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INTRODUCT TON

'Fﬁféphéﬁhatﬁ'npwgbecqﬁe reqogﬁiéédimédélé‘fbr éTWidé
variety of sifuationSs Whenever we ﬁaﬁe aldéllectlon of
'obgects Wwith .a binary relationrdeflned on £hem granhs serve
as excellent tools %o study the combinatorlal properties of

Luthe collection with respect to the Elnary relatlon.- D. Konig
 was the first person to recoégi;e the usefulness of graph
theoretic -models. He conceived of a unified study of graphs
- under ép abstracf set up. His 5ooklwés a pibﬁééring work

‘The graph theoretic problémé‘embddied in this thesis
‘have been motivatgggby_situationé erising in communication
" networkse . In terms of grappé thésejéfoﬂlemé ask .for the
extremél structurss withﬁreaééiéﬁ;d*&iaﬁe%éf% and their
variations underﬁsuppression of vgrtices*énd'éages; The
motivafipn for the prggiéms and‘theif'épplications is
deferfed to the -Pehﬁltiﬁéte .éhapter.‘ This hag been found
reasonable, in any éase‘ﬁdéﬂ&iéordéfiy,ras the appropriate

combinatorisl problems in terms of graphs seem to be of
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great interest on their own. Perhaps we have thejﬁ

to study the extremal structures of graphs gsatisf

given proggrtv and rete%__gg,the same;prggerty after

portions of the graphs have been supnressed.

A1l the_graph theoretic prob}ems considereo hen
: roqod.the distancemetpio defined fofgrep?e. An aﬁ
_made in the last ohepter_to define a disfaooerbetwew

two columns of a (O lj;matrix; In 11gﬁt of thle 1t

AL

to be p0531ble to carry the anulovy from graphs to m#

|
_The contributions of this thesis have heen,diviﬂ

_ into_six chapters and an appendix. At the beglnnlngi
each chapter a detalled swinary of the results in th%
chapter is prOV1ded. Berge [ 1] has been followed th

. for notation and terminology. We glve below a summam

:Sthe ‘work done in various ohapters of the the51s.

In chapter I.the structures of the graphs with.jj
possible number of edges with prescribed diametral v

under suppression of vertices are stqdied.: It has bee
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proved that if the number of vertices of graph is suffici-
ently large compared to the sfiﬁﬁiﬁt@d number of suppressible
vertices and if the diameter should remain two throughout,
then the extremal graph will be an apprOpriats complete
bipartite graphe This is followed by the results concerning
the extremal structures when the diametér iz allowed to

vary from 2 to [ ( [ > 3) under the suppressién ;f a single
vertex. Several upper bounds'have been gi%én and some
conjectures have been made about the extremal.numbers that

have not been determined here,.

In chapter 2 problems similar té.tﬁose in chapter 1
are qonsidered with regard to edge suppréésion.' Here again
the most general result is when the diameter remains two
thrqughout. We prove that the extremal structures in this
case are obtained by completing one of the gets of the
extremal complete bipartite‘graﬁh of chapter 1. As in
chaptgr 1, structures for other diame£ra1 v%riations have

zlso been studied and some conjectures presenteds The dual
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aspects of problems of chapter 1 and problems of chaptd

are discussed in the appendix.

In chapter 3 structures of extremal graphs with pr
congidered in the earlier two chapters arc studied witﬁ
additional constraint of an upper bound on the deérees:
vertices. OSome impossible configuratioﬂs of number of:

number of suppressible vertices, maximun degree have bel

eatablished and some extremal structures presented,
-]
In chapter 4 the problems are considered for direc

graphs of two kinds, the one in which a pair of vertice

be joined by two oppositely oriented arcs and the other

" which at most one arc is allowed between any pair of ve
For thé étructures considered here, the extremai direc
gréphs of first kind are obtained by replacing an edge
two oppbsitely oriented arcs in the corrésponding.extre
unoriented graphs. In the case of directed graphstof o4
kind-some lower bounds for number of edges in-the extrel

.

graphs have been obtained and some further discussion al
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impossible configurations has been presented.

In chapter 5 the applications of the results iglthe
first four ohapters to problems in communication networks
are discusseds. The generalrproblem for the_weighted graphs
has been mentioned'and has been formuiated for a particular
éase as aPseuéo-Boolean Progrémming problem; Extremal
problemsfwith given proﬂabilities of breakdown haye also

been mentionede.

In the last chapter =z distance hetween .any two columns
of a (0, 1)~matrix has been défined. This generalizes the
distance metric from graﬁhé fo general (O, l);matrices.

In the light of this disténce, connectedness, diameter and
several other terms can be assigned appfépriate meaning in
terms of (O, 1)—matrices;‘ The ﬁecessaiy énd sufficgent
condition for the existence of a connected matrix in the
oless U(R, §) has been ésﬁablished. i ot ston for the
diameter to be finiteiy bc‘)un‘ded-for matrioés in U(VR, S)

has also been derived.
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Chapter I

ACCESSIBILITY AND ITS VERTEX ORDER

-

ntroduction and Sumary

Ve conslder unorienfed graphs witﬁbut'loops and mult
edges; Let G = (fa E) be such a graph; 'V denotes the:
of vertices and E denotes the set of edges;‘ If x and
be any two verticgslbelonging,to - Vs then d{xy ¥y), called
distance beﬁween x and yy is the length of the shortest

chain between x and y din Ge The diameter of the grapt

denoted by da(g) is defined as

a@q) = Max  A(xyy)
Xey e V .
1f the graph is disconnegted we say that the diéﬁéter is
infinite;. It is easy to observe that the diaﬁétar of‘a
subgréph need nqt be equal to the diameter‘ofithe originﬂ;
graph; The extremal graphs considered 1in thig chapter hév
the property that all their subgraphs with pféaésigned ord

»

have their diameters ranging over prescribed sets of intes
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A graph 1s called k-accessible 1f the diameter of

the graph < ke

-~ -

A keaccessible graph is sald to be ¥k to A
accessible ( A 2 k) of vertex order s if all the sub-
graphs obtained by suppressing any s or less number of

vertices are A ~aceessitlee

If ny k%9 L and s be positive integers such that
n>A k31 and n s 2 Oy then G denotes a graph
on ndvertices, Gy (ny %y As 8) denotes a X to A

" acuegsible graph of vertex order s on n—vertlcesg

It is the aim of this chapter to study the minimal
graphs in the class GV (ny Ky A s)hin the sense of number

of edgese

A greph with minimum possible number of edges within
the class Gy (ns ky £ s) 1s deroted by Min Gy (ng ky fy s)
and the minimunm possible number of edges is denoted by

My (ny ky £y s).
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In the next sgection we shéll make sone preliminary
obgervations and we shall prove the theorens concerning the
extreﬁai étructures in 8§ 3. Under theorem 1 iﬁ 83 we
prove that when n is sufficiently large comparéd to s

b,

then

My (s 2y 2y 8) = (s+1) (n~s-1)

and the WMin GV(n, 2y 248) are complete bipartite graphg
with s+1 vertices in one set and n=-s-1 vertices-in bhe

other set. Under theorem 2 we prove that if n > 5

Ay

My (1 25 £ 1) =2n -5

for all £ 2 3« We also describe the extremal structuresg.
We end up the chapter with a number of conjectures and
rerarks regarding the extremal cases that have not been

established heres

2s_Some Prelir Ty Observatior

1) My (g 1y £y ) = % and the only graph in the

class Gy (ny 1y Ay 8) is the complete graph on n verticess
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(2)  Mylny ¥y £y 0) = n-1 and Min Gy(ny Xy A 0) is some
appropriate treey for all k > 2.

(3) In a GV(n, ky Ay s) the degree of each vertex is
at least s+l; Further fhere are atlléast s+1 disjdﬁzt
chains of length at most A out-of which at least one is
of length £ ky between any two distinct non-adjaceﬁt
vertices; Note that we do not have any demand about the

number of chaing between adjacent pair:of vertices;

3; The Main Theorems

Before we state and prove the first theorem we shall
describe 2 class of graphs which plays an important role in
theorem 1; Ah(s) (n 2 2¢+2) denotes the class of complete
bipartite graphs on n-vertices with g+l vert;geg in one
set and neg-l vertices in the other set; 'Figufe_l repre-~

-

sents o member of Ag(2)
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=0

Figure l.

Any member of the class An(é) contains (s+1) (n-s-1)
edges and the class An(s) lg contained within the eclassg

Gv(n, 29 24 s)e Hence

My(ny 29 25 8) < (s+1) (n-s=1) when n > 2s+2. In
fact for n > sy we shall prove under theorem 1 that

An(s)' provide the structures for IMin Gy(ny 25 2y 5).

-
S

W shall now prove a lemma that we shall use for

the proof of theorem le

Lemma 1 2 If n> (2+ /8) s#2 then any Min Gy (n92y2y5)

will contain at least one vertex xs such that | [(x [= s+l
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Proof ¢ Consider any Min Gﬁ(h; 5;‘2,“3). If possible

! I'x A =n.2 S+1

where V 1s the set vertiges of the graphe

Consider any vertex x for which | x| =

and let Xs Xoy eedy X, be the vertlces adjacent to

Xs Bach of the remaining vertices would be'joined to

at least o+l of the vertices from among ~Xy9 Fpy eees Koo

( as there must be s+1 disjoint chains‘frpm egch
of the remaining n-m-l vertices to x,'each éf thege ghould
be joined to at least s+l verticeé 6f.vT:x Ythus accounting
for a total of (n-m-l) (s+l1) edges;i Aiédg since the degree
of each vertex is at léast my - there must at least be

m-s~1 more edges ihcfﬁénﬁ'with'each of these n-m~l vertices

end clearly the nunber of edges‘required for this

..-f'rk xiNngn R
«% - THE XY
TR (i \,\
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1

would be at least {a-m-1 )é (ms-1) « Hence a Min Gv(n,z,z,s
must contain at least 2 B P S =y
m o+ (nemel) {(s4L) + (el )Eﬁm-s-;) edges

ieCe m 4+ (n—mml) (S'I'l) + (_n-m-l )2(111—5—11

< My (n, 2,2, s)

< (s41) (nesel) |
poe lmmel) @0} T ey
'Since m > 9 + 1, we have

| nemel _2_ 2s
or D > ne2sel ™ n @Y

Again, as asach of the vértices has a degree m, the

Min(‘v(n, 2, 2, 3) must.have at least ?.-2"1. edges‘amd'heﬂbe

"rgl"; ..E.. (s41) (n-s=l)
2(s+ )n(n g=1 ) I

or m £
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From (1) and (2) we get

n=2e-l < m ¢ 2(S+1)n(n—s«1)

or . n% - n (4543 ) + 2(s4l) _{ 0 - (3)
From this quadratic irfequality 1t follows that

'.n;<_(2+ /2) s42

This contradiction proves the lemma,

Theorem 1 ¢ If n > (2 + /Z) 842 then
My (ny 2, 2, 9) = (g40) (nes-1)

and the class Win G, (n, 2, 2, s) coincldes with the

classg }‘.n(s Ve

Proof of the thecrem t From Lemma 1 th follows that under
the conditions stated in the theorenm 'bhe:éa exists a vertex
x in Min G,(n, 2, 2, 8) such that L x| = s I:o'b
%11 Xy eee X 4 be the vertices in r-x. - From the obser-
vations made earlier all the remaining vertices are joined

o each 0f X, ¢ X.a nae X o iy@tonmine] SBanhn does ovsiomend iy

A . e
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further edges to become a GV (ny, 2, 2, &) and all these

edges are essentiale . Hence the theorem.

We will now take up thé discussion about the extremal
structures Min Gy (g 24 K 5) for ' [ 2 3. We sghall first
observe by actual construction that Mv(n, 2y Ay 1) é 2Nwd

forn> 5 and [ > B

Bél) denotes tHé'oléss of graphs oﬁ ﬁ vertiées
2 5 5 which are obtained in the following way. We sbart
with a cycle ,(Xif x2’5x35 x4,.x5; ?i)-of length five.
Some of the other (possibly none) n=5 vertices are
simul taneously Joined to botﬁ. Xo and  Xg, and all others
(possibly none) remaining are joilned to both‘ X Vand Xy

or both x; and Xge Flgures 2 end- 3 represent two

“Jtypical members of Bél).
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Figure 2. Figure Se

It is easy to observe that a nember of Bél)contains

2n-5 edges and the class Bélj 15 contained within the

class Gv(n, 2y Ly 1) for a11 [ 2 3« Hence

My(ny 2, £y 1) < 2n =5 for all £>3 and n > 5
We will in fact prove under theoren 2 that
My (n, 2,73, 1) =2n =5 for all n,é 5,

ot 5L

will not be the unique: extremal structures.,

We may also note that if u and v are two vertlces

of degrbe 2 in a Gv(n, 2y 35 1), both connected to p and
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g, then ¥I= v /geﬁfr%if@hd1_2, 3, 1) 3 and conversely,
if u is of degree 2 with [ u = %p, qj ina Gy(n,2,3,1),
then by adding a new vertex =z with [z = ‘p, q%, we
obtain a Gv(n+l, 2y 3y 1)s Therefore we can restrict

our structural study to graph,which do not have configuraw
tions like T-u = [v ngp’ q% , for,ii ‘that case we can
omit a vertei like v and if we have a basic solution,

. we can add new vertioes like gz, During the proof of

. the thecrem 2 concerning the minimal structures in

Gv(n, 2y 35 1) we shall assume that the minimal graphs
arc free from configurations of the above type. We shall

call this the assumption regarding the sbsence of rect-

angles.

The circuit of length five is the first basic graph
that will prove useful in the discussion of extremal
structures MianV(n, 2y 3y, 1)o The other basic graph is

the one described below
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Flgure 4,

This.graph on 7 vertices has 9 edges and Gn(n 5 7)
obtained by sequentially adding n-? new vertices and
joihﬁng the new vertex at every stage %o two of the old
vertices that happen to be the vertioces adjacent to o

vertex of degree two, we obtain the class 3é2).01early

5(2)

"7 are also Gv(n, 2y 3y 1)e We shall-in fact prove

under theorem 2 that Brgl) and Brgz) provide the extremal

structures Min Gy(n, 2, 3, 1),

7e have a lemma before we proceed to the thew em.,

Lema % ¢ If n> 5 then any Min Goln, 2, 3, 1) will

contain a vertex of degree 2,
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Proof ¢ From the obgservation made earlier it 1s clear that
Mv(n, 2By L) S 2n = 5s Now if there is no vertex of

degree 2 in a Min Gv(n, 2y, 3, 1), then let

min | [x ]| =m > 2
x €6 X

where X 1is the set of vertices of the Win Gv(n, Dom B0 2l )R

8ince the degree of each vertex is at least m, we
have
mo o, T 4palo |
5~ £ 8n=5 or m X = - (4)
As n 2 5 (A) implies that m g 3 so if m > 2, m=3,
If n < 10, then
2n

5" > 2n =~ 5

and hence Min Gv(n, 2, 3,71) cannot but contain a vertex
of degree two for n < 10. If n > 10, then let x -be any
vertex of degreced. (x, | x) accounts for 3 adges. Fach

vertex helonging to X = X = f'x should be joined to some
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vertex in | xs These account for ne4 édges. Further,

the degree o? each vertex in X - x = ["x being at least
3y the graph would at ;east have to have ne4d more edges.
But with this bare minimum we have & oycle in X = x - M=
and we do not yet have a Gy (n, 2, 3, 1) although we

have already been forced to use Snes edgeses Mnd m

should therefore be equal to 2 iﬁ the extremal: case.

Theorem % : My(n, 2, 3, 1) = 2n = 5 and Bél) and ‘Bég)
provide t@e‘?xtremal struotures Min Gv(n, 2y 3, 1) when

n?_ﬁo

Proof : By the lemma just proved, there 'ls a vertex of
degree 2 in a Mim Gv(n, 2, 3, 1), whenever n E 5. Tet
X be any vertex of degree 24 Let & and b be the
vertices in. r—k. Let XY ‘denote the set  Xexmawbe et
¥, Yy, and Y, be the disjoint subsets of Y that are

joined to 2, to b, %o beth a and b, respectively.

We shall write

:IYabl =r, |V | =%, [V, | = n-r-3-k,


http://www.cvisiontech.com

20~

First let us examine the possibility [Y | = 0. In
this case each vertex yy, € Yb would have to be Joined to
some vertex belonging o T4 and in thic case we have to

have at lcast 2n-4 edges and hence would not'lead us o

the beste Similarly we oammot have |Y | = O.

Hence we may sﬁppose that lYa! #£0 and ‘Yb‘ # O
In this case y, € ¥ should be joined to some y'e ¥ =X
fhere should be a chaln of length two between_ ?a and any
Ty € Yb .and t?gse edges should be in Y. This means that
there must be/%onneoted component of Y, containing
Y, (L) Yy But if Y, (L) ¥, is a conncoted component
then we have already aooounted fofrat iza8t 2ned édges and
azy fufther edge will take ﬁs éwa& from the bests Hence
a and b cannot be joined éﬁd Y, (;) Yb.mustlbe by itself
a connected‘componentland in fact a tree in % ) Yy
Now because of the assumplbion regarding thelabsenoe of

rectangles in the minlmal structure we will have [Yablzrzo.

The tree in Y, (;) Y, cannot heve a vertex 4 eonnected


http://www.cvisiontech.com

~Z1l-

to two pendent vertices e and £ of the tree, for (1) ir

e and f . belong to the same group, namely Y or Y,, then
by our assumption e could be omitted (2) 1" d, e € Y, and
i e-Yb, then the distance between e and v 1is 3, and the
diameter of the graph would not any more he 2, Consequently
the tree (_) Y, 1is a simple chain. Thig chain cannot

be of length two,. for5if it is of length two then we have a
‘diameter 3 for the graphe The length of the ehain cannot be
more than thres either, for if it is so we again have a
diameter strictly greater than 2, Therefore there are +two
p0351b11ities ¢ either the chain 1s o? 1ength 1 or length
3, giving the following two ba51c groupm.

’M,,-7
Q‘ /
i, e > ,.,{: I
- l . e . | {
¥ ]
N i L ;
5 ] !
Y ! AN |
\.‘u o 5 \.,\- i1 l
. 1 =3 - L L i
S | . /,__— !I
L l-:\_‘»-...\\h\ki

Figure 5. Figure 6.
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The graph in figure 6 is same as the graph in figurec 4.
Now from these two basic graphs we develop the minimal
structures. This completes the proof that Bél) and ;3122)
provide *he extremal Struoturés Win Gy (n, 2, 5, 1) for

n 5.

Remark ¢ Even when we consider Min G%n, 2, £, 1) A>3,
we would have to have a connected component in Y, centain-

ing Y, (;) Y.+ Therefore

M, (n, 2, f1) =2n -5 for all £ > 3 and n 2 5!

This meansg that a hiconnected grgph_df diametef two Wduld

have to have at least 2n~b cdges when n 2 Se

4 Remarks and Coniecbures

In theorem 1 we proved that %ﬂ t:s) provide the
extremal sturctures when n > (2+q/ﬁg) s + 2+ It appears
true that An(s) provide the extremal struotures as long
ag n g 2a+2e This difference may be dus to the method

we adopteds
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Very little information is known regarding other
configurations of 'n, k, { and se It however appears

reasonable to meke the followlng conjectures.

(1) ¥,(n, 3, 3,1)=2n -6 when n ) 8

The following figure represents a graph belonging

to the class Gy(n, 3, 3, 1)

Flgure 7s

(The vertices from which the.dotted lincs emerge arc n-8
in number ). The gfabh in figure 7 has 2n-6 edges., This
proves that |

My (n, 3, 3, 1) < zn-é.

I can in fatt prove that 1f the minimum degree in =
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Min Gv(n, 3, 3, 1) is equal to 2 then M,V(n, 3, 3, 1) = 2n-6
But if the minimum degree happens to be 3 (the other possibi.

1ity) I know nothing. This mesns that we can show that

In general it can he gcen by‘aotual construction that

(2) Mv(n, 3y 3y 8) 2 (s41) (n = 28 -~ 1)
Perhaps the equality holds in (2) 1T n >> s.

Two more candidates with regard to thrcece accessible

graphs are the following

el

(3) Mv(n,S,é,l) = E Qe n54_., A

v
q

(4) Mv(n,S,/(,l) = 1N e~ 1 + ‘En-g"f}.u

—

for all £ >B,n>7 °

In each case I can prove by actual construction
that the left hand side is less than or equal to the

right hand side exvressione
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Chapter IT

ACCESSIBILITY AND. ITS EDGE ORDER

introduction and Summary s+ In the last chapter we considered
the ﬁariatibhs-@f the'diameter.ovér certain subgraphs of a
given graphe In this chapter partial graphs play the role
played by subgraphs 1n the previous chapters A ke-asccessidle

-

graph is said to be k to [ accessible ( ¢ > X) of edge

orderl.s if 2ll the partial'gféphs obtained by suppressing

any s or less nunber of edges are A -acces§;ble;l e
ny Xy L and s be posit__i:vé iﬁltegérs ‘such that n > K2 k
and n > g3 then Gy (n{.k,;x; s)mdenotes.a k to [
acqessible graph of edge drder s on n vefticés; It is
lthe aim of th%S chapter to study the minimal graphs in the
¢lass GE(n, %y Ay s); k- graph wiEh minimum poégible nunber
of edges within the class Gp (n, k,;K, s) ig denoted by
Min GE(n, ke Ay 8) and tne mlnimum poss1ble number of

edges is denoted by M (ny oy A, s)- Theorem 1 states that

At the outset edge order of acce551b111ty and vertex order
of accessibility are dual conceptse In Anpendlx 1 we shall
examine tThe relation batween the edge order accessxblllty of

& “""*“"‘«”‘ OCR, Wolpoptimizition usingaw

ad301nt graphe

‘L‘l.,l_Li.s_..;a.;..,'.‘..;.,..‘Qj RS VISR D AR
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if ny> 82 5D GH) ..
5

'

ME (119 2y 2y 3) = (s+l) (nm=g=-1l) + ﬁ.ggil-l

and describes the unigue extremal structures Under theorem

2 we prove that if n > §
My (s 29y A 1) =n -1+ [%] for all £ > 3.

In Tacty we shall prove under theorermn 3 that ME(n, 8§ 3y 1)

is also equal ton - 1 + I%] ‘when'n is sufTicicntly

larges 1In the next section we make some preliminary observa-
tions and in § 3 prove the theoremss We end up the chapter

with some remarks and conjectureses

2 gome Preliminary Observations

L

(L) Ina Gylny "% A . ) the degree of each vertex
is at least go+l. Furthers the chaing between any two
distinct vertices have the property that at least one of

them is of length < X and either there are a7, adga

¥
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disjoint chains of length £ A or the suppression of any
t( t < s) common edges leaves at least s+l=-t chains of

length < A .

Now we shall define two.  clagsos of graphs which
would play important ‘r'-oles in the next section of this
chapter; F (8) (n 228 + 2) denotes the clags of all graphs
obtamed from An(s) by completmg the set of g+1 vertlces.

Figure 8 represents a member of B (2);

Figure 8«

iny rember of Fn(s) contains (s+1) (nes-l) + S.(.gi:}l-.}. edges

and the class Fn(s) is contained within the class GE(ng2,2,s).
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Hence

(2) ME(I']., 29 24 S) S_ (S+1) (n_s_l) + ﬂ%ﬂ_}_

In fact for n >> sy we shall prove under theorem 1 that

F,(s) provide the extremal structures Min Gp(ny 2y 2y s)

Hh(n > 6) iélthe class of graphs on n  vertices
defined in the following manner. We arbitrarily divide
the set of vertices into two setsy one set containing a
single vertex and the other set containing the renaining
n-l verticese The singlg vertex is Joined to each vertex
of the other set; Further tae vertices of the larger set

edgese

are joined within themselves by a set of [:%

rigure 9 repregsents member of H7 and g e
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(IR

N\
.

\\\\\\\\ S |
LT . = v
S L = !
b X = !
-

H, ” ~ e B,

Figure Qe
A menber of K, contains n -1 + [j%:] edges and the class
H, 1is contained within the class GE(H’ 2y Ay 1)y for all
A 2 3+ TUnder theorem & we shell prove that H = in fact
coincides with Min GE(n, 29 Ay 1) for A 33 and n suffi-
ciently large; it can also he observed that Hh is contained
within the class GE(n, 3y 3y 1) and as it happens H,

provide the extremal structqres Hin GE(n, 3y 33 1) tooe

& Theorens Concernine Fxtrensl Structures

We start this section with = lemma which is crucial

for the proof of theorem L.
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3+ /B) (s+1)

Lemma X ¢ If n > f£,(9) = then any

Hin GF(n; 2y 2y 8) will have at leagt one vertex x
such that | [ x | = s+1,

Proof 3 Consider & Min GE(n, 2y 29 8)s Let V denote

the set of its verticess 1IT possible let

min | T x | =m > gl
X eV
Consider any vertex x for which | ['x | = 2y and

let x4 Xpy oo X be the vertices adjacent to x. By
the observations mode in §'2 there would be at leagt
stl _disﬁincﬁﬁchaiﬁs of length two between X and the
n-m=-l vertices not adjacenf to x. Therefore each of
these n-m=-l vertices would bé Jéined to at least s+l
of the vertices ffom Xy3 X ;.; Xh; .This would accéunt

Por (s+l) (n=n-1) edgesge

fgaing from x  to each of Xy Xo ewe X3 there

would hrve to be at least s+l edge—disjéint‘chéins of
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length less than or equal to twoy out or ﬁhich one would
be the link alrcady existing; _Oﬁhef'chains would be of
length two and are at least s in,nunber; Therefore each
Of the vertices of the set ["x would be joined to at least

s other vertices of the sare sete This acecounts for at

least znother @55 cdgese

Since the degree of sach vgrﬁexlgf tae get -
Vex=[x of naen-1 vertices nust at least be my
there would at least be m = g «~ 1 mofe edges incident
with each of these verticss and clearly this would require

at least another -l e

2
Min Gpins 2y 2y ) must contain at leagt

sdgese Honee a -

3

o+ (nem-l) (s+1) + m%ﬁ. 4 L=

edgese We therefore have
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o+ (n-zn-i-l) (s+1) + Ilé-ﬁ- + i&-;g—_l)g(m-g-lz

iy(ny 2y 2y s)

¢ slgl) (s+1) (n-g=-1)

= ) (1)

(This follows again from the observations. made in § 2,

Simplifying(1l),we have

(nem=1) (es=1) < s(r=g~1) - (2)

Since m > g + 1y we have

nepiml < s

or @m > n-g-1 : | - | (3)

Ag'un as each of the: vertlces hag a degree my the

Min G (ny 29 2, s) nust have at least %ﬂ edgeq and

hence

an sl (1) (nesel)

or m ,.<., (&"1_) J?n"ﬁ "'2_) (4)
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From 3 and 4 we have

nes-1 <n < Lﬁl)_?ggn_':s"g

or n° -1 (3s+3) + s° 3s +2<0

Fron & it follows that

3+ /57 (s+1)

n < 5 = fé(s)

This contradiction proves the lemnas

t

Theoren 1 ¢ If n > f,(s)y then

My(y 25 29 o) = S8l 4 (541) (nes-l)

2

and the clags Min Gp (ny 29 2y s) c¢dincides with the

class Fn'

there exists a vertex x of degree 's-!-l in every

Min GE(n, 24 29 8)a

proof $ Fron ‘Jlemma 1 it follqws that if n > fg (s)

(8)
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Suppose X191 XKoo ..., Xl be the vertices in rx.
By the observation 1. of 8 24 1t follows that all the
remalning verticesy namely Vex-[ x are joined to each of
the vertices inj [-m A.lso, all the vertiées of [ x
would be Joined to each othez-; The graph does not need
any further edges to become a GE,(n, 25 2y s) and no edge

can be deletedo':

Theoren 23 ME(n, 29 A s 1) = n=l+ [%‘i end - Min-'GE(ri,Z, A1)

coincide with H.s for 211 £ 23 and n > 8§

Proof Iirst we observe that there iL, a vertex of degree
two in a M:I.n Gﬁ(n, 2y Ay 1)y for 'L:.l /( 2 3s fory 1if this
is not the case there would have:to be at least ;-32-3 edges

contradicting the observation that ME(n,Q,/(gl) < n-1+}-121~].

-

Consider a Min GE(n, 2y Ay 1) for some A > 3 and n > 8
Let V denote the set of its verticess Let x- be a vertex
with degree 2 and let a and b be the two vertices in

[x Let Y denote the set V-x-a~be Let Y,y % and Y,
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be the subsets of Y that are joined to ay to by to both

a and by resﬁectively. We shall write

N

e .

| Yp | =19 | Y, =%k | % |=n-rg-k,

without loss of generality we can agsume that. k i‘n"§ .

The proof of theorem 2 will be divided into two parts.
A Ne -
In the first part we shall suppose that a. and b are not
joined and in the second part the aséumption will be that

a and b are joinede

Part I: Here a and b are not joineds In this casge it

is not possible to have | Y. | = 0. For“if.lzéb[3= Oy

ab
Y would have to be connected in the subgraph spanned
by itself and this requires | Y [ -1 =n - 4 edges; and

in all we require at least 2n-5 edgess But 2n-=5 > nels [?]

when n > 8 Againy | ¥, [ and | % | cannot be simultan-
¢ously zeroy fory when [ ¥, | and | ¥, ['= 0y the number

of edges is at least 2n-4 and 2n -4 > n - 1 + ’:% l when
"
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when n > 8; How let | Y, [ =05 ] o[ # 0 | T, | # O;
Each Yb should be joined to some Yéb and this would

mean that the -graph would‘réquire at leégtl

(nbr~1) + (ner-5) = 2n-4 edgesy which does not lead us

to the best when n > 8. By symmetr& Wwe can rule out the
possibility | v, | # 0, | Y, | =0 and | Yoy | # Oe

Finally suppose that none of | Y, ls | ¥ | and | Yoy |

is zeroe Herey again each Y, should be joined to some
vertex in Y - Ya and each Yb should be joined to some
vertex in Y - Yﬁ. Using‘the edges within Y we should‘

be able to trace chéins of leﬁgth two botween any Y, and

any .Yb;. ‘This wouid meén that the edges within Y would

at least be n—r—éK iﬁ number and therefore the graph would at
least have to hafé (n+r-i) + (n-r-4) = 2n-5 edgesy and it
cannoédbe thé-best for n > 8; Hence we con conclude that

in a Min GE(n; 2, Ly 1) the descendents.of a veftex of

degree two are joined to each others
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Part IT : Here we examine the situation where 'a and b
are joined. From the oconclusion of- the previous part of the
proof we know that. in a Min Gp(n, 2, £,-1) a and b are
joined, If Iin(n, 2, £, 1)‘5 e s f?%i], then the edges
in the subgraph spenned by Y together with the edges in

(Y, %a, :,' ) shoula no'b-be'zﬁnore than n'.,— 3 + [P-'é'—g-j n

number., And it can be seen that at least these many edges
are always necessary and exaotly these many lead to a

Gy(ny 2, £, 1) when

%, =Gy Yop ( =0 and [V, | =n-3

(%

or [¥,] =0, ]Yab_l =0 and IYal = n-3 or when n is even
I?al = n‘4"|Yabl = 1l eand leJ =0 or 1131 = n-éyulYab|=1

and iYai = Os These are no other graphs than the members of
Hye This completes the proof that Min GE(n, 2y £y 1) = H,

for all £ > 3 when n > 8.
Thearem 3 s
HEGH.5,3»JJ =n -1+ [%“l and
Min Gg(n, 3, 3, 1) coincide with H,s for all sufficiently

large ne
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Proof © First we observe that there is a yertex of degree
two in a Min GE(n’ 3y 3y 1l)s Consgider a Min GE(n’ 35 35 1)
Let V denote the set of 1ts verticess Let x be a vertex
with degree 2 and let a and b be the two vertices in
[z Let Y, denote the set [“x = ['x - x and let ¥
L} 2 = 3
denote the set [ °x =¥, - [(x =% Let Y, ¥ ~ahd ¥.. .
e 2 =2 TN “ab
be the subsets of .Y that are joined to ay to bs to both
a and bs resnecctively. Yo Yb and Yéb “are disjoint
setse.
Here again we shall divide the proof of the theorem
Into two partss 1In the first part we shall suppose that
a and b are not Jolned and in the second part the assump-

tion will be that . a and b are Joined.

Part I  In this case if |[Y, [ or [Y [ or [Y,| 1s zero
then the graph will require at leagt 2n-5 edgese Thérefore
let Y| 20y [¥y| #0s [Y, | #0s At this stage we shall

consider two casese
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Case 1°¢ ]Yél = O; In this case each v ¢ Y, should be
joined tQ some Y, - Yé( If ye ﬁé is ndt Joined to
- some vertex in Y then 7y is'éithef Joined to a vertex
in 'Yé in addition to being joined to some vertex in Y,
or y is:joined to a vertex in Ybl Trom whichlanother
' edge comes into Yé; This is to fulfil the reQuirement
of a second chain of length < 3 between "y énd-ra;
But if ‘this were to be satisfied and 1f n is sufficiently
larges then clearly the requlrement on the number of edges

is greater than n - l + [ ]

Case 23 [Y,] # 0. Let [Y | + [T3] = € (x,'{ as b ¥)
and the edges from Yab and Yé ‘account for at least
n+t-l edgese If this case should lead to the extremal

e T ” T more i, )
case then we can have at most [:§_J -t/edgesmn~But when

n is large it would not be possible to have a

Gv(n, 3y 3y 1) with just these many additional edgess

Hence we conclude that a and b are joined to

gach other.
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Part IT .= Herc we examine the situation where a and b
are joined; From Part I we know thet in a Min GE(n,B,B,l)
a and Db are joined; Now by the same type of arguments
used for the proof of Part II of theorem 2y we can see

that H, provides the extremal structures MinE(n,S,Sgl)-

Although we alloﬁed for a diameter 3, we:find']Yé]=O;
If [Y;[ # 0 then for every vertex in ¥, ‘we should have
two additionél edges; wheréjasfif ]YS] = 0y for every
two vertices in Y, we neeq have just three additional

edgese This explains the résﬁit."h

4e_Remarks 'and coniegtureg. - X o

Under theorem 1 we proved that F, _(s) provide the

extremal gtructures Min GE(n, 2y 24 8) when

B+ /5 (s+1) :
n > 5 + It appears true that F (s) provide

the extremal structures as long as n 2 25 + 2

It is interesting to note that

ME(n, 2y 29 1) - ME(n, 2y 3y 1) = 9-5-5- (n taken to be

GV wileTeds
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wll]
Mv(l’l, 2, 2., 1) - Mv(n, 2, 3, l) = 1

This curious revelation is perhaps due to the fact
that we do not demand in the case of edge order accessibility
that the relevant s+l chains between 2 pair of ¥vertices be
disjoint; We Just demand that they should be edge disjoint;
In the case of chains of length two edge disjointness is
equivalent to disjointnessy snd there is no saving in the
casc of 2 to 2 accessiﬁility; In fzet in this cage
edge ofder accessibility deménds morey for there is a
requirement on the number of chains between an adjacent
pair of verticesy which is not required in the case of

vertex order accessibility.’

It is perhaps true that

MECna 2y 3y 3) = s(n~g) + [n—:gs-i-—l-] for n »> s

It can be proved by actual construction thet the left

hand side is legs than or equal te the right hand side
when n >> se The following figure 10 repregsents a

GE(Gs 2y 34 2),
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Figure 10.

We shall observe later that the above figure provides
an extremal structure when we have bounds on degrees. Ve
move over to the next chapter wondering how uncanny can be

the properties of these mere points and lines.


http://www.cvisiontech.com

L

pu vl

Chapter 3

EXTREMAL GRAPHS VITH BOUNDS ON DEGREES

1 Introduction and Symmary In the earlier chapters we

investigated the strucfﬁres of extremal graphs with some
restrictions on the variations of diameter over subgraphs
and parﬁial graphs; In this chaﬁter we shall study extremal
structures with an additional restriction of a preimposed

upper bound on the degrees of vertices.

Erdog and Renyi [ 4 ] have investigated the structures
ol two accessible‘graphg with g given maximum‘degree for any
vertex and with the_least possible number of edges:AnHere
we attempt Eo investigate the structures of Gv(n, ke £y s)
and GE(n, Ky As s) with a gilven maximum degree r for any
vertexs and wilth minimum possible number of edges; We
simply use r as a superscript to"indicate the additional-
restriition;' For exampley Gﬁ(n, Yy Ay 8) will denote a
Gv(n, Yy A s) with maximum degree r fof ahy vertex;

In our notation the results of Erdos and Ren§i are as

followse
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Al

M%(E) (ny 2y 29 0) > & a-l). (E)

M%(E) (n, 2’ 2’ O) 2_ '“—ll‘('i'}:;')"

if r7 > &n “(R)

Purther they proved that E ig asymptotically best

possibles Exact results are not yet availables

In § 2 weHShall derive some bounds for n for
which the G%(n, %y Ay 3) and GE(H, ey A;lé) ;re
non-null;_ This gives us the impdséible confilgurationse
Under th9 assumption that the uppef boﬁnd for degrees
is actually attained by some verfexé we derivé‘tﬁo |

extremal structures.

In é 3 we derive some bounds for Mﬂ(n,z,z,s)
and Mg (ny 2y 2, 3) ahd make a few remar¥s regarding-

the exact valuess
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8 2 Extremal Graphs with bounds on degrees.

S For r< s+ 1, we know that the clags“Gﬁ(n, 2y 24 g)

i T T
Gglns 25 25 5) 'is empty. Ve have the following theorems

Theorem 1¢ If r 3 n-g-1 and if n > fl(s) then the

structure defined for Min GV(n, 2y 2y 8) 1is algso the

structure for the'class Min Gh(ny 2y 2, s).
Proof § It is easy to see Tthat

MV(n, 2, 2y S) i Mg{n,fzﬁ 23 S)

S0y 1if there is a Gl(ny 2y 2, &) with My(ny, 2y 2, g)

edgesy then it would mean that it is a Min Gv(n, 2y 25 38),

In a gimilar way we have

Theorem 23 If r = n~1 and if n > T5(s) then the structure

defined for Min Gylns 2, 2y 3) is also structure for the
class Min d%(n, 2, 2, S)c
Iheorem 3% G%(ns 2y 2 s)  _M ;Hm'”

8
is empty if n > &

+srtat+l
by
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Proof Suppose that the maximum degree in a Gv(n, Sy 2y 8)
i1s t« Consider a“vertéx. x of degree t. Bach of the

vertices in V-x-[ x would have to be joined to [ x

and therofore the load on [ x would at least be

L.

t 4+ (s+l) (u-t-1) edgese Since t is an ubper bound o
the degrees of each of the vertices in [ xy we have

t + (s+1) (n-t-1), < t°.

a
or ng Itatherl
s+l
The right hand side expression'of the above inequality is
ari indreasiﬁg funetion in t (for non-negative t) and
therefore the class Gg(n, 2y 2y 8) is empty if

2
S e o1 o B
s+1.

ory equivalently, G%(n, 2y 2y 8) 1s empty if

Js4a(s+1) (n-1) - s
T < 5 i
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Y
Theorem 4 ¢ Gg(n, 29 By s) is empty 1ir

e ¥'r( % )+ s+ 1

s + 1

2 /(B + 4(s+1) (n-1) - g
or T < :

4 -y
The proof ig similar to that of theorem 3.

Although we can see that
¥

M?.l (ny 2, 2y ) < Mff (ny 2, 2y 8)
and ML (ny 2y 2, &) ¢ Mo (ny 2y 2y s)

the strict inequality may not hold in the above

inequalitiess We in fact know that
Mgﬁl(ns'za 29 1) = M%Tz(n, 2y 29 1)

If we can assume that the upper bound for degrees is
attained by some vertex we can prove the fo11owing'

'Gheofems .
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Theorem 5 3 Under the above assumption

iy ~o(n, 2, 2, 1) = Z0-9 - when n 3 6,

Broof ¢ Under the assumption of the theorem there exists a
vertex of degree n=3 in‘.la ‘Binln-.G%'S(n;“‘;‘,‘z, 1) et x
be a vertex with | % | .= n=3, Apart from x and | x,

there will be another two vertiees in the graph, let they

be naned y and =z

o R
// \\ el
/ R S e o _._,‘,_::" e
) T : y
- = N
d ’,-—// = e \“': ,../
/ // & -~

Figure 11.
Let y be joined.to_ l r‘yl C [x and 2 be joined to
Fz C Tx.e 1f Tx =¥y (O [z}is non-null, there
will be at least two edges from each vertex 1{1171’118 set to

. . - -
4\‘1‘:‘: .”lnt ;'-Y' f (n\ ’_‘7;- -“1‘7(:1’_\ "“:L,\ < I v

D dpting vised elmjuatipn gopy of CYISION-PDRCDRERE
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to two vertices in f"z and each vertex in f*z - [y is
Joined to two vertices in ["y. Henoe, in addition to the
edges in (x, I_x),l (v, [y) and (&, [z) we should
have at least ‘ B :
el Fxw fry CiTa¥yw | Fy=Tal+Fe -yl
edges.l‘Thislgives us a minimum requirement of 3n-9 edges,

Hence .Mf;"z’ (n, 2, 2, 1) = 3n. = 9. Figure 11 provides the

exanple of an extremal graph Min G5 >(a, 2, 2, 1) for

n:'?-

Theorem 6 ¢ TUnder the above assumption

MrEl‘-z(n, By By 1) = Bn—G—El-g—?—j when n > 6,

Proof ¢ --'Und'er the assumption of theorem there exists =
vertex of degree n-2 i a Min Gg'g (n, 2, 2, 1) Let
x be the vertex with | ['x | = n-2. Apart from x

and | x there will be another vertex, let it be y.
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Figure 12.

Let y be joined to | ¥y C F.x- 1f [(x -« [y is non-

null, then each of the vertices in this set will have to

be joined to two distinct vertices in [ y and each

vertex in [ y will have to be joined %o some other

vertex in [ y. This gives us
ng (n, 2, 2, s) > :5n-6~l_—i—[Ll:]

_l}' ~ Min '{ Sn-B—E-LEy—L:] -!f

2<} Ty | gn-2

PR
= 3n - 6 - t_-z-,—-]
Therefore if there exists a G%-z(n, 2, 2, 1) with

In-6 El-:%:_] it has to be thes best. And in fsct it doces.
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Pigure 12 pfovidés an  example of éach-an extremal graph

when n = 8.

In general. it ig not known if the assumptions
would hold and far less known are the values of

My (n, 2, 2, 8) end My (n, 2, 2, 8).

§ 3 Bounds for extremal numbers and remarks,

- Using the result E we can very easily establish
the following lower bounds for M% (n, 2, 2y, 8) and

T

Theorem 7 % Mv(n, 2y, 2, 8)

N (nes ) Cn—sél)
- 2r

s /1% + a(141) (nes#i-1) - 1
5

1 ==l

Proof # The proof of the theorem is by induetion on s.
We know that the theor?g_is true for 8=0. Suppose

that the theorem is true for s ; t = 1. Consider ony
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Min Gg (n, 2, 2, t)« We know that therc exists g vertex

with degree

St 4 4(t41) (mel) - %
3

By dropping this vertex we obtain a subgraph which is a

GI‘

v(n"l, 2’ 2’ t"'l) and we have

; /44 (441) (n-1) - ¢
My 3

(1,2,2yt) 2 MT(n-1, 2, 2, t-1) 4

which shows that the theorem is true for s =t .- also. .
Hence the theorem.
By wimilar arguments we -have

Theorem 8

Mg (n, 2,2, 8)

Ay (n=-s ) Cn;s;l)
BE =3 2y

g 2 /(%'92 +4(i+1) (nu;pi'_],) -4
s . - .

i Z

1=1..
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By actual construction we have the following upper

bounds

wi(n, 2, 2, 5) ¢ r(ner) (B,)

when % _ér, and

. ok L
M (2,2, 1) Srlnr) + [§] (B,)
when _ljl%-_g _<_ T

The class of bipartite graphs with r vertices
in one set and ner in the other set form a sub=class
of G‘r)r (n, 2, 2, 8) and hence the bound .By+ The class
of graphs obtained by adjoining [%jl* edges to the
set of r wvertices in the above bipartite graphs such
that all the r vertices are covered by these ]:%:]*
cdges form a sub~clasg of Gg(n, 2, 2, 1) and hence the

bound B2 .

rdenotes the least integer greater than % .

1. r

ol
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How good are the bounds is as vet an unsettled

questions Profe. FBrdos commumicated to me that the

bound By  does not fare very well., He writes that

he could prove by probabilistic arguments that‘if

r> e n then My (n, 2, 2, s)

is less than f(cy)n
for every c, > Q.

1 At this stage no exact formulae,

even asymptotic, seem to be possible,
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Chapter 4&°

EXTREMAL DIRECTED GRAPHS

1 Introduction and Summaryt In this Chapter we study the

structures of extremal directed graphs with reference to
the properties similar to those considered in earlier
ché@térs for vndirected graphs, We shall distinguish
between two kinds of directed graphs. In the first kind
of directed graphs, a pair of vertices is joined by at

" most one arc in a given direction but a pair of vertices
can be joined by two oppositely oriented arcs. In the
second kind of directed graphs two xpf-vertices are joined
by at most one arc and if (x, y) is an arc (y,-x)h 1s not
an arcs The seecond kind can be obtained by -orienting the

edges of an unoriented graph without multiple edges.
The following definitions hold for both kinds of
directed graphs.

A directed gréph-tb be simply referred to as a

graph in the sequel., is calléd k~accessible (k heine a
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positive integer) if the diame;er‘of the graph is S K

A ke-accessible graph is call;d’ k to [ accessible

( £ being a positi#é integer i k) of vertex order s

( & being a non-negative integér) if all the subgré;phs"
obtalned by suppressing any s or less nunber of afcs
are [ -accessibles A k to [ accessible gréph bf
vertex order s on n-vertices is denoted bﬁ Dv(ﬁ,k,[,s).
A graph with minimum possible of arcs within the class
Dv(n‘,__ k, £, s) is denoted by Min D, (n} k, ,f’, sj a;}ld
the minimum number of arcs is denoted by 'dv(n;'k, [; é).
A k-accessible graph is called k to J'¢ acoéééibleuofﬁ.
arc order s 1if all the partial graphs obtained By |
suppresfing any s or less number of arcs are X-accessi-
bles For the notation corresponding to arc order acéessi-

bility we replace  V by A.

In .8 2 we.shall consider the extremal structures
for Min Dy(n, 2, 2, s) in the case of direc¢ted graphs
of first kind. We shall prove under theorem 1 that the

extremal graphs Min Dy(n, 2, 2, 8) are complete directed
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bipartite graphs with s+1 vertices in one set and
n=s=1 vertices in the other sete It means that a

Min Dv(n, 2y, 2, 8) 1is obtalned By feplacing Lach edge
of Min G,(n, 2, 2, s) by two oppositely ori;ﬁted edges.
Of course we deﬁand that n >> s. We,préve a similar
theorem for Min Dg(n, 2, 2, 8)e’ If 8 3 we have a

discussion about the problems with regard to directed

graphs of second kinde. Katono proved that
dyln, 2, 2, 0) 2 0, n log n.

We do not know any thing about d,(n, 2, 2, s,) for 8 > l.‘
For given n and s a Dv(n, 2, 2, 8) need not eiiét.
We present éome discussion in this direction. In the
last section we shall mention the famous Brgttqn{s

conjecture.

8 2 Directed Graphs of first kind

Before we prove the main resulis of this section

we shall mzke some preliminary observations.
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(1) In a Dv(n, k, £y s) and .DA(n; k, [,-s) the
internal as weil as external demi-degrees of any vertex
is at least s+l, In a Dy(n, k, X,—s) if *x and y are
two distinct vertices and if (x; y) is not ‘any arc, then
!tﬁere would at least be s+l disjoint paths of lengfh
at most [ out Jf which at least one is of length 2 k.
In 2 DA(n, k, £, é) if x and y’ are two distinct
vertices, then the paths from x to- y w;uld have the
property that at least one of them is of length i k and
there are at least s+l arc diéjoint,paths df‘leﬁgth
< [ or,rem0val'of‘anjr t(t.< 8) arcs leaves at 1éas§

s+l-t paths of length .i;f;

(2) dv(n’ 1y, Ly 8) = n(n-1)

We shail now describe twociassauﬂfgraphs=whi§h,
as we shall prove later, provide the structﬁres for the
extremal graphs that we set'ourselves'té seekf Tﬁe first
of these classes of grapﬁs, denoted by d;(s) (n i 2342 )

are complete directed bipartite graphs with s+l vertices
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in one set and nes~l in the other set. Figure 18

represents a oz (1)
o &\

ST Y

. ,}., e ‘,’f i \"
/,' y Il e ‘\",\&’ E . \ \\‘
] ,,.. T vl T S ¥ \
L ‘}/-/ Aok R TN
* A /(\ i) . “\\‘n- [
'/ , ?%/ Y \ N, 1;3\\ \
\ I‘ s F \‘:\. e h\~\,‘
o i #/ .\\‘i; \Y“\,'\

Figure 13.

Any menmber of an(s) contains 2(s+l) (nes-1) arcs and the

cless a,(s) is contained within the class DV(n, 2, 2, 8),
hence

(3) ayln, 2, 2, 5) < 2(s41) (n-s-1)

Under theorem we shall in fact prove that equality holds
in (i) for n 5> =

8n(s) 1is the class of graphs obtained from Ai(é)l
by completiﬁg the set of s+l vertices (i.e, every vertex
belonging to the set of s+l vertices is joined to all

other vertices nf the aama, 4n Tath Advnapttas

P ™A EVE -
~T.I.‘.§, .:‘_'.L'.‘.tu ir ILL;
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represents a 56(1).

Figure l4.

A graph in the class B,(1) has (s+1) (2n-s-2) arcs.
The class B8 (s) is contained within the class

Min DA(n, 2, 2, s) and henoce

(4) a,(n, 2, 2, 5) < (s41) (en-s-2)

Theorem 2 states that in fact equality holds in (4) when

o

n >> Se

Lemma 1 ¢ There exists a funection ¢l(s) of s, such
that whenever n*>'¢l(s) any Min Dy(n, 2, 2, s) would

contain a veértex x with | T ¥ | + x| = 2(a4l).

TR |
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Procf : Consider any Min D,(n, 2, 2, s). If there
is no vertsx x € V with | T | + | T™x | = 2(s41),

then let us suppoée that

min | % | + | rﬁtY=m>:ﬂ&ﬂ)“
X eV - A

Under this assumption, we obtain two lower bounds for
use
d;(m, 2, 2, 8) and make/of the inequality of
dv(n, 2, 2, 5) 2 2(s+1) (n=s=l) to obtain an ineguality
of the form n i ¢l(s), giving us that if n > fl(s)
1t cannot happen that

min [ r'ﬁx [ ; i T x| > 2(s+1).
x€eV

Let | [¥x ('_7 ["x | = d.

One lower bound for d.(n, 2, 2, s) is obtained by
observing that the degrce of each vertex is at least m,

we have

nm 'S dv(n, 2 2,‘5)
< 2(s+l) (n-s-l)

*; A(s+l) (nes-l) ‘ [~
v kS -
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The second loher'Bdundifor dv(n, 2, 2, 8) is obtaine

through the féilowing oﬂservations ! x, the vertex with
| T | + 1 T™x | =n is joined %o cach of

*x () T "x, this accounts for m arcs. Each of the
vertices in Vﬂ- x = [ * = "x would have to be joined
to T*% (O s, with at least s+l arces in each
direction. This accounts. for 2(s+1) (n-m+d-1) arecs.
The dggrees_of each of these vertices is.at least m.,

Therefore we would have at least another

(m-2s-s§,(n-m+d-l) .

This gives us the inequality

m o+ 2(s+1) (n-m4é-l) +(ﬁ;2541)2(£-m¥d—ij

8 .av-(n;'2, 2, 5)

< 2(s+15 (Nesel )

or (n-2s-2) (n-m+d-1) < 4(s+1) (med-s) = 2m (2)
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But n—m+d-1'20, and we have, as m > 2g + 2

nem+del < 4(s41) (mwd-s) - 28

n + @s@ﬁi#4s@hj-—i . (3)

or m2 i5+3

Combining (1) and (3) we have

n+(4s+5)a + 45(s4l) - 1 > 4(s4l) (n_s._l) L
4y +3 o 1
or n® . n{12s + 13 ] + 4(ssl )2 (45+3) _é O wi¥ (5)

Let d)l(s) denote the largest root of the quadratio

gquation.

2 il ‘ 2

n” = n[12s +13] + 4(s+1)° (48+43) =
then (5 ) implies that

n _g_ ¢l(s).

£

So, if n > Ql(s), minimum degree of a vertex in a

Min Dv(n, 2y 2, 8) cammot be greator than 2(s+l).
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Theorem 1 1

dv(h, 2y 2, 8) = 2(S+1_") {n=s-1) and the class
Min Dy{n, 2, 2, s) coincides with the class

o, (8)y 1T 1>) 84

Proof : By lemma 1 we know that when n > ¢, (s) there

exists a vertex x in a Min DV(?’ 2,7_72“,__\ s_) with

P Thx towe ;ri,-._iF""'x \=2(s+l). l--m’fi'.l;:lrefore \

I T O x| =4 s+, Wri_te A for T x = [Ty,

B for [[*x (O :r-‘i,‘ 0 for r—x - [, land

T for Ve-x-A-B-C. We have | 4 | = s+1-d, | B | = 4,

:(fc ! =fs+l-d and | Y | = n-2s4d-3. The vertex x

1s Jjolned to each vertex of A ang ‘th? arcs are directed

away from - X, it is joinea fo eéch vertex o_fr B in both

directions and ecach vertex of C ‘-is Joined Yo x and
directed _

the arcs are/ towawds x, Now, since the graph is a

Dv(n, 2y 2y s} each vertex of Y would have to be,

Joined to [ Tx, with afcs dif-ec;fed away from Y and all

vertices. of '[_""x; would have t§ be joined to all vertices

in Y, with ares divected away #rag in e of QIS

N PDEC
'} cyp AL valw 3G
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account for 2(s+l) (n-2s+d-2) arcs, but to establish
the necessary accessibility and arder of accgssibility
we need to introduce some more arcs. These can be only
between and within f‘+x (;)f—"x“ and Y. Conslder any
vertex a € A. With arcs already eXisting there is no
path of length ( 2 betweean a and x, and a would
compulsorily have to be joined to all the verticgs in
[T "x. This accounts for a must of another (s+1) (s=-d+1)
arcs. Again; to establish the aéoessibility with the
necessary order between C-and Y we need to have some
more arcs leaving C. If n is sﬁfficienfly large
compared %o 8, then the number of ‘arcs v;?é"wduld necd
greater than (s+l1) (s=-d+l) ares, And in all we have

already been forced to use more-thaﬁ'?

2(s+L) (n-28+3=2) + 2(g+1) (s-d+l) = 2{s+1l) (n-s-1)

arcs.

7

Thercfore as long as 4 < s+l, we do not oome

across the extremal graph. But when 4 = s+l, we have

[T* = [[“x and we Have the structure %, (s8)e This
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completes the proof of the thgorem.

Theorem 2 dA(n, 2y 2, 8) = (841) (2n~s-2) and the
class Min DA(n, 2y, 2, 5) coincides with the class

By(s)y when n ¥> s,

The proof of this theorem follows thé same type
of argumenté addpted for the proof of theorem 1 and

is omitted here.

Remarks ¢ Perhaps it would be true that all extremal
directed graphs of first kind are obtained by having
two oppositely oriented arcs for each edge in the

corresponding undirected extremal graphs.

B3« Directed Graphs of Sccond Xind

In this dection we shall consider directed graphs
in which at most one arc is permitted between two verti-
cess Lot G = (V, A) be such a graph, V denctes the
gset of vertiges and A denoteq the set of arcs.Katono

proved that dv(n, O ity 1On) 2 Cl n log n.,. We obtain
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en upperbound for d, (n, 2,2, 0) . which can be sequenti-
ally improved,

Theorem 3 : The complete undirected graph on n vertices

can be oriented in such a way that the resulting directed

graph is 2-accessible, except when n = 2, 4.

The proof of the theorem will be evident from the

construction in the following theorem,

i 2 ’ 3 -
Theorem 4 : dy(n, 2, 2, 0) ¢ B8O ) 55 5

1> 2.

Proof : The proof of the theorem is constructives For

n =3, 5, 6 and 7 the result holds and we have the follow-

ing graphs

Figure 15.
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Y

¥

Figure 17. e

In general when n é 8 we start with a graph D,

diameter two on ne«3 wvertices,

a graph of 5thrgevertices D(S)

figure below

Fi_gur'e 18.

5 of

To this graph we adjoin

which is shown in the
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. The vertex b is 301n;d to all the vertices of the Dn&S'
graph with arcs directed awaylfrom be A1l the vertices
of the Dn-S are joined to C with ares directed towards
Cs The vertex a is joined to two difféfent vertices in
Dn~5‘ One of these arcs i8 directed away from s and

the other directed towards a, It is casy to verify that

we obtain a 2waccessible graph on nevertices by this

process, Dn-S has at most 12"3)2(n'4) arcs and 2nel

arcs are incident to D3. Hence we have

- 3 % _2 -
dV(n9 2y Ay 0) £ 2n-14 (n-3 2(11-4) = & "gn"'lo

and from the way this upper bound is obtained it is clear

that this upper bound ecan be improved.

In general it is not kmown for what values of n

it is p0591hle to orient the complete nwgraph in such g

way that 1t becomes a Dy (n, 2, 2, 8) or D i, 2, 2, 8)e

If g(2, s) denotes the least value of n, then g(2, s)

is perhaps > 25+ 1, por 8=0 it has beem ohenrwed +q
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be true.and for s=1 it can be observed to be true, The

- figure below is a Dy(n, 2, 2, 1),

N e

Figﬁré'ao.

This graph is from one of Professor”Erddé'Srpapers, Qur
probleﬁ hQS'an‘aliufingLSimilarity with the problem which
Prof¢ Erdos considered.. .

We ﬁovabtain a lower bound for dv(n, 2, 2, 9)

and d,{n, 2, 2, s) when n >> s.


http://www.cvisiontech.com

7l

Theorem 5 ¢ When n >> s§

dyln, 2y 2, 8) 3 (2542) (n-28-2)

and dA(l'l, 2, 2, ‘S)} 2-. _(g8+2)2L25_1) + (2S+2)(n-2s—2)

Proof ¢ In a Dv(n,.2, 2y, 8) 1if the directions are dropped
there will be at least 2s+2 disjoint chains of length
£ 2 between any noneadjacent vertices or in other words it

will be a G,(n, 2, 2, 28+l)s Hence we have
dy(n, 2, 2, 8) > (2842) (n-2s-2)

Again, if the directions are dropped in a DA(n, 2, 2, 8)

there will be 2s+2 -edge disjoint chains of length < 2

S

between ény two vertices or in ofherwdrds it will be a

GE(n, 2, 2, 8)s Heénce we have

a,(n, 2, 2, 8) > 133+1)2(28+2)'+ (2542) (n-2s-2)
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84 Bratton?s Conjecture

In this section we shall once again consider the
directed graphs of first kinds If such a graph is strongly

~connected, we have

ngm o 3 g (6)
. mls n{n-1) e | (7).
and 4 £ n=l | 1 (8)

(n stands for the nﬁmbéfxof %erficeé, m for the number
of ercs and d for the diameter ). . But there need not
correspond a strongly comnected graph with every set of
nuﬁbeféAs;fisfyingltheingqualities fs), (7) and (é)f
In'dthefwords-givén n,-m, 4 which satisfy (6), (7) and
(8) there may not.éxist a sfrongly connected graph

G = (X, U) with |X%X| = n, luj =m and é(é).= &. This
imposs%bility arises whenever Yoo small a number is chosen

for d.

This situation led to the demand for the lower

bound ffm.n) of the diameters of a stronglv comnected
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graph without loops with 71 vertices and m arcs, and
to complete the above system.of inequalities by the

inequality ¢

d> f(m, n) { ()¢
We state below a very famous,; yet undecided,
conjecture of Bratton.
Let
n-l = g(m=n+l) + r, r é M1
Put ’
i 2q if r =20
|
a(m, n) = j 2q + 1 i - 2 g (10)
I' =
t 2q+2 4if r» > 2

[

Bratton's conjecture states that : every strongly
commected directed graph of first kind with m ares
and n vertices has a diameter which is greater than

Stbrésaidalocke welddBtmizatonrusihg
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A similar question‘that can bg‘asked in this’
connection is given n and d, what is fhe maximum
m  for which there exists a directea graph of ﬁirst
kind with n vertices and diameter i d+l. ( If d=1,

this maximum m is equal to n(n-1)~1).
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Chapter 5 .-

Communication Networks and Graphs

1 Introduction and Summary ¢ In this.chapter*we shall
disouss the applications of some oflthe results obtained

in the earlier chapters to communicétion_netﬁorks. Pur ther
we shall discuss. some programming problems relat;d‘with

welghted graphs and their applications to problems in

communication networks,

A communication network is any complex of centres
dispatching and receiving information togéther with a
set of links that convey inforﬁatién. ‘Alproblem of
constructing-a communication network is éne of establishe
ing the links between the.different centres. The pattern
of linking is usually dictated by the requifeménts of the
inter~communicative readiﬁess on the network and cost
considerations. We would like %o set up the links in such
a way that the cost is minimum subject to the dictates of

the requirements on the network.
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A communication network can be identified ﬁith a
graph,_by identifying the ceptres‘and links respectively
with-§ertices and edges (or arcs). Vhen the links are
two way channeis we idgntiiy the network with an unorisnted
graph aﬁd when the links are one way channels we identify
with an orientgd graphs A number of practical problems’
concerniﬁgrthe ;onstruction of commgnication network. can
be translated into familiar graph theoretic language and
can be dealt with with the usuallease %éd-;ieééncg of
graph theoretic methods; e shéll usé‘éﬁé gfaph.théorefic

and network theoretic terms interohéngeably.

In the next section we shall discuss some problems
in communicatioﬁ;networks and point outrsome uses of the
results we already obtained. In § 3 we shall discuss
the programming problems related with weigh?ed_networks
ané in 8§ 4 -we shell mention the problems of constructing

communication networks with probabilities‘of.breakdown.
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.82 PROBLEMS IN COMMUNTICATION NETWORKS

The diametral‘Struoture of a graph is éf signi-
ficance with reference to the applications of graph theory
to problems of construction of communication networks.

A large diémeter has several disadvantages. TIn the first
instance a large number of relays cause delay and if
there is g possibility of errors creeping in to the -
messages then each relay would mean more errors. A small
diameter is always desirable. -Thf most ideal situation
would be to have a complete graph for a network. But
when it is impracticable to have such a éituation we
would prefer to have ag small a diameter as possible.
Figures 21, 22, 23 and 24 show examples of Qraccessible

networks with 5 centres,
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Figure 23

_Suppose that in the nétwork cérresponding té figure
21, the. centre. Xy goes out 6f ogdéé or breaks down by an
accident 3 then the whole communloatlon system Would be
in a jeopardy. There would not be any possibility of
communication. But in the communicétion network corres-
ponding to figure 22, the situation is not so very pre-
carious. ZEven if a centre breaks down by accident the
remaining centres can communicate with cach other and
the resulting subenetwork is also 2eaccessible. But we

1eemipression; DER, Web oplimization lusing-a watsnpasked evalyation oy ohCMISION PDRCo

e
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the network of figure 23, a breakdown would not lead %o
complete jeopardy but the diameter would be increased,
Hence thé %ertex order éccessibility of the network
emerges as a natural proof against breskdowns of centres.
fn a similar Waﬁ the edge order accessibilitj of the

network is a proof against breakdowns of links.

We define the capacity of a Qentqe as the maximum
number of linksewhich tan be incident %o it. If suppose
3 is an upperbound on the.capacitieé'of'the five centres,
Xy xz, srey Xge When ;etworks in flgure 21l and 24
violate the capac1ty restrictions and the nefworks of
22 and 25 do not violate, Thus we sec . Shek bounds on

~degreos is also a desirable erits earion.

Having defined the desirable criteria, we can now
think of the following problems. Given n centres of

communication Xy s xg, eve, X, and n X n matrix

c = gciji s which describes the costs of conneeting
¥ 1

the centres with xﬁ in the communication network,

o
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find out the optimum set of links which minimizes the
totaliestablishment co8t and such that the resulting

network is

(1) a Gy(n, k, £, s) for some predetermined values
of k¥, £ and s.

(2) a GE(n, k, £, s) for some predetermined values
of k, f and s.’

(3) a Gg(n,.k, Ly s) for some predetermined values
: of k, £, 8 and r.

If we can assume that Cis = Cy @ consbant, then

the above three problems reduce to finding Min Gy (X, fy8 ),

Min GE(n, k, £, 8) and WMin Gé(n, k, £, 8) respectivelys

Some of these problems for certain values of the;parameters

have already been solved by us in the earlier chapters.

But when the above assumption is not valid then the elegant
combinatorial methods that we used in the earlier chapters
would no more be useful. We have to take recourse to

s @

programming methods, which are essentially computational

in nature. We would have no ready made answer. When all
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cij's are not equal, we call the corresponding graph a

weighted graph. We shall discuss the problems of cons -
truction of minimal cost %eighted‘networks belonging to

(1), (2) and (3) in the next section.

§ 3 WEIGHTED GRAPHS

ﬁe éré:required to establish & network-on tnt
communication centres! The cost of establishing a link
between the i-th and j~-th centros is Cij(cii = Oy
44 2 0)s The ‘n X n matrix %Ciji i1s given. Any net-
work on these n vertices 18’ completely described a
ln Xa (o, i)—matrix ixijg s If xij=1 wer can think of
1th and J=th centres as being comnected ang otherwise
ﬁot connecteds So our aim is to find that (0, 1)-matrix
the graph correéponding to which has the desirable
properties and the cost of establishing the network is
ninimum among all those graphs satisfying the same

propertiess If the graph is a directed graphiqf second

Xind thar x piniizetion usiiy.a watenBarked eealudtionloany oftE)a: Slwph W

yep op RERR
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an unoriented graph then_%xijﬁ should be a symmetric

matrix.

Problem 1 : To find a 2-accessible dirccted graph of

first kind with minimum total cost.

Formulation Ififxij) described such a network, we would

have' t6 find a 2-azccessible graph for which ZZ cij Xij

is minimum. Two accessibility mesdns that there 1s either

an arc joining two vertices or there is a path of length

S0 (or both)s S0 8 x5 =00 A1) (1.0. 1f thore 1o

no direct are between x; end xj) there should exist a

k such that x;;exy =1l (iie. there should be a path

3
of length 2). If we set Xii =1 we can write down the
condition for two accessibility:as : For aﬁy‘given vair

i, J there exists a k such that Xy ikj = 1 oxr for

all "1 and j 1 - X5 ij = 0 for some k,

H 1’1 1
or for all i and j kTI l(l - Fik xkj) = O‘

n
or ® =T I (1 - Xikﬂxkj) =. 0
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Hence problem 1 is equivalent to minimizing

? xij Cij | (4)

e

Sﬁbject to the conditions

i}
=z 1 (1 -x0 %.)=0 (B)
i3 k= ik k]

54 = 1, Xijw= 0 or } for all i and j.

Theorem 1 ¢ Problem 1 is équivalent to minimizing the

Pseudo—~Boolean function

CMER) =22 Cyy Xyg ¥ (z = c'.ij+1) z2 2T (Q=xyy ij) (c)

e

where X34 =1 and cij;s are the given constants.
Proof : Suppose $xo, ¢ with x°, =1 and x%. =0 orl
e POBS 1%14 7 i1 13

minimizes (A) subject to (B), then it minimizes (C).

Indeed, if

.+(22ci.+1)zzTT(1—xikxkj)

) o o _o
< EEoegs Xy o+ ( ? z ci4 * 1) 2= rW(l‘Xik xkj)
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S

then
0 - *
(ZZoy:41) ZZ T (L ng) T Zogy Xyy = EE 054 Xy
. =2 & cC (}:o = )

This implies that £ Z na - X5 xkj) = 0 which in turn

implies thet ‘%xijg minimizes (4) subject to (B) contra~

dicting the definition of‘zxgj% 3

TR

Conversely if 1X§j€9 X5, = 0, Xij = 0 or 1 minimizes

then it is subjsct to (B). If this is not true, then

T2 ] - xty xij) >k

and Py (xgj) 2 X Zoegy+ il contradlgtlgg

Py (J)V= zZ 4 4
< : Begy+1X Fl(x§j)

where J ig matrix of all ones.
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Remark : When we consider unoriented graphs we have the

additional condition that Xyg = xji; If we consider

oriented graphs of second kind we have = condition of the

type XiJ'in = O
Problem 2 ¢ To find a Gv(n, 2, 2, 1) oy

with minimum total cost@

Problem 3 : To find a D0y 2, 2, 1) (of second 3ad)

with minimum total cost,

With some labour the Pseudo-Booiean expression to
be mlnlmlzed for obtaining solution to Problems 2 and 3
can be written dovm. But they would be far too ghastly
looking and no 91mp110at10n seens to be posslble. Even
(0), the Pseudo-Boolean function to be minimized for
obtaining a solufion to Problem i is 1nfricate, but
électronic computersAshould rrove to be uséful inrsimplifyém
ing the expréssion and finding its minimue Pseudo;Boolean

Programming of Invanescu [5] would perhaps provide = fairly

apdelc sslutions; Tt dsinetassnecivahibeonthet enpiasies
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programming method is guioker. But perhaps it is more
straight forward to compute the values of (C) for all
2n2-n matrices. In practical situations we usually face
with an impossibiiity of connecting two centres X,y Xs

J

(say) in which case we can put G4 4 = o and 'xiﬁ .o

This can greatly simplify the ﬁroblem.

§ 4 PROBABILISTIC PROBLEMS

In § 2 we considered vertex order and edge order of
the accesgibility in the netwofks és proofs against accidents
or breakdéwns.' Théré ié anothef,rahd perhaps more natural
way of-making the ac&essibilit& proéf agéinst’éccidents.
Supposé that a certain probabiiityxof breakdowﬁ pi. ia
associated wi%ﬁ each %eftei Dye Now wé can demand‘fgr a
, minimal cost lk;aéceésiblé:ﬁétﬁork suéﬁifhét the p£6£abi1ity
thaf thé network remainé k-accegsiblé undé%ﬂbreakdown;is

greater than or equal to a preassigned number «. It is
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also possible to associate a probaﬁiiity of breakdown
with each pair of vertices and demand for a minimal cost
network in a‘similar waYe These problemshdgAnot seem to
be eaéily tractable, but a soiution toufﬁgglwouldbg_gf

great practical valuce.

We presented in this chapter problems. of great-
- complexity. We did not succeed much in simplifying -

‘the matters. . But the appliocations that . we pointed seem.

~ 5
P

to be very very relevant.
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Chapter &

4 DISTAWCL FAR (M, 1)=MATRICLS

4 1 Intrnductisn: and Summary ¢ Ia all the earlicr chapters

-

the cancept of distance an graphs played the ceatral rnle, A3
. incldence meatrices ~f graphs farm particular classes nf
(0, l)-Matrices, it wauld b2 reassmnable tn scek Tnar a
definition a~f a distance beﬁweén any twn énlﬁnns nf 2 (n, 1)-
Fatrix, 'Qe suuceéd, in this chapter, in defining a distance
between tﬁe cnlumns of a (n;.l)—Matrix. This gives g preat
seape fAr carrying the analagy foam zraphis ©n matrices.‘ A
wide ranze »f prablems spring up - but mast af them seem -

defy any casy snlutian, Ve succeed in proaving seame specific
thearems,
Let 4 be an m >xn (n,1)-Matrix, Let Rl’ R2 e Rm
zenante its raws and Cl’ 02 dn Cn denn~te its calumns, A
inite sequence ~f distinct ealumns Civ Coy eee Gy is sald

tn Tarm a chailn if Cy and Ci+1 (far 1 =1 tsn X - 1) have
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& one in the same row. k-1 is called the length of the

chain and this chain is said +o connect Gl and_ Ck' As

can be easily seen connectedness is an equivalenc; reiation.
Equivalence ciasses of columns ame called connected comﬁonents.
R connected if all its columms belong to

the same equivalence class, We define the distande Eetween

any two columns C, and Gj, to be denoted by d(Ci; Gj),

in the following manner i

LA : d(ci’ Oj) zﬁﬁsame equivadence class
| othervisge

where t 1is the length of the shortest chain starting at

Gi and ending at 'Gj‘

The diameter d(i) of a (0, 1)=Matrix 4 is defined
in the following ﬁanner )
d(%).= ‘mag d(Ci, cj)
i=1410n

Gmarked evaiupt
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The diameter of a discecnnected matrix is o e Uiven R and

i

S it would be of interest to £ind the formulae for & s=nd

oo = and d
d where & / stand for max 1 d{&)  and min a(a)
_ : ' A € U(R,S) AcUR,S)

respectivelys We do not suceeed in providing these formulae,
but we find necessary and sufficient conditions under which
d is finitee We mention the formula for & in the particular

case U(k, k).

§ 2 THE RESULTS

Lemma 1 ¢ A cenneoted (0, 1)-Matrix of size =m by n with
given row sums Tyy Toy eeey Tp 0 < T L exists if and only

1f ¥ry2m+n -1,

- Lemma 2 ¢ Let A be a connected matrix with each ry i P
and & ri > n#m=1 then there sxists a row in the matrix which

has distinet intersection with two other rows, or there is a

row which has double 1link with at least one row.

l1e U(R,8) denotes the class of (0,1 )-Matrices with row sum
vector R and column sum vector Se HeJ. Ryser

discussged the necessary and sufficicnt conditions on R and
S for U(R,S) to be non-empty.


http://www.cvisiontech.com

The proofs of these two lemmas are simple and are

. omitted here.

>0y 3 =1,2, aaa n§ such

—and. S"—: (Sl, 82 ..l Sn)’ Sj

that the class U(R, S) is non-empty, then the necessary
and sufficient condition for the existence of a connected

matrixz in the olass U(R, S) is that % ry Z m+ne-~ la

PPoof ¢ The necessity follows from lemma 1, The-proof of

sufficiency is as follows.

If there is no comected matrix in the class U(R, s),
then let k, k > 1 be the ninimum number of connected
components iﬁ UR, S)s Tet A be the metrix with
k=connected components. -Then, we can rearrange the columns
and rows and par%ition the matrix in to K~ sub=matrices
" so that the connected components are along the diagonsal and
all non-~diagonal blo?kg are zero matrices. Let Ti denct e
thernumber cf ones in thg{inth connected component . Tet

n:i_7 and n, denote respectively the number of rows and
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columns of the i-th connected componcnt. Then, by lemma 1,

m 2m

A.i s+ ni L] 1’ fOI‘ i = 1, 2’ ae gy kl But Ti = mi+ni—l

i

-1

cannot hold for all , 1 = L1y 2, see ke For, if Tiin my g

; k k
for all i =1 2y wee k .then X T = 2 I, +. & n, =%
' Qg e e

or Zry® m+ne~k<m+n-1 éontradicting the hypdtpesis.
Therefore there is a component, say the‘r-tﬁ cémpbnent, with
Tn > mr_f n, = 1. By lemma 2, the p=-th oompdhent has a row
which)has.distinct intersection with the other rowsﬁoﬁ has;a
double link with éome row. Now we .can apply an-inferéhéngel
using a one of this row and a one from some other coéonnected
componént. This interchange reduces the number of connected

components; Thus the assumption that k >tl§*is not correct.

This completes the proof of the theorem.

Theorem 2 : Given R = (rl,-r2 =% rm) -ri'i S for 1 € I =L,2,

seem eand 8= (sl,‘sg, esey S )y 8,30 for jEI=1,244s

3
n and that UR, S) is none=empty then @ of this class of
matrices is finite 1f Ex; > m +m, = 1 and for every

partitioning of‘ I =as Il U_Ig, "‘.Ik $ 4 as Jl U J2 e

o n , e ation ucir . watermaried e uation 20 E
D {JK El DLC 3.:. t-&‘;‘.— :—V-‘._L(JV"-L»‘LE) n..)ul.a-\.-‘\.d._.r_\_,i. Lo v..l.u.l..c.bl.\;o. :
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This theorem follows from the previous theorem,

U(X, k) denotes the class of all n X n (0, 1)
Matrices with k = (ky k&, k, eeey k) both for row sum and
columm sum vectors. We Have the following theorem for the

class U(k; ko

Theorem 3 3

1 t<ng2k -1

=1 |
£l
— N e,

L ® ifn ) 2k

Proof ¢ When n S 2k = 1 we cannot have two columns without
a one in some common row and so d(A) =1 for all 4 ¢ U(k,k),
therefore d=l. When n Z 2k, U(k, k) contains a discomneted

matrix and hence q = oo,
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When n = q.k + r it is perhaps truc that d S Qe

The formulae for d and 'd in the general case

_would be desirable but not yet available.

In view of this definition of a distance for (0,1)-
Matrices, ever o many guestions can be asked, carrying

the analogy from graphs to matrices.

I3
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Annendix .. .

LCCHSSIBILITY AND ADJOINT GRAPHS

Let G = (K,'U) be a finite wnoriented graph; The
adjoint {or intefchéhbe graph) I(G) of G is defined as
folléﬁs; The édges of G form the Verteéséet of  I(G),
and two vertices in I(G) are-joined by an edge if and only

1 the -corresnonding edges in G have a vertex in common.

The study of the behaviour of graphs undegrrepegted
interchanges hag heen a topic of many investigations. In
this appendix we shall study the "imterchange graphs from
lthe point of view of accessibility and order; Before going
furthér we define a quadrilateral;. A puadrileteral in a
graph is defined as a set of four vartices;, There are
shortest chains between six different pairs: Out of these
six shortest.phains four are -named diagonals; The tﬁo

diagonals do not intersect at any of these four vertices.

Iheorem 1 TLet G be a finite connected graph and let it

= -

diameter be . Then the diameter of I(G) is either k-1,
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t or Wt+l.

Lemma 1 If two edges are the terminal edges of =z gimple
chain of Jength t* in Gy then in I(G) the vertices
corresbonding 4 these edges will have a simple chain of

length -1 between them.

Proof This followg from the definition of I1T(Q@).

Proof of theorem 1 Since the diameter of G 1is ks there

exist two vertices A and bo such that the shortest

chain between them igeflength k.

i._e- d(aoi bo) = X 3 se e (1)

Let (ayy a;) and (b» by} be the two edges having aj
and bo ag their terminsl vertices. (If %k = 1?(30’ al)
and (bo, bl) will coincide)s Therefore (ao, al) and

(bo, bl) are the terminal edges of a chain of length at
most let2y  Since ¥k is the maximum distance between any
two vertices in Gy any two edges of G lie on a chain of

.

length at most k+2. And hence by lemma 1 the .shortest
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. chain between any two vertices in I(G) 'is of length at
most I+l. In other words the diameter of I(G) is legs

than or equal to ‘lep1.

e

The four vertices 8,0 899 b, and b, form a quadrie-
lateral in G; We shall call the shortest chains between
8 and Db, and a,  and by & the diagonals and the othep
'éhortesﬁ chains ag sides; -The_diagonals have fo be at least
‘el din length; Fir, says the diagonal from a, -is of
length less than .k—lg then there would exigt a chain of

length less than X between 8 an¢ b_s  This is contradic-

O

tory to the agssumption that the distance between 8 and b

or a, and by can at mogt pe equal to k.

We therefore have
s " - 7 ,:. R |

k= 1 ~<_. d(al, bO) i ]:‘: T eea (2)

k - ] S' d"(a_o’”bo) __<_ k ses (3)

Frs

By similar arguments we can see that the side-(al,.bl) is

not greater than -9 in Jength and yn Mo
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-~ o

k - 2 _<_‘ d(al, bl) ﬁ_ kt sv s (‘4:)

Considering 1y 2y 3 and 4y we observe that any quadri-
lateral having two edges for two sides and containing a
diametral chain as nne of the other sides can have twelve
poséible structures; 1 ig any of these guadrilaterals the
fourth Sidf is of length k-2, then the diameter of T1(G)
would be k-l; T'ory the shortest simple chaln hav1ng (e ,al)
and (bo’ bl) as terminal edges ig of 1ength. ke And by the
lemma the verticeé inr I(Q®) correépeﬁding toﬂthese edges
of G will lie on a simple chain of length k—l; hIfthe
fourth side or oﬁé of the diagonals is of length k-14 then
the diameter of IfG)lwould be k; If the fourth side and
both the diagona%s are of length %k, then the diameter of

I(G) would be k1.

To summarize the above discussion, the diametral
structure of I(G) depends upon the existence of certain

types of quarilaterals in G. The interchange graphs of
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Gl’ G, and GB in Figure 1 1llustrate the three possibili-

tiess The relevant quadrilaterals sre indicated.

i \‘\ o 7 ! I \‘\\
t SEa 2 : / kil S
LN -~ ; 8
! | ™
E 1/)\\ ; ; o ’rl \\
/ iy i i / N \\
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?heorem 2 Iet G be a finite connected graph with &iameter
Ke TIF I_ltG) ig defined, then the dismeter of I'l(G) is
either k-l er k or k+l.

This follows from theorem l.

o ﬁ. ) .
Theorem 3 If G is a k¥ to A accessible graph of edge
N k- s b @

order sy then I(G) is a GV(le iy A+ 3y 8) where N

is the no of vertices in I(G) and i and j taka the
values =1 or 0 or 1.

-

There 1s a one to one correspondence between the partial

graphs of G and subgraphs of I(G)e Every partial graph of .

"

G with more than [ U l - s = 1 edges (where | U | denotes .

the number of edges of G} 1g A ~accessible and the corres-

ponding subgraphs of I(G) with more than | U | - s-- 1

vertices are A + j=accessibley where j = -1 or 0O or +1.

I(@) itself will be k 4 i accessible where i takes one of

the values -1y 0 or +1ls Hence the theoren.

—a

Theorem 4 ' Tet G bea k¥ to A accessible graph of

vertex order se Theny if I L(G) is defined it will be
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e

a Go(Noy W, AJy s) where N is the number of vertices
EM2 -

of I—l(G) and 1 and J take one of the values =1y 0

or +1.

The proof of this theorem is .~ gimilar to that of

Theorem 3.


http://www.cvisiontech.com

C. BERGE,

D BRATTON .

P, ERIOS,

Pe ERDOS and

PoLIVANESQU

D. KOWIG,

~108.

REFERENCIS

The Theory Of Graphs ind Its Applications,
Methuen, TLondon, 1962,

Ifficient Coomunication Wetworks, Cowles Comm.
Disce Paper, 2119, 1955,

On A Problem In Graph Theory, Mathematical
GaZette, 1963, pp,220ﬂ223.

Ae RENYI, On A Problem In The Theory of Graphs,
Publications Of The Mathematical Institute Of
The Hungarian Academy Of Sciences, Vol. 7y Ser.

B, Pasc 4, 1962, pp, 623~841.

and I. ROSENBERG, Application of Pseudow~
Boolean Programming Te The Theory Of Graphs,
Ze Wahrscheinlichkeitstheorie 3, 1964,

DPs 163=176.

Theorie der Englichen und Unendlichen Graphen,

Leopzig, 1936.

GeSeRWHURTY and K.VIJAYAN, On Accessibility In Graphs,

Sankhya, Ser. A, Vole 26, pp, 299=302.


http://www.cvisiontech.com

S 0K

8'.IIOSQR.MUB.TY, A Structtlral StUd;‘," of Graphs With ReSpect

9

10,

11.0.0RE,

12eH.J JRYSER,

to Accessibility (Unpublished).

On some Extremal Graphs, Tech. Report No.3/66,
Indian Statistical Institute.

Extrenal Directed Graphs, (Unpublished).

Theory Of Graphs, American Mathematical

Society Colloquium Publications, Vole. 38,
1962.

Oombinatorial Properties of Matrices -
Of Zeros and Ones, Canadian Journal of

Mathematics, Vole 9, 1957, pp, 371=377.


http://www.cvisiontech.com

	title1.pdf
	acknowledge-1.pdf
	acknowledge-2.pdf
	contents-1.pdf
	contens-2.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf

