficient for a 2-factorable sequence to be the degree sequence of a Hamiltonian graph. We prove that every k-factorable sequence $(k \ge 2)$ is (k-2)-factorable, 2-factorable and 1-factorable. We further show that a 4-factorable sequence is 3-factorable provided n is even. d, is a k-factorable sequence then there exists a graph G with degree sequence {d, } having a connected partial graph in which two vertices have degrees k-l and the rest have degrees k. This proves, in particular, that every 2-factorable sequence is realisable by a graph with a Hamiltonian chain. Although, the general problem of characterising the k-factorable sequences is left unanswered we present two conjectures, one of which for k = 2 was mentioned by Prof. B. Grünbaum at the Combinatories Conference, Calgary 1969 and prove that the truth of conjecture 1 implies the truth of conjecture 2 proving that if $\{d_i\}$ and $\{d_i-k\}$ are graphical so is $\{d_i - r\}$ provided rn is even and 0 & r < k. In Section 1.3, we solve the following problem posed by A. M. Hobbs in the book entitled, 'Recent Progress in Combinatories' edited by W. T. Tutte [24]. For what values of n is there a planar graph on n vertices without loops or multiple edges which has 12 vertices of degree 5 and n-12 vertices of degree 6? Some other related problems are also solved. Chapter 2 is strongly connected with the work of Ramachandra Rao [19] who determined, among other things; the ranges of the number of cut vertices and cut edges in an undirected graph on n vertices with m edges. In Sections 2.1, 2.3, we solve the corresponding problems for strongly connected digraphs and characterise some extremal graphs. This generalises some of the results of Gupta [6]. In Section 2.2, we prove that every strong complete graph n > 3 vertices has at most n-2 cut vertices, without using Camion's theorem, which solves a problem posed by Korvin [12] in Rome Conference. In Sections 2.4, 2.5, we find the maximum number of edges in an undirected graph on n vertices with r. cut vertices (s cut edges) in which minimum degree > d and give partial solutions to the problems of the determination of the maximum number of eut vertices (cut edges) in an undirected graph on n vertices with m edges in which minimum degree \geq d, considered by Ranachandra Rao [19] and solved in [19] for all d \leq 4. In Chapter 3, we consider the k-th power of a graph. G, denoted by Gk, defined Ross, Harary, Karp, Tutte in [23]. [10]. as a graph with same set of vertices as G and two vertices are joined in Gk if and only if there is a chain of length < k joining them in G. In Sections 3.1, 3.2, we find necessary and sufficient conditions for a graph to be the cube of tree and prove that T3 determines the T uniquely, up to isomorphism and give an algorithm to construct the tree cube root of a graph (if it exists). In Section 3.3, some necessary conditions for a graph to be the (2k)-th power of a tree are obtained which generalise some of the results of Ross and Harary [23]. Using these, in Section 3.4, we obtain a criterion for a graph to be the fourth power of a tree. In general, the tree fourth root of a graph is not unique. We give an algorithm to construct all the tree fourth roots of a graph and characterise graphs with a unique tree fourth root. The algorithms aforementioned utilise a result of Harary and Ross [8] for determining the set of all eliques in a graph. In Chapter 4', we solve a problem posed by Ore [15]. A graph G is said to have the property P_0 (after Ore who posed the problem) if for every maximal tree T (i.e. spanning tree) of G there exists a vertex $a_T \in V(G)$ such that $d_T(a_T, x) = d_T(a_T, x)$ for every $x \in V(G)$, where $d_G(x_1, x_2)$ denotes the distance in G between x_1 and x_2 . We show that, in fact, there are only two classes of biconnected graphs having the property P_0 . Further, we determine the structure of all finite connected graphs having the property P_0 . The last chapter is concerned with some extremal problems concerning radius and diameter in digraphs. In Section 5.1, we find the maximum number of arcs in a digraph (not necessarily strong) on a vertices with radius r and characterise all extremal graphs. The analogous results in the undirected case were obtained by Vizing [25]. Further, we obtain an expression for the maximum number of arcs in a strong digraph on a vertices with radius r for r < 3 and state a conjecture in the general case. In Section 5.2, we extend the results of Ore [16] to digraphs. A digraph is called diameter critical if the addition of a new arc decreases its diameter. We characterise all k-connected diameter critical digraphs, determine the maximum number of arcs in a k-connected digraph on n vertices with diameter d and characterise all extremal graphs. Finally, in Section 5.3, we give a partial solution to the following problem of Murty [14]. For what values of n is it possible to orient the complete graph on n vertices in such a way that the resulting tournament as diameter < 2 and the tournament obtained by removing s or fewer vertices has also diameter < 2, where s is a fixed non-negative integer? #### CHAPTER 1 ### LOCALLY RESTRICTED GRAPHS Throughout this thesis we consider only finite graphs (undirected or directed) without loops or multiple edges (arcs). If G is a graph, then $\overline{V(G)}$, $\overline{E(G)}$ denote the vertex set, edge set of G. For notation and terminology Berge [2] is generally followed. The <u>degree sequence</u> of a graph G is the (finite) sequence of degrees of the vertices of G. A sequence of n non-negative
integers is said to be <u>graphical</u> if it is the degree sequence of some graph G. connected and the removal of any p-1 or fewer vertices (edges) does not disconnect the graph. In Section 1, we obtain necessary and sufficient conditions for a sequence of positive integers to be the degree sequence of a 3-connected graph. A k-factor of a graph G is a partial graph of G in which every vertex has degree k. A graphical sequence is called k-factorable (connected k-factorable) if there exists a graph with a k-factor (connected k-factor) and with the given degree sequence. In Section 2, we give a necessary and sufficient condition for a k-factorable sequence to be connected k-factorable. We also prove that every k-factorable sequence is (k-2) - factorable, 2-factorable and 1-factorable, we further show that every 4-factorable sequence is 3-factorable. If $\{d_i\}$ is a k-factorable sequence $(k \geq 2)$, then there exists a graph with degree sequence $\{d_i\}$ and having a connected partial graph in which two vertices are of degree k-1 and the rest have degrees k. Further some conjectures are presented and it is also proved that if $\{d_i\}$ and $\{d_i-k\}$ are graphical then so is $\{d_i-r\}$ for $0 \leq r \leq k$. In the book entitled, 'Recent Progress in Combinatories' edited by W. T. Tutte [24] the following problem was posed by A. M. Hobbs. For what values of n is there a planar graph without loops or multiple edges with 12 vertices of degree 5 and n-12 vertices of degree 6? In Section 3 we solve this and some other related problems. # 1.1 Existence of triconnected graphs with prescribed degrees Necessary and sufficient conditions for the existence of a p-coherent graph with prescribed degrees were obtained by Edmonds [4]. Necessary and sufficient conditions for the existence of a p-connected graph with prescribed degrees are known for p=1, 2 (see [7] and [19]). In this section we solve this problem for p=3. Further some conjectures in the general case are presented. We start with a simple result. Let $\{d_i\}$ = $\{d_1, d_2, \dots, d_n\}$ where each d_i is a positive integer and let $d_1 \le d_2 \le \dots \le d_n$. Lerma 1.1.1. If a triconnected graph exists with degree sequence $\{d_i\}$, then - (1) d₁ ≥ 3. - (2) | di | is a graphical sequence . - (3) $d_n + d_{n-1} \le m n + 4$ where $2m = \sum_{i=1}^{n} d_i$. <u>Proof.</u> (1) and (2) are evident. To prove (3), let x_n , x_{n-1} be the vertices of G with degrees d_n and d_{n-1} respectively. Then the number of edges in $G - \{x_n, x_{n-1}\}$ is $m - (d_n + d_{n-1} - 1)$ or $m - (d_n + d_{n-1})$ according as x_n , x_{n-1} are adjacent or not adjacent in G. Also, since G is triconnected, $G - \{x_n, x_{n-1}\}$ is connected, so (3) follows. This completes the proof of the lemma. Theorem 1.1.2. Conditions (1) to (3) of Lemma 1.1.1 are necessary and sufficient for the existence of a triconnected graph with degree sequence $\{d_i\}$. Proof. Necessity was proved in Lemma 1.1.1. To prove sufficiency, first let the conditions (1) and (3) be satisfied and let $d_n + d_{n-1} = m - n + 4 = n + \lambda$. Since $2m = \sum_{i=1}^{n} d_i \geq d_n + d_{n-1} + 3(n-2) = m + 2n - 2, \text{ and } d_i \leq n-1 \text{ it follows that } 2 \leq \lambda \leq n-2.$ Let k be the number of d_i 's such that $1 \leq i \leq n-2$ and $d_i = 3$. Define $e_i = d_i - 2$ for $k+1 \leq i \leq n-2$. Then we have $$\sum_{i=1}^{n} d_{i} = 2m - d_{n} - d_{n-1} = 3n + \lambda - 8.$$ $$\sum_{i=k+1}^{n-2} c_{i} = 3n + \lambda - 8 - 3k - 2(n-2-k)$$ $$= n + \lambda - k - 4.$$ Define now $\eta = \eta - 2 - \lambda$ and $\varepsilon = k - \eta$. Then $\eta \ge 0$, and $\varepsilon \ge 2$ since $$2m \ge m - n + 4 + 3k + 4 (n - 2 - k)$$ = $m + 3n - k - 4$ and so $\lambda = m - 2n + 4 \ge n - k$. Write now $$e_{i} = \begin{cases} 1 & \text{for } 1 \leq i \leq \varepsilon \\ 2 & \text{for } \varepsilon + 1 \leq i \leq k \\ d_{i} - 2 & \text{for } k+1 \leq i \leq n-2 \end{cases}.$$ Then $\sum_{i=1}^{n-2} c_i = 2(n-3)$ and so there exists a thee T with degrees c_1 , c_2 ,..., c_{n-2} , attained by the vertices x_1, x_2, \ldots x_{n-2} , (say), in that order [19]. Take two more vertices x_{n-1} , x_n and join them. Also join each of x_{n-1} , x_n to x_i for $i=1,\ldots,6$, $k+1,\ldots,n-2$. Of the n vertices x_{e+1},\ldots,x_k , join $d_{n-1}-1-e-n+2+k$ to x_{n-1} and the rest $(d_n-1-e-n+2+k$ in number) to x_n . Note that $d_{n-1}-1-e-n+2+k = d_{n-1}-1-e-n+2+k = d_{n-1}-1-e-n+2+k$ The graph thus obtained has degree sequence { d_i } and is triconnected since any vertex of T with degree in T less than three is joined to either x_{n-1} er x_n . Next let conditions (1) and (2) be satisfied and let $d_n + d_{n-1} \le m-n+3 . \ \ \, \text{Then} \ \ \, d_n < m-n+2 , \text{ so there exists a biconnected graph G with degree sequence } \{d_{\underline{i}}\} \ \, ,$ (see [7], [19]). If G is not triconnected, let x_i , x_j be two vertices such that $G - \{x_i, x_j\}$ is disconnected. Let G_1 , G_2 ,..., be the connected components of $G - \{x_i, x_j\}$. By (1), $|G_g| \geq 2$ for $g = 1, 2, \ldots$. Also by hypothesis, $m - d_i - d_j \geq n - 3$, so it follows that one of the components, say G_1 , contains a cycle. We first prove that there exists an edge (x,y) in C1 and two chains μ_1 , μ_1^{\bullet} of G connecting x and y such that (x,y) , $\mu_{\!\scriptscriptstyle \parallel}$, $\mu_{\!\scriptscriptstyle \perp}^{\!\scriptscriptstyle 1}$ are disjoint except $f_{\!\scriptscriptstyle \parallel}$ x and y , and μ_1 is contained in C_1 . Observe that, since G is biconnected, there always exists a chain connecting x_i and x_i with all intermediate vertices in Co. If now two vertices x, y with degree 2 in C7 are adjacent and belong to a cycle of C_1 , the required edge is (x, y). So we may assume that no two vertices of degree two in C, can belong to a block (on more than two vertices) and be adjacent. Let B be any block of $\mathtt{C}_{\mathtt{l}}$ which is not an edge. If some cycle of B has a chord (x,y), then (x,y) is the required edge. Otherwise, by the results of [17], two vertices y, z of degree two in will be adjacent to a vertex x of degree three in B. If w is another vertex of B adjacent to x, then there is a chain connecting w to y in $B - \{x\}$. This chain together with (x, w) may be taken as μ_1 . To get μ_1 , go from x to z along (x, z), from z to x_i or x_j (through another block of C_1 at z if necessary) then to y (through another block of C_1 at y if necessary). Thus (x, y) is the required edge. Let now (x, y) be an edge of C_1 chosen as explained above. If C_2 is a tree, take any edge (u, v) of C_2 . Then (u, v) is a chord of a cycle of G. If C_2 is not a tree, choose an edge (u, v) of C_2 such that there are chains μ_2 , μ_2^1 of G connecting U and V, such that (u, v), μ_2 , μ_2^1 are disjoint except for u, v and μ_2 is contained in C_2 . We define f_G (s, t) to be the number of components of $G - \{s, t\}$. Now we will make a modification on G so that the degrees of the vertices are unaltered, $f(x_i, x_j)$ decreases and f(s,t) does not increase for any two vertices and to First we associate with x, a subset $\Lambda(x)$ of $\{x_i, x_j\}$ by the following rule: $x_i \in \Lambda(x)$ if and only if there is a chain η connecting x to x_i with all intermediate vertices in C_1 such that η is disjoint with (x,y) and μ_1 except for x. Similarly $\Lambda(y)$ is defined. If C_2 is a tree, put $\Lambda(u) = \Lambda(v) = \{x_i, x_j\}$. Otherwise $\Lambda(u)$, $\Lambda(v)$ are defined in a manner similar to that of $\Lambda(x)$ and $\Lambda(y)$. Now $\Lambda(x)$, $\Lambda(y)$ are made nonempty by a proper choice of μ_1 , and $\Lambda(u)$, $\Lambda(v)$ are made nonempty by a proper choice of μ_2 (in case C_2 is not a tree). Now suppress the edges (x,y), (u,v) and join x to one of u, v and y to the other as follows. Join x to u if $\Lambda(x) \neq \Lambda(u)$ and $\Lambda(y) \neq \Lambda(v)$ whenever such a choice is possible. Let the new graph thus obtained be H. To be specific we take that x is joined to u in H. We prove that H is biconnected. Obviously $G_1 = G - (x,y)$ is biconnected. Now we show that (u, v) is a chord of a cycle of H + (u, v). If C_2 is a tree, then the cycle is $$(u, x) + \mu_1[x, y] + (y, v) + [v, \dots, p_1] + (p_1, x_1) + (x_1, p_2) + [p_2, \dots, u],$$ where p_1 , p_2 are stitable pendant vertices of C_2 . Otherwise the cycle is $\mu_2[u, v] + \mu_2[w, u]$ where if μ_2^i contains the edge (x, y), then (x, y) is replaced by $\mu_1[x, y]$ and the resulting cycle is made elementary. Thus H is biconnected. Trivially now $f_G(x_i, x_j) = f_H(x_i, x_j) + 1$. Next we will show that $$f_{G}(s, t) \ge f_{H}(s, t)$$ (4) for any two vertices s and t. For this it is enough to show that x, y are connected and u, v are connected in $H - \{s, t\}$. First let $s = x_i$. Now x, y, u, v belong to a cycle in $H - \{x_i\}$, so (4) follows. So we may assume that $\{s, t\}$ n $\{x_i, x_j\} = \emptyset$. Now let $s = x_0$. Then to prove (4) it is enough to show that u, v are connected in $H - \{x, t\}$ when $t \neq u$ and $t \neq v$. This is evident if C_2 is a tree or $t \not\in \mu_2$. So let $t \in \mu_2$ and C_2 be not a tree. If A(u) if $A(v) \neq \emptyset$, there is a chain connecting u, v in $H - \{x, t\}$. So we may take without loss of generality and write without brackets that $A(u) = x_j$ and $A(v) = x_i$. If now $x_j \in A(y)$, then u, v are connected through x_j and y in $H - \{x, t\}$. So we take $A(y) = x_i$. If $x_j \in A(x)$, then y would not have been joined to v, so $A(x) = x_i$. Now in G, x_j is connected to some vertex z of μ_1 by a chain with all intermediate vertices belonging to C_1 but nevertex to μ_1 . Now we obtain a chain connecting u, v in $H - \{x, t\}$ by
going from u to x_j , x_j to z, z to y along μ_1 , y to v. Thus we may take that $\{s, t\}$ $\{n\}$ $\{x_i, x_j, x_i, y\} = \emptyset$. Next let s=u. If $t \not\in \mu_1$, then (4) is trivial, so let $t \in \mu_1$. Suppose first that C_2 is a tree. Then we obtain a chain connecting x, y in $H - \{u, t\}$ by going from x to x_i or x_j , then to v through a suitable pendant vertex of C_2 and then to y. If C_2 is not a tree, the situation is similar to that of the preceding paragraph. Thus we take $\{s, t\} \cap \{x_i, x_j, x, y, u, v\} = \emptyset$. If none of s, t belongs to μ_1 , then (4) is trivial. So let se μ_1 . Suppose now that C_2 is a tree. Then for any fixed t, there are chains in $H - \{s, t\}$ from one of u, v to both x_i and x_j , and a chain from the other (of the vertices u, v) to x_i or x_j . Hence u, v are connected in $H - \{s, t\}$ and (4) follows. Suppose next that C_2 is not a tree. Obviously we may take that $s \in \mu_1$ and $t \in \mu_2$. If now $A(x) \cap A(y) \neq \emptyset$ or $A(u) \cap A(v) \neq \emptyset$, then again (4) follows. So we may take that $A(x) = x_1$, $A(y) = x_j$, $A(u) = x_j$ and $A(v) = x_i$. Now we obtain a chain connecting x, y in $H - \{s, t\}$ by going from x to u, u to x_j , x_j to y. This proves (4) completely. Now by a repeated application of the above procedure we reduce the graph until finally f(s,t) = 1 for any two vertices. The final graph thus obtained has degree sequence $\{d_i\}$ and is triconnected and this completes the proof of the theorem. The results of this section appeared in [21]. The method used above does not seem to work in the general case. However, we take the risk of conjecturing the following. Conjecture 1. If $\{d_{\underline{i}}\}$ is a graphical sequence with $d_{\underline{i}} \geq p+1$ for every \underline{i} , $1 \leq \underline{i} \leq n$, then there exist a p-connected graph with degree sequence $\{d_{\underline{i}}\}$. Conjecture 2. Let $d_1 \le d_2 \le \cdots \le d_n$. Then there exists a p-connected graph $(p \ge 2)$ with degree sequence $\{d_i\}$ if and only if - i) $d_i \geq p$, $1 \leq i \leq n$. - ii) | di | is a graphical sequence. iii) $$\sum_{j=0}^{p-2} d_{n-j} \leq m-n+\binom{p}{2}+1$$. It can be easily seen that the truth of conjecture 2 implies the truth of conjecture 1. Further if p=2 or 3 then conjecture 2 is true by previously known result and our Theorem 1.1.2. # 1.2 On factorable degree sequences A k-factor of a graph G is a partial subgraph of G in which every vertex has degree k. A graphical sequence is called k-factorable (connected k-factorable) if there exists a graph with a k-factor (connected k-factor) and with the given degree sequence. (respectively $\underline{B(x,C)}$) the set of all vertices at even (respectively odd) distance in C from x. If C_1 is a connected partial subgraph of G and C_2 is a partial subgraph of G and C_2 is a partial subgraph of G with $V(C_1)$ five $V(C_2) = \emptyset$, then we write $C_1 \rightarrow C_2$ if there exists $x \in V(C_1)$ such that the subgraph of G spanned by $\Lambda(x,C_1)$ is complete, every vertex of $\Lambda(x,C_1)$ is joined in G to all vertices of C_2 , $B(x,C_1)$ is an independent set in G and no vertex of $B(x,C_1)$ is joined in G to any vertex of C_2 . A cut A of G is a nonempty proper subset of V(G). $\underline{m(A, B)}$ denotes the number of edges of G with one end vertex in A and the other in B where A \widehat{n} B = \emptyset . The value of a cut A of G is equal to $\underline{m(A, V(G) - A)}$. A connected graph is p-coherent if and only if there is no cut with value $\{p-1\}$. A vertex x (edge u) of a graph G is called a cut vertex (cut edge) if the graph G-x (G-u) has more components than G. We start our investigation on k-factorable degree sequences by the following Lemma 1.2.1. Let G be a graph with a k-factor F consisting of two components C_1 and C_2 , let $k \geq 2$ and C_1 , C_2 be bicoherent. If the degree sequence of G is not connected k-factorable then either $C_1 \rightarrow C_2$ or $C_2 \rightarrow C_1$. Proof. Let G be a graph satisfying the hypothesis of the lemma. If (x, y) and (u, v) are edges of C_1 and C_2 respectively then, one of the vertices x, y, u, v is joined to the remaining three vertices in G for otherwise, by a simple interchange of edges C_1 and C_2 can be combined into a single component. So let without loss of generality x be adjacent to u and v. If now y is joined to u or v, again C_1 and C_2 can be combined, so y is joined to neither u nor v. If z is any vertex adjacent to x in C_1 then z is joined to neither u nor v. Proceeding further we get that every vertex of $A(x,C_1)$ is joined to u, v and no vertex of $B(x,C_1)$ is joined to u or v. If w is any vertex adjacent to u in G_2 then by the same argument, every vertex of $A(x,C_1)$ is joined to w and no vertex of $B(x,C_1)$ is joined to w. Proceeding further we finally get that every vertex of $A(x,C_1)$ is joined to all vertices of C_2 and no vertex of $B(x,C_1)$ is joined to any vertex of C_2 . Also $A(x,C_1)$ and $B(x,C_1)$ are independent sets in C_1 . Since C_1 is regular of degree $k(\geq 2)$ it follows that $|A(x,C_1)| = |B(x,C_1)|$. Thus $|V(C_1)|$ is even. If now two vertices z_1 and z_2 of $A(x,C_1)$ are not. adjacent in G, then let z_3 be a vertex adjacent in C_1 to z_1 . Then $z_3 \in B(x,C_1)$. Now choose an edge (u,v) of C_2 , then remove the edges (z_1,z_3) and (z_2,u) from G and add the new edges (z_1,z_2) and (z_3,u) . Then we get a graph with a connected k-factor obtained from the original k-factor by deleting the edges (z_1,z_3) , (u,v) and adding the edges (z_1,v) and (z_3,u) . This contradiction shows that the subgraph of G spanned by $A(x,C_1)$ is complete. If two vertices z_1 , z_2 of $B(x,C_1)$ are adjacent in C_1 , then let z_3 be a vertex adjacent in C_1 to z_1 , let z_4 , z_5 be vertices adjacent in C_1 to z_2 , and let (u, v) be an edge of C_2 . Consider the k-factor F' of G obtained from the original k-factor F by deleting the edges (z_1, z_3) , (z_2, z_4) , (u, v) and adding the edges (z_3, u) , (z_4, u) , (z_1, z_2) . By hypothesis, F' is not connected. Hence $C_1^1 = C_1 + (z_1, z_2) - (z_1, z_3) - (z_2, z_4)$ is also not connected and since C_1 is bicoherent, C_1^1 has exactly two components A_1 , A_2 . Also z_1 , z_2 belong to A_1 (say) and then z_3 , z_4 belong to A_2 (because C_1^1 is not connected). Now evidently the k-factor F" of G obtained from F by deleting the edges (z_1, z_3) , (z_2, z_5) , (u, v) and adding the edges (z_3, u) , (z_5, v) , (z_1, z_2) is connected, a contradiction which shows that $B(x, C_1)$ is an independent set in G. Thus $C_1 \rightarrow C_2$ and the lemma is proved. Lemma 1.2.2. Let $k \ge 2$, $\{d_i\}$ be k-factorable and p be the minimum number of components in a k-factor of a graph with degree sequence $\{d_i\}$. Then a graph with the degree sequence $\{d_i\}$ can be chosen such that it has a k-factor with p components each of which is bicoherent. <u>Proof.</u> If k is even the lemma is trivial. So let k be odd and let G be a graph with degree sequence $\{d_i\}$ and with a k-factor consisting of p components C_1, C_2, \ldots, C_p . If C_i is not bicoherent we will show that the subgraph of G spanned by V(C1) can be modified so that the degrees are unaltered and the new subgraph has a bicoherent k-factor. Let D1, D2 be two terminal blocks of Ci separated by some cut edge of C_{i} and let a_{1} , a_{2} be the cut vertices of C_{i} belonging to D_1 , D_2 respectively. Now let (x, y), (u, v)be edges in D, D, respectively where x, y are different from a, and u, v are different from ap. Then one of x, y, u, v is joined in G to the remaining three vertices for otherwise a simple interchange reduces the number of cut edges of C, . Let without loss of generality x be adjacent in G to u, v. Then as in the proof of Lemma 1.2.1, we can show that if the number of cut edges in Ci can not be reduced then $A(x, D_1)$, $B(x, D_1)$ are independent sets in D_1 . Thus is bipartite, in D all vertices except a have degrees and the degree of a_1 is $\leq k-1$, a contradiction which proves that the subgraph can be modified until C; becomes bicoherent. This completes the proof of the lemma. It may be remarked that Lemma 1.2.2 is the best possible with respect to the cohersiveness of a k-factor of a graph with degree sequence $\{d_i\}$. To show this we give an example. Let n be an integer $\geq 3k+1$ and n even if k is odd. Let $V = \{1, 2, \ldots, n\}$, $\Lambda = \{1, 2, \ldots, k\}$, $B = \{k+1, \ldots, 2k\}$, $C = \{2k+1, \ldots, n\}$. Define a graph G with V(G) = V in which AUC is complete, B is an independent set, every vertex i, $2 \le i \le k$, of A is joined to all vertices of B, l is joined to all j, $k+2 \le j \le 2k$; and k+1 is joined to 2k+1. It is easy to see that if H is any graph with the degree sequence $\{d_i\}$, same as the degree sequence of G, then H is isomorphic to G. Further $\{d_i\}$ is connected k-factorable and in any k-factor of G, the cut C has value equal to 2. Thus no k-factor of the graph G is h-coherent with h > 2. In what follows we assume that { d_i } = { d_1 , d_2 ..., d_n } and $d_1 \ge d_2 \ge ... \ge d_n$. Theorem 1.2.3. $\{d_i\}$ is connected k-factorable if and only if $\{d_i\}$ is k-factorable and the following condition is satisfied whenever $s < \frac{n}{2}$, $$\sum_{i=1}^{s} d_{i} < s(n-s-1) + \sum_{i=0}^{s-1} d_{n-j}$$ (6) <u>Proof.</u> If $\{d_i\}$ is graphical, let G be any graph with degree sequence $\{d_i\}$. Let A be a set of a vertices of G with degrees d_1, d_2, \dots, d_n and let B be a set of a vertices disjoint with A and with degrees d_1, d_2, \dots, d_n . Now observe that the right hand expression of (6) is occurrent or
(6) is occurred web optimization using a waterward evaluation copy of CVISION PDFCompression $$|A| \cdot |V(G) - A - B| + |A| \cdot (|A| - 1) + \sum_{j=0}^{g-1} d_{n-j},$$ hence the left hand expression of (6) does not exceed the right hand expression. If now equality holds for some $s < \frac{n}{2}$, then every edge with one end vertex in B has the other end vertex in A and since $|A| = |B| < \frac{h}{2}$ it follows that G does not have a connected k-factor. This proves the necessity of (6). To prove sufficiency, let $\{\underline{d_i}\}$ be k-factorable and let (6) be satisfied whenever $s < \underline{\underline{n}}$. Let G be a graph with degree sequence $\{\underline{d_i}\}$ and with a k-factor having the minimum number of components. Let C_1, C_2, \ldots, C_p be the components in this k-factor of G. By Lemma 1.2.2, we may and do assume that each C_i is bicoherent. We will prove the theorem by showing that $p \geq 2$ leads to a contradiction. So let $p \geq 2$. Construct a directed graph D with C_1, C_2, \dots, C_p as its vertices, an arc going from C_i to C_j if $C_1 \rightarrow C_j$ in G. By the definition of p and from the proof of Lemma 1.2.1, it follows that D is a complete directed graph. Hence the radius of D \leq 2 (see p.121, [2]). Thus either there is a circuit on 3 vertices in D or there is a C_i such that $C_{\underline{i}} \rightarrow C_{\underline{j}}$ whenever $j \neq i$. We consider these two cases separately. $\frac{Case\ (i) \cdot C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_1 \cdot \text{ Then edges } (u,v),}{(w,x),\ (y,z) \text{ can be found in } C_1,C_2,C_3 \text{ respectively}}$ such that $(v,w),\ (x,y),\ (z,u)$ are edges in G. Thus the components C_1,C_2,C_3 can be combined into a single component, a contradiction to the definition of p. Case (ii) • C_1 -> C_i for all $i=2,\ldots,p$. First let a vertex x of C_1 be adjacent to all vertices of C_i and to no vertex of C_j , for some i and j. Now either C_i -> C_j or C_j -> C_i and we can combine C_1 , C_i , C_j into a single component as in case (i). Next let a vertex x of C_i be adjacent to all vertices of C_i , $i=2,\ldots,p$. Then if we write $A=A(x,C_1)$, $B=B(x,C_1)$ and C=V(G)-A-B, we get from the proof of Lemma 1.2.1 that $|A|=|B|<\frac{n}{2}$, the subgraph spanned by A is complete, every vertex of A is joined in G to all vertices of C, B is an independent set in G and no vertex of A is joined in A to any vertex of A and the theorem is proved. It may be pointed out that condition (6) above is necessary and sufficient for a 2-factorable degree sequence to be realisable as the degree sequence of a Hamiltonian graph. Theorem 1.2.4. If $\{d_i\}$ is k-factorable with $k \ge 2$, then $\{d_i\}$ is (k-2)-factorable. <u>Proof.</u> If k is even the theorem follows from the fact that any regular graph of even degree has a 2-factor (see p.189, [2]). If k is odd, let p be the minimum number of components in a k-factor of a graph with degree sequence $\{d_i\}$. By Lemma 1.2.2, there exists a graph G with degree sequence $\{d_i\}$ and with a k-factor consisting of p components C_1 , C_2 ,..., C_p , each C_i being bicoherent. By a result of Bacbler (see p. 189, [2]), each C_i has a 2-factor. Hence the k-factor of G has a 2-factor and therefore a (k-2)-factor. This proves the theorem. The argument in the proof of Theorem 1.2.4 proves the following Corollary. If $\{d_i\}$ is k-factorable with $k \ge 2$, then $\{d_i\}$ is 2-factorable. Theorem 1.2.5. If $\{d_i\}$ is k-factorable, then $\{d_i\}$ is l-factorable provided n is even. <u>Proof.</u> By the corollary to Theorem 1.2.4 we may take k=2. Let then G be a graph with degree sequence $\{d_i\}$ and with a 2-factor having the minimum number of components. Let C_1 , C_2 ,..., C_p be the cycles in this 2-factor. Now by Lemma 1.2.1, either $C_i \rightarrow C_j$ and C_i is an even cycle or $C_j \rightarrow C_i$ and C_j is an even cycle. Hence all C_i except possibly one are even and since n is even each C_i is even. Thus the 2-factor has a 1-factor and the theorem is proved. Theorem 1.2.6. If $\{d_i\}$ is 4-factorable then $\{d_i\}$ is 3-factorable provided n is even. Proof. Let p be the minimum number of components in a 4-factor of a graph G with degree sequence { d_i } Let C1, C2, ..., Cp be the components in this 4-factor of G. As in the proof of Lemma 1.2.1 (see also Theorem 1.2.5) it can be proved that each C; is even. Replace the subgraph of G spanned by V(C,) by a graph with the same degree sequence and having a bicoherent 4-factor with minimum number, ∂_i (say), of cuts of value 2. Now if $\partial_i = 0$ for some i, then C_i is 3-coherent so this C_i has a l-factor by Theorem 6, p. 182 of [2]. If $\theta_i > 0$ for some i, without loss of generality assume that i = 1. We show that C_1 has a 1-factor by using Tutte's theorem (see p. 182, [2]): The necessary and sufficient condition for a graph H to possess a perfect matching (1-factor) is that $p_i(S) \leq |S|$ for every S (V(H), where p; (S) denotes the number of odd components of the subgraph of H spanned by V(H) - S. To prove this for C, we proceed as follows. Let S be a nonempty proper subset of $V(C_1)$ and $D_1, D_2, \dots, D_{p_4}(S)$ the components of odd order in the subgraph of $C_{\underline{1}}$ spanned by V(C1) - S. Further let 0 be the number of j's, $1 \le j \le p_{\underline{i}}(S)$, such that $m(V(D_{\underline{j}}), S) = 2$. We first show that $\theta \le 1$. Suppose $\theta > 1$ and assume that $p(V(D_1), S) = p(V(D_2), S) = S.$ Let $D_{11}, D_{12}, \dots, D_{1S_1}$ be the maximal bicoherent subgraphs of Di, i = 1,2. Clearly $V(D_{ij})$'s, $1 \le j \le s_i$, are pairwise disjoint. Since $n(V(D_i), S) = 2$ and C_1 is bicoherent there are at most two cut edges of Di containing a fixed vertex of V(Di), so $V(D_{ij})$'s, $1 \le j \le s_i$, partition the vertices $V(D_i)$. Further the value of the cut V(Dii) in Cl is 2, $1 \le j \le s_{\underline{i}}$, i = 1,2. Now since $V(D_{\underline{i}})$'s are odd we can without loss of generality assume that V(D11), V(D21) are odd. Choose minimal cuts $E_{i} \subseteq V(D_{i1})$, i = 1,2, of value $_{2}$ in $_{\mathrm{1}}$. Since $_{\mathrm{1}}$ is regular of degree 4 the value of any cut in C1 is even. Now it can be easily proved that the subgraph of C1 spanned by Ei is 3-coherent. Let (x, y), (u, v) be edges in the subgraphs of C_1 spanned by E_1 , E_2 respectively. Then one of x, y, u, v is joined in g to the other three for otherwise by a simple interchange we can get a graph with degree sequence same as the degree sequence of the subgraph of G spanned by $V(C_1)$ and having a bicoherent 4-factor with number of cuts of value $2 < \delta_1$, a contradiction. Without loss of generality assume that x is joined in G to u, v. Now as in the proof of Lemma 1.2.1, it can be proved that $A(x, D_{11})$, $B(x, D_{11})$ are independent sets in C_1 . Since the value of the cut $V(D_{11})$ in C_1 is 2 and C_1 is regular of degree 4 it follows that $|A(x, D_{11})| = |B(x, D_{11})|$, thus $V(D_{11})$ is even, a contradiction. This proves that $\theta < 1$. Now it follows that $$p_{\underline{i}}(S)$$ $$4 |S| \ge \sum_{\underline{i}=\underline{1}}^{\Sigma} m(V(D_{\underline{i}}), S) \ge 4 (p_{\underline{i}}(S) - 1) + 2,$$ which shows that $p_{\underline{i}}(S) \leq |S|$, By Tutte's theorem $C_{\underline{l}}$ has a 1-factor, so $C_{\underline{l}}$ has a 3-factor. Thus each $C_{\underline{i}}$ has a 3-factor about and this completes the proof of the theorem. Lerma 1.2.7. Let C_1 be a connected partial subgraph of G in which two vertices have degrees k-1 and the rest have degrees k and let C_2 be a bicoherent partial subgraph of G which is regular of degree k. Also let $V(C_1)$ and $V(C_2)$ partition the vertices of G. Then if the degree sequence { d_i } of G is k-factorable, there exists a graph H with degree sequence { d_i } and having a connected partial graph in which two vertices have degree k-l and the rest have degrees k. Preof. Suppose, if possible, that H does not exist. If some vertex t of C_2 is joined in G to both vertices of some edge of C1, it can be proved as in Lemma 1.2.1 that t is joined in G to all vertices of C1. This is a contradiction since if u is a vertex with degree k-1 in c_1 and z is a vertex adjacent to t in C2, then $c_1 + c_2 + (u, t) - (t, z)$ is a connected partial subgraph of G in which two vertices have degrees k-l and the rest have degrees k. Thus we may take that some vertex x of C1 is adjacent to both vertices of some edge of C_2 in G_{ullet} Then as before we can show that every vertex of $\Lambda(x, C_1)$ is joined in G to all vertices of C_2 , no vertex of $B(x, C_1)$ is joined in G to any vertex of C_2 , $A(x, C_1)$ and $B(x, C_1)$ are independent sets in c_1 . Further the two vertices of c_1 with degree k-l belong to B(x, C1). Now it is evident that k = 2 and $|A(x, C_1)| = |B(x, C_1)| - 1$. Further it can also be proved that $C_1 \rightarrow C_2$. As in the proof of Theorem 1.2.3 it follows that, if G* is any graph with degree sequence { d; } then its vertices can be partitioned into nonempty sets A, B, C such that |A| = |B| - 1 and every edge with one end vertex in B has the other end vertex in A. Thus $\{d_i\}$ is not 2-factorable, a contradiction which proves the lemma. Theorem 1.2.8. If $\{d_i\}$ is k-factorable, then there exists a graph H with degree sequence $\{d_i\}$ having a connected partial graph in which two vertices are of degree k-l and the rest have degrees k. Proof. This theorem follows easily from Lemma 1.2.2 and Lemma 1.2.7. Taking k=2 we see that if $\{d_i\}$ is 2-factorable, then it is traceable, i.e., there exists a graph with degree sequence $\{d_i\}$ and having a Hamiltonian chain. The problem of finding necessary and sufficient conditions for a graphical degree sequence to be k-factorable
seems to be much deeper. In this connection we make the following conjectures. Conjecture 1. A graphical degree sequence { $d_{\bf i}$ } is k-factorable if and only if { $d_{\bf i}$ -k } is graphical. Conjecture 2. If $\{d_i\}$ is k-factorable then $\{d_i\}$ is (k-1)-factorable provided n is even. Dr. J. A. Bendy kindly informed that conjecture 1 for k=2 was also mentioned by Prof. B. Grünbaum at the combinatories conference held in Calgary in June 1969. We prove below that the truth of conjecture 1 implies the truth of conjecture 2. Further, by corollary to Theorem 1.2.4 and Theorems 1.2.5, 1.2.6, it follows that conjecture 2 is true for all $k \le 4$. Theorem 1.2.9. Let $\{d_i\}$ and $\{d_i-k\}$ be graphical sequences. Then $\{d_i-r\}$ is a graphical sequence provided $0 \le r \le k$ and rn is even. Proof. Let $b_i = d_i - k$ and $c_i = d_i - r$ for $1 \le i \le n$. That $\sum_{i=1}^{n} c_i$ is even is evident. So by a theorem of Erdős and Gallai [5] (see also Beineke and Harary [1]), we have only to show that $\sum_{i=1}^{n} c_i^{**} \ge \sum_{i=1}^{n} c_i$ for $1 \le s \le n$, where c_i^{**} is the number of i such that i < j and $c_i \ge j-1$ plus the number of i such that i > j and $c_i \ge j$. For this it is enough to show that Construct now the (0, 1)-matrix $A = ((a_{ij}))$ of order n where $a_{ij} = 1$ if and only if i < j and $d_i \ge j-1$ or i > j and $d_i \ge j$. Evidently then d_i^{**} is the i-th column sum of A. Let us now put in the i-th row of A two marks, a red mark immediately after the (d_i-k) -th 1 and a blue mark immediately after the (d_i-r) -th 1 for $1 \le i \le n$. For any s with $1 \le s \le n$, let A_s denote the $n \times s$ matrix consisting of the first s columns of A. $$\frac{\text{Case }(\underline{i}) \cdot \sum_{\underline{i}=1}^{S} d_{\underline{i}}^{**} \leq \sum_{\underline{i}=1}^{S} b_{\underline{i}}^{**} + ks.$$ Then the number of 1's to the right of red marks in $A_8 \le ks$. Hence the number of 1's to the right of blue marks in $A_8 \le rs$ for otherwise, a 1 occurs to the right of blue marks in at least s+1 rows of A_8 , hence the number of 1's between the red and blue marks in $A_8 \ge (k-r)(s+1)$ and the number of 1's to the right of red marks in $A_8 \ge rs + 1 + (k-r)(s+1) = ks + k - r + 1 > ks$, a contradiction. This proves (7) in this case. Case (ii), $$\Sigma$$ $d_i^{**} > \Sigma$ $b_i^{**} + ks$. Then the number of 1's to the right of red marks in $A_g > ks$. Hence the number of 1's between the red and blue marks in $A_g > (k-r)s$ for otherwise, the number of 1's to the right of blue marks in $A_g > rs$, hence a 1 occurs to the right of blue marks in at least s+1 rows of A_s and the number of 1's between the red and blue marks in A_s is not less than (k-r)(s+1) > (k-r)s, a contradiction. This proves (7) in this case and the theorem is proved. The results of this section are to appear in [20]. Remarks: A k-factor of a digraph G is a partial graph of G in which the indegree and outdegree of every vertex is k. Call a demi-degree sequence $\left\{d_{i}^{+}, d_{i}^{-}\right\}$ k-factorable (strongly connected k-factorable), if there exists a digraph with a k-factor (strongly connected k-factor) and with the given demi-degree sequence. With these definitions, it would be interesting to extend the results of this section to digraphs. Are the following statements true? - l. A graphical demi-degree sequence $\left\{d_{\underline{i}}^{+},\ d_{\underline{i}}^{-}\right\}$ is k-factorable if and only if $\left\{d_{\underline{i}}^{+}-k,\ d_{\underline{i}}^{-}-k\right\}$ is graphical. - 2. A k-factorable demi-degree sequence is (k-1)-factorable. #### 1.3. On planar degree sequences In the book entitled, 'Recent Progress in combinatories', edited by W. T. Tutte [24] the following problem was posed by A. M. Hobbs (see problem 9, P. 344 of [24]). For what values of n is there a planar graph on n vertices without loops or multiple edges which has 12 vertices of degree 5 and n-12 vertices of degree 6? He also observed that such a graph exists for n = 12 and none exists for n = 13. In this section we solve this and some other related problems. A graph is said to be embeddable on a surface S if it can be drawn on the surface S such that no two edges intersect. A planar graph is a graph which can be embeddable on the plane. An embedding of a planar graph on the plane is called a planar realisation of the graph. Let G be a graph, (u, v) be an edge of G and w_1, w_2, \dots, w_g be vertices not in V(G). A <u>subdivision</u> of the edge (u, v) of G by w_1, w_2, \dots, w_g consists of omitting the edge (u, v) of G and including the edges $(u, w_1), (w_1, w_{1+1}), 1 \le i \le s-1$, and (w_s, v) . A <u>double wheel</u> on n+2 vertices consists of a circuit C on n vertices with two additional vertices adjacent to every ve V(6). A planar graph on n vertices is said to have the property P(i, j), $i \le \min\{5, j\}$, if it has k vertices of degree i and n-k vertices of degree j, where i, j, k are connected by the relation $$ki + (n-k)j = 2(3n-6).$$ In this section we consider the following problem. For what values of n is there a planar graph on n vertices with property P(i,j)? If i=5 and j=6 then k=12 and this is the problem of Hobbs. Clearly a planar graph on n vertices with property P(i,j) triangulates the plane. We solve the problem of Hobbs by proving the following Theorem 1.3.1. For all values of $n \ge 12$ and $n \ne 13$, there exists a planar graph on n vertices with property P(5, 6). <u>Proof.</u> We construct the required planar graphs inductively. For n=12, 14 and 16 the graphs G_1 , G_2 and G_3 of Figure 1, 2 and 3 respectively are the required graphs. We observe that in the planar realisation Fig. 1 of G_1 there are four faces having the structure described in Fig. 4 in which each vertex x_1 , $1 \le i \le 6$, incident with them has degree 5 in G_1 (see Fig. 1). Now we construct a planar graph H on 15 vertices with property P(5,6) having four faces with structure described in Fig. 4. To get H from G_1 , subdivide the edges (x_4, x_5) , (x_5, x_6) , (x_6, x_4) of G_1 by y_1, y_2, y_3 respectively and join y_1 to x_1, y_2, y_3 ; join y_2 to x_2, y_3 ; and join y_3 to x_5 . Now in H there are four faces (see Fig. 5) having the structure described in Fig. 4 in which each vertex incident with them has degree 5 in H. Now repeat the construction with these four faces on H. Thus inductively it follows that for all n of the form 12+3s, where s is a nonnegative integer, there is a planar graph on n vertices with property P(5,6). In the planar realisations Fig. 2 and Fig. 3 of G_2 and G_3 there are nine faces having the structure described in Fig. 6 in which each of the vertices x_1 , x_4 , x_5 , x_7 , x_8 , x_9 has degree 5 in G_2 and G_3 . Now we describe a procedure by which we can get planar graphs \mathbb{I}_1 , \mathbb{I}_2 and \mathbb{I}_3 on 17, 20 and 23 vertices respectively each having the property P(5, 6) and \mathbb{I}_3 having nine faces with structure described in Fig. 6. To get \mathbb{I}_1 from \mathbb{G}_2 , subdivide the edge (x_3, x_2) , (x_2, x_{10}) , (x_{10}, x_3) by \mathbb{Z}_1 , \mathbb{Z}_2 , \mathbb{Z}_3 respectively and join \mathbb{Z}_1 to \mathbb{X}_1 , \mathbb{Z}_2 , \mathbb{Z}_3 ; join \mathbb{Z}_2 to \mathbb{X}_4 , \mathbb{Z}_3 ; and join \mathbb{Z}_3 to \mathbb{X}_9 . Since the degree of each of the vertices x_1 , x_4 , x_9 in G_2 is 5, H_1 is a planar graph on 17 vertices with property P(5, 6). We construct H, from H_1 as follows. Subdivide the edges $(x_{10}, x_4), (x_4, x_6),$ (x_6, x_{10}) of H_1 by z_4, z_5, z_6 respectively and join z_4 to z_2 , z_5 , z_6 ; join z_5 to x_5 , z_6 ; and join z_6 to x_7 . Then, since the degree of each of the vertices z2, x5, x7 in is 5, Ho is a planar graph on 20 vertices with property P(5, 6). To get H_3 from H_2 , subdivide the edges (x_{10}, x_7) , $(x_7, x_9), (x_9, x_{10})$ of H_2 by z_7, z_8, z_9 respectively and join z_7 to z_6 , z_8 , z_9 ; join z_8 to x_8 , z_9 ; and join z_9 to z_3 . Now since degree of each of the vertices z_6 , x_8 , z_8 in is 5, H3 is a planar graph on 23 vertices with property P(5,6). Further in H3 there are nine faces (see Fig. 7) having the structure described in Fig. 6. Now repeat the construction with these nine faces of H_3 . Thus for all n of the form 14 + 3s, where s is a non-negative integer, there is a planar graph on a vertices with property P(5,6). Starting with the nine faces in Fig. 3 of G_3 having the structure described in Fig. 6, we can similarly construct planar graphs on n vertices with property P(5, 6) for every n of the form 16 + 3s as well. Thus for all $n \ge 12$ and $n \ne 13$, there exists a planar graph on n vertices with property P(5, 6) and this completes the proof of the theorem. Remark. If $n(\geq 12)$ is an even integer and $n \neq 14$ let G be the planar graph with property P(5, 6) constructed above. It can be easily verified that in the subgraph of G generated by degree 6 vertices of G there is a perfect matching (1-factor). Removing this 1-factor from G we get a planar regular graph of degree 5. Thus a planar regular graph of degree 5 exists for all even $n \geq 12$ and $n \neq 14$. This result was earlier proved by Chvátal [3]. Theorem 1.3.2. Let $j(\ge 6)$ be odd. Then a planar graph on n vertices with property P(4, j) exists if and only if $n \ge 6$ and $k = \frac{(j-6)n+12}{(j-4)}$ is a positive integer. <u>Proof.</u> The necessity that $n \ge 6$ and k is an integer is trivial. To prove sufficiency, we construct the required graphs inductively. For n = 6 the double wheel G on 6 vertices has the property P(4, j) and has two faces with structure described in Fig. 8 in which each of the vertices x_1, x_2, x_3 has degree 4 in G. To get a
planar graph H on j+2 vertices (the next admissible value of n, i.e., the next value for which k is a positive integer) with property P(4, j), subdivide the edge (x_0, x_4) of G by $z_1, z_2, \ldots, z_{j-4}$ and join each of them to x_1, x_3 . Clearly then H has two faces with structure described in Fig. 8 (see Fig. 9). Thus inductively we can construct planar graphs on n vertices with property P(4, j) for all $n \ge 6$ whenever k is a positive integer and this completes the proof of the theorem. An argument similar to the argument used in the proof of Theorem 1.3.2 proves the following Corollary. If $j (\geq 6)$ is even then a planar graph on n vertices with property P(4, j) exists whenever n is even and $n \geq 6$ provided $k = \frac{(j-6)n+12}{(j-4)}$ is a positive integer. Theorem 1.3.3. Let $j \equiv 2 \pmod{4}$ and $j \geq 4$. Then a planar graph on n vertices with property P(4, j) exists whenever n is even and $n \geq 6$, or n is odd and $n \geq \frac{j^2}{4} + 2$ provided $k = \frac{(j-6)n+12}{(j-4)}$ is a positive integer. Proof. By Corollary to Theorem 1.3.2 it is enough to consider the case in which n is odd. So let n be odd and $n \ge \frac{12}{4} + 2$. Now we construct a planar graph G on $\frac{12}{4} + 2$ (which is obviously odd since $j = 2 \pmod{4}$) vertices having two faces with structure described in Fig. 8 as follows: Take a wheel on j+1 vertices, $1,2,\ldots,j+1$ (say), with j+1 being the centre of the wheel, attach chains of length $\frac{j-4}{2}$, on $a_{s,1}, a_{s,2},\ldots, a_{s,\frac{j-4}{2}}$ (say), at each of the vertices $s \in \{2, 4, \ldots, j\}$, join every vertex of the chain attached at s to s-1, s+1 (mod j), $s \in \{2, 4, \ldots, j\}$ and let H be this graph. Then take a new vertex x and join it to $1, 3, \ldots, j-1; a_2, \frac{j-4}{2}, a_{4,j-4}, \ldots, a_{j,j-4}$. Let G be the resulting graph (see Fig. 10 for the case j = 10, in which only H is given). Then G is a **[planar** graph and has $\frac{j^2}{4} + 2$ vertices out of which $\frac{j}{2} + 2$ are of degree j, namely 1, 3,..., j+1,x and the remaining are of degree 4. So G is a planar graph on $\frac{j^2}{4}$. Fig. 10. H. vertices with property P(4, j). Further G has two faces with structure described in Fig. 8. Now, as in the proof of Theorem 1.3.2, planar graphs on n vertices with property P(4, j) can be constructed for all n odd and $n \ge \frac{j^2}{4} + 2$ provided k is an integer and this completes the proof of the theorem. Perhaps these are the only values of n for which there exist planar graphs on n vertices with property P(4,j) whenever $j \equiv 2 \pmod{4}$ and j > 6. When j = 6, the planar graph G_4 , of Fig. 11 on 9 vertices has the property P(4, 6) and it can be easily proved that there is no planar graph on 7 vertices with property P(4, 6) Fig. 11. GA This observation coupled with Theorem 1.3.3 for j=6 yields the following Theorem 1.3.4. A planar graph on n vertices with property P(4, 6) exists if and only if $n \ge 6$ and $n \ne 7$. Theorem 1.3.5. A planar graph on n vertices with property P(3, 6) exists for all even $n \ge 4$ and $n \ne 6$. <u>Proof.</u> For n = 4, the complete graph on 4 vertices and for n = 8, 10 the graphs G_5 , G_6 of Figures 12, 13 are the required graphs Let x_1 , x_9 be the vertices of degree 6 on the infinite face of Fig. 12 of G_5 . Then the infinite face of $H = G_5 - (x_1, x_2)$ is a 4-cycle with two nonadjacent vertices of degree 3, $\mathbf{x}_3, \mathbf{x}_4$ (say), and two vertices of degree 5. Now to get a planar graph G on 12 vertices with property P(3,6) from H, take three new vertices z_1 , z_2 , z_3 and join each of them to x_3 ; join z_1 to x_1 , x_4 , z_2 , z_3 ; join z_2 to x_2 , x_4 , z_3 ; and take one more vertex z_4 and join it to x_4 , z_1 , z_2 . Now the infinite face of G $-(z_1, z_2)$ is a 4-cycle with two nonadjacent vertices \mathbf{z}_3 , \mathbf{z}_4 of degree 3 and two vertices of degree 5. Similarly we can construct a planar graph K on 14 vertices with property P(3, 6) from Fig. 13 of G6 with the infinite face of $K-(z_1,z_2)$ having the structure described above. Thus inductively we can construct planar graphs on n vertices with property P(3, 6) whenever n is even, $n \ge 4$ and $n \neq 6$. Now we conjecture that there is no planar graph on n vertices with property P(3, 6) whenever n is odd. We conclude this section with the observation that there is no planar graph on n (\geq 4) vertices with property P(i,j) if i=1,2 and the following list in whose third column the only values of n for which there are planar graphs on n vertices with property P(i,j) are given. | | 7 | j | | n , | | |---|---|---|---------|-------------|----------| | * | 5 | 5 | 12 | | <i>v</i> | | | 4 | 5 | 6, 7, 8 | , 9, 10, 12 | | | | 5 | 5 | 8, 12 | COLE II A | | | | 4 | 4 | 6 | | | | | 5 | 4 | 4, 5, 6 | | | | | 5 | 3 | 4 | | | #### CHAPTER 2 #### STUDIES ON CUT VERTICES, CUT ARCS AND CUT EDGES IN GRAPHS In [19], A. Ramachandra Rao determined, among other things, the ranges of the number of cut vertices and cut edges in an undirected graph on n vertices with m edges. In this chapter we solve the corresponding problems for strong directed graphs. We also give partial solutions to the problems of the determination of the number of cut vertices and cut edges in an undirected graph on n vertices and m edges in which minimum degree > d, considered by Ramachandra Rao [19]. More precisely, in Sections 2.1, 2.3, we determine the ranges of the number of cut vertices, cut ares in a strong digraph on n vertices with m ares and characterise some extremal graphs. This also generalises some of the results of Gupta [6]. In Section 2.2, we prove that a strong complete digraph on n(>3) vertices has at most n-2 cut vertices, without using the existence of a Hamiltonian circ it and this solves a problem raised by Korvin [12] at the Rome Conference. In Sections 2.4, 2.5, we find the maximum number of edges in a connected undirected graph on a vertices with r cut vertices (s cut edges) in which minimum degree > d and give partial solutions to the problems of Ramachandra Rao [19]. A vertex (arc) of a strong digraph is called a cut vertex (cut arc) if its deletion makes the graph not strong. $\underline{n(G)}$, $\underline{m(G)}$, $\underline{r(G)}$, $\underline{s(G)}$ denote respectively the number of vertices, arcs, cut vertices, cut arcs of G. Also $\underline{R(G)}$ denotes the set of all cut vertices of G. An arc (x,y) of a digraph G is symmetric if $(y,x) \in G$. A symmetric graph whose associated undirected graph is a tree is called a symmetric tree. G^S denotes the partial subgraph of G consisting of all the symmetric arcs of G. $G^+_G(x)$, $G^-_G(x)$ denotes the outdegree and the indegree of X in G respectively. The degree of G is $G^+_G(x) + G^-_G(x)$. The converse of G has the same set of vertices as G and G is an arc in the converse if and only if G G is an A vertex (edge) of an undirected graph G is called a cut vertex (cut edge) if its deletion increases the number of components of G. A pendant block of a graph G is a block of G which is incident with exactly one other block of G. Let x be a vertex of G and C a component of G-x, then the subgraph of G generated by V(C)U x; is called a piece of G with respect to x. # Sel The number of cut vertices in a strong directed graph In this section we determine the maximum number of cut vertices in a strong directed graph on n vertices with m ares. Throughout this section by a maximal graph on n vertices with r cut vertices, we mean a strong directed graph such that the addition of any are decreases the number of cut vertices. An extremal graph is a graph with n vertices, r cut vertices and with maximum number of arcs. Lemma 2.1.1. If G is a maximal graph and there are two vertex disjoint paths from x to y, then $(x, y) \in G$. Proof. If $(x, y) \not\in G$, add the arc (x, y) to G. If this converts some cut vertex u of G into a noncut vertex, then u belongs to every path from x to y in G, a contradiction. Lemma 2.1.2. Let G be a maximal graph and x a noncut vertex of G. Then $R(G-x) \subseteq R(G)$. Further if $y \in R(G) - R(G-x)$, then either $d^+(x) = 1$ and $(x,y) \in G$ or $d^-(x) = 1$ and $(y, x) \in G$. Proof. Suppose some noncut vertex z of G is a cut vertex of G-x. Then there exist vertices u, v such that every path from u to v in G-x passes through z. Since z is a noncut vertex of G, there is a path η from u to v in G-z. Let $\mu = [u, u_1, \dots, u_{k-1}, z, u_{k+1}, \dots, v]$ be a path from u to v in G-x. If μ and η are vertex disjoint then $(u, v) \in G$ since G is a maximal graph. Even otherwise $(u_1, u_j) \in G$ for some $i \leq k$ -1 and some $j \geq k$ +1. Thus there is a path from u to v not passing through z in G-x, a contradiction. Now let $y \in R(G) - R(G - x)$. We consider two cases. Case (i). Every path from x to some vertex v in G passes through y. Now if u is any vertex other than y and $(x, u) \in G$, then since $G_1 = G - \{x, y\}$ is strong, there is a path from u to v in G_1 . Thus there is a path from x to v, not passing through y, in G. This contradiction shows that $d^+(x) = 1$ and $(x, y) \in G$. Case (ii). Every path from some vertex v to x in G passes through y. As in case (i), it follows that $d^{-}(x) = 1$ and $(y, t) \in G$. This completes the proof of the lemma. Lemma 2.1.3. Let G be a maximal graph and x a non-cut vertex of G such that R(G) = R(G-x). If the degree of x in G is at least 2n-2-k, then $r(G) \leq k$. Proof. If k = n - 1, the lemma is trivial. So let k \(n = 2. Evidently now there exists a path [x, y, z] in such that (x, z) & G. Since G is maximal, it follows that y is a cut vertex of G and is a noncut vertex of the graph G^* obtained from G by adding the arc (x,z). If G^* is not maximal let H be a maximal graph containing G* such that $R(G^*) = R(H) = R(G) - y$. By Lemma 2.1.2,
$R(H-x) \subseteq R(H)$. Let now u be a noncut vertex of H-x. Then H - (x, u) is strong. So if u is a cut vertex of H, then either $\mathbf{d}_{H}^{+}(\mathbf{x}) = 1$ or $\mathbf{d}_{H}^{-}(\mathbf{x}) = 1$. Now $\mathbf{d}_{H}^{+}(\mathbf{x})$ is not possible, so $d_H(x) = 1 = d_G(x)$. Since $k \le n-2$, by hypothesis, $d_G^+(x) \ge n-1$, a contradiction since $(x,z) \not\in G$. Thus u is a noncut vertex of H and R(H-x) = R(H). Now H satisfies the hypothesis of the lemma with k replaced by k-l and the proof is completed by using induction on k. Lemma 2.1.4. Let G be a maximal graph, x a noncut vertex of G and let r(G) = n-1. Then the degree of x is at most n-1. This lemma follows from Lemma 2.1.3 if R(G-x) = R(G). If r(G) = r(G-x) + 2, then by Lemma 2.1.2, $d^{+}(x) = d^{-}(x) = 1$. So we may take that R(G-x) = R(G) - y where ye R(G). Now we prove the lemma by induction on n. The lemma is trivial for n=3, so assume the result for n-1 and let G be a graph with n vertices and satisfying the hypothesis of the lemma. Without loss of generality we take $d^+(x) = 1$ and $(x,y) \in G$. If possible let the degree of $x \ge n$. Then evidently $d^-(x) = n-1$. Since G is maximal and G-x is strong, it follows, by Lemma 2.1.1, that $d^-(y) = n-1$. First we show that G-x is maximal. Otherwise add an are α to G-x such that the resulting graph has the same cut vertices as G-x. Let H be the graph G+ α . Now $R(H) \subseteq R(G)$. If possible let $u \in R(G) - R(H)$. Since $d_{H}^{+}(x) = 1$, ye R(H) and $u \neq y$. Suppose now that **u** is a cut vertex of H-x and v_1 , v_2 are two vertices of H-x such that every path from v_1 to v_2 in H-x posses through u. Since $u \notin R(H)$, there is a path μ from v_1 to v_2 not containing u in H. Evidently now $x \in \mu$. Now the vertex succeeding x on μ is y and if z is the vertex preceding x on μ , then $(z, y) \in H$ since $d_H(y) = n - 1$. Thus there is a path from v_1 to v_2 in H-x and not containing u_\bullet This corpradiction shows that u is a noncut vertex of H-x. the definition of α , α is a noneut vertex of G-x and so of G. This contradiction shows that R(H) = R(G). But then G is not maximal. This finally proves that G-x is maximal. Since r(G) = n-1, r(G-x) = n-2 and y is a noncut vertex of G-x. Hence, by induction hypothesis, the degree of y in G-x is at most n-2. This is a contradiction since G-x is strong and the indegree of y in G-x is n-2. Thus our supposition that the degree of x in $G \ge n$ leads to a contradiction and the lemma is proved. Theorem 2.1.5. The maximum number of arcs in a strong digraph with $n \ge 4$ vertices and r cut vertices is $$A(n, r) = \begin{cases} \binom{n-1}{2} + 3 & \text{if } r = n \\ \binom{n}{2} + 1 & \text{if } r = n-1 \\ \binom{n}{2} + \binom{n-r}{2} + r & \text{if } r \leq n-2 \end{cases}$$ Further the extremal graphs with n vertices and r cut vertices are $G_1(n)$, $i=1,2,\ldots,7$ described below: $G_1(n)$ has the vertices 1, 2,..., n. In $G_{\underline{1}}(n)$, (i,j) is an arc if either $1 \le i < j \le n-2$ or i=j+1 or i=1 and j=n or i=n-1 and j=n. In $G_2(n)$, (i,j) is an arc if either $1 \le i \le j \le n-4$ or i = j+1 or $1 \le i \le n-3$ and j = n-2 or i = n-1 and $1 \le j \le n-4$ or i = n-1 and j = n. $G_3(n)$ is the converse of $G_2(n)$. In $G_4(n)$, (i, j) is an arc if either $1 \le i < j \le n-1$ or i = j+1 or i = 1 and j = n. In $G_5(n)$, (i,j) is an arc if either $1 \le i < j \le n-2$ or i = j+1 or i = n-1 or i = 1 and j = n. $G_6(n)$ is the converse of $G_5(n)$. In $G_{\gamma}(n,r)$, (i,j) is an arc if either $1 \le i < j \le n$ or i = j+1 or $k \le j < i \le k+n-r-1$, where k is a fixed integer such that $1 \le k \le r+1$. It may be noted that $G_{\underline{i}}(n)$ has n or n-1 cut vertices cos according as $1 \le \underline{i} \le 3$ or $4 \le \underline{i} \le 6$ and $G_{\gamma}(n,r)$ has r cut vertices. <u>Proof.</u> We prove the theorem by induction on n. The theorem is easily verified when n=4 using the list of digraphs on 4 vertices given in [9],[11]. So assume the result for n-1 and let G be an extremal graph on $n \geq 5$ vertices with r cut vertices. The graphs described in the statement of the theorem have A(n,r) ares where n is the number of vertices and r is the number of cut vertices. Thus G has at least A(n,r) ares. We now prove that G has at most A(n,r) ares and is one of the graphs described in the theorem. First lot r=n. Let x be a vertex of G. Then there exist vertices y and z such that (y, x) and (x, z) are ares of G, and every path in G from y to z passes through x. Let H be the graph obtained from G by adding the are (y, z) and dropping the vertex x. Since G is maximal, H is strong. Evidently any vertex of G other than x, y, z is a cut vertex of H also. If r(H) = n - 1, then consider the graph G' = G + (y,z). If G^* is a maximal graph containing G' with $R(G^*) = R(G')$, then by Lemma 2.1.4, the degree of x in G^* and hence in G is at most n-1. Now by induction hypothesis, H has at most $\binom{n-2}{2} + 3$ arcs. Thus G has at most $\binom{n-2}{2}+3+(n-1)-1=A(n,n)$ arcs. Now it also follows that H is an extremal graph and the degree of x in G is n-1. We consider the case $H=G_2(n-1)$, the other two cases can be disposed similarly. Now the only cut arcs of $G_2(n-1)$ arc (1, n-1) and (i+1, i) where $i \neq n-3$. Thus (y,z) is (1, n-1) or (i+1, i) with $i \neq n-3$. If i = n - 2, then x is not adjacent to any of the vertices 1, 2,..., n-3, for otherwise n-2 or n-1 will be a noncut vertex of G_n . This is a contradiction since the degree of x in G is n-1. The case i=n-4 is similar. If (y, z) is (1, n-1) or (i+1, i) with $1 \le i \le n-5$, then the symmetric path $[1, 2, \ldots, n-5]$ extends in length by unity with the vertex x. Thus $G = G_2(n)$. This proves that if r(H) = n-1, then $G = G_1(n)$ for some $i \le 3$. Now let $r(H) \le n-2$. Then we may take that y is a nencut vertex of H, for, the case z is a noncut vertex of H is similar. Evidently then $G - \{x, y\}$ is strong. If $d_G^{-}(x) \ge 2$, then y is a noncut vertex of G. If $d_G^{+}(y) \ge 2$, then there is a path in G from y to z and not using x. Thus $d^+(x) = d^+(y) = 1$. Now let G_0 be the graph obtained from G by amalgamating x and y. Let x_{o} denote the vertex of G_{0} obtained by amalgamating x and y of G_{\bullet} If any vertex u of G_0 other than x_0 is a noncut vertex of G_{0} , then u is a noncut vertex of G also (since (y, x) is the only are incident into x and is the only are incident out from y). This contradiction shows that $r(G_0) = n-2$. We now show that Go is maximal. If Go is not maximal, let the addition of an arc (a, b) not affect the cut vertices of G_0 . Then consider the graph G + (a,b), G + (a,y) or G + (x,b) according as $a \neq x_0$ and $b \neq x_0$, $b = x_0$ or $a = x_0$. This graph has the same cut vertices as G, a contradiction. Thus $G_{\rm O}$ is maximal and by Lemma 2.1.4, the degree of x_0 in G_0 is at most n-2. If now $d_{G_0}^-(x_0)=1$ and $d_{G_0}^+(x_0)=1$, then $G-\{x,y\}$ has at least n-4 cut vertices, hence by induction hypothesis, $G-\{x,y\}$ has at most $\binom{n-2}{2}+n-3$ arcs. Thus G has at most $\binom{n-2}{2}+n-3+4=\Lambda(n,n)$ arcs. It also follows that $G-\{x,y\}$ has exactly n-4 cut vertices and is extremal and $G=G_1(n)$. If $d_{G_{\circ}}(x_{\circ}) \geq 2$ or $d_{G_{\circ}}(x_{\circ}) \geq 2$, then $G_{\circ}(x,y)$ has at least n=3 cut vertices, hence by induction hypothesis, G- $\{x,y\}$ has at most $\binom{n-2}{2} + 1$ arcs. Thus G has at most $\binom{n-2}{2} + 1 + (n-2) + 2 = A(n,n)$ arcs. It also follows that $G - \{x,y\}$ has n-3 cut vertices and is extremal. To be specific, let $d_{G_0}^-(x_0) \ge 2$. If $G - \{x,y\}$ is $G_5(n-2)$, then it follows that $d_{G_{-}}^{+}(x_{0}) = 1$ and $(x, n-4) \in G$. If (n-2, y) 6 G, then n-3 is a noncut vertex of G. So (i,y)6G for $1 \le i \le n-3$. Thus $G = G_2(n)$. If $G - \{x,y\} = G_4(n-2)$, then again $d_{G_0}^+(x_0) = 1$ and $(x, n-2) \in G_0$. If $n \ge 6$, then $(i,y) \in G$ for some i with $2 \le i \le n-3$, hence 1 is a noncut vertex of G_{\bullet} Thus n = 5 and $G = G_{2}(5)$. The case G- $\{x,y\}$ = $G_6(n-2)$ is similar to the case $G-\{x,y\}$ = $d_5(n-2)$. Further when $d_{C_0}^+(x_0) \ge 2$ also the proof is similar. Thus we have proved that when r = n, $G = G_{\underline{i}}(n)$ for some Next let $r \le n-1$. Then G has a noneut vertex x. By Lemma 2.1.2, $r(G) \ge r(G-x) \ge r(G) - 2$. Thus we have three cases. Case (i). r(G-x) = r(G). Then by Lemma 2.1.3, there are at most 2n-2-r arcs of G incident with x. By induction hypothesis, G-x has at most A(n-1, r) arcs. So G has at most A(n, r) arcs. It also follows that $r \le n-3$, G-x is extremal and the degree of x in G is 2n-2-r. By induction hypothesis, G-x is $G_{\gamma}(n-1, r)$. Now observe that i is a cut vertex of $G_{\gamma}(n-1, r)$ if and only if $2 \le i \le k$ or $k+n-r-2 \le i \le n-2$. Also if (x, i), (x,j) are symmetric arcs of G, then all vertices k with i < k < j are noncut vertices of G-x. Now since the degree of x in G is 2n-2-r, there are at least n-1-r symmetric arcs incident with x. If r=n-3, evidently there are exactly two symmetric arcs (x, i_0) and (x, i_0+1) incident with x and since G is extremal, $(j, x) \in G$ for $1 \le j \le i_0-1$ and $(x, j) \in G$ for $i_0+2 \le j \le n-1$. Thus $G=G_7(n,r)$. If $r \le n-4$, then there is no symmetric are (x,i) whenever i < k or i > k+n-r-2. Thus (x,i) is a symmetric are for $k \le i \le k+n-r-2$, $(i, x) \in G$ for $1 \le i \le k-1$, and $(x, i) \in G$ for $k+n-r-1 \le i \le n-1$. Thus $G = G_n(n,r)$. Then by induction hypothesis, G-x has at most A(n-1, r-1) arcs. By Lemma 2.1.2, we may take, without loss of generality, that $d^+(x) = 1$ and $(x,y) \in G$. So there are at most n arcs of G incident with x. If now $r \le n-2$, then G has at most
A(n,r) arcs. It also follows that the degree of x is n and G-x is extremal. So $G-x=G_{\gamma}(n-1, r-1)$ and evidently either y=n-1 or k=r < y. Thus $G=G_{\gamma}(n,r)$. If r = n-1, then by Lemma 2.1.4, the degree of x in G is at most n-1. By induction hypothesis, G-x has at most A(n-1, n-2) arcs. So G has at most A(n, n-1) arcs and G-x is extremal. If now $G-x = G_4(n-1)$, then the vertex 1 of G-x is a noneut vertex of G, a contradiction. If $G-x = G_5(n-1)$, then $(n-1, x) \not\in G$, hence $(i,x) \in G$ for $i \leq n-2$. Thus $G = G_5(n)$. If $G-x = G_6(n-1)$, then $(n-2, x) \not\in G$, hence $(i,x) \in G$ for all $i \neq n-2$. But then l is a noneut vertex of G, a contradiction. This completes the case (ii). Case (iii). r(G-x) = r(G)-2. Let y, ze R(G)-R(G-x). Then by induction hypothesis, G-x has at least A(n-1, r-2) arcs. Also G-x has at most A(n-1, r-2) arcs. Also by Lemma 2.1.2, $d^+(x) = d^-(x) = 1$. Since G has at least A(n, r) arcs, it follows that r=n-1 and G-x is extremal. Thus G-x is $G_{\gamma}(n-1, n-3)$ and $G=G_{\gamma}(n)$. This completes the proof of the theorem. Theorem 2.1.6. The maximum number of cut vertices in a strong graph with n vertices and m arcs is r = r(n, m) where $r(n, m) = \max \{q : m \leq A(n, q)\}$. Proof. By Theorem 2.1.5, it follows that the number of cut vertices in a graph with n vertices and m arcs is at most r(n, m). To show that the bound is the best possible, consider the following graph. Take a graph on n vertices with r = r(n, m) cut vertices and with $\Lambda(n,r)$ arcs. By Theorem 2.1.5, it has a Hamiltonian circuit and the deletion of $\Lambda(n, r) - m$ arcs not belonging to the Hamiltonian circuit gives the required graph. This completes the proof of the theorem. Now it is not difficult to prove that the range r, the number of cut vertices in a graph on n vertices with m ares is $$0 \le r \le r(n, m)$$ if $m \ge 2n$, $2n-m \le r \le r(n, m)$ if $n \le m \le 2n-1$ and $m \ne 2n-2$, $1 \le r \le r(n, m)$ if $m = 2n-2$. It may be remarked that if $r \le n-2$ then in each of the extremal graphs $G_7(n, r)$, the indegree and outdegree of every vertex is greater than 1. If r = n or n-1 then in each of the extremal graphs $G_1(n)$, $1 \le i \le 6$, there are vertices with indegree equal to 1 and there are vertices with outdegree equal to 1. In view of these remarks it would be interesting to know whether in any strong graph G in which the indegree and outdegree of every vertex is greater than one, there is a noncut vertex or not. If in addition the graph G has a Hamiltonian circuit then it is easy to see that it has a noncut vertex. ## 2.2 The number of cut vertices in a strong complete graph In [12], Korvin has asked for a proof of the fact that any strong complete graph on n > 3 vertices has at most n-2 cut vertices without using Camion's theorem. In this section we give a simple proof of the result using induction on n. The result is easily verified for n=4, so assume it for n-1 and let G be a strong complete graph with n vertices where $n \geq 5$. We may assume that G is a maximal graph, i.e., the addition of any arc to G converts some cut vertex into a noncut vertex. We consider two cases. Case (i). G has a noncut vertex x. Then by induction hypothesis, G-x has two noncut vertices y, z. Since $d_G^+(x) > 1$ or $d_G^-(x) > 1$, it follows that one of y, z is a noncut vertex of G. Thus G has at least two noncut vertices. Case (ii). All vertices of G are cut vertices. Let x be any vertex of G. Then there exist vertices y and z such that every path from y to z in G passes though x and (y,x), $(x,z) \in G$. Let $G_1 = G + (y,z)$. Since G is maximal, x is a noncut vertex of G. By induction hypothesis G₁-x has at least two noncut vertices. Evidently, y, z are noncut vertices of G₁-x and as in case (i) it follows that one of y, z is a noncut vertex of G, a contradiction. Thus case (ii) does not occur and the proof is complete. ### 2.3 The number of cut arcs in a strong directed graph In this section, by a maximal graph on n vertices with s cut arcs we mean a graph such that the addition of any arc decreases the number of cut arcs. An extremal graph is a graph with n vertices, s cut arcs and with the maximum number of arcs. It is convenient to note down the following facts which will be used repeatedly. If G is a strong graph and the addition of a new arc (x, y) converts some cut arc (u, v) into a noneut arc then (u, v) belongs to every path from x to y in G. Further in G, there are paths from u to x and y to v not including the arc (u, v). If G is a strong graph and the removal of a noncut arc (x, y) converts some noncut arc (u, v) into a cut arc, then (u, v) belongs to every path from x to y in G-(x, y) and (x, y) belongs to every path from u to v in G-(u, v). An arc (u, v) is a cut arc of G if and only if (v, u) is a cut arc of the converse of G. Lemma 2.3.1. If there are two arc disjoint paths from a vertex x to another vertex y in a maximal graph G, then (x, y) belongs to G. Proof. This lemma is an immediate consequence of the first observation made above. Lemma 2.3.2. If G is a maximal graph there is no circuit of length > 2 without chords. <u>Proof.</u> If possible let $C = [x_1, x_2, \dots, x_k, x_{k+1} = x_1]$ be a circuit without chords and $k \ge 3$. Then add the arc (x_2, x_1) . Since G is maximal this converts some cut are (u, v) of G into a noncut arc. Then $(u, v) \in C$ and there exist paths in G from U to x_2 and x_1 to v not using the arc (u, v). Hence by Lemma 2.3.1, C has a chord, a contradiction. Now we prove the following important lemma. Lemma 2.3.3. There exists an extremal graph containing a symmetric tree on n or n-1 vertices according as 42n-3 or 8=2n-3. Proof. We start with any extremal graph with n vertices and s cut arcs. If G does not contain a symmetric tree as stated in the lemma, we describe a procedure by which we can increase the maximum size of a symmetric tree contained in G. Let T be a maximal symmetric tree contained in G. Suppose there is a circuit containing exactly one vertex u of T. Then we can choose the circuit such that it has no chord incident with u. Let this circuit be $C = \{u, x_1, \dots, x_k, u\}$. First let there be a chain $\eta = [x_j, y_1, \dots, y_p, v]$ connecting some vertex of C and a vertex $v \neq u$ of T. If η is not a path, we may assume without loss of generality that $(y_{p-1}, y_p) \in G$ and $(v, y_p) \in G$. We call vertices like y_p distinguished vertices of η . Now consider a path μ from y_p to u. Let z be the first vertex on this path belonging to $V(C) \cup V(T)$. If $z \in V(C) - u$, then we have the path $(v, y_p) + \mu [y_p, z]$ instead of the chain η . If $z \in V(T) - u$, we have the chain η [x_j , y_p] + $\mu [y_p$, z] and this has fewer distinguished vertices than η . Proceeding further we see that we can take η to be a path from x_j to v. Then by Lemma 2.3.1, $(x_j, u) \in G$, hence j = k. Now add the new are (x_1, u) to G. If any cut are (x_i, x_{i+1}) , $1 \le i \le k-1$, converts into a noncut are, then $(u, x_{i+1}) \in G$, a contradiction. Also (x_k, u) is a noncut are of G, so the new graph has the same cut arcs as' G, a contradiction. vertex of T-u, then u is a cut vertex of the undirected graph H associated with G. Let L be the piece of H with respect to u containing the vertices of C. Then by Lemma 2.3.2, L contains a symmetric arc. Now turn the piece of L (in G) at u such that a symmetric arc becomes incident with u. Then the size of the tree T is increased. Thus we may take that there is no circuit containing exactly one vertex of the tree T. Let $\mu = [u_1, u_2, \dots, u_p]$ be the chain in T connecting the vertices u_1 and u_p of T and $\eta = [u_1, x_1, x_2, \dots, x_k, u_p]$ a path from u_1 to u_p with all intermediate vertices outside T. We can choose the paths μ and η such that the only arcs of the type (u_1, x_j) or (x_j, u_i) are (u_1, x_1) and (x_k, u_p) . How consider the graph $G_1 = G + (u_p, x_k)$. If some cut are of G belonging to μ becomes a noncut are in G_1 , we get a contradiction. If one of the arcs (x_i, x_{i+1}) , $1 \le i \le k-1$, is a cut are in G and a noncut arc in G_1 , then $(x_i, u_p) \in G$, a contradiction. Since G is extremal, it follows that (u_1, x_1) is a cut are of G and a noncut are of G_1 . Now let $k+1 = length of <math>\eta \ge 3$. Then $(x_k, x_l) \in G$. Now construct the graph G* from G by deleting the arc (u_1, x_1) and adding the arc (u_1, x_k) . Evidently G* is strong and (u, xk) is a cut are of G*. If some cut are (x, y) of G becomes a noncut are in G*, then $(x, y) = (x_i, x_{i+1})$ for some $i \le k-1$. Also then there is a path from x_i to u_1 , hence by Lemma 2.3.1, $(x_i, u_p) \in G$, a contradiction. Thus no cut arc of G becomes a noncut arc in G^* . Since $s(G^*) \ge s(G)$ and $m(G^*) = m(G)$, G^* is extremal. Next let a noncut arc (x, y) of G become a cut are in G^* . Then since $[u_1, x_k, x_1]$ is a path from u_1 to x_1 in $G + (u_1, x_k)$, it follows that $(x, y) = (x_k, x_1)$. Now construct the graph G** from G* by adding the new arc (up, xk). It can be seen that this does not convert any cut are of G^* belonging to μ to a noncut are in G^{**} . Also (u_1, x_k) is a noncut arc in G^{**} . Thus $$s(G) = s(G^*) - 1 = s(G^{**}).$$ This is a contradiction since $n(G^{**}) = n(G) + 1$. Thus $s(G^*) = s(G)$. In the graph G^* we have the path $[u_1, x_k, u_p]$ from u_1 to u_p . Thus we may choose the path n in G with length 2. Let then $\eta = [u_1, x_1, u_p]$. If now (u_1, x_1) is a noncut arc of G, then $G + (u_p, x_1)$ has the same cut arcs as G, a contradiction. Thus we may assume that (u_1, x_1) and (x_1, u_p) are cut arcs of G. If p-1 = the length of $\mu \geq 2$, add the new arc (u_p, x_1) and delete the arc (u_1, x_1) . This does
not change the number of cut arcs in the graph since $(u_1, u_p) \in G$. Thus the size of the tree can be increased when $p \geq 3$. So let p = 2. connecting x_1 and a vertex of T and with all intermediate vertices outside T, then as before it can be shown that there is a path with the same properties. This contradicts the assumption that (u_1, x_1) and (x_1, u_2) are cut arcs. Thus either $d^+(x_1) = d^-(x_1) = 1$ or x_1 is a cut vertex of the undirected graph H associated with G. In the latter case, a piece of H with respect to x_1 which does not include any vertex of T contains a symmetric are and this piece can be transferred (in G) to a vertex of T in such a way that the size of the tree increases. Thus we may take $d^+(x_1) = d^-(x_1) = 1$. If there is any path connecting two vertices of T with all intermediate vertices outside T, we first reduce its length to 2 and then make the indegree and the outdegree of the middle vertex unity. Thus we take that if x is any vertex outside T, then there are exactly two ares (u_1, x) and (x, u_2) incident with x and u_1, u_2 are adjacent in T. Let now q be the number of vertices outside T. Let J be the subgraph of G generated by the vertices of T. Then $$n(J) = n - q, \quad m(J) = m - 2q.$$ Also let $s(J) = s(G) - 2q + \beta$. Clearly $\beta \leq q$. Now consider an extremal graph J_1 on q+1 vertices with $2q-\beta$ cut arcs. Evidently such a graph exists and has at least 2q arcs unless $q=\beta=1$. Now attaching J_1 suitably to J_2 , we get a graph with the same number of cut arcs as G_2 and the size of the tree is increased. If $q = \beta = 1$ then let x be the vertex outside T and let (u_1, x) , $(x, u_2) \in G$. Since $\beta = 1$, (u_1, u_2) is a cut arc of J. If (u_2, u_1) is a noncut arc of J, then replace the arc (u_1, x) by (x, u_1) and add the new arc (u_2, x) . The resulting graph has the same number of cut arcs as G, thus G is not extremal. Thus (u_2, u_1) is a cut arc of J, then each of the vertices, u_1, u_2 is either a pendant vertex of T or a cut vertex of the undirected graph H associated with T. If J has an are (u, v) rat belonging to T, we may assume that u, v belong to that piece of H with respect to u_1 which does not contain u_2 . Then this piece can be turned around at u_1 (in G) such that the arc (u, v) becomes incident into u_1 . Then (u, u_2) is an arc of, and $\beta = 0$ for, the new graph. Thus we can increase the size of T unless q = 1 and T = J, i.e., s = 2n - 3. This completes the proof of the lemma. It is easy to deduce the following Corollary. The maximum number of cut arcs in a strong graph graph on n vertices is 2n-2. This result was proved earlier by Gupta [6]. Theorem 2.3.4. The maximum number of arcs in a strong digraph with n vertices and with s cut arcs is $$B(n, s) = \begin{cases} \binom{n-s-1}{2} + \binom{n}{2} + n - 1 & \text{if } 0 \le s \le n-1 \\ \binom{2n-s-1}{2} + s & \text{if } n \le s \le 2n-2. \end{cases}$$ <u>Proof.</u> If s = 2n-3, there is no graph with n vertices, s cut ares and with a spanning symmetric tree. Now by Lemma 2.3.3, there is an extremal graph, with n-l vertices generating a symmetric tree and with the indegree and outdegree of the n-th vertex being unity. Thus the theorem is proved when s = 2n - 3. So let $s \neq 2n - 3$. Then we prove the theorem by induction on n. The theorem is trivial for n = 2 and assume the result for n - 1. By Lemma 2.3.3, there is an extremal graph G with n vertices, s cut arcs and with a spanning symmetric tree T. Let (x, y) be a pendant edge of T and x a pendant vertex. We have four cases. Then $d^{+}(x) = d^{-}(x) = 1$. Also by induction hypothesis, G-x has at most B(n-1, s-2) arcs and so G has at most B(n-1, s-2) arcs. Case (ii) • (x, y) is a cut are of G and (y, x) is not a cut are of G. Then $d^+(x) = 1$. Also G-x has at least s-1 cut ares and so by induction hypothesis has at most B(n-1, s-1) ares. If $s \le n-1$, then there are at most n ares incident with x in G. If $s \ge n$, then there are at least s-n+1 edges (u, v) of T-x such that both (u, v) and (v, u) are cut ares of G. If now [x, ..., u, v] is a chain in T, then (v, x) G. Thus we see that if $s \ge n$, there are at most 2n-s-1 ares of G incident with x. Thus G has at most B(n, s) ares. Case (iii). (x, y) is a noncut are of G and (y, x) is a cut are of G. This is similar to case (ii). Case (iv). Both (x, y) and (y, x) are noneut ares of G. Then G-x has at least s cut ares and so has at most B(n-1, s) ares. Now let $[x, \ldots, u, v]$ be a chain of T. If (u, v) is a cut are of G, then $(x, v) \notin G$. If (v, u) is a cut are of G, then $(v, x) \notin G$. Thus there are at most 2n-s-2 ares of G incident with x. So G has at most $B(n-1, s) + 2n - s-2 \leq B(n, s)$ ares. To show that the bound B(n, s) is attained, consider the following graphs $H_{\underline{i}}(n, s)$ defined on vertices $1, 2, \dots, n$. In $H_1(n, s)$, (i, j) is an arc if either i < j or i = j+1 or $k \le j < i \le k+n-s-1$ where k is a fixed integer such that $1 \le k \le s+1$. Here s < n-2. In $H_2(n, s)$, (i, j) is an arc if either i < j or i = j + 1 and $i \neq k + 1$, k + 2 or i = k + 2 and j = k or i = k and j = k - 1 where k, k are fixed integers such that $1 \leq k \leq n - 2$ and $k + 1 \leq k \leq k \leq n - 2$. $H_3(n, s)$ is the graph obtained by attaching symmetric trees with a total of 2k arcs at some of the vertices of the following graph H_0 . H has vertices $1, 2, \ldots, n-k$ where $0 \le k \le s+1-n$ and $k \le n-3$ if s=2n-3. In H_1 , (i, j) is an arc if either $1 \le i < j \le 2n-s-1$ or $i=j+1 \le 2n-s-1$. Further for each i with $2n-s \le i \le n-k$, $d_H^+(i)=d_H^-(i)=1$ and if (i_1, i) , $(i, i_2) \in H_1$, then $1 \le i_1 < i_2 \le 2n-s-1$. Here $s \ge n-1$. This completes the proof of the theorem. It may be remarked that Theorem 2.3.4 can be proved without using Lemma 2.3.3 if it can be proved that there is an extremal graph on n vertices with a cut arcs and with a noncut vertex. Also if every extremal graph has a noncut vertex then it can be proved that $H_1(n, s)$, $H_2(n, s)$, $H_3(n, s)$ are the only extremal graphs. Corollary. Any strong graph G on n vertices with 2n - 2 cut arcs is a symmetric tree. Proof. By Theorem 2.3.4, G has at most 2n - 2 arcs, thus G is extremal. By Lemma 2.3.2, G has no circuit of length greater than 2 and so G is a symmetric tree. This was proved by Gupta [6]. Theorem 2.3.5. The maximum number of cut arcs in a strong digraph with n vertices with m arcs is s = s(n, n) where $$s(n, n) = \max \{q: q \leq n \leq B(n, q)\}.$$ Proof. By Theorem 2.3.4, the number of cut arcs in any graph with n vertices with m arcs is at most s(n, m). To show that the bound is the best possible, consider the following graph. If m < 2n - 2, consider a circuit on 2n - m vertices with an attached symmetric path of length m - m. If $m \ge 2n - 2$, take a graph with a spanning symmetric tree with n vertices, with s = s(n, m) cut arcs and with B(n, s) arcs and delete B(n, s) - m arcs not belonging to the spanning symmetric tree. This completes the proof of the theorem. How it is not difficult to prove that the range of s, the number of cut arcs in a digraph with n vertices with n arcs, is $$0 \le s \le s(n, m) \qquad \text{if} \quad m \ge 2n,$$ $$2n-m+1 \le s \le s(n, m) \qquad \text{if} \quad n+1 \le m \le 2n-1,$$ $$s = n$$ if $m = n$. PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso ## 2.4 Cut vertices in undirected graphs A vertex x of an undirected graph is called a cut vertex if G-x has more components than G. A connected graph is said to have the property P(n, r, d) if it has (exactly) n vertices, r cut vertices and degree of each vertex $\geq d$. Let f(n, r, d) be the maximum number of edges in a graph with property P(n, r, d), if one such exists and zero otherwise. An extremal graph is a graph with property P(n, r, d) and with f(n, r, d) edges. In this section we determine the value of f(n, r, d). If r = 0, then f(n, r, d) equals $\binom{n}{2}$ whenever n > d and zero otherwise. So we assume that r > 0. If x is a cut vertex of G, by removing a piece of G with respect to x we mean removing the edges and vertices of that piece excepting the vertex x itself. We observe the following simple facts. Let G be a graph with property P(n, r, d). By adding a new edge to a block of G we again get a graph with property P(n, r, d). If there are more than two blocks containing a cut vertex x of G then, by combining any two blocks containing x and completing it, we have another graph with property P(n,r,d) which has more edges than G. Thus in an extremal graph every block is complete and there are exactly two blocks containing any cut vertex x. Thus the block graph G* of an extremal graph G is a tree, where the block graph G* of a graph G is a graph whose vertex set is the set of all blocks of G, two blocks are joined in G* if and only if they have non-empty intersection in G [11]. Lemma 2.4.1. In an extremal graph G, there is no block of size p, with $3 \le p \le d-1$. Proof. The lemma is vacuously true if $d \le 3$. So let d > 3 and, if possible, let A generate a block of size p in G, $3 \le p \le d$ -1. Clearly, every vertex of A is a cut vertex of G. Suppose now, if possible, the degree of every vertex of A is $\ge d+1$ in G and x a vertex of A. Then, remove the edges incident at x in this block and join x to every vertex of a pendant block of G in the piece of G with respect to x not containing A. Since, a pendant block has at least d+1 vertices and $p \ge 3$, the resulting graph has the property P(n, r, d) and has more edges than G, a contradiction, which proves that some vertex x_1 (say) of A has degree d in G. Since, x_1 is a cut vertex of G, there are exactly d - p + 2 (≥ 3) vertices in the other block C_1 (say) containing x_1 . Now, if the degree of every
vertex in C_1 , other than x_1 , is $\geq d+1$ in G then, removing the edges incident at x in C and, as above, joining x to every vertex of a suitable pendant block, results in a graph with property P(n, r, d), since d-p+2 > 3, having more edges than G. Thus at least one of the vertices x_2 (say) of c_1 , other than x_1 , has degree d in G, x_2 is a cut vertex of G, and the size of the other block C_2 (say) containing x_2 is p. Proceeding as above, since the graph is finite, we finally get a cut vertex xk (say) of G such that one of the two blocks Ck-1, Ck containing \mathbf{x}_k has size p and the other d-p+2, the degree of every vertex of C_k , other than x_k , is \geq d+1 in G. Modification of the graph described above yields a graph with property P(n, r, d) having more edges than G, a contrad diction. This completes the proof of the lemma. Lemma 2.4.2. Let G be an extremal graph. Them the following statements are true. - (1) There is no chain $[\mathbf{B}_1, \mathbf{D}_2, \mathbf{D}_3]$ in the block graph G^* of G with $|V(\mathbf{D}_1)|$, $V(\mathbf{D}_3)| \ge \max\{2, d\}$ and $|\mathbf{D}_2| \ge 3$. - (2) There is at most one pair of **intersecting** blocks each of size provided $d \ge 3$. Proof. To prove (1), let if possible, $[D_1, D_2, D_3]$ be a chain satisfying (1). Further let $\{x_1\} = V(D_1)$ \mathbb{N} $V(D_2)$ and $\{x_2\} = V(D_2)$ \mathbb{N} $V(D_3)$. Clearly them x_1, x_2 are cut vertices of G. Then remove all edges in D_2 adjacent to x_1, x_2 except the edge (x_1, x_2) and join each vertex of $V(D_2) - \{x_1, x_2\}$ to every vertex of a suitable pendant black. Since $|D_2| \geq 3$, x_1, x_2 are cut vertices of the new graph as well. Further $x \neq x_1, x_2$ is a cut vertex of the new graph if and only if it is a cut vertex of G. Further, since $|V(D_1)|, |V(D_3)| \geq \max\{2, d\}$ the new graph has the property P(n, r, d) and has more edges than G, a contradiction. If d = 1, this proves that all but one pendant block are of size 2. To prove (2), let if possible, (C_1, C_2) , (C_3, C_4) be two distinct pairs of intersecting blocks such that $|V(C_1)| \geq \max\{2, d\}, 1 \leq i \leq 4$. If two of these four blocks coincide then, by (1), we get a contradiction. Thus these four blocks are distinct. Since G^* , the block graph of G, is a tree there is a unique chain μ , without loss of generality the we can assume that it is of form $[C_1, C_2, D_1, \dots, D_k, C_3, C_4]$ in G^* , where $k \geq 0$. If k = 0 or $|V(D_1)| \geq d$ (≥ 3 , by hypothesis), by (1), we get a contradiction. So $k \geq 1$ and $|V(D_1)| \le d-1$. Then, by Lemma 2.4.1, $|V(D_1)| = 2$. Since, minimum degree in $G \ge d$, $|V(D_2)| \ge d-1$ so, by Lemma 2.4.1, $|V(D_2)| \ge d$. Now suppress the edge of D_1 , amalgamate the two end vertices of this edge and using this edge separate C_1 and C_2 . Again we get an extremal graph H. Since, $|V(C_2)| \ge d$ and $|V(D_2)| \ge d$ in H, as above, $|V(D_3)| = 2$ and $|V(D_4)| \ge d$. Thus proceeding, as above, we finally get an extremal graph with property P(n, r, d) and a chain of three blocks each of size $\ge d$. This is a contradiction by (1), and this completes the proof of the lemma. Now we start with an extremal graph G and describe a procedure by which we can get an extremal graph H_0 having the following structure: H_0 consists of Λ complete graphs each of size d separated by $\Lambda - 1$ edges with $\Lambda (d-2) + 1$ of the $\Lambda (d-2) + 2$ terminal chains consisting of a cut edge and a complete graph on d+1 vertices at its end where Λ is given by the following relation $T = 2(d-1) \cdot \Lambda + 1 + 0$, $0 \le 0 \le 2d-3$, and the exceptional chain has G(0) vertices (not counting the vertex G(0) which this chain is attached to the rest of the graph), G(0) were G(0) cut vertices, where G(0) is attached to the rest of the graph), G(0) cut vertices, where G(0) is attached to the rest of the graph), G(0) cut vertices, where G(0) cut G(0) is of the structure described below provided G(0). If G(0) and is of the chain is the complete graph on \geq d vertices. Otherwise, the structure is as shown in the Figs. 1, 2 in which each $A_{\underline{i}}$, $1 \leq i \leq \left[\frac{\partial}{\partial}\right]$ is of size d+1 and $A_{[\frac{\partial}{\partial}]+1}$ has size \geq d+1. Fig. 1. 0 is even. Fig. 2. 0 is odd. Let G be an extremal graph with property P(n, r, d). If d=1 then, by Lemma 2.4.2, every block of G except possibly one, has size 2 and hence its structure looks like If d=2, again by Lemma 2.4.2, there are exactly two pendant 3 So start with an extremal graph G with property P(n,r,d), where $d \geq 3$. Let D_0 be a block of maximum size in G. Clearly, $|V(D_0)| \geq d+1$ and the size of any other block of $G \leq d+1$. If D_0 is not a pendant block of G then we get an extremal graph G_1 having D_0 as a pendant block as follows: Choose and fix a piece of G not containing D_0 with respect to a cut vertex \mathbf{x}_1 of G belonging to D_0 . Then, remove all the pieces of G not containing D_0 with respect to other cut vertices of G belonging to D_0 and join them chainwise at a pendant block of the fixed piece of G with respect to \mathbf{x}_1 . The new graph G_1 is an extremal graph with property P(n,r,d) having D_0 as a pendant block. Further, in G_1 every other block has size < d+1. In G,, if the number of nonpendant blocks of size d+1 is greater than one, we further modify G_{η} to get an extremal graph G2 which has exactly one nonpendant block of size \geq d+1. So, suppose that E_1 , E_2 are two nonpendant blocks each of size $\geq d+1$ in G_1 . Let $[E_1, F_1, F_2, \dots, F_k, E_2]$ be the unique chain in G_1^* connecting E_1 to E_2 . We consider only the case $k \ge 1$, for the other case is similar. Let then $\{x_1\} = V(E_1) \cap V(F_1) \text{ and } \{y_1\} = V(F_k) \cap V(E_2) \text{ and } \{y_1\} = V(F_k) \cap V(E_2)$ x_1, x_2, \dots, x_p be the cut vertices of G_1 belonging to E_1 . Further let D_{i-1} be the piece of G_1 not containing E_1 with respect to x_i , $2 \le i \le p$. Now at the first stage remove the piece $\mathbb{D}_{\!\!1}^{}$ and \mathbf{attach} it at some noncut vertex of $\mathbf{G}_{\mathbf{l}}$ belonging to $\mathbf{E}_{\mathbf{S}}$. At the j-th stage, j \leq p - 1, remove the piece D_{i} and attach it at some noncut vertex of G_{1} belonging to E_{2} at which D_{k} 's, $1 \le k \le j-1$, are not attached. If there is no noncut vertex available at some stage i_0 , $1 \le i_0 \le p-1$, we get a graph with property P(n, r, d) having more edges than G1 as follows: Choose a out vertex $y \neq y_1$ belonging to E_2 of the graph at the (i - 1)-th stage such that the other bleck containing dees not belong to the same piece of this graph with respect to y as D_0 . Then suppress the edges incident at y in the other block containing y and join y to every vertex of D_0 . Since $|V(E_2)| = d+1$ and $|V(D_0)|$ is maximum, the new graph has the property P(n, r, d) and has more edges than G_1 , a contradiction. This proves (repeating if necessary) that G_1 can be modified to get an extremal graph G_2 which has at most one nonpendant block of size d+1 and which has D_0 as a pendant block. Further, every pendant block $\neq D_0$ of G_2 has size equal to d+1. Thus we have two cases. Case (i). In G_2 , there is no nonpendant block of size d+1. Then G_2 , by Lerma 2.4.2, has at most one pair of intersecting blocks each of size \geq d. If there is no such pair take $H_0 = G_2 \cdot H_0$ has the structure described at the beginning of this reduction procedure by Lemmas 2.4.1 and 2.4.2 with the exceptional chain consisting of a cut edge and a complete graph on \geq d+1 vertices at its end. So assume that G_2 has a pair of intersecting blocks, G_1 , G_2 (say), each of size \geq d. Assume r (the number of cut vertices) is \geq 1. Now we consider two subcases, first in which one of them G_1 (say) is a pendant block of G_2 , and the second in which both of them are nenpendant blocks of Green In the first subcase, C_1 and D_0 (the pendant block of maximum size) can be interchanged in an obvious way and, by Lemmas 2.4.1, 2.4.2 and by hypothesis, the new graph has the required structure with the exceptional chain consisting of the complete graph D_0 . In the second subcase, by Lemma 2.4.2, $|V(C_1)| = |V(C_2)| = d$. Then these two blocks can be separated as shown in Fig. 3 and repeating this suitably, we get a graph having the required structure with the exceptional chain consisting of the complete graph D_0 . This completes the proof in case (i). Fig. 3. Case (ii). There is exactly one nonpendant block C (say) of size d+1 in G_2 . Then, by Lemma 2.4.2, there is at most one pair of intersecting blocks each of size $\geq d$. First suppose that there is no such pair of intersecting blocks. Let then x_1, x_2, \ldots, x_p be the cut vertices of G_2 belonging to C. Since C is a nonpendant block $p \geq 2$. Further $p \leq d-1$, for otherwise removing all the edges incident in C at some suitable x_i and joining x_i to every vertex of D_0 we have a graph with property P(n, r, d) having more edges than G_2 . Since there is no pair of intersecting blocks each of size $\geq d$, the other block containing x_i contains only one other vertex y_i (say), $1 \leq i \leq p$. Without less of generality we can assume that the piece of G_2 not containing C with respect to x_i is not the graph consisting of a cut edge and a complete graph at its end for $1 \leq i \leq p_1$ namely Fig. 4. Now we consider the case $p_1 \geq 2$ (the other case is similar). Let then z_i be the nearest end vertex from x_i of a farthest cut edge from x_i in the piece of G_2 containing y_i with respect to x_i , $1 \leq i \leq p_1$. Further let
D_i be the piece of G_2 not containing y_i with respect to z_i , $1 \leq i \leq p_1$. Obviously D_i is isomorphic to the graph of Fig. 4. Then remove the edges (x_i, y_i) , $1 \leq i \leq p_1$ and the pieces D_i , $2 \leq i \leq p_1$, from the graph G_2 ; add the edges (y_1, y_2) , (z_1,y_{i+1}) , $2 \le i \le p_1-1$, (z_p,x_{p_1}) , then arrange the pieces p_i , $2 \le i \le p_1$, and the pieces of g_2 not containing C with respect to the other cut vertices x_i , $p_1+1 \le i \le p$, in the form of a chain as shown in Fig. 5 and attach it at x_1 . Fig. 5. We can without loss of generality assume that $D_p = D_o$. Let H_o be the new graph thus obtained. Then H_o , by Lemmas 2.4.1, 2.4.2, has the required structure with the exceptional chain consisting of block C together with the chain described in Fig. 5 in which the number of cut vertices $\leq 2d-4$ (since $p \leq d-1$). Now assume that $G_{\mathfrak{D}}$ has a pair of intersecting blocks, C_1 , $C_{\mathfrak{D}}$ (say), each of size \geq d. Then, making the modifications as shown in Fig. 4, if necessary, we can take that one of them C_1 (say) is the block C. Now, as above, it can be proved that we can get an extremal graph with the required structure in which the exceptional chain consists of C together with the chain described in Fig. 6. Fig. 6. Here the exceptional chain has <2d-3 cut vertices. Thus always we can get an extremal graph with structure described at the beginning of the reduction procedure. Define Now counting the number of vertices, cut vertices and edges in Ho we have the following set of relations. $$r = 2(d-1) \cdot (+1+0), \quad 0 \le 0 \le 2d-3$$ (1) $$n = (d^2 - 2) \cdot (4 + d + 1 + 6(3))$$ (2) $$\varepsilon(\partial) \geq \begin{cases} \varepsilon_{\underline{1}}(\partial) & \text{if } \partial \text{ is even} \\ \varepsilon_{\underline{1}}(\partial-1) + 1 & \text{if } \partial \text{ is odd} \end{cases}$$ (3) Further by constructing the graph H we have the following Theorem 2.4.3. $$f(n,r,d) = \binom{d}{2} \cdot 1 + 1 + 2 \cdot +$$ provided $n,r,c(\delta)$ satisfy the relations (1) to (3) above and zero otherwise, where $$m(a) = \begin{cases} m_1(a) & \text{if } a \text{ is even} \\ m_1(a-1) + 1 & \text{if } a \text{ is odd.} \end{cases}$$ Now we are able to give a partial solution to a problem of Ramachandra Rao [19]. Let $\Lambda(n, m, d)$ be the maximum number of cut vertices in a connected graph on n vertices with m edges and with minimum degree $\geq d$. Then we have the following Theorem 2.4.4. $\Lambda(n, n, d) \leq r_0$ where $r_0 = \max \{r : r \le n, m \le f(n, r, d)\}$. Further the bound is the best possible whenever $f(n, r_0 + 1, d) \ne 0$. <u>Proof.</u> Clearly $A(n, m, d) \leq r_0$. To show that the bound is attained whenever $f(n, r_0 + 1, d) \neq 0$, consider the graph H_0 with property $P(n, r_0, d)$. Now it is easy to check that we can remove edges, one by one, from the exceptional chain and the block of size $\geq d+2$ (exists since $f(n, r_0 + 1, d) \neq 0$) of H_0 to get a graph with $f(n, r_0 + 1, d) - 1$ edges and with property $P(n, r_0, d)$ such that at each stage we have a graph with property $P(n, r_0, d)$. Thus the bound is the best possible and this completes the proof of the theorem. ## 2.5 Cut edges in undirected graphs A connected graph is said to have the property Q(n, s, d) if it has exactly n vertices, s cut edges and minimum degree $\geq d$. Let g(n, s, d) be the maximum number of edges in a graph with property Q(n, s, d) if such a graph exists and zero otherwise. An extremal graph is a graph with property Q(n, s, d) and with g(n, s, d) edges. Clearly, if s = 0 then $g(n, s, d) = \binom{n}{2}$ whenever $n \geq d$ and zero otherwise. So we assume that s > 0. If x is a cut vertex of G, by removing a piece of G with respect to x we mean removing the edges and vertices of that piece excepting the vertex x itself. The following facts can be easily proved. In an extremal graph G every block is complete and there is at most one block of size ≥ 3 containing a fixed cut vertex. Now we prove the non-existence of blocks of certain sizes in an extremal graph by proving the following Lerma 2.5.1. In an extremal graph G there is no block of size p, $3 \le p \le d$. Proof. Let, if possible, $A = \{x_1, x_2, \dots, x_p\}$, $3 \le p \le d$, generate a block in G. Then construct a new graph H from G by shrinking A to a vertex, x_1 (say), and completing a pendant block of G by adding the vertices of $A - \{x_1\}$ to that block. Clearly, H has no multiple edges and has n vertices. Since $p \ge 3$, no edge of the block A is a cut edge of G so H has the same number of cut edges as G. Further, since $p(d-p+1) \ge d$ and a pendant block has at least d+1 vertices, it follows that the minimum degree in H is also $\ge d$. Thus H has the property Q(n, s, d) and m(H) > m(G), a contradiction. This completes the proof of the lemma. Lemma 2.5.2. Let $1 \le s \le d-1$. Then $$g(n, s, d) = \begin{cases} s + s(\frac{d+1}{2}) + (\frac{n-s(d+1)}{2}) & \text{if } n \ge (s+1)(d+1), \\ 0 & \text{otherwise.} \end{cases}$$ Proof. Let G be an extremal graph in which $s \le d-1$. Since $s \le d-1$, there is exactly one block A_x (say) of size ≥ 3 containing a cut vertex x, by the observation made at the beginning of this section. Now, by Lemma 2.5.1, $|V(A_x)| \ge d+1$. Then arrange the blocks of G in the form a chain in which blocks of size \geq d+l are separated by cut edges of G. Now in the new extremal graph every block of size \geq 3, except possibly one, has size equal to d+l. Counting the number of vertices and edges in this graph we have $n \geq (s+1)(d+1)$ and $g(n,s,d) \leq s+s(\frac{d+1}{2})+(\frac{n-s(d+1)}{2})$. To show that the bound is attained, construct a graph G on n vertices as follows. Partition the n vertices into s+l sets A_1 , $1 \le i \le s+l$ such that $|A_1| = d+l$, $1 \le i \le s$ and $|A_{s+1}| \ge d+l$. This is possible whenever $n \ge (s+l)(d+l)$. Take complete graphs on A_1 's and arrange them in the form of a chain where A_1 's are separated by cut edges. This completes the proof of the lemma. Lemma 2.5.3. If $s \ge d$, then in any extremal graph G there is a cut vertex x such that every block containing x is of size equal to 2. <u>Proof.</u> Suppose in some extremal G there is no cut vertex with the property stated in the lemma. Then, by Lemma 2.5.1, there is exactly one block of size \geq d+1 containing any fixed cut vertex. Choose and fix a cut vertex x_0 of G and collect all the cut edges of G to the vertex x_0 as follows. Let (u, v) be a cut edge of G with u, $v \neq x_0$. Without loss of generality assume that the piece of G with respect to u containing v does not contain x_0 . Remove this piece and attach it at x_0 . The new graph H thus obtained is also an extremal graph. Thus, repeating if necessary, collect all the cut edges at x_0 . Since $s \geq d$, the degree of x_0 in the new extremal graph is $\geq 2d+1$. Now remove the piece of G with respect to x_0 which contains the block C (say) of size $\geq d+1$ containing x_0 , and attach it at a pendant block B by joining every vertex of C - $\{x_0\}$ to those of B. We thus get another graph with property Q(n, s, d). Further, since a pendant block has at least d+1 vertices, this graph has more edges than G, a contradiction and this completes the proof of the lemma. Now we proceed to find the value of g(n, s, d). We start with an extremal graph G and describe a procedure by which we can get another extremal graph H in which all the cut edges form a tree T on s+l vertices, the degree of every nonpendant vortex of T, except possibly one, is equal to max { 2, d } and the degree of the exceptional vertex lies between d and 2d-2. Further H consists of complete graphs on d+l vertices attached at all but one pendant vertex of the tree T and a complete graph on $\geq d+1$ vertices attached at the exceptional pendant vertex of T, whenever $d \geq 2$. So we start with an extremal graph G in which s \geq d. First we modify G to get an extremal graph in which every block of size \geq 3 is a pendant block. Suppose, in G there is a nonpendant block C (say) of size \geq 3. Since s \geq d, by Lemma 2.5.5, there is a cut vertex \mathbf{x}_0 of G such that every block of G containing \mathbf{x}_0 is of size 2. Then, remove all the pieces of G with respect to cut vertices of G in C, except the piece containing \mathbf{x}_0 , and attach them at \mathbf{x}_0 . The new extremal graph thus obtained has less number of nonpendant blocks of size \geq 3 than G. Thus, repeating if necessary, we can get an extremal graph in which every block of size \geq 3 is a pendant block of G. Thus we may and de assume that in G itself every block of size ≥ 3 is a pendant block. Clearly then the s cut edges of G form a tree T (say) on s+l vertices. Choose and fix a nonpendant vertex x_0 of the tree T. If some vertex $y \neq x_0$ of the tree T has degree $\geq d+l$ in T, remove all but d pieces of G with respect to y not containing x_0 and attach them at x_0 . Let H be the new extremal graph thus obtained. In H also every block of size ≥ 3 is a pendant block. If now the degree of x_0 in H is greater than 2d-2, remove all but d pieces of H with respect to x_0 and attach them at a pendant vertex y_0 (say) of the tree formed by the cut edges of H. Then remove the piece of H with respect to y_0 containing the block of size ≥ 3 at y_0 , add it to a pendant block of H and complete it. The new graph has the property Q(n, s, d) and has more edges than G, a contradiction. Thus, in H the degree of $x_0 \leq 2d-2$. Further, since H is extremal every pendant block of H, except possibly one, has size d+l and thus H has the structure described above. Let now p be the number of pendant vertices in the tree T formed by the s cut edges of H.
Then, if d > 1, $$p = (s+1) - \left[\frac{s-1}{d-1} \right] \text{ and }$$ $$n \ge dp + s + 1 = (d+1)(s+1) - [\frac{s-1}{d-1}]d.$$ If d = 1, p = 2 and $n \ge s+1$. Now counting the number of edges in H we have $$m(H) = g(n,s,d) \le s + (p-1)(\frac{d+1}{2}) + (\frac{n-s-d(p-1)}{2}),$$ whenever $n \ge (d+1)(s+1) - [\frac{s-1}{d-1}]d$ and d > 1, $g(n, s, d) \le s + (\frac{n-s}{2})$ whenever $n \ge s+1$ and d = 1 g(n, s, d) = 0 otherwise. To show that the bound is attained, construct a graph G vertices as follows. If d=1, take a chain on vertices and attach at one of its ends a complete graph on n-s-1 vertices. So let d>1 and $n\geq (d+1)(s+1)-[\frac{s-1}{d-1}]d$. A nonpendant vertex x of a tree T is called a next vertex if every vertex, except possibly one, adjacent to it is a pendant vertex in T. Let V = {1,2,..., n}. Construct a tree T on $A = \{1, 2, \dots, n\}$ in which degree of every nonpendant vertex, except possibly one next vertex, is d and the degree of the exceptional vertex is between d and 2d-2. x1, x2, ..., xp be the pendant vertices of T where $p = (s+1) - [\frac{s-1}{d-1}]$. Partition V - A into p sets A_1 , $1 \le i \le p$, with $|A_i| = d$ for $1 \le i \le p-1$, and $|A_p| \ge d$. Since $n \ge (d+1)(s+1) - [\frac{s-1}{d-1}]d$, such a partition is possible. Now take complete graphs on A, and join x, to every vertex of $A_{\underline{i}}$, $1 \leq \underline{i} \leq p$. Let G be the resulting graph. Then has n vertices, s cut edges, minimum degree \geq d and s + (p-1)($\frac{d+1}{2}$) + ($\frac{n-s-d(p-1)}{2}$) edges. We nodify the structure of G to get another extremal graph G_1 (which will be used in the proof of Theorem 2.5.4.). Let x_0 be the next vertex of the tree T. Suppose degree of $x_0 > d$ in G. Remove all but d pieces of G with respect to x_0 not containing the vertex of degree > 1 adjacent to x_0 (if any) and arrange them in the form of a chain where blocks of size ≥ 3 are separated by cut edges and attach this chain at a pendant block of G. Thus we have the following Theorem 2.5.4. If s > d, then $$g(n,s,d) = \begin{cases} s + (s - \lfloor \frac{s-1}{d-1} \rfloor)(\frac{d+1}{2}) + (n-s-d(s-\lfloor \frac{s-1}{d-1} \rfloor)) \\ \text{whenever } n \geq (d+1)(s+1) - \lfloor \frac{s-1}{d-1} \rfloor d \text{ and } d > 1 \\ s + (\frac{n-s}{2}) \text{ if } n \geq s+1 \text{ and } d = 1 \\ 0 \text{ otherwise.} \end{cases}$$ Now we give a partial solution to a problem of Ramachandra Rao [19]. Let B(n, m, d) be the maximum number of cut edges in a graph on n vertices, m edges having minimum degree > d. Theorem 2.5.5. B(n, m, d) $\leq s_0$, where $s_0 = \max \{ s : s \le n-1, n \le g(n, s, d) \}$ Further the bound is the best possible whenever $g(n, s_0 + 1, d) \neq 0$, or $s_0 \leq d - 1$ and $m \geq \frac{nd}{2} + 1$ if d is even, or $s_0 \leq d - 1$ and $n \geq (s_0 + 1)(d + 1) + 2$. <u>Proof.</u> It is evident that $B(n, m, d) \leq s_0$. We prove the equality in the case $g(n, s_0 + 1, d) \neq 0$ and $s_0 \geq d$. Let G_1 be the extremal graph with property $Q(n, s_0, d)$ described above. Then it is easy to check that we can remove edges, one by one, from the exceptional chain (if any) and the block of size $\geq d + 2$ (exists since $g(n, s_0 + 1, d) \neq 0$) of G_1 until we get a graph with $g(n, s_0 + 1, d) - 1$ edges such that at each stage we have a graph with property $Q(n, s_0, d)$. Thus the equality holds in this case. Similarly the equality can be proved in the other cases and this completes the proof of the theorem. ## CHAPTER 3 ## ON THE POWERS OF A TREE The concept of the square of a graph is due to Ross and Harary who introduced it in [23] and obtained a criterion for a graph to be the square of a tree. Mukhopadhyay obtainod necessary and sufficient conditions for a graph to be the square of some graph. The n-th power of a graph was defined by Harary, Karp and Tutte in [10] and they obtained a criterion for the planarity of the n-th power of a graph. In this chapter we obtain necessary and sufficient conditions for a graph to be the cube of a tree, the fourth power of a tree. In Section 1 we obtain necessary conditions for a graph to the cube of a tree and prove that determines the tree T uniquely, up to isomorphism. Section 2 we give a criterion for a graph to be the cube of a tree and an algorithm to determine the tree cube root of a graph. In Section 3 necessary conditions for a graph to be the 2k-th power of a tree are obtained which generalise some of the results of Ross and Harary [23]. Using these results, in Section 4, we obtain necessary and sufficient conditions for a graph to be the fourth power of a tree. We give an algorithm to determine all the tree fourth roots of a graph. Finally graphs with a unique tree fourth root are characterised. The algorithms afore mentioned utilise a result of Harary and Ross [8] for determining all the cliques in a given graph. Let k be a positive integer. The k-th power of a graph, denoted by G^k , has the same set of vertices as G, and the vertices x and y $(x \neq y)$ are adjacent in G^k if and only if they are joined in G by a chain of length less than or equal to k. If A is a subset of V(G), then G[A] denotes the subgraph of G spanned by A. A set A of vertices is complete if G[A] is the complete graph. A clique of G is a maximal complete set of vertices of G. Let $G_k(G)$ be the set of all cliques of G with at least 2k+1 vertices. Let L(G) be the set of all cliques with at least four vertices of G. Let $\eta(G)$ be the class of all complete sets of vertices A of G with at least three vertices such that $A = A_1 \cap A_2$, where $A_1 \in L(G)$ and $G[A_1 \cup A_2 - A]$ is disconnected. Let $M_1(G)$ be the set of all vertices of G which belong to exactly one perber of $\eta(G)$ and $M_2(G)$ the set of all vertices of G which belong to at least two distinct members of η (G). Let T be a tree and S(k, T) be the set of all vertices x of T such that there are two vertices y, z at distance k from x in T and belonging to different pieces of T with respect to x. Let $N(x, k, T) = \{y: d_T(x, y) \le k\}$, $d_G(x, y)$ denotes the distance from x to y in the graph G. ### 3.1 The cube of a tree Throughout this section we assume that $G = T^3$ where T is a tree with at least four vertices. Also let N(x, T) = N(x, 1, T), and S(T) = S(2, T). In this section we find necessary conditions for G to be the cube of a tree. Further we prove that T^3 determines T uniquely up to isomorphism. Lemma 3.1.1. G is complete if and only if S(T) is empty. Proof. We observe that G is complete if and only if diameter of $T \leq 3$, that is, if and only if S(T) is empty. In what follows we assume that $\ensuremath{\mathtt{G}}$ is not the complete graph. PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso - Lemma 3.1.2. AcL(G) if and only if there is a vertex x in S(T) such that - i) N(x, T) is a proper subset of A, - ii) A N(x, T) is the set of all vertices at distance two from x and belonging to a fixed piece of T with respect to x_{\bullet} <u>Proof.</u> Let A be a set of vertices and x, a vertex in S(T) satisfying conditions (i) and (ii) of the lemma. Then by (i), $|A| \ge 4$ and by (ii), A is a clique of G. Thus As L(G). Conversely, let AC L (G). Then if y, z are vertices in A, the maximality of A implies that every vertex in the unique chain joining y and z in T is also in A. Therefore T[A] is a tree. Since G is not complete, diameter of T[A] is three. Let $[x_0, x_1, x_2, x_3]$ be a diameteral chain of T[A]. It is evident that one of the vertices x_1, x_2, x_3 belongs to S(T). Since G[A] is complete, every vertex of A is adjacent to x_1 or x_2 in T. Now the maximality of A implies that $N(x_1, T) \subseteq A$, i = 1, 2. Thus taking $x = x_1$, conditions (i) and (ii) of the lemma are satisfied and this completes the proof of the theorem. $\frac{\textbf{Corollary 3.1.3.}}{\Lambda_2 \in L \text{ (G)}} \quad \text{then there exists}$ $\Lambda_2 \in L \text{ (G)} \quad \text{such that } \Lambda_1 \cap \Lambda_2 \in \pi \text{ (G).}$ <u>Proof.</u> Let x_1 be a vertex corresponding to A_1 given by Lemma 3.1.2. Since $x_1 \in S(T)$, there is a chain $[x_1, y, u]$ in T such that $u \not\in A_1$. To complete the proof take $A_2 = N(x_1, T)$ U N(y, T). Theorem 3.1.4. At η (G) if and only if there is a vertex x in S(T) such that A = N(x, T). Also then A determines x uniquely. Proof. Let $\Lambda \in \eta(G)$. By definition, $|\Lambda| \geq 3$ and there are sets of vertices Λ_1 , Λ_2 such that $\Lambda = \Lambda_1$ Ω Λ_2 where $\Lambda_1 \neq \Lambda_2$ and $\Lambda_i \in L$ G, i = 1,2. Let \mathbf{x}_i be a vertex of S(T) corresponding to Λ_i given by Lemma 3.1.2. If $\mathbf{x}_1 = \mathbf{x}_2$, then $\Lambda = \mathbb{N}(\mathbf{x}_1, T)$. If $\mathbf{d}_T(\mathbf{x}_1, \mathbf{x}_2) = 1$, since $|\Lambda| \geq 3$, Λ is either $\mathbb{N}(\mathbf{x}_1, T)$ or $\mathbb{N}(\mathbf{x}_2, T)$. If $\mathbf{d}_T(\mathbf{x}_1, \mathbf{x}_2) = 2$ and if \mathbf{x} is the middle vertex in the unique chain in T joining $\mathbf{x}_1, \mathbf{x}_2$, then $\Lambda = \mathbb{N}(\mathbf{x}, T)$. If $\mathbf{d}_T(\mathbf{x}_1, \mathbf{x}_2) \geq 3$, then $|\Lambda| \leq 2$, a contradiction. Thus there exists a vertex \mathbf{x} in S(T) such that $\Lambda = \mathbb{N}(\mathbf{x}, T)$. The uniqueness of \mathbf{x} is trivial. Conversely, let x be in S(T) and $\Lambda = N(x, T)$. Let x_1, x_2 be vertices at distance two from x in T and belonging to different pieces of T with respect to x. Define $D_{\underline{i}}$ to be the set of all vertices y such that $d_{\underline{T}}(x, y) = 2$ and y belongs to the same piece of T with respect to x as $x_{\underline{i}}$, i = 1,2. Let $A_{\underline{i}} = N(x, T) \cup D_{\underline{i}}$. Then $A = A_{\underline{l}} \cap A_{\underline{l}}$ and, by
Lemma 3.1.2, $A_{\underline{i}} \in L$ (G), $\underline{l} = 1,2$. Thus $A \in \eta$ (G) and this completes the proof of the theorem. Lemma 3.1.5. If $|\eta(G)| \ge 2$, then $M_2(G) = S(T)$. <u>Proof.</u> If x_1 , x_k are vertices in S(T) and $[x_1, x_2, \ldots, x_k]$ is the unique chain in T connecting x_1 to x_k , then there exist vertices $y \neq x_2$ and $z \neq z_{k-1}$ such that (x_1, y) and (x_k, z) are edges in T, hence $x_i \in S(T)$ for every i, $2 \leq i \leq k-1$. Thus T[S(T)] is a tree. Now the result follows easily from Lemma 3.1.4. Lemma 3.1.6. Every pair of adjacent vertices of G is contained in a member of L (G) and G is connected. <u>Proof.</u> If x, y are any two vertices connected by a chain of length at most three in T, then two other vertices, z, u exist such that x, y, z, u form a complete set of vertices in G. Now the lemma follows from the definitions of L (G) and T^3 . Before proving the uniqueness of the tree T, we prove the following Lemma 3.1.7. Let T be a tree such that $|S(T)| \ge 3$. Let $S_*(T) = U \{ N(b, T) : b \in S(T) \}$. - (1) Two vertices a, b in S(T) are adjacent in T if and only if there exist A, B in $\eta(G)$ such that $A \cap B = \{a, b\}$. - (2) Let as $S_*(T) S(T)$ and be S(T) then a, b are adjacent in T if and only if the following conditions (i) and (ii) are satisfied. - i) There exists e in η (G) containing both a and b, and there is no B in η (G) such that a, b $\not\in$ B and both a and b are joined in T^3 to all vertices of B, - ii) If a set Be. $\eta(G)$ contains b then as B or a is joined in G to every vertex of B. - (3) No two vertices of $S_*(T) S(T)$ are adjacent in T_* - <u>Proof.</u> Statements (1) and (3) and the only if part of (2) are easily proved. To prove the if part of (2) let conditions 2(i) and 2(ii) be satisfied. Then by condition 2(i), $d_T(a, b) \leq 2$. Now if possible let [a, c, b] be a path of length two in T. Since a \mathcal{E} $\mathcal{E}_*(T)$ \mathcal{E} (T), if follows that ce S(T). By 2(i), b is the only vertex of S(T) adjacent to c in T. Further, by 2(ii), c is the only vertex of S(T) adjacent to b in T. Thus |S(T)| = 2, a contradiction which shows that a, b are adjacent in T. This completes the proof of the lemma. The following theorem proves the uniqueness of the tree cube root of G. Theorem 3.1.8. Let T be a tree such that $|S(T)| \ge 1$. Then T^3 determines T uniquely, up to isomorphism. Proof. The theorem can be easily proved when |S(T)| is one or two. So we assume that $|S(T)| \geq 3$. Let $S_*(T) = M_1(T^3)$ U $M_2(T^3)$. By Lemma $S_*(T)$, $T[S_*(T)]$ is uniquely determined by T^3 . Let now be S(T), y_1 ,..., y_k be the vertices of $S_*(T) - S(T)$ adjacent to b in T and d_i be the number of pendant vertices of T adjacent to y_i in T, $1 \leq i \leq k$. Then the nonzero numbers among d_1 ,..., d_k are the sizes of the components of $T^3[D]$ which are disjoint with $S_*(T)$, where D is the set of all vertices outside N(b, T) which are adjacent in T^3 to every vertex of N(b, T). Thus T^3 determines T uniquely up to isomorphism. This completes the proof of the theorem. ### 3.2 Characterisation and algorithm In this section we give a characterisation of the cube of a tree and an algorithm for determining the tree cube root of a graph when it exists. Let G be the complete graph on n vertices. Then G is the cube of any tree whose set of vertices is V(G) and whose diameter is \(\leq 3 \). The number of non-isomorphic tree cube roots of G is equal to Theorem 3.2.1. Let G be a graph such that η (G) has exactly one element A(say). Then G is the cube of a tree if and only if the following conditions are satisfied. - (1) Every vertex of V(G) A is joined to all vertices of A. - (2) Every connected component of G[V(G) A] is complete and their number is $\leq |A| 1$. <u>Proof.</u> The proof is easy and is omitted. Further it can be proved that G determines T uniquely up to isomorphism. The following theorem gives a criterion for a graph to be the cube of a tree. Theorem 3.2.2. Let G be such that $| n(G) | \ge 2$. Then G is the cube of a tree if and only if G satisfies the following conditions. - (1) G is connected and every pair of adjacent vertices of G belongs to a member of L(G). - (2) If $L_1 \in L(G)$, there exists $L_2 \in L(G)$ such that $L_1 \cap L_2 \in \eta$ (G). - (3) a) Any two distinct members of η (G) intersect in at most two vertices. - b) If G* is the graph whose vertices are the members of η (G), two vertices Λ_1, Λ_2 of G* being joined by an edge if $|\Lambda_1 \cap \Lambda_2| = 2$, then G* is a tree. - c) If $\Lambda_1, \Lambda_2 \in \eta(G)$ and $|\Lambda_1 \cap \Lambda_2| = 1$, then $d_{G*}(\Lambda_1, \Lambda_2) = 2$. - d) If $\Lambda_1,\dots,\Lambda_k$ are all the vertices of G* adjacent to some vertex A of G*, then Λ_i f Λ_j contains exactly one vertex b and this vertex is independent of i and j, i \neq j, i \leq i \leq j \leq k. We will write then $\Lambda = \Lambda_b$. If G* is not an edge and if A is a terminal vertex of G* adjacent to Λ_b , then we will write $\Lambda = \Lambda_c$ where A_b \cap $\Lambda = \{b, c\}$. If G* has exactly two vertices Λ_l and A_2 and A_1 A_2 = {a, b}, then write A_1 = A_a and A_2 = A_b . - (4) Let ${\tt D}_b$ denote the set of all vertices of G outside ${\tt A}_b$ which are joined in G to every vertex of ${\tt A}_b {\tt \cdot}$ Then - (a) If $d \in A_b \cap M_2(G)$ and $d \neq b$, then $A_d \{b, d\}$ is a component of $G[D_b]$. If a component F of $G[D_b]$ intersects $M_1(G) \cup M_2(G)$ then there is a vertex d in $M_2(G) \cap A_b$ such that $d \neq b$ and $F = A_d \{b, d\}$. - (b) If p_b denotes the number of components of $G[D_b]$, then $p(b) \leq |A_b| 1$. - (c) If a vertex belongs to D_b and D_c with $b \neq c$ then it belongs to some member of $\eta(G)$. Proof. First let G be the cube of a tree T. Then condition (1) follows from Lemma 3.1.6, condition (2) from Corollary 3.1.3, and condition 3(a) from Theorem 3.1.4. Conditions 3(b), 3(c) and 3(d) follow from Theorem 5.1.4 and the fact that G* is isomorphic to T[S(T)] and T[S(T)] is a tree. To prove conditions 4(a) and 4(b) observe that D_b is the set of all vertices which are at distance two from b in T and belonging to the same piece of T with respect to b. To prove 4(c), let $x \in D_b$ $\cap D_c$. Then since T[S(T)] is a tree, some vertex y of S(T) is adjacent in T to x and $x \in A_y$. To prove sufficiency, let, G be a graph satisfying conditions (1) to (4) of the theorem. Then we construct a tree T with V(T) = V(G) and prove that $T^3 = G$. First we observe that Λ_b <---> b is a one-one correspondance between members of η (G) and elements of M_2 (G) such that - i) be Ab, - ii) if $\Lambda_{\rm b}$ and $\Lambda_{\rm c}$ intersect in two vertices, then $\Lambda_{\rm b}$ $\Lambda_{\rm c}$ = {b, c }, - iii) if b, c $\in M_{\mathfrak{L}}(G)$ and b $\in \Lambda_{\mathbf{c}}$ then c $\in \Lambda_{\mathbf{b}}$. - (i) and (ii) follow from condition 3(d). (iii) follows from conditions 3(e) and 3(d). - Step 1. Find all the cliques of G, a method for which is given in [8]. Then determine the class η (G). - Step 2. Construct a graph on the vertices of $M_2(G)$ as follows. Join two vertices b and c if and only if Λ_b and Λ_c intersect in two vertices. The resulting graph T_1 is a tree by condition 3(b). - Step 3. Join each of the vertices of $M_1(G)$ Λ Λ_b to b. Let the resulting tree be T_2 . The vertices of T_2 are the elements of $M_1(G) \cup M_2(G)$. Step 4. Let D_1, D_2, \ldots , be the connected components of $G[D_b]$ which are disjoint with the vertices of T_2 . Then join all vertices of D_j to some vertex y in $M_1(G)$ Ω A_b , the vertices y being different for different components D_j . This is possible by conditions A(a) and A(b). If a vertex belongs to D_b and D_c , then it belongs to T_2 by condition A(c); thus the resulting graph T is a tree. By (1) and (2), every vertex of G belongs either to $M_1(G)$. U $M_2(G)$ or to D_b for some D_b . Hence D_b . Suppose now b $\in M_2(G)$ and E is a component of D_b . If $[x_1, x_2, x_3]$ is a chain in E and (x_1, x_3) is not an edge in G, then A_b U $\{x_1, x_2\}$ and A_b U $\{x_2, x_3\}$ are contained in two members of L (G) whose intersection contains A_b U $\{x_2\}$. This is a contradiction to 3(a). Thus E is complete. Let b be an end vertex of T_1 . Since $A_b \in \eta$ (G), $G[D_b]$ has at least two components E_1 , E_2 . By 4(a), at least one of E_1 , E_2 is disjoint with $M_1(G) \cup M_2(G)$. Thus by our construction there exists a vertex of $V(T) - V(T_2)$ at distance two from b in T. Hence every end vertex of T_1 and so every vertex of T_1 belongs to S(T). By construction there is no other vertex in S(T), thus $S(T) = M_2(G)$. It can be easily verified that $A_b = N(b, T)$ for all $b \in S(T)$. Let now $L_1 \in L(G)$. Then by (2) there exists $L_2 \in L(G)$ such that $L_1 \cap L_2 \in \eta(G)$. Let $\Lambda_b = L_1 \cap L_2$. Evidently $L_1 - A_b \subseteq D_b$. Let E be a component of $G[D_b]$ containing L1 - Ab. Then E is complete in G. If possible, let $x \in V(E) - (L_1 - \Lambda_b)$. Then $L_1 \cup \{x\}$ is complete in G, a contradiction since $L_1 \in L(G)$. Thus $V(E) = L_1 - \Lambda_b$. If V(E)is disjoint with the vertices of T_2 , then by construction and by Lemma 3.1.2, $L_1 = (A_b \cup V(E)) \in L(T^3)$. If V(E)intersects M₁(G) U M₂(G), then by 4(a) and Lemma 3.1.2, $L_{\underline{I}} = (\Lambda_b \cup V(E)) \in L(T^3)$. Conversely, let $L_{\underline{I}} \in L(T^3)$. Then by Lemma 3.1.2 and condition 4(a) it follows that $L_1 \in L(G)$. Thus $L(G) = L(T^3)$. By condition (1) and Lemma 3.1.7, it follows now that $G = T^3$. This completes the proof of
the theorem. ## 3.3 The even powers of a tree In this section we obtain some necessary conditions for a graph G to be the 2k-th power of a tree where k is a positive integer. So let k be a fixed positive integer and let $G = T^{2k}$ where T is a tree. Lemma 3.3.1. G is complete if and only if $|S(k, T)| \le 1$. <u>Proof.</u> G is complete if and only if diameter of $T \leq 2k$, that is, if and only if $|S(k, T)| \leq 1$. In what follows we assume that G is not a complete graph. Lemma 3.3.2. T[S(k, T)] is a tree. <u>Proof.</u> If two vertices belong to S(k, T) then every vertex in the unique chain joining them in T also belongs to S(k, T). Hence T[S(k, T)] is a tree. Now we proceed to prove our main theorem of this section. Theorem 3.3.3. If $A \in C_k(G)$, then there is a unique x in S(k, T) such that A = N(x, k, T). Conversely, if x is in S(k, T), then N(x, k, T) belongs to $C_k(G)$. Proof. Let A be in $C_k(G)$. Since A is maximal, every vertex in the unique chain in T joining any two vertices of A also belongs to A. Hence T[A] is a tree. Clearly, diameter of $T[A] \leq 2k$. If possible, let the diameter of T[A] be less than 2k. Since G is not the complete graph there exists a vertex x in V(G) - A adjacent in T to some vertex of A. Now AU $\{x\}$ is complete in G, a contradiction. Thus diameter of T[A] equals 2k. Let then x be the unique centre of T[A]. Clearly x belongs to S(k,T) and A = N(x,k,T). The uniqueness of x is evident. Conversely, let x be in S(k,T) and A=N(x,k,T). Clearly, $|A|\geq 2k+1$, and distance in T between any two vertices of $A\leq 2k$. Hence A is complete in G. Let x_1, x_2 be vertices at distance k from x in T and belonging to different pieces of T with respect to x. Now if y is a vertex outside A then $d_T(x_1,y)>2k$ for at least one i=1 or 2. So in G no vertex outside A is joined to all vertices of A. Hence G[A] is a maximal complete subgraph of G. Thus $A\in C_k(G)$ and this completes the proof. Lemma 3.3.4. Two vertices x_1 , x_2 of S(k, T) are adjacent in T if and only if the only members of $C_k(G)$ containing $N(x_1, k, T)$ Ω $N(x_2, k, T)$ are $N(x_1, k, T)$, i = 1,2 and $|N(x_1, k, T)$ Ω $N(x_2, k, T)$ $| \geq 2k$. <u>Proof.</u> This lemma follows from Lemma 3.3.2 and Theorem 3.3.3. Remark. If k = 1, then two vertices x_1 , x_2 of S(k, T) are adjacent in T if and only if $|N(x_1, 1, T) \cap N(x_2, 1, T)| = 2$. This was obtained earlier by Ross and Harary [23]. Lemma 3.3.5. Every pair of adjacent vertices of G belongs to a member of $C_k(G)$. Proof. Let (x_1, x_2) be an edge of G. By definition of $G = T^{2k}$, $d_T(x_1, x_2) \le 2k$. Let μ be the unique chain in T joining x_1 to x_2 . If there is a vertex y of S(k, T) on μ then there also exists z of S(k, T) on μ such that $d_T(x_1, z) \le k$, i = 1, 2 and x_1, x_2 belong to N(z, k, T) which by Theorem 3.3.3 is a member of $C_k(G)$. Thus the theorem will be proved in this case so assume that no vertex of μ belongs to S(k, T). Define $\partial_{1} = \min \{ d_{T}(x_{1}, z) : z \in S(k, T) \}, i = 1,2.$ By Lemma 3.3.1, S(k, T) is nonempty so ∂_i is well defined and $\partial_i \leq k$. Choose $z_i \in S(k, T)$ such that $d_T(x_i, z_i) = \partial_i$, i = 1, 2. We now prove that $z_1 = z_2$. Let ξ be the first vertex at which the chain in T joining z_1 to x_1 meets μ . Since $\xi \notin S(k, T)$, by Lemma 3.3.2, z_1, z_2 belong to the same piece of T with respect to ξ . But then, by definition of ∂_i , $z_1 = z_2$. Since $\partial_i \leq k$, x_1, x_2 belong to $N(z_1, k, T)$ which belongs to $C_k(G)$ by Theorem 3.3.3 and this completes the proof of the lemma. Remark. It can be easily seen that the results proved in this section are generalisations of the lemmas and theorem of [23], by taking k = 1. ## 3.4 The fourth power of a tree In this section we give a criterion for a graph G to be the fourth power of a tree and an algorithm for determining a tree fourth root of G when it exists. Further we characterise all graphs with a unique tree fourth root. Clearly, if G is the complete graph then G is the fourth power of any tree T with V(T) = V(G) and whose diameter ≤ 4 . Theorem 3.4.1. If $|C_2(G)| = 2$, let A_1 , A_2 be the members of $C_2(G)$. Then G is the fourth power of a tree if and only if - (1) every pair of adjacent vertices of G is contained in A_1 or A_2 and G is connected, - (2) $\partial = |A_1 \cap A_2| \ge 4.$ Further, the tree fourth root of G is unique, up to isomorphism, if and only if $\delta=4$, or $\delta=5$ and |V(G)|=7. <u>Proof.</u> The necessity is easy to prove. To prove sufficiency, let G be a graph satisfying conditions (1) and (2) of the theorem. Construct a tree with V(T) = V(G) as follows. Join two vertices v_1 , v_2 belonging to $A_1 \cap A_2$ by an edge. Partition the remaining set of vertices of $A_1 \cap A_2$ into two sets B_1 , B_2 and join v_1 to each vertex of A_1 , i=1,2. Then join each vertex of $A_1 - A_1 \cap A_2$ to some vertex of B_1 , i=1,2. Now it can be easily shown that $T^4 = G$ and the above construction gives all the tree fourth roots of G. Now the second part follows easily. This completes the proof. Let now $|C_2(G)| \ge 3$ and Λ_i 's, $1 \le i \le p$, be the members of $C_2(G)$. Construct a graph G^* with $V(G^*) = \{ \Lambda_i, 1 \le i \le p \} \text{ as follows. } (\Lambda_i, \Lambda_j), i \ne j, \text{ is}$ an edge of G^* if and only if there is no Λ_k , $k \neq i$, j, containing Λ_i Ω Λ_j . Let U_i be the set of all vertices of G which belong to Λ_i and to no other member of $C_2(G)$, and $\alpha_i = |U_i|$. Further let $\underline{9}_i$ be the degree of Λ_i in G^* . Then we prove the following Theorem 3.4.2. G is the fourth power of a tree if and only if G satisfies the following conditions. - (1) G has no isolated vertices and every pair of adjacent vertices of G is contained in a member of $C_2(G)$. - (2) The number of edges in G^* is $|C_2(G)| 1$. - (3) If [A_i, A_i,..., A_i, A_i] is a chain in G* then each member of this chain contains A_i Ω A_i and (4) If A_i , A_j belong to $C_2(G)$, let $B(A_i) =$ the set of all chains in G^* of length four whose middle vertex is A_i . - $C(\Lambda_{\underline{i}})$ = the set of all chains in G* of length two whose middle vertex is $A_{\underline{i}}$. - $D(A_i, A_j)$ = the set of all chains in G* of length three whose second and third vertices are A_i , A_j respectively. Then the intersection of the first and last members of every element of $B(A_{\underline{i}})$ is the same. Similarly for $C(A_{\underline{i}})$ and $D(A_{\underline{i}}, A_{\underline{j}})$. <u>Proof.</u> To prove the necessity of conditions (1) to (4) of the theorem, let G be the fourth power of a tree T. Then (1) follows from Lemma 3.3.5. By Lemma 3.3.4, G* is isomorphic to T[S(2, T)] and condition (2) follows from Lemma 3.3.2. To prove (3) and (4) we observe, by Theorem 3.3.3, that the members of $C_2(G)$ are N(x, 2, T)'s with x in S(2, T). To prove sufficiency, Let G satisfy the conditions (1) to (4) of the theorem. Then we give an algorithm to construct a tree T such that $T^4 = G$. Step 1. Find all the cliques of G by the method described in [8]. Then, by condition (1), they are members of $C_2(G)$. Let $A_{\underline{i}}$, $1 \leq \underline{i} \leq p$, be the members of $C_2(G)$. Construct the graph G^* with the vertex set $\{\Lambda_i, 1 \leq i \leq p\}$. By conditions (2) and (3), G^* has no cycles and has p-1 edges, so G^* is a tree. Step 2. Labeling of G*. We label each vertex A_i of G* with a label v_i where v_i is a vertex belonging to A_i as follows. We consider three cases. Case (i). Diameter of G, $d(G^*) = 2$. Let $[\Lambda_i, \Lambda_j, \Lambda_k]$ be a chain of length 2 in G^* . Label all Λ_i 's, $1 \le i \le p$, with any p vertices in Λ_i $\cap \Lambda_k$. This is possible because by (3), $|\Lambda_i \cap \Lambda_k| \ge 9$, +1. case (ii). $\underline{d(G^*)} = 3$. Let $[A_i, A_j, A_k, A_k]$ be a chain of length 3 in G^* . Label A_j and A_k with distinct vertices of A_i $\cap A_k$. This is possible since $|A_i \cap A_k| = 2$ by condition (2). Label all vertices of G^* adjacent to A_j in G^* ($\neq A_k$) with distinct vertices in $(A_i \cap A_k) - (A_i \cap A_k)$ and all vertices adjacent to A_k in G^* ($\neq A_j$) with distinct vertices in $(A_i \cap A_k) - (A_i \cap A_k)$. Case (iii). $\underline{d(G^*)} > \underline{4}$. If $B(\Lambda_{\underline{i}})$ is nonempty for some i then, by (4) and (3) the intersection of the first and last members of any element of $B(\Lambda_{\underline{i}})$ contains exactly one vertex. Label $\Lambda_{\underline{i}}$ with this vertex. Repeat this for all $\Lambda_{\underline{i}}$'s for which $B(\Lambda_{\underline{i}})$ is nonempty. If now $9_{\underline{i}} \geq 2$ for some unlabeled vertex then there is a chain of length 3 with A_i as the second vertex, $[A_j, A_i, A_k, A_k]$ (say), such that $9_j = 1$ and A_k is labeled, for otherwise $d(G^*) \leq 3$. Label A_i with the vertex in $(A_j \cap A_k) - \{v_k\}$. Repeat this procedure for all unlabeled A_i 's for which $9_i \geq 2$. If now $9_i = 1$, then there is a chain of length 2 with A_i as the first vertex, $[A_i, A_j, A_k]$ (say), such that A_j is labeled. Then label all unlabeled vertices of G^* adjacent to A_j with distinct vertices in $A_i \cap A_k$ which are not used previously for labeling. Repeat this procedure as long as there are unlabeled vertices A_i for which $9_i = 1$. This is possible by (3) and this completes the labeling of G^* . Let G^* be the resulting graph thus obtained. Then By conditions (4), (3) and by the labeling procedure it can be shown that if $\Lambda_i \neq \Lambda_j$ then $v_i \neq v_j$. Let now $E_i = N(v_i, 1,
H)$. Step 3. If $9_{\underline{i}} = 1$, consider any vertex v_k at distance 2 from v_i in H, then by (3) and (4) $\Lambda_{\underline{i}} - \Lambda_{\underline{k}}$ is independent of such a selection of v_k and $|\Lambda_{\underline{i}} - \Lambda_{\underline{k}}| \geq \alpha_{\underline{i}} + 1.$ Join now $v_{\underline{i}}$ to every vertex of $(\Lambda_{\underline{i}} - \Lambda_{\underline{k}}) - U_{\underline{i}}.$ If $9_{\underline{i}} \geq 2$, consider any chain of length 2 with middle vertex v_i in H, $[v_j, v_i, v_k]$ (say). By (3) and (4) $\Lambda_j \cap \Lambda_k$ is independent of such a selection of the chain in H and $|\Lambda_j \cap \Lambda_k| > 9_i + 1$ if $\alpha_i > 0$. Join now v_i to every vertex of $(\Lambda_j \cap \Lambda_k) - E_i$. Step 4. Let $U_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,\alpha_i}\}$. Join $v_{i,j}$ to a vertex to which v_i is joined in step 3, $1 \le j \le \alpha_i$ and $1 \le i \le p$. Observe that if $\alpha_i > 0$, then v_i will be joined to a new vertex in step 3. This completes the construction. Let T be a resulting graph. T is a tree with V(T) = V(G). Using condition (4) it can be easily verified that $S(2, T) = \{v_i, 1 \le i \le p\}$. Further using conditions (4), (3) and the labeling procedure it can be proved that $N(v_i, 2, H)$ is a subset of A_i and no vertex in $A_i - N(v_i, 2, H)$ is used as a label in G^* . Then we can verify using steps 3 and 4 of the construction that $N(v_i, 2, T)$ is a subset of A_i . Next it can be shown that $A_i = N(v_i, 2, T)$. Hence, by Theorem 3.3.5, it follows that $C_2(T^4) = C_2(G)$. Then, by condition (1) and Lemma 3.3.5, it further follows that $T^4 = G$. This completes the proof of the theorem. Further the above construction gives all the tree fourth roots of G by Lemmas 3.3.2, 3.3.4 and steps 3, 4 of the construction. Now it is easy to prove the following theorem which characterises graphs with a unique tree fourth root. Theorem 3.4.3. Let G be a graph with a tree fourth root T. Let $S(2,T) = \{v_i, 1 \le i \le p\}$. Define β_i to be the number of vertices adjacent to v_i in T and not in S(2,T). Then T is unique, up to isomorphism, if and only if $\beta_i = 1$ whenever $\alpha_i \ge 2$. #### CHAPTER 4 #### ON A PROBLEM OF ORE ON MAXIMAL TREES A connected graph G is said to have the property P_0 (after Ore who posed the problem) if for every maximal tree (i.e., spanning tree) T of G there exists $a_T \in V(G)$ such that $d_T(a_T, x) = d_G(a_T, x)$ for every $x \in V(G)$, where $d_G(x_1, x_2)$ denotes the distance in G from x_1 to x_2 . The following problem was posed by Ore (see [15], page 103, Problem 4): Determine all graphs with property P_0 . In Section 1 we present a solution to the above mentioned problem in the finite case, i.e., if $|V(G)| < \infty$. #### 4.1 Two theorems The following theorem characterises all finite biconnected graphs with property P_{\odot} . Theorem 4.1.1. A finite biconnected graph G has the property P_0 if and only if it is a cycle (Type I) or a complete bipartite graph K(S, V(G) - S) with |S| = 2 and $|V(G) - S| \ge 2$ (Tupe II). <u>Proof.</u> It is easy to check that the biconnected graphs mentioned in the statement of the theorem have the property P_{0} . Conversely, let G be a finite biconnected graph with property P_0 and d(G) its diameter. If d(G) = 1, then G is a triangle hence of type I. So assume that $d(G) \ge 2$. We note the following facts. - (1) If T is a maximal tree of G then $d(T) \leq 2d(G)$ and further if d(T) = 2d(G) then a_T (given by the property P_O) is the unique centre of T. - (2) Every partial subgraph of G which is a tree can be extended to a maximal tree of G. Let x_0 , y_0 be vertices of G such that $d_G(x_0, y_0) = d(G)$. Since G is biconnected, by Menger's theorem, there is a elementary circuit μ containing x_0 , y_0 . Without loss of generality assume that $\mu = [x_0, x_1, \dots, x_t, x_0]$. Clearly length of μ , hitherto denoted by $L(\mu)$, is greater than or equal to 2d(G). We show that $L(\mu) \leq 2d(G) + 1$. Suppose not, then consider the partial subgraph $\mu[x_0, x_t]$ whose length $\geq 2d(G) + 1$ and which is a tree. By (2) and (1) we get a contradiction. Thus $L(\mu) \leq 2d(G) + 1$. We consider two cases. ## Case (i). $L(\mu) = 2d(G) + 1$. Let $A = \{x_0, x_1, \dots, x_t\}$, then we show that A = V(G). For otherwise, let y be a vertex of V(G) - A adjacent to some vertex of A, say x_i . Consider the partial subgraph $\xi = (y, x_i) + \mu[x_i, x_0] + \mu[x_0, x_{i-1}]$ which is a tree and whose diameter $\geq 2d(G) + 1$. By (2) and (1) we get a contradiction. Now we claim that $G = \mu$. Otherwise, let (x_i, x_j) be an edge of G, with j different from i-1, i+1. Consider the partial graph $T = \mu [x_{i+1}, x_j] + (x_j, x_i) + \mu [x_o, x_{i-1}]$. T is a maximal tree of G and d(T) = 2d(G). Since G has the property P_o , a_T is the unique centre of T by (2). But it can be easily shown that there is a vertex x in V(G) such that $d_T(a_T, x) > d_G(a_T, x)$, a contradiction. Thus $G(=\mu)$, is a cycle (Type I). Let as above $A = \{x_0, x_1, \dots, x_t\}$. Define $B_i = \{y: y \in V(G) - A \text{ and } y \text{ is adjacent to } x_i \text{ in } G\}$, for every i, $0 \le i \le t$. Further let B = U B_i . If B is empty it can be shown as in the proof of case (i) that $G = \mu$. So assume that B is nonempty. We show that B is an independent set in G. Let if possible x, y be vertices in B and (x, y) be an edge of G with $y(\mathbf{say})$ in B_i . Then consider the following partial subgraph g of G, $\xi = (x, y) + \mu \left[x_i, x_o\right] + \mu \left[x_o, x_{i_o-1}\right], \text{ which is a tree}$ $\xi = (x, y) + \mu [x_{i_0}, x_{o}] + \mu [x_{o}, x_{i_0-1}],$ which is a tree and whose length is 2d(G) + 1. Hence, by (2) and (1), this yields a contradiction. Thus B is an independent set of G. Further, if z is in B_i, (z, x_{i+1}) and (z, x_{i-1}) are not edges of G. Since B is an independent set and G is biconnected, z is joined in G to x_j for some j, $0 \le j \le t$, and $j \notin \{i-1, i+1\}$. Now we prove that d(G) = 2. If d(G) > 2, consider the partial subgraph ξ , $\xi = [x_{j+1}, x_{j+2}, \dots, x_{i}, z, x_{j}, x_{j-1}, \dots, x_{i+1}].$ Clearly length of $\xi=2d(G)$. So by (2) and (1), ξ can be extended to a maximal tree T and a_T is the unique centre of T. But it can be easily proved that there is a vertex $x\in V(G)$ such that $d_T(a_T, x)>d_G(a_T, x)$, a contradiction. Thus this proves d(G)=2, so $\mu=[x_0,x_1,x_2,x_3,x_0]$. Since B is nonempty, at least one of B_1 , $0 \le i \le 3$, is nonempty. Assume that B_0 is nonempty. Now if x is in $\mathring{V}(G)$ - A it belongs to B_0 and B_2 . Let $S = \{x_0, x_2\}$, then G = K(S, V(G) - S), the complete bipartite graph with $|V(G) - S| \ge 2$, hence of type II and this completes the proof of the theorem. Theorem 4.1.2. A finite connected graph with property P_0 on n vertices is a tree or consists of a subgraph H on n_0 ($3 \le n_0 \le n$) vertices of type I or type II to which trees with a total of $n-n_0$ edges are attached at some vertices of H_0 Proof. If G is a finite biconnected graph with property Po the present theorem follows from Theorem 4.1.1. So we can assume that G has a cut vertex x. Now it can be easily shown that at most one piece of G with respect to x is not a tree and each piece of G with respect to x has the property Po. Now again Theorem 4.1.2 follows from Theorem 4.1.1. Remark. Perhaps it is true that G = K(S, V(G) - S), the complete bipartite graph with |S| = 2, is the only biconnected graph with property P_O if |V(G)| is infinite. The results of this section appeared in [22]. #### CHAPTER 5 ## SOME EXTREMAL PROBLEMS CONCERNING RADIUS AND DIAMETER IN DIGRAPHS In [25]. Vizing found the maximum number of edges in an undirected graph on n vertices with radius r. In Section 5.1: we obtain the maximum number of ares in a directed graph (not necessarily strong) on n vertices with radius r and characterise the extremal graphs. Further, we obtain an expression for the maximum number of ares in a strong digraph on vertices with radius r for r < 3 and state a conjecture in the general case. In Section 5.2, we consider diameter critical digraphs that is digraphs whose diameter decreases by adding any new are to them, and characterise all diameter eritical k-connected digraphs and obtain an expression for the maximum number of ares in a k-connected digraph on n vertices with The analogous results in the undirected case were obtained by Ore [16]. In Section 5.3, we give a partial solution to the following problem of Murty [14]. For what values is it possible to orient the complete graph in such a way that the resulting tournament has diameter < 2 and the tournament obtained by repoving any k or fewer vertices has diameter < 2 ? # 5.1 Maximum number of arcs in a diagraph with given radius In [25], Vizing, V. G. found the maximum number of edges in an undirected graph with n vertices and radius r. In this section we determine the maximum number of arcs in a directed graph with n vertices and radius r. Further we obtain an expression for the maximum number of arcs in a strong directed graph with n vertices and radius \(\) 3 and state a conjecture for general r. Lemma 5.1.1. Let G be a directed graph with n vertices, radius r and with maximum number of arcs. If there is a vertex x_0 of G with $d_G^-(x_0) = 0$, then G has exactly $n(n-r) + \frac{(r+1)(r-2)}{2}$ arcs. Proof. Let $X = \{x_0\}$, $X_i = \{x: d(x_0, x) = i\}$, and $n_i = |X_i|, 1 \le i \le r$. Since $d_G^-(x_0) = 0$, x_0 is the unique centre of G and X_i 's, $1 \le i \le r$, are nonempty and T U $X_i = X$. Let now $x \in X_i$ and $y \in X_j$. Then since G is extremal (has maximum number of arcs), $(x, y) \in G$ if $i \ge j - 1 \ge 0$. Since G is extremal and $d_G^-(x_0) = 0$ it
follows that $r \ne 1$, and the lemma is trivial for r = 2, so let $r \ge 3$. If now X_i contains two vertices x, y, then the graph obtained from G by adding an are (z, y) joining a vertex z of X_{r-2} to y has radius r, a contradiction. Thus $n_r = 1$. If possible let $n_i \geq 2$, $n_j \geq 2$ with $|i-j| \geq 2$. Shifting a vertex from X_j to X_i increases the number of arcs by $0 = 2(n_{i-1} + n_i + n_{i+1}) - 2(n_{j-1} + n_j - 1 + n_{j+1})$ and the radius r is unaltered. Since $rac{1}{2}$ is extremal $0 \leq 0$. Now shifting a vertex from $rac{1}{2}$ to $rac{1}{2}$ increases the number of arcs by $rac{1}{2}$ and does not alter the radius, a contradiction which proves that $rac{1}{2}$ for all $rac{1}{2}$ except possibly for $rac{1}{2}$ and $rac{1}{2}$ for some $rac{1}{2}$ with $rac{1}{2}$ in except possibly for $rac{1}{2}$ and $rac{1}{2}$ for some $rac{1}{2}$ with $rac{1}{2}$ in except possibly for $rac{1}{2}$ and $rac{1}{2}$ for all $rac{1}{2}$ except possibly for $rac{1}{2}$ and $rac{1}{2}$ for arcs in the graph, the lemma is proved. It may be noted that in the proof of the above lemma we have actually determined all the extremal graphs. Lemma 5.1.2. An extremal graph G with n vertices and with radius $r \ge 3$, contains a vertex with indegree in G being equal to zero. Proof. First we observe that $m(G) \ge n(n-r) + \frac{(r+1)(r-2)}{2}$ as is seen from the proof of Lemma 5.1.1. Now let x_0 be a vertex of G with maximum outward degree in G and S be the set of all vertices not accessible from x_0 . Evidently $d_G^+(x_0) \geq n-r+1$. Since radius of G is r, S is nonempty. Let θ be the number of vertices in S. Now evidently there is no are from X - S to S. Let x_1 be a centre of G, then clearly $x_1 \in S$. Now remove from G all the vertices of S- x_1 and join x_1 to $y \in X$ - S if it is not already joined and if there is an are in G from S to y. If G* is the new graph thus obtained, the number of arcs in G* is at least $n(G) - (\theta - 1) - (\theta - 1)(n - \theta - 1)$, since the outdegree of x_1 is reduced by at most $\theta - 1$ and the outdegree in G of any vertex of S- x_1 is at most $n - \theta - 1$. Thus $n(G) \leq n(G^*) + (\theta - 1)(n - \theta)$. Now let the radius of G* be $r - \theta + \delta$, $\delta \geq 1$. Since $d^+(x_1) = 0$ in G*, it follows from Lemma 5.1.1 $$m(G^*) \leq (n - \theta + 1)(n - \theta + 1 - r + \theta - \delta) + \frac{(r - \theta + \delta + 1)(r - \theta + \delta - 2)}{2}.$$ Thus if $\theta > 1$, we will get a contradiction by showing that $$n(n-r) + \frac{(r+1)(r-2)}{2} > (n-\theta+1)(n-r-\theta+1) +$$ $$+ (\theta-1)(n-\theta) + \frac{(r-\theta+\theta+1)(r-\theta+\theta-2)}{2}.$$ Simplifying, this reduces to $$2n(a-1) + r(r+1) > (r+a-\theta-1)(r+a-\theta-2).$$ Since $n \ge r - \theta + \partial + 1 + (\theta - 1) = r + \partial$, it is enough to show that $$\partial(\partial + 1) > (2 - \Theta)(\Theta + 1)$$. This is true if $\theta \ge 2$, since $\theta \ge 1$. Thus we conclude that $\theta = 1$ and the lemma is proved. From Lemmas 5.1.1 and 5.1.2 we get the following Theorem 5.1.3. The maximum number of ares in a directed graph with n vertices with radius r is $n(n-r) + \frac{(r+1)(r-2)}{2}$. Further any extremal graph has a vertex with indegree zero and is of the form described in the proof of Lemma 5.1.1. This theorem also solves the problem of determining the maximum radius of a directed graph with n vertices with m arcs, the answer being $$n-1$$ if $m \leq {n \choose 2}$ $$\frac{2n+1-\sqrt{8n+9-4n(n-1)}}{2}$$] if $n > {n \choose 2}$. Now we consider the problem of determining the maximum number of arcs in a strong directed graph with n vertices and with radius r. The problem is trivial for r = 1, for r = 2 the answer is n(n-2). For r = 3 we have the following Theorem 5.1.4. The maximum number of arcs in a strongly connected directed graph with n vertices with radius 3 is n(n-4) + 4. Proof. Evidently the maximum number of arcs $\geq n(n-4) + 4$ as the following graph shows: In the above figure AU $\{2\}$ and AU $\{n-2\}$ are complete symmetric. Let now G be an extremal graph with n vertices and with radius 3. Let x_0 be a vertex with the maximum outdegree. Evidently $d_G^+(x_0) = n-3$. Let B be the set of all vertices b such that (x_0, b) and (b, x_0) are arcs, C be the set of all vertices c not in B such that (x_0, c) is an arc, and let k = |C|. Let y, z be the vertices not in $\{x_0, 0\}$ UBUC. If (b, y) is an arc for some $b \in B$, then every path from x_0 to z must pass through y (for otherwise the radius will be 2, x_0 being the centre). Hence (y, z) is an arc and the radius of G is 2, b being the centre. This contradiction shows that (b, y), (b, z) are not arcs for all $b \in B$. So let without loss of generality (c_0, y) , (y, z) be arcs for some $c_0 \in C$. Now we show that out of the possible n(n-1) arcs, at least 3n-4 are missing in G. Firstly there are no arcs from CU $\{y\}$ to x_0 , $X - \{y, z\} = \{x_0\}$ U BUC to z, and from BU $\{x_0\}$ to y. Thus (k+1) + (n-2) + (n-k-2) = 2n-3 arcs are missing in G. Further either (y, b) or an arc from b to some vertex of BUC - $\{b\}$ is missing in G for every be B. Thus n-k-3 more arcs are missing in G. Next either c to y or an arc from c to some vertex of BUC - $\{c\}$ is missing in G for every c \in C. Thus k more arcs are missing in G. Finally two arcs from z to $X - \{z\}$ are missing in G since $d^+(z) \le n-3$. Thus 3n-4 arcs are missing in G, hence $n(G) \le n^2 - 4n + 4$. This completes the proof of the theorem. For r > 4, we conjecture that f(n,r) = n(n-2r+2) + r(r-1) - 2 if $n \ge 2r$, and an extremal graph looks like ## 5.2. Diameter critical digraphs Call a strongly connected digraph k-connected if the graph obtained by removing any k-l or fewer vertices is strongly connected. Call a k-connected digraph G diameter critical if the addition of any new are decreases its diameter. Let h(n, k, d) be the maximum number of ares in a k-connected digraph on n vertices and with diameter d. A k-connected digraph with diameter d and with h(n,k,d) ares is called an extremal graph. Clearly an extremal graph G is a diameter critical digraph. In this section we determine the diameter critical digraphs and the value of h(n,k,d). The analogous results for undirected graphs were obtained by Ore [16]. Let x, y be vertices of a k-connected diameter critical digraph G with $d_G(x, y) = diameter$ of G = d. Let A_i be the set of all vertices at distance i from x and $n_i = |A_i|$, $0 \le i \le d$. Since G is k-connected, $n_i \ge k$ for every i, $1 \le i \le d - 1$. Further, since G is diameter critical, $A_i \cup A_{i+1}$ is complete symmetric in G. As in the proof of Lemma 5.1.1, it can be proved that $n_d = 1$ and if $x \in A_i$, $y \in A_j$ then (x, y) is an arc of G if i > j and (x, y) is not an are if i < j-1. Now if G is an extremal graph with diameter d as in the proof of Lemma 5.1.1 it can be shown that all $n_i = k$ except possibly for $i = i_0$, $i_0 + 1$ where i_0 is a fixed integer between 1 and d-2. Now the following two theorems can be proved easily. Theorem 5.2.1. A k-connected digraph G on n vertices and with diameter d > 1 exists if and only if $n \ge 2 + k(d-1)$ and is diameter critical if and only if the vertices of G can be partitioned into d+1 sets A_i , $0 \le i \le d$, such that $|A_0| = |A_d| = 1$ and $|A_i| \ge k$, $1 \le i \le d-1$, and if $x \in A_i$, $y \in A_j$ then (x, y) is an arc of G if and only if $i \ge j-1$. ≥ 2+k(d-1) Theorem 5.2.2. A k-connected digraph G on n otices with diameter d is extremal if and only if the vertices of G can be partitioned into d+l sets A_i , $0 \le i \le d$, such that $|A_0| = |A_d| = 1$ and $|A_i| = k$ for i except possibly i_0 , $i_0 + 1$ where i_0 is a fixed positive integer such that $1 \le i_0 \le d - 2$ and if $x \in A_i$, $y \in A_j$ then (x, y) is an arc of G if and only if $i \ge j - 1$. Further $$h(n,k,d) = \begin{cases} \binom{n}{2} + (d-2)\binom{k}{2} + \binom{n-(d-2)k-1}{2} + k(n-k-1) & \text{if } d > 1 \\ 2\binom{n}{2} & \text{if } d = 1 \end{cases}$$ ## 5.3. Orientation of the complete graph In his thesis [14], U. S. R. Murty asked the following question. For what values of n does there exist a D_V (n, 2, 2, s) where \overline{D}_V (n, k, \angle , s) denotes a tournament (an oriented complete graph) on n vertices with diameter \angle k such that the diameter of the tournament obtained by removing any s or fewer vertices is \angle \angle ? We obtain a partial solution to this problem. First we make some observations. With any tournament G we can associate its adjacency matrix N of order n whose (i, j)-th element is 1 or 0 according as there is an are in G from vertex i to vertex j or not. A tournament G on n vertices is a D_V (n, 2, 2, s) if and only if $$N_{\underline{i}*} N_{\underline{i}*} - N_{\underline{i}*} N_{\underline{j}*} \ge s+1$$ if $n_{\underline{i}\underline{j}} = 0$ where N_{i*} denotes the i-th row of N. Call a (0, 1)-matrix $A = ((a_{ij}))$ of order n skew symmetric if $a_{ij} = 0$ if and only if $a_{ji} = 1$ whenever $i \neq j$, $1 \leq i, j \leq n$. Lerma 5.3.1. N is the adjacency matrix of a regular D_V (4s+3,2,2,s) if and only if it is skew-symmetric and is the incidence matrix of a (4s+3,2s+1,s) - configuration. Proof. Suppose first that N is the adjacency matrix of G which is a regular D_V (4s+3, 2, 2, s). Then N is skew symmetric since G is a tournament. Also G is regular of degree 2s+1. Now consider $\sum_{j\neq i}^{4s+3} N_{j*} \cdot \sum_{j\neq i}^{n} N_{j*}$ Let now N be skew-symmetric and let N be the incidence matrix of a (4s+3, 2s+1, s) - configuration. Evidently then N is the adjacency matrix of a regular tournament G on 4s+3 vertices. The diameter of $6 \le 2$, since the number of paths of length 2 from vertex i to vertex j is $N_{i*} \cdot N_{i*} \cdot N_{i*} \cdot N_{j*} = s+1 > 0$
whenever $n_{ij} = 0$. It also follows that the tournament obtained by removing any s or fewer vertices from G has diameter ≤ 2 , completing the proof of the lemma. Let $\epsilon_{ij} = N_{i*} N_{i*}^{i} - N_{i*} N_{j*}^{i}$, $$s(G) = \min \{ e_{ij} : n_{ij} = 0 \} -1 \text{ and }$$ $$\varepsilon(G) = \min \left\{ \varepsilon_{ij} - 1 : n_{ij} = 1 \right\}$$ where N is the adjacency matrix of G. Further let $$\mathbf{H}_{\mathbf{l}} = \begin{pmatrix} \mathbf{N} & \mathbf{I} + \mathbf{N} \\ \mathbf{H} & \mathbf{N}^{\mathsf{T}} \end{pmatrix} , \quad \mathbf{H}_{\mathbf{2}} = \begin{pmatrix} \mathbf{N} & \mathbf{I} + \mathbf{N} & \overline{\mathbf{Q}} \\ \underline{\mathbf{H}} & \underline{\mathbf{N}}^{\mathsf{T}} & \underline{\mathbf{l}} \\ \underline{\mathbf{l}} & \overline{\mathbf{Q}} & \overline{\mathbf{Q}} \end{pmatrix}$$ and $$N_{3} = \begin{pmatrix} N & I + N & O & \frac{1}{2} \\ \frac{N}{2} & \frac{N'}{2} & \frac{1}{2} & O \\ \frac{O}{2} & \frac{1}{2} & 1 & O \end{pmatrix}$$ Then N_1 , N_2 and N_3 are the adjacency matrices of tournaments G_1 , G_2 and G_3 respectively, where (1) $$s(G_1) \ge \min \{ s(G) + \varepsilon(G) + 1, 2s(G) + 1, d^+(G), d^-(G) - 1 \}$$ (2) $$\varepsilon(G_1) \ge \min_{g \in G} \{s(G) + \varepsilon(G) + 1, 2\varepsilon(G) - 1, d^+(G), d^-(G) - 1\},$$ (3) $$s(G_2) \ge \min \{ s(G) + \varepsilon(G) + 1, 2s(G) + 1, d^+(G), d^-(G) \}$$ (4) $$\varepsilon(G_2) \ge \min \{ s(G) + \varepsilon(G) + 1, 2\varepsilon(G) - 1, d^+(G), d^-(G) \},$$ (5) $$s(G_3) \ge \min \{ s(G) + e(G) + 1, 2s(G) + 1, d^+(G) - 1, d^-(G) \}$$, (6) $$\varepsilon(G_3) \ge \min \{ s(G) + \varepsilon(G) + 1, 2\varepsilon(G) - 1, d^+(G), d^-(G) \},$$ <u>Proof.</u> It is evident that N_1 , N_2 and N_3 are the adjacency matrices of tournaments G_1 , G_2 and G_3 . We will now prove (2), the rest are proved similarly. Let us number the rows and the columns of G_2 as $1,2,\ldots,n;$ $1',2',\ldots,n'$ in that order. If $n_{ij}=1$, then $\varepsilon_{ij}(G_1)=2\varepsilon_{ij}(G)$. Also $\varepsilon_{ii},(G_1)=d_G^+(i)+1$. If $n_{ij}=1$, then $\varepsilon_{ij},(G_1)=d_G^+(i)+1$. If $n_{ij}=1$, then $\varepsilon_{ij},(G_1)=d_G^-(i)+1$. If $n_{ij}=1$, then $\varepsilon_{ij},(G_1)=\varepsilon_{ij}(G)+\varepsilon_{ij}(G)$ $\geq s(G)+1+\varepsilon(G)+1=s(G)+\varepsilon(G)+\varepsilon(G)+1$. This completes the proof of the lemma. Corollary. If $D_V(n, 2, 2, s)$ exists then $D_V(2n, 2, 2, s)$, $D_V(2n+1, 2,2,s+1)$ and $D_V(2n+2, 2,2,s)$ exist. If the minimum findegree in a $D_V(n, 2,2,s) \ge s+2$ then $D_V(2n, 2,2, s+1)$ exists. If the minimum outdegree in a $D_V(n, 2,2,s) \ge s+2$ then $D_V(2n, 2,2,s+1)$ exists. The following lemma can be easily proved. Lemma 5.3.3. If $D_V(n, 2, 2, s)$ exists, then $D_V(n-1, 2,2,s-1)$ exists. Let $S_i = \{ n: D_V(n, 2, 2, i) \text{ exists } \}, i \ge 0.$ Now we are able to prove the following Theorem 5.3.4. $D_V(n, 2, 2, 0)$ exists if and only if n = 3 or $n \ge 5$. $D_V(n, 2, 2, 1)$ exists if and only if n = 7 or $n \ge 9$. <u>Proof:</u> Evidently 3, 5 6 So as the following graphs show: $s = 0, \epsilon = 0$ Hence by Corollary to Lemma 5.3.2, we see that $\mathbf{10} \in S_1$, so $9 \in S_0$. Now applying the same Corollary we can prove that $5, 6, 7, 8, 9 \in S_0$, hence $\{n: n=3, \text{ or } n \geq 5\}$ $\subseteq S_0$. To prove equality it is enough to observe that $D_V(4,2,2,0)$ does not exist. It may be remarked that the set S was determined carlier by Murty [14] by an entirely different method. Now we show that $9 \in S_1$. For this consider the graph G defined as follows: G has vertices 1, 2,..., 9 and (i,j) is an arc if and only if i-j=1, 2, 4 or 6 (mod 9). G is a tournament since (i, j) is an arc if and only if j-i=8, 7, 5 or 3 (mod 9). Since G is regular of degree 4, it is enough to show that for any arc (i,j), \triangle $(i,j) \le 2$, where \triangle (i,j) is the number of vertices k such that both (i, k) and (j,k) are as of . G. For this we may take without loss of generality that i=1 and a simple verification gives the result. By using Corollary to Lemma 5.3.2, we can now show that $\{n: 9 \le n \le 17\} \subseteq S_1, \text{ hence}$ on 5, 6, 7, 8 must be a D_V (4, 2, 2, 0), a contradiction. Thus 8 $\not\in S_1$. A similar argument proves that 2, 3, 4, 5, 6 $\not\in S_1$. This completes the proof. Now let us consider the set So. Since there exists a perfect difference set namely the quadratic residues in the field of residues modulo 11, it follows that 116 S_{2} . To show that 136 S2, consider the graph with vertex set 1, 2, ..., 13, an are going from i to j if and only if i - je {1, 2, 3, 5, 6, 9} modulo 13. This is a tournament since (i, j) is an are if and only if $j-i \in \{12, 11, 10, 8, 7, 4\}$ modulo 13. Also the graph is regular of degree 6 and it can be easily verified that \triangle (i, j) ≤ 3 for all i \neq j, hence the graph is a D_V (13, 2, 2, 2) and 136 S_2 . Since 76 S_1 , by Corollary to Lemma 5.3.2, 14, 15, 166 S_2 . Since the D_V (9, 2, 2, 1) given in the proof of Theorem 5.3.4 is regular of degree 4 and has &=1, it follows by Lemma 5.3.2, that 1888 S3, hence 17, 18, 19, 20 \in S₂. Since 10, 11, 12 \in S₁, it follows that 21, 22, 23, 24, 25 \in S_2 . Hence we have $\{n: n = 11 \text{ or } n \ge 13\}$ \subseteq S_2 . We now show that if $G = D_V$ (12, 2, 2, 2) exists then G can not contain a transitive set of 5 vertices. For suppose that the vertices of G are numbered 1, 2,..., 12 such that 1, 2,..., 5 forms a transitive set and 1 -> 2 -> 3 -> 4 -> 5. Clearly, if x -> y in G then there are at least three vertex disjoint paths of length two from y to x. Thus without loss of generality we may take 5 -> 12 -> 4, 5 -> 11 -> 4, 5 -> 10 ->4 and $4 \rightarrow 9 \rightarrow 3$, $4 \rightarrow 8 \rightarrow 3$, $4 \rightarrow 7 \rightarrow 3$. Since $2 \rightarrow 3$ in G, at least three vertices of [6, 7, 8, 9] are joined to 2 G. Also, nee 2 -> 4 in G, at least two vertices of [10, 11, 12] are joined to 2 in G. Thus in all at least five vertices of $\{6, 7, \ldots, 12\}$ are joined to 2 in G. But $1 \Rightarrow 2$ in G and there do not exist three vertex disjoint paths of length two from 2 to 1, a contradiction. Thus G can not contain a transitive set on five vertices. We think that D_V (12, 2, 2, 2) does not exist. We conclude this thesis with a more general conjecture that $$S_k = \{ n; n = 4k + 3 \text{ or } n \ge 4k + 5 \}$$. ## REFERENCES - [1] L. W. Beineke and F. Harary (1965): Local restrictions for various classes of directed graphs, J. London Math. Soc., 40, 87-95. - [2] C. Berge (1962): The theory of graphs and its applications, Methuen and Co., London. - [3] V. Chvátal (1969): Planarity of graphs with given degrees of vertices, Nieuw. Arch. Wiskde. Neder., 17, 47-60. - [4] J. Edmonds (1964): Existence of k-edge connected ordinary graphs with prescribed degrees, J. Res. Nat. Bur. Stand., 68B, 73-74. - [5] P. Erdős and T. Gallai (1960): Grafok eloirt foku pontokkal, Mat. Lapok, 11, 264-274. - [6] R. P. Gupta (1967): On basis digraphs, J. Combinatorial Theory, 3, 16-24. - [7] S. L. Hakimi (1962): On the realizability of a set of integers as degrees of vertices of a linear graph, J. SIAM Appl. Math., 10, 496-506. - F. Harary and I. C. Ross (1957): A procedure for clique detection using the group matrix, Sociometry, 20, 205-215. - [9] F. Harary and Ed Palmer (1966): The groups of small digraphs, J. Indian Stat. Assoc., IV, 155-169. - [10] F. Harary, R. M. Karp and W. T. Tutte (1967): A criterion for the planarity of the square of a graph, J. Combinatorial Theory, 2, 395-405. - [11] F. Harary (1969): Graph Theory, Addition Wesley Publishing Company, Inc. - [12] G. Korvin (1966): Some combinatorial problems in Complete directed graphs, Theory of graphs, International Symposium Rome. - [13] A. Mukhopadhyay (1967): The square-root of a graph, J. Combinatorial Theory, 2, 290-295. - [14] U. S. R. Murty (1966): Extremal graph theoretic problems with applications, a thesis submitted to the Indian Statistical Institute. - [15] O. Ore (1962): Theory of graphs, Amer. Math. Soc. Colloquium publications, 38, Providence. - [16]. O. Ore (1968): Diameters in graphs, J. Combinatorial Theory, 5, 75-81. - [17] M. D. Plummer (1968): On minimal blocks, Trans. Amer. Math. Soc., 134, 85-94. - A. Ramachandra Rao (1968): An extremal problem in graph theory, Israel J. Math., 6, 261-266. - [19] A. Ramachandra Rao (1969): Some extremal problems and characterizations in the Theory of graphs, a thesis submitted to the Indian Statistical Institute. - [20] A. Ramachandra Rao and S. B. Rao (to appear): On factoral degree sequences, J. Combinatorial Theory. - [21] S. B. Rao and A. Ramachandra Rao (1970): Existence of triconnected graphs with prescribed degrees, Pacific J. Maths., 33, 203-207. - [22] S. B. Rao (1970): On a prolem of Ore on maximal trees, J. Australian Math. Soc., 11, 379-380. - [23] I. C. Ross and F. Harary (1960): The square of a tree, Bell Systems Tech. Journal, 39, 641-647. - [24] W. T. Tutte (editor) (1969): Recent Progress in Combinatorics, Academic Press, New York and London. - [25] V. G. Vizing (1967): On the number of edges in a graph with given radius (Russian), Dokl. Akad. Nauk. SSSR, 173, 1245-1246.