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PREFACE Restitcied Collection.

The research work, on which the present thesis is based, was carried
cut in part, durihg my stay at the Indian Statistical Institute, Calcutta, from
July 1962 to February 1965, and mostly thereafter, at the Tata Institute of

Fundamental Research, Bombay,

The thesis consists of four chapters which are, more or less,
independent of each other, A detailed summary of the results contained in
each chapter is provided at the beginning of that chapter. A brief account

of the main results presented in the thesis is given.below.

In Chapter 1, the concept cof the cover index of 2 graph is introduced,
Let G be a graph (undirected, without loops) with set of vertices V(G) and set
of edges E{(G). Any C . E(G) is said to be a cover of G if each vertex
vE€V(G) is incident with at least one edge in C. The cover index k(G) of G
is the maximum number k such that there exists a partition of E(G) into k
sets each of which is 2 cover of G. The greatest lower bound of the degrees
of the vertices of G is denoted by /?dJ(G), We prove {Theorem 1, 3.1} that if
G is a locally finite bipartite graph, then, k(G) = g(G) This theorem solves,
in particular, a problem suggested by O, Ore ':18] , and implies & well.known
theorem of J, Petersen [ZO_‘I and D. Konig (118]. A graph G is called an
s-graph if no two of its vertices are joined by more than s edges, We
prove (Theorem 1, 4. 1), in general, that if G is an s-graph which is locally
finite, then, pc'li(G) = k(G) EE(G)us. It is shown that the bounds cannot be

Meal
improved if s > 1 and d(G) = 2ms-r where r =1 0 n = | 5"7" ! 45,

.....
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In Chapter 2, the problem of determining the chromatic index of a
graph is consider@d. For a graph G, any (nonempty) M & E(G) is said to be
a matching of G if each vertex v & V(G) is incident with at most one edge in
M. The chromatic index q{G) of G is the minimum number ¢ such that there
exists a partition of E(G) into q sets each of which is a matching of G, The
least upper bound of the degrees of the vertices of G is denoted by E(G) The
main result (Theorem 2, 3, 1) proved is that if G is an s-graph which is locally
bounded, then, E(G) £ q(G) £ E(G)+s. The hounds are more exact than the
previously known bounds due to C, E, Shannon [22] and are shown to be best

possible if s >/ 1l and E(G) = Z2ms~T where r ?, 0; m 7 [E%'};il-

In Chapter 3, we consider the problem of determining the largest
number of arcs in any basis digraph consisting of n vertices.. It is proved
that any basis digraph with n vertices and k strong components can have at most
2{n-k)+ [%J arcs. Further, the bound is shown to be best possible and

the structure of extremal basis digraphs is completely determined, This

solves a problem proposed by O. Ore D‘)] .

Chapter 4 is based on the results published by the author in [5 :'5,
[6] and [?]. The proof of a theorem, which is stronger than an earlier
theorem due to A, Kotzig [16] and the author [5] is included, and some

Yémarks on the problem of analysis of a digraph are added.

A few conjectures, which are related to the problems considered
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"in the thesis, have also been stated,

For terminology, C. Berge (1962) has been followed, in general,
throughout. However, to make the work self-contained, and to avoid any
possible confusion, definitions of all the necessary terms and concepts are

incorporated.

R. P. Gupta

Computer Group,
Tata Institute of Fundamental Research,
February, 1967,
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CHAPTER 1
THE COVER INDEX OF A GRAPH

§

1,1, Introduction and Summary

Let G be a2 graph (undirected, without loops) with set of vertices
V{G) and set of edges E{G). Any subset C of E(G) is said to be a L.;ifcnrer of G
if each vertex v& V(G) is an endvertex of atleast one edge in C, The cover
index of a graph G, denoted by k(G), is defined to be the maximum number
k such that there exists a decomposition of E{G) into k mutually disjoint
sets each of which is a cover of G. The lower degree EIJ(G) of G is the
greatest lower bound of the degrees of its vertices. (For the definitions of
the cover index k(D) and the lower degree E(D) of a directed graph D, sece
section L. 2.) A graph G is called an s~graph if no two of its vertices are

joined by more than s edges: The least number s for which G is an

s-graph is called its multiplicity,

In the present chapter, we propose to investigate the problem of
determining the cover index of a graph in terms of its lower degree and
multiplicity. Evidently, for any graph G we must have k(G) £ E(G). Also,
it is obvious that k{G)} > 1 if and oniy if ::{(G) 2 1, O. Ore (1962) proved
that "for a graph G, k(G) > 2 if and only if 4(G) > 2 and no connected
component of G is a cycle with odd number of edges'. He then proposed

ElB] to establish an analogue of this result for directed graphs, In

section L. 3, the following general theorem is proved. Theorem-l, 3,1
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"If G is any locally finite bipartite graph then k(G) = ;11 (G)'". As a
corollary to Theorem 1. 3,1, we then obtain Theorem 1. 3. 2 "For any
locally finite directed graph D, k(D). = EJ(D)". - Evidently, Theocrem 1, 3,2
solves a more general problem than that suggested by O. Ore. Further,

it is observed that Theorem 1, 3. 2, and hénce, a priori Theorem 1, 3,1,

implies a well-known theorem of J. Petersen [20} and D. Konig [14] .

In section 1. 4, considering the problem for arbitrary graphs
(not neces sarily bipartite) the following theorem is proved. Theorem 1, 4, 1
"If G is any s~graph which is locally finite then d (G) 3 k(G) > d(G) - s.
The bounds are best possible in the following cases: s > 1 and J'J(Gr) =

2ms - r wherer > 0, m > [-I;-'i]-i-s”.

Z

A few problems for further investigation are also suggested and

some conjectures are rade,

It may be remarked that the theorems proved in this chapter may also
be stated, for the special case of graphs of multiplicity 1, in terms of
(0, 1)-matrices studied extensively by H, J, Ryser [21] and others,

or in terms of families of subsets of a given set,

1, 2. Definitions and Notations; Colorings; The Concept of Alternating Chains

The method used in proving our results in this chapter is based

on the concept of alternating chains introduced by Petersen (1891) in his
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investigations on the exisiﬁnce of subgraphs which has been an effective
tool for many problems in graph theory. In this section, we first explain
some of the basic concepts and notations which are used throughout this
work, and then define the concepts of colorings and alternating chains.

For terminology, C, Berge [1] is followed, in general,

Definitions and Notations: An undirected graph or simply a graph G is

defined by a nonempty set V(G) of vertices and a set E(G) of edges

together with a relationship which identifies each edge e & E(G) with an
unordered pair (v, u) of distinct vertices v, u&£.V(G), called its endvertices,
which the edge is said to join. In the following, the letter G denotes, without
any further specification, a graph, (It should be noted that by definition

we exclude from our consideration graphs which have 'loops!, i.e.,

edges with coincident endvertices). Two vertices are adjacent if they are
joined by an edge; two edges are adjacent if they have 2 common endvertex,
A vertex v and an edge e are incident with each other if v is an endvertex

of e, (This terminology is suggested by geometric considerations, )

As a notational convention, if e is an edge joining the vertices v
and u then we write e = (v, u). We note that if ¢ = (v, u) and e! = (v!, u!)
are two distinct edges, then, unless gpecifically stated, we may have

v=v'or u=u! or bothv =v! and u = ul,

If no two vertices of a graph G are joined by more than s edges,

s > 0, then G is called an s-graph, The least number s for which G is an
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s-graph is called the multiplicity of Gi

A graph G is finite if both V(G) and E(G) are finite; otherwise G is

infinite,

Any subset E'! of E(G) defines a partial graph G' of G such that

V(G') = V(G) and E(G!) = E', Any (nonempty) subset V' of V(G) defines

a subgraph G' of G such that V(G') = V!, E(G') & E(G) and an edge of G
is an edge of G’ if and only if both of its endvertices are in V!, ‘A partial
graph of a subgraph of G is called a partial subgraph of G. (It is implied

that every edge of a partial subgraph G' of G has the same endvertices in

G! as in Q).

Two graphs are said to be edge-~disjoint if they share no edge in
common. A nonempty family {GO’ Gl" 37 Gk 1 } of mutually edge-disjoint

partial graphs of a graph G is said to form a decomposition of G if

k-1
E(G) = 'UO E(Gi); we then write
i=
(L 2. 1) G=Gy+Gytoews +G

A chain in a graph G is a finite sequence (we shall have no occasion

to consider infinite chains) of the form
(1- 2. 2) }l(vo, Vr) o (Vos €12 Vir €300 Ce® Vr): r 20,

where (1) v, € v(G), (2) e, € E(G), and (3) e, joins v,

and v, for each
i-1 1

i=1, 2,.s., r. (I 21l the vertices and edges of a graph G can be arranged
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in a chain then G is itself called a chain). The chain et (vo, v,.) is said
tc connect its 'terminal vertices' Vo and v.. A graph is connected if
every two of its vertices are connected by 2 chain, The relation of being
connected in G is obviously an equivalence relation, It, therefore,
'partitions! G into a family {Ga} of graphs each of which is a maximal

connected subgraph of G and is called a connected component of G, A

chain (L. 2. 2) is called a cycle if (1) it has at least one edge, (2) its edges
€1r €1e+4, e are all distinct, and (3) its last vertex v, coincides with its

first vertex v...

0

In a graph G, the degree d (G, v) of a vertex v is the number

of edges that are incident with v, The lower degree of G, dencted by

d (G), is the greatest lower bound of the degrees of its vertices. Thus,
the lower degree of a graph is the largest number k such that there are

at least k edges incident with each of its vertices.

A graph is said to be locally finite if the degree 4 (G, v) of each

vertex vC V(G) is finite, Trivially, if G is locally finite, then its lower

degree d (G) is finite,

Any set of edges C of a graph G, C &= E(G), is called a cover or an
edge-cover (for the vertices) of G if every vertex v ¢ V(G) is incident with
at least one edge in C, Obviously, if G has an 'isolated vertex! (a vertex

is isolated if its degree is zero) or if d (G) = 0y then there can exist no

cover of G.
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The cover index o}a graph G, denocted by k(G), is defined as
follows: k(G) = 0 if d (G) = 0; otherwise, k{(G) is the maximum number k

such that there exists a partition of E(G) intc k sets

(1' a' 3) Eor El:ltv: E E(G) = U E1: E, r\'Ej = @

k-1' i

where each of the sets E, (i=0,1,,.., kol) is a cover of G,

A partial graph G! of G is called a covering graph of G if

—~

d (G') > 1lor, in other words, if its defining set of edges E(G!) is a cover
of G. The cover index k(G) of a graph G may equivalently be defined to bre
the maximum number k such that there exists a decomposition (L. 2,1) of

G where each of the graphs Gi (1=0, luaa, kal) is a covering graph of G,
Evidently, if d (G) = 0, then no such decomposition of G exists and in that
case we have, by definition, k{(G) = 0, Henceforth, we may disregard the

~ ~
trivial case d (G) = 0 and assume tacitly, if necessary, that d(G) = 1,

Remark: It may be observed that the concept of the 'cover index! of a graph,
as we have introduced aboeve, is agaretly dual to the well-known concept
of the 'chromatic index! of a graph, T,hisfduality is made more apparent

by the comparison of the results obtained in this chapter and the next.

4 directed graph or briefly digraph D is defined by a nonempty set

V(D) of vertices and a set A(D) of arcs together with a relationship which
identifies each arc with an ordered pair of (not necessarily distinct) vertices

which the arc is said to join, For each arc (v, u), v is called its initial
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vertex and u its terminal vertex, both v .and u being called its endvertices.

£ digraph D is finite if both V(D) and A(D) are finite; otherwise,

D is infinite.

In a digraph D, the outward degree dH{D, v) of a vertex v is the

number of arcs in A(D) with initial vertex v and the inward degree

d (D, v) of v is the number of arcs in A(D) with terminal vertex v. A

digraph D is locally finite if for every vertex vE V(D), the sum

d+(‘D, v) + da7(D, v) is finite.

~

The lower degree of D, denoted by d (D), is the largest number

k such that d+(D, v) 2k, d (D, v) = k for every vertex v V(D).

Obviously, if D is locally finite then its lower degree d (D) is finite.

For a digraph D, the noticns of partial graph and subgraph are
defined analogouslyras for undirected graphs. Thus, a partial grepl.
of D is a digraph D! such that V(D') = V(D) and A(D') & A(D). Two digraphs
are arc-disjoint if they have no arc in common., A nonempty family
{DO, Dl, ensTon? Dk.,l'} of mutually arc-disjoint partial graphs of a digraph
D is said to form a decomposition of D if A(D) = k‘:j.](; A(Di), and we write
i=

D:DO+D1+¢-- +Dk l-

A set of arcs C of a digraph D, C & A(D), is called a cover cf

D if for each vertex v€ V(D), there is in C at least one arc with initial
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veriex v and at least cne arc with terminal vertex v, A partial graph D?

of D is defined, as sugges&ed by O. Ore [18] » to be a2 covering graph of D

if E(D‘) > 1l or, equivalently, if its defining set of arcs A(D!) is a cover

of I,

The cover index of a digraph D, denoted by k(D), is defined as
follows: k(D) = 0 if 4 (D) = 0; otherwise, k(D) ié the maximum number k such
that there exists a decomposition of D into k partial graphs each of which
is a covering graph of D; or, equivalently, k(D) is the maximum number
k such that there exists a partition of A(D) into k sets each of which is a
cover of D. In the following, we may disregard the case ?lj(D) = 0 and

o~

assume that d (D) > 1,

Colorings: Our objects in this chapter necessitate the consideration of
partitions of the set of edges of a given graph, Consider, therecfore, for an

undirected graph G, an arbitrary decomposition of its set of edges E(G):

(L 2, 5) Egr Ejsvee, E ;E(G):UEi, EiﬁEj:;a

0 k-1
It is convenient for us to think of each set Ei as representing a

color which we denote by the integer i. Further, we say that each edge

e € E; is colored with the color i thus obtaining a ccloring of the edges of G

by means of k distinct colors, Formally, any function f which assigns to

each edge e € E(G) an integer f(e) € {0, Lsea, kal } is called a coloringor,

more specifically, a kwcoloring (of the edges) of G. The integers 0, 1,,,.,k-1
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are referred to as color¥and if f(e) = i we say that the edge e is colored
with the color i or briefly that ¢ is an i~edge. It is easily seen that there is
a natural one-to-one correspondence between kwcolorings of G and decom-

positions of E(G) into k sets.

Any k-coloring of G is called admissible if every vertex v& V{G)
is an endvertex of at least one i-edge for eachi=0, 1,..., kol, Itis
immediately seen that in a decomposition (i 2. 5) of E(G), each of the sets
Ei(i =0, 1,000, k1) is a cover of G if and only if its corresponding k-coloring
of G is admissibles Thus, the cover index of a graph G is the maximum

number k for which an admissible k~coloring of G exists.

Let f be any k-coloring of G+ For any vertex v & V(G), we denote
by cf(v) or simply by c{v), if no confusion is possible, the set of colors
which are assigned by f to the edges incident with v. Clearly,

cf(v) o= {0, il o Liney k—lj‘. The difference
(L 2. 6) D) = (- fedo) D)

is called the deficiency of f at the vertex v. ( ‘ 5 ‘ denotes the number of

elements in the set S.) For any subset V! of V(G), the sum
(1. 2.7) AWy -]

is called the deficiency of f at V!, (By definition, A f(V‘) =0 if V' = O,)

The total deficiency of f, denoted by &f((}), is obtained when the sum
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(1, 2¢7) is extended over all vertices of G, i, €., when V! = V(G). Itis clear
that 2 k~coloring f of a graph G is admissible if and only if its total deficiency
4 f(G) = 0, Thus, in order to prove that k(G) > k, where k is some positive
integer, it is sufficient to show that G possesses a k-coloring f whose total

deficiency is zero.

The Concept of Alternating Chains: Any chain considered in the following

is assumed to have at least one edge and all of its terms are to be distinct

except that its last vertex may coincide with one of the vertices preceding it.

Consider an arbitrary kwcoloring (k > 2) of a graph G and let iand j

be any two fixed colors. A chain

(L 2. 8) /J.(VO, vr) = (vo, € Vi1 Chreesy Vo u €, vr). r =1,

in G is called ad (i, j)-alternating chain if its edges e, 55000 €, aTE

allternately colored with i and j, the first one being an i-edge.

An (i, j)-alternating chain (L, 2. 8) is called suitable if it satisfiea"

any one of the following conditions:

(i) Vg TV
(i) er is an i~edge (respectively, j-edge) and there is no j~edge
{respectively, i-edge') incident with vr;
(iii) e. is an i-edge (respectively, j-edge) and there is another

i-edge (respectively, j~edge) incident with Ve
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A suitable (i, j)-aliernating chain (L 2. 8) is called minimal if

HVO, Vt) = (vo, e vl,.. «» €4 Vt) is not suitable for any t, 1 &£t £ ral,

It is easy to observe that if G is finite then,given any iwedge ey = (v, vl)G E(G),
a {(minimal) suitable (i, j)-alternating chain (1 2,8) in G can always be

found, (In fact, this can be done by following along an (i, j)-alternating

chain starting with e, till cne of the conditions (i), (ii) or (iii) is satisfied),

'j.[‘he method of alternating chains as used in this chapter, consists
in the following. Suppose G is a finite graph and we want to show that G
possesses a kwcoloring (k ’>, 2) which is admissible, We start with an
arbitrary k-coloring f of G, I Z—\f(G) = 0, we are through. Otherwise,
choosing a vertex v, € V(G) and the colors i and j properly, a suitable
(i, j)=alternating chain starting with the vertex v, is found and the colors
i and j interchanged on all edges belonging to this chain, Such a step may
have to be taken more than once, till we obtain a k«coloring g (say),

such that Ag (G) < A f(G)- The assertion is then proved by a proper

use of finite induction.

1.3, The Cover Index of a Bipartite Graph

A graph G is said to be bipartite (simple, C. Berge F1]) if it

contains no cycle with odd number of edges. Alternatively, G is bipartite
if (and only if) its set of vertices V(G) can be decomposed into two disjoint
sets V! and V' such that each edge e = (v!, v!") € E(G) joins a vertex

V& V! with a vertex v'€ V', These special kind of graphs are of particular

Y’\ c_;;‘;\CAL !’;Eﬁ\
7~ a\\\
SOV AN 1988 %)

Thotan
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significance in graph theory and play a considerable role in various appli-
cations, For instance, any (0, 1)-matrix or 2 family of subsets of a given
set can be represented by a bipartite graph and graph theory becomes a
handy tool for several combinatorial problems relating to such systems.
Also, it is seen that to any directed graph D, there corresponds a unigue
bipartite graph GD (an arbitrary bipartite graph may not correspond to any
directed graph) defined as follows: to each vertex v ¢ V(D) there correspond
two vertices vi, v!'& V(GD) a-nd to each arc (v, u) € A(D) there corresponds
an edge (v', u')& E(G). Thus, any problem for directed graphs may be

formulated as a problem for bipartite graphs,

L.et G be any graph., Clearly, if E(G) = 0 or 1, then k(G) =0 or 1
respectively, Oystein Ore (1962) proved that "for any graph G, k(G) > 2
if and only if 2 (G) 2 2 and no connected component of G is a cycle with odd
number of edges.' He then suggested [18] tc establish an analogue c¢f this
theorem for directed graphs, The solution to this problem is provided by the
following theorem ''for any digraph D, k(D) > 2 if and only if E(D) = 2,M
which we can now preve. Indeed, this theorem is most conveniently derived

as a corollary to the above theorem of O, Ore. (The details of the proof

which are simgple, are omitted here).

We consider below the general problem of determining the cover
index of a bipartite graph which, as is easily shown, includes the problem
of determining the cover index of a directed graph, We shall now prove

the following theorem which may be called a Decomposition Theorem for

Bipartite Graphs.
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Theorem L 3,1. Let G be a bipartite graph which is locally finite and

let :f(G) = k. Then, there exists a decomposition

(1.3.1) G=G +G1+bon+ Gk-ﬁl

0
such that each of the graphs G;(i =0, 1,44, k1) is
a covering graph of G. In other words, if G is a locally

finite bipartite graph then k(G) = g(G).

Proof: If d (G) = 0 then the theorem is trivially true. Let therefore,
E(G) =k 2 l. Evidently, we must have k{G) € k. Hence, to prove

the theorem, it is sufficient to show that k(G) > k or equivalently, that
there exists a k~coloring f of G which is admissible, i.e., A f(G) =Al
We shall, infact, prove the following lemma which is apparently stronger

than the above statement,

A

Lemma 1. 3.1, Let G be a locally finijte bipartite graph and let V! be any

subset of V(G) such that d (G, v) 2 k, k> 1, for 21l v& V!, Then, there

exists a k-coloring f of G such that &f(V’) = O,

Proof: The lemma will be proved first for the case in which G is finite;
then, assuming the lemma to be true for all finite graphs, it will be proved,
by using a welloknown argument due to D. Konig and S, Valko (1926), when

G is infinite (but locally finite).

G is finite: If k =1, the lemma holds obviously. Suppose, therefore, that

k > 2. Consider k-colorings of the graph G. Since G is finite, the number
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of k~colorings of C is finite, Hence, there must be a k-coloring f of G such
that A f(V‘) is minimal, i.e., A f(V") £ Ag(V’) for any other k-coloring

g of G, We shall show that Af(V’) = 0,

Suppose, if possible, that Af(V‘) > 0. Then, there will be a vertex
Vo€ V! such that Af(vo) > 0 which implies that there is 2 color j such
that j ¢'Cf(V0)- Since, now, at most, k-1 colors are assigned to the edges
incident witl} vy @nd by hypothesis d (G, vo) >k, there must be a color i
such that there are (at least) two -i-edges incident with vje Now, we determine
a suitable (i, j)-alternating chain M (vo, vr) starting with the vertex Ve Let
g denote the k;coloring of G obtained from f by interchanging the colors i and
jon all edges belonging to the chain [/ {(vg» vr). Since the chain is suitable,
it is easily seen that l cg(v) I (3 Icf(v) J for all vertices v except possibly
when v = Vo We now observe that v, cannot coincide with vge Infact, if
vy = Vg then, since jé‘;cf(vo), vy, v,.) would be a cycle in G with odd

number of edges contradicting the assumption that G is bipartite. Hence,

it is seen that, since there .were two i-edges incident with Vo with respect
to £, cg(vo) = e (vo) U fil 2 wcglvg) Hence, by definition (L 2.7), it
follows that A g(V’) a A f(V‘) which is contradictory to the choice of f,

Hence, we must have Af(V’) = 0, This prove the lemma for finite graghs,

G is infinite: Let us first assume that G'is connected. Since, moreover,

G is locally finitg the set of vertices V() of G is enumerable, Let Vs Vi V3.

be an enumeration of V(G) in some order. Let Vi, (n=1, 2,.,.) denote the
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set of all vertices v such that either v & {Vl’ Vorees, Vn} or v is adjacent
to some vertex v,, i=1, 2,s.,, n. Denote by G, the subgraph Lof G
defined by the set of vertices Vn and let V; =V N {Vl’ Voreses Vn} . Now,
it is evident that the graphs Gn are finite and d (Gn, v) > k for each
vE V;. Since the lemma holds for finite lgra.phs, it follows that G, has
k-colorings fn such that .i\.f (Vz'1) = 0, but the number of such k~colorings

n
of Gn is obviously finite. I.et any such k-coloring £ of Gn be called 'proper!,
Now, if n < m, G, is a subgraph of Gm’ and each proper k-~coloring fm

of Gm implies a proper k~coloring f of Gn which is called the restriction

of the coloring of Gm; fm is called an extension of f-11 and we write fn o fm'

Now, the proper k-colorings of the graghs G.?;’ GB“ i+ imply proper
kecolorings of Gl and since Gl has only a finite number of proper k.cclorings,
there must be one among them which is restriction of infinitely many proper
k~colorings. Let us fix one such coloring f1 of Gl' We consider now only
the extensions of this fixed coloring. ZEach of these implies a proper
k-coloring of G,, Hence, by the same argument as above, G, must
have a proper k-coloring f, which is restriction of an infinity of proper
kwcolorings. We proceed in this manner to obtain 2 sequence of k-colorings
f1» 2,4+ such that fn(n =1, 2,..,) i8 a proper k-coloring of G, and
fl o £2‘< +ose NOw, we define a kwcoloring f of G as follows: for each
edge e £ E(G), fle) = fn(e) if n is the first index such that e € E(Gy).

Evidently, f is well-defined and we have Af(V') =,
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If G is not connected, let {Ga} be the family of connected
components of G, Let V; = Vi) V(Ga) for each index a. Then,
d (Ga., v) 2> k for each v ¢ V; and since G_ is connected, by what we have
just proved, each of the graphs G, has a k-colering f, such that
Afa(V;) = 0, We define a k~coloring f of G as follows: for every
eC E(Q), fle) = f,(e) if e€ E(G,). It is then clear that & f(V’) = 0, This

completes the preof of the lemma.

The theorem now follows immediately if we take V! = V(G) in the

above lemma, Hence, the proof of the theorem is also complete,

Remark: Let G be a finite graph which is bipartite and let ’c\ij(G) = k., The
proof of lemma 1, 3.1 suggests an algorithm for an actual determination

of an admissible k~coloring of G or, equivalently, a decomposition of G

into k covering graphs, We start with an arbitrary k-coloring f; of Gy

If fl is not admissible then a suitable alternating chain is found as indicated
in the proof of the lemma, By interchanging the colors of all edges belonging
to this chain, we obtain a new k~coloring f, of G such that the total defi-
ciency of fZ is less than the total deficiency of fl by atleast 1. The process

is repeated with the new coloring (each time) till an admissible kwcoloring

of G is obtained. (Since G is finite, an admissible k~coloring of G is

obtained after a finite number of repetitions of the process. }

It may also be noted that the above algorithm is quite efficient and
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can be programmed conveniently for use on electronic computers.

There are several important consequences of Theorem 1. 3, ] which

we shall state below.

We {first obtain the following theorem which may be called a

Decomposition Theorem for Directed Graphs.

Theorem 1, 3, 2,

Let D be a directed graph which is locally finite and let

d (D) = k, Then, there exists a decomposition

(]..302:) D3D0+D1+'ol+Dk—1

such that each of the digraphs Di(i =0, 1,..., k-1) is

a covering graph of D, In other words, if D is a locally

finite directed graph then k(D) = d (D),

Proof: Consider the bipartite graph GD corresponding to the given“éraph D

as defined above. Clearly, GD is locally finite and P;(GD) = ':;(D). Also,

it is seen that a set of arcs in D is a cover of D if and only if its corresponding
set of edges in GD is a cover of G so that we have evidently, k(GD) = k(D).

s

Now, by Theorem 1, 3.1, we have k(GD) = d (GD) whence the theorem

follows immediately,

We say that a digraph D is regular of degree k if q (D, v} =

d “(D, v) = k for each vertex v € V(D). Any partial graph D! of D is called
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an r-factor of D if D' is regular of degree ri If, in Theorem L. 3. 2, we take
D to be regular of degree k, then evidently, each of the digraphs
D;{(i=0, 1,..., k-1) in the decomposition (1. 3, 2) will be a l-factor of D}

1

Henceé, as a particular case of Theorem 1, 3!. 2, we obtain the following:

Corollary I, 3,1, 'Let D be a directed graph which is regular of degree k.

Then, there exists a decomposition (l. 3. 2) of D such that each of the

digraphs D;(i = 0, 1,..,, k«l) is a 1-factor of D.. -

Consider sn undirected graph G. The graph G is said to be regular

(homogeneous, Berge [ 1]) of degrec k if d (G, v) = k for each vertex

v€ V(G). A partial graph G' of G is called an r-factor of G if G! is regular
of degree r. It is known that if G is a2 regular graph of (even) degree 2k
then the edges of G can be so 'directed’ ('or;iented’), each edge being
assigned a unique direction, that the resulting digraph Gd' say, is regular
of degree k, Clearly, if a partial graph G:i of G, is an r-factor of Gg then
its corresponding partial graph G! of G is a 2r-factor of G. ‘Hence, from
Corollary L 3.1, we obtain the following !factorization theorem!' due to

Petersen (1891),

Corollary L. 3. 2, (Theorem of Petersen) Let Gbe a regular graph of

degree 2k. Then, there exists a decomposition (1. 3.1} of G such that each of

the graphs C‘ri (i=0, 1,..., k-1) is a 2.factor of G.

It may also be noted that the theorem of Petersen implies, in its turn,
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Corollary L, 3, L.

The following result for regular bipartite graphs due to Konig [14] "
which is a special casa of a more general theorem of Konig and P. Hall (1934),
can also be shown to be equivalent to Corollary 1, 3.1 or the theorem of

Petersen and hence, is a consequence of Theorem 1, 3. 2.

Corollary L, 3. 3. (Theorem of Konig) Let G be a bipartite graph which

is regular of degree k, Then, there exists a decomposition (L. 3,1) of G

such that each of the graphsG; (i =0, 1,..., k-1) is a l-factor of G.

We observe that Theorem 1, 3,1 is apparently stronger than

Theorem l. 3. 2 which implies the theorems of Petersen and Konig. Itis
not known if the convarse implication also holds. Specifically, we may ask
the following question: 'Is it true that the theorem of Petersen (or Konig)

implies Theorem 1, 3,17?"

We state below another problem which seems to be of considerable
interest, A digraph D is .eaid to be 'pseudosymmetric' if 'd+(D, v) = d-—(D, v),
for each vertex v V(D), We believe that the following statement is true;

however, the proof is not known to us,.

Conjecture: Let D be a locally finite directed graph which is pseudosymmetric
and let d(D) = k. Then, there exists a decompo sition of D into k covering

graphs each of which is also pseudosymmetric.

(For a detailed study of some of the properties of finite pseudo~
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symmetric digraphs and other unsolved problems, see Chapter 4).

Note: The results contained in this section were announced at the
"International Seminar on Graph Theory and Ité Applications' held in

Rome, 5 - 9 July, 1966. See LB].

1.4, The Cover Index of an s~graph

The cover index k{G) of a graph G is the maximum number k such
that there exist k mutually disjoint covers of G. If the degree of a vertex
v &€ V(G} is k then, clearly, since any cover of G must contain at least one
edge incident with v, the grap‘h G cam;ot have more than k mutually disjoint
covers. Hence, it is obvious that k(G) ¢ d(G) where d(G) is the greatest
lower boufid of the degrees of the vertices of G. In the previous section; it
was proved that if G is a locally finite bipartite graph, then the equality

k{G) = 4(G) holds. However, in general, we may have k{G) ¢ E(G), as is

shown by the following examrgles,

For any integers s° > land k = 2ms.r wherer 2 0, m > L-l-'—gel-_ ts,
we give examples of s-graphs G such that d(G) = k and k(G) < d(G)-s. To
this end, consider a graph K with 2m+l vertices Vor Vpreses Voo in which
each pair of distinct vertices are joined by exactly s edges. Clearly, K is
an s~graph which is regular of degree 2ms, If k= 2ms~r is even, then, by

the theorem of Petersen (Corollary 1,3, 2), K has a partial graph G which is
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regular of degree k. Obviously, G is an s-graph and d(G) = k. If k(G) > k~s+l,
then, since any cover of G must contain at least m+l edges, we have

1 . ar . 4 Twl
lE(G) | =ik(2mtl) > (mtl) (k-s+l) or, after simplification, m £ S| s

Hl b
which contradicts the assumption that m > [ET] +s, Hence, k(G) & a(G)—S.

Also, if k = 2Zms-r is odd, then, it can be shown that K has a partial graph G such
that d(G, vjy) = ktl and d(G, vi) =k for i =1, 2,,.., 2m. Obviously, G is

i~ fad
an s-graph and d(G) = k. As above, it is easily proved that k(G) £ d(G)-s.

The main result proved below (Theorem l. 4. 1)is that for any locally
finite s-graph G, k(G) = E(G)-s. Evidently, in view of the above examples,

this bound cannot be improved in general.

Before proving Theorem 1, 4.1, we first explain some notations and
terminological conventions, Consider a graph G, and let { be any coloring of
G. As earlier, for any vertex v € V(G), cf(v) or simply c(v) denotes the set
of colomsi such that there is at least one iwedge incident with v, Further,
c:(v) or simply ¢ (v), r > 2, denotes the set of colors i such that there are

at least r i~edges incident with v, and c¢(v) or simply ¢(v) denotes the set of

colors which do not belong to c(v).

In the following, the letters g, {, f‘O' fl etc. denote colorings of G,
Let f be any coloring of G, and ' (v, u) be an (i, j)-alternating chain in G,

Let g be defined as follows: for any edge e € E(G), -

g(e) = j if e belongs to £{ (v, u) and f(e) = i,

iif e belongs to £ (v, u) and f(e) = j,

1l

f(e) if e does not belong to A (v, u),

b
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Then, we say that g is obtained from { by interchanging the colors on

Hv, a).

For the sake of convenience, all suitable alternating chains considered
below are assumed to be minimal, Any minimal, suitable (i, j)-alternating
chain is referred to, for brevity, simply as an (i, j)«gll_ai_n. (As observed
earlier, if there is an i~edge incident with a vertex v, then an (i, j)-chain

with v as its first vertex can always be determined,)
We are now prepared to prove the following:

Theorem L. 4 1. If G is an s~graph which is locally finite then

EJ(G) > k(G) > E(G)»s. The bounds are best possible
~
in the following cases: s » 1, and d (G) = 2ms.r where
r-l

r >0, m > [TJ+S'

Proof: Let G be a locally finite s-graph, and let E {G) =k. To complete

the proof of the theorem, we have only to prove that k(G) > E(G)—s, or
equivalently, that G possesses a (k-s)-coloring f which is admissible, the

rest having been proyed above. We shall prove it only for the case when G

is finite, The proof can then be extended to all infinite, locally finite graphs

by using the argument of Konig and Valko, as we did in the case of Lemma 1, 3.1
Let, therefore, .G be finite, If ks £ 1, then the assertion holds obviously.

Hence, we may assume that k-s > 2, We start with an arbitrary (k-s)-coloring
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f of Ge.. If £ is not admissible, i,e., if Af(G) >0, then we shall show that
by suitably modifying the coloring f, we can obtain another (k~s)-coloring g
of G such that Ag(G) & O4{G) (Since G ia finite, the assertion will then

follow by finite induction),. The operations used in modifying the coloring f

are as follows:

(I) Interchange any two colors on all edges of G, (This is

equivalent merely to renurnbering the colors),

(II) Interchange colors on an (i, j)-chain /4 (v, u) if j& c(v),

and/or there is an i-edge incident with v which does not belong

to MU (v, u).

It is clear that if g is obtained from { by using (I) or (II) any number of times

then Ag(G) £ Af(G). Moreover, we have, evidently, the following:

(L.4,1) Letf be any coloring of G, and let v, u) be an (i, j)-chain
J
in G. Let g be obtained from f by interchanging the colors on (v, u). Then,
g ging Then,
Ag(G) < DUG) if je -c—f(v) and there is an i-edge incident with v which does

not belong to U (v, u).

Now, let f be any (k-s)-coloring of G which is not admissible. Then,

there is a vertex Vg € V(G) such that Af

(VO) > 0 or, equivalently,

= 3

c(vg) == ®. Suppose that we also have ¢ (vg) = @. Leti C—_c3(v0), and let
j(;"c:'(vo). Consider an (i, j)-chain M (vg, u). Since i€ c3(v0), it is seen that

there is an i-edge incident with v, which does not elong to (4 (v,., 1), Let
g 0 g o1
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g be obtained from f by interchanging the colors on f4 (vg, u). By (L 4.1),

we then have Ag(G) <l Af(G), as required. Hence, we may assume
that c3(v0) = P,

(1 .
It is observed that since d {G) = k and the number of colors used

is k-s, for any vertex v, cz(v) = @, and if c3(v) = @, then ’ c (v) ! > 8,

Now, let iy € cz(vo) and e, = (v,, Vl) be any i ~edge. Let us assume,

1
if possible, that (a) cz(vl) M E(vo) =P, i.e,, cz(vl) - c(vo),
(b} cz(vl) 0 cz(vo) =@, and (c) c3(v1) = © hold simultaneously., Then,
from (b), 1,¢ cz(‘rl\ and from (), |cZr) | 3 5. Since there are 2t most
s-1 edges, other than the ij~edge e, joining v, and v, it follows from (a)
that for some color i, £ cz(vl), there must be an i,~edge e, = (vo, vz), say,
such that v, == Vi Let us assume further, if possible, that

2 2 3
(vz) il (Vt) =¢ fort=20, 1, and ¢ (VZ) = @, Then,

cz(vz) Nclvg) = O, c
" clearly, il¢ cz(vl) U c?‘(vz), ‘ cz(vl) Ucz(vz)l > 2s, and

cz(vl) U cz(vz) c c(vo)a Hence, as above, for some color i3 ecz(vl) T (VZ)
there must be an i3-edge e, = (VO, v3), say, such that v, e { Vgr Vs vz}.
Continuing the process, it is evident that, since | c{vy)| < kes-l, there

must exist an index m, 1 £ m < kesel, such that we can find it-edges

ey, » (vo, vt)‘, t=1, 2,..., m satisfying the following conditions:

(i) vté; {VO, Vi s Vt-l} for & 5 Ly 2iyeoel,. Dy

2 . . .
(i1} L€« (vg)s and for each t, 2 & t £ m, there is a {unique) index

r, 1 € r £ t-l, such that iy € cz(vr),
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2 e 2
(iii) ¢ ‘(V.t) N clvg)= 0, ine., ¢ (vy) & clvg) for t=1, 2,,.., m-l,

| 2 - 2 —
(iv) ¢ '(VO), ¢ (v))ieees € (Vm.-l) are mutually disjoint,

3 3

(v) c3(v0)=.c (vl)ﬂ,.. =c (v )= 9,

and further, we have one of the following cases:
(1) cz(v JNclv ) ==, or
m 0 !
(2) cz(v )0 c:z( ) =+ O, or
m Yo ’

2 2
(3) ¢ (vm) Nc (vt) = { for somet, 1 € t £ m«l, or

3
() St ) = o
In each of the above cases, we shall now define a (k-s}-ccloring
g of G such that L\g(G) < Af(G).

Case (1) cz(vm) 0 -é-_(vo) == O, Letj écz(vm) M c(vg). Interchanging

the colors j and 0, if necessary, we may take j = 0, Let this new coloring
of G be denoted by £, {Obviously, A fO(G) = 2(G), and all the conditions
(i} to (v) are satisfied with respect to fy9 It is evident from conditions

(ii) and (iv) that there is a (unique) sequence of vertices

(1. 4, 2) v =

- Vpa+1: Vpa.g-.._-o: V. ":Vl’ VP =V0(m‘=Pa+1 >pa>">p0=0)

2, 2 2 2
such thati =1 clv. ),i € clv Yoeser i Ec (v )}, i,=1 & c“(v._ )
1
o Pay Pa Py Pa_1 P2 Py P Py
Now, considering the sequence of vertices (l. 4. 2), we proceed as follows:
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1
Since ip G CZ(VO), there is an i.p ~edge ep , say, incident with Vo such that

1 1 1
' 1p?)-ck1am Ml(vo, ul) such that the n.pz-edge

T
e == e = e Consider an (i

P P
1 1
, 2
e. and one of the i ~edges e_ and e do not belong to it, (Since i_ C ¢“(v_),
P, P, P, px P, P
such a chain can always be found., In fact, let ,ZL (vo, u) e an (ipl, ip }-chain
2
)
with first edge e_ and (L (v, u')bean (i , i )-chain with first edge
P B Py P
e; « Then, it is easily checked that one of these chains must satisfy the
1
requirement), Using (II), interchange the colors on fll(vo, v,), and let

Py

fl denote the coloring of G so obtained. Kvidently, A fl(G) £ Af(G), and

2
with respect to :El, we have i_ & ¢ (v.), ip@ c (vp ) for j=atl, a,:44, 3,
2 j el
2 & \ . 2 ! !
and 0€ ¢ (vm) N c(vo). Since iy € c (vo), there is an i ~edge ey 1 82Y,

2 2 2

incident with v, such that el =f= ¢, As above, consider an {i_ , i )-~chain
. P, Py P2 Py

v, u,) such that the i ~edge ¢ and one of the i ~edges e ande

do not belong to JL(Z(VO, uz). Using (II), interchange the colors on

0

t
P,

_}ja(vo, ua) and let fz denote the coloring so obtained. Evidently,
2
AfZ(G) < L fl(G) 4 QI(G), and with respect to f,, we have ip € c (VD),
2 _ 3
XPQ e (v Yior Y= a%), B,.0a, &, and anzbrrr} ™ QKVO\. Proceeding
;o Py
in this manner, it is obvious that we can obtain, using (II) a~2 times more,

a coloring £ of G such that A (G) L Af(G), and with respect to f_, we
a
have ip & cz(vo), Oc cz(vp N E(vo) (where e, = (VO, VP ) is an

a+l +1 atl a+tl

1
iy -edge). Since i c“(v,}), there is an i -edge ¢
Pat1 Papt™ O Pat1 Patl

incident with v such that e;} == e . Now, consider an (i , 0)-chain
a+l Patl Patl

. . 1 " 2 .
. th first edge e . Since 0pg c®(v and {v., u)is
S (v W), say, with fizst edge e, e ety )end felvg, o

minimal, it is seen that ey cannot belong to jéc(vo, u). Using (11),
a+l

, 8ay,
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interchange the colors onﬂ (VO, u) and let g be the coloring so obtained,

By (L. 411), we have, evidently, Ag((}) < A ¢ (G) < [},f(G), as required,
a

Case (2) cz(vm) N cz(vo) = 0. Letig cz(vm) mcz(vo). Now, by (v},
3
(

c vo) =, so that there are exactly two i-edges e and e, say, incident

with vy, Let j& Z(VO) and consider an (i, j)-chain U (vo, u), say, Using (iI),
interchange the colofsﬂ i anc‘i j anﬂ (;"TO-’“ u), and then; interchange i and‘()

on all edges of G, Let fO denote the coioring so obtained. If one of the edges
e and e' does not belong to U (vg, u), then we take g = £y, and by (L 4.1), we
have, evidently, Ag(G) < D 4(G), If both e and e! belong to L4 (VO, u),

{or, equivalently, if u = voj, then it is observed that with respect to fo, we
have 0¢£ cZ(vm) ﬂE(VO), and ipj@- CZCVijl), where epj = (vo, v j) are

i ~edges, for j=a+l, a,..., 1. Hence, as in case (1), proceeding with the
seJquence of vertices (L 4. 2), we can obtain g such that ﬁig((}) L ﬂf((}),

as required,

Case (3) cz(vrr)n cz(vt) = O for somet, 1 < t< m-l. Let

ig cz(vm) ﬁcé(v*)g From cenditions (ii) and (iv), there is a {unique) sequence

|

of vertices

P Vg seeer Vg =YL Ve =¥ (tma ) >q >.. g, = 0)

(1. 4. 3) v, = v
B B 9 9

5 2 B 2
such that i, = i & clv_ ), i Cc (v Jaieoos i € ¢ {v_ ), i =4 € c(v ),
VS % % U1 q2 9% 1 o
Now, in view of the cases (1) and (2), we may assume that i¢ c('vo) and

2
ié c (vo) so that there is one and only one i-edge e, say, incident with vge
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From (ii) and (iv), it is easily seen that e =k e. or, equivalently, i b i,

for anyr=1, 2,4,., t. Inparticular, i == i for any r = b+l, b,.,., L

q,.’

Now; let us first assume that we alsc have i =f= ip (or, equivalently,
r

e =&~ e_ )for anyr =a+l, a,..,, l. Let jGE(vO), and consider an
r
(i, j)-chain (« (vgs, u), say. (Obviously, u = VO). Using (II), interchange

the colors on A4 (VO, u), and then, interchange i and 0 on all edges of G.

Let fy denote the coloring so obtained. Evidently, Af (G) < Af(G). Now,

0
ifu =F£v = Vp , then, it is seen that with respect to fy» we have
2 _a+tl 2 ;
0¢c ¢ (vm) i c(vo), and ipre c (vpr 1) where epr = (vo, vpr)' are ipr-edges,

for r = a+l, a,..., l. Hence, as in case (1), we can obtain g as required.,
If u=v_, then, it is seen that with respect to fy, we have 0¢ cz(vt) (’)E_(vo),

: 2 : .

andi_& c“(v wheree =1(v_,, v_)arei -edges, for j=>b+l, b,..,, L
q-C, ( q. l)a q. ( 0’ q‘) q. ges, J s Dy ’
) )= J J J

Hence, evidently, as in case (1), proceeding with the sequence of vertices

(1. 4. 3), we can obtain g as required.

Let us now assume that i =i_ (or, equivalently, that e = 'ep ) for
T i
some r = a+l, 2,..., l. Since, by assumption, ig&'cz(vo), clearly, i =% ip p
1
2 —
Leti=i_ (a+l > r > 2}, so thati_¢ cz(v YO e (v ). Letjecclvy).
pr Or . pr 1 ;

Interchanging the colors j and 0, if necessary, we may take j = 0, and denote
the new coloring of G by fO. Now, it is evident that we can obtain a coloring

f ., of G, proceeding as in case (1), such that O " G < A‘fO(G) = Af(G),

2 ) r-2

, we have i C cfv,), 1 €c (v
Prol ¢ B j1

j=atl, a,..., r, where ey = (vo, ij) are ipj-edges for j=a+l, a,..., r-l,

and with respect to f ) for

r-2
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2 2 1 )
andi € ¢ (v ) e iv ). Now, let e be an i -edge incident with
Py = Pr.l Pr.l Pyl
Y such that e = ey 3 and let e', e' be any two ip -~edges incident with
r-l r-1 T

3 & J 3 1 1 1 11 ]
LY Consider (.Lp ' b )-—chams/,(, (Vp 5 ul) and# (vp , u') with
r-1 r r-1 r-l r-1

first edge e' and e", respectively, Since both of these chains are minimal,
it is seen that at least cne of them, say JZ).‘ ’(vp , u'), does not contain the
r.l

i ~edge 5 ¥ ¥u = v and u' == Vo then, using (II), first interchange

pr by prml

the colors on ﬂ ’(vp , u'), and then, change the color of ep to 0, Let

r-l r-l
g be the coloring so obtained, It is easily verified that Ag(G) Z B § (G)Y&

r-2
A‘f(G), as required, If u' = v_._j» then, it is seen that ﬂr-l("o’ u!) =

(v . e JU, (v RL u‘) is an (1p , i )-chain which does not contain the
r-l T

1), i s 1 ‘
. and ep .« Using (I_), interchange the colors on JU -I(VO’ u ) and
r- x

let f._] denote the coloring so obtained. And, if u! = Vo? then J[,L’(vp 1, ul)
T'e

edges e1

containg the edge e » but does not contain any one of the edges e ; €
pr'---'l Pr.q Py

and e', Uging (II), interchange the colors on yZ ‘(vp , u'), and let £
r-1 e

denote the coloring so obtained. It either case, it is seen that Af (G) p

ral
Z 2
and with respect to fr_-l' we have ipr(-: c (vm) a cz(vo), iij c (vp.i 1) for
j=atl, a,.,.., r+l, wheree_ = (vo, Yy } are i, ~edges for j = atl, a,..., ©
i J J
It is evident that we have, now, a situation similar to case (2). Hence, we

can obtain g satisfying A g(G) =A f(G), as required.

Case (4) c3(vm) = O . Let i({c3(vm). From the above cases (1), (2)

and (3), we may assume that i ¢ elvg), i ¢c2‘(v0)‘ and i¢c2(vt) for any
t=1, 4..., m-L Hence, there is one and only one i-edge incident with

Vgr and i == it forany t=1, 2,..., m. Let jeg(vo). Consider an
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(i, j)-chain /¢ (vgs u). Using (II), interchange the colors on /LL (vg, w), and
- then, interchange i and 0 on all edges of G, Let f; denote the coloring of G

so obtained. It is clear that A, (G) < A (G), and furthermore, with respect
fO f

2
to f,, we have 0C cz(vm) n cz(vo), ipj(__ c (vp. 1), where epj = (v, vpj) are
. J=
ip ~edges for j = at+l, a,..., 1. Hence, as in case (1), we can obtain g as
J
required.

Thus, we have shown that starting with any (k-s)-coloring f of G such
that &f(G) > 0, we can obtain a (k= s)-coloring g of G satisfying

Ag(G) < Af(G). The proof of the theorem is now completed by finite tnduction,

A graph is said to be linear if no two of its vertices are joined by more
than one edge, As an important special case of Theorem 1, 4.1, we have the

following:

Theorem l, 4,.2. If G is a linear graph which is locally finite, then

o~ ~

k(G) = d (G) or k(G) = d(G)-l. For any integer k > 2, there

exist linear graphs G such that d(G) = k and k(G) = d(G)-L

' . —~
It may be remarked that the proof of the inequality k(G) > d(G)-s
in Theorem 1, 4.1 is algorithmic so that, given any finite s-graph G we can
~
always find a partition of its set of edges into d{G)~s sets each of which is

a cover of G,

Let 8 > 1 and k be any positive integer. It was shown that if k can

Tl
he expressed in the forms 2ms-r wherer > 0. m > I— —5— | +s, then. there
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~ P~

exist s-graphs G for which d(G) = k and k(G) = d{G)~s. We make the following:

3

Conjecture If G is any locally finite s~graph such that d(G) cannot be

+3; then

IH
SV ]
—
beed 2

expressed in the form 2Zms-~r wherer > 0, m > {j

Eard

k(G) > d(G)-s.

The conjecture is known to be true only for a few special classes

of graphs,

Note: The results contained in this section were announced in [9].
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CHAPTER 2

THE CHROMATIC INDEX OF A GRAPH

2.1, Introduction and Summary

Let G be an undirected graph with set of vertices V(G) and set of
.edges E(G). Any nonempty subset M of E(G) is said to be a matching of G
if each vertex v £ V(G) is an endvertex of at most one edge in M, The
chromatic index of a graph G, denoted by q(G), is the minimum number q
such that there exists a decomposition of E(G) into q sets each of which is
a matching of G, The upper degree E(G) of G is the least upper bound of the

degrees of its vertices,

In the present chapter, we consider the problem of determining
‘the chromatic index of a graph in terms of its upper degree and multiplicity.,
Evidently, for any graph G we must have d(G) £ q(G). It is well-known
(Berge {171, p. 95) that if G is a bipartite graph then the equality q(G) = d(G)
holds, In general, it can be proved that q{G)} £ 2d(G)-l, However, this
bound is not best possible, C, E, Shannon [22] has shown that for any finite
graph G, q (G) < [%R d (G)]. In this chapter, we obtain the following
Theorem 2,3.1 "HK G is an s-graph then d(G) € q(G) < d(G)+s. The bounds

are best possible in the following cases: s ~ 1 and Ela(G) = 2ms-r where

r?, C, m > Lﬁ_]‘]l!.
2

2. 2. Preliminary Remarks

For definitions and terminology, see Chapter 1, Let G be any

S
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undirected graph, For convenience, we shall assume that G has at least
one edge., Any nonempty set M of the edges of G, M < E(G), is called
a matching of G if every vertex v £ V(G) is incident with at most one edge
in M or, in other words, if no two edges belonging to M are adjacent.

Consider an arbitrary decomposition of E(G) into q mutually disjoint sets.

(2. 241) Egb Epsses By 3 E(G) = UE;, Ef NE;=0

The ¢hromatic index of G, denoted by q(G) is the minimum number q such

that there exists a decomposition (2. 2,1) of E{G) where each of the sets
E{(i=0, 1,.4., g~1) is a matching of G. This terminology is suggested
when we consider each set E; as representing a color (to be denoted by the
integer i), As before, we introduce a g~coloring f of G so that for every

e € E(G), fle) =iif eC E;. K f(e) = i, we say that the edge e is colored with

the color i or that e is an i-edge.

Any coloring of a graph G is called regular if no two adjacent
edges of G are colored wii:h the sama color, It is readily observed that the
g-coloring, corresponding to any decomposition (2. 2.1}, of G is regular
if and only if each of the sets E; in (2. 2.1) is either empty or a matching
of G, Thus, it is seen that the chromatic index of a graph G may alter.
natively be defined, as is popularly done, to be the minimum number

q = q{G) such that a regular g-coloring of G exists.

The upper degree of a graph G, denoted by d(G), is the least
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upper bound of the degrees of its vertices, A graph is said to be locally
bounded ‘if its upper degree is finite, Evidently, any locally bounded graph

is lccally finite; the converse, however, is not true.

In this chapter, we consider the problem of determining the chromatic
fndex of a given graph in terms of its upper degree (and multiplicity), It
can be shown that for any graph G if d(G) is infinite then q{G) = a(G).
Hence, the problem is of interest only for those graphs which are locally

bounded.

Evider_ztly, if there are h edges incident with a vertex v of a graph G
then, for any regular coloring of G, h distinct colors are required to color
these edges. Hence, it is obvious that we must have q(G) < da(G). It is
well-known that if G is a bipartite graph then the equality g(G) = d(G)
holds, In fact, this result is known to be equivalent to the theorem of Konig
(Corollary 1. 3. 3) and hence, is implied by our Theorem 1, 3,1, It may be of
interest to know if the converse implication also holds. The question,

however, remains unanswered,
-

C. E. Shannon [2-2] has proved that for any finite graph G,
q(G) £ [% E(G)] . By constructing simple examples of graphs, he also
showed that the bound is best possible for any value of d(G) > 1. However,
the multiplicity of G (which is the smallest number s such that no two vertices
of G are joined by more than s edges) is not taken into account here.

Theorem 2, 3.1, proved in the next section, yields that if the multiplicity of G
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is s then q(G) < d(G)+s, Clearly, if s < [% H(G)] then our bound is more

exact than the Shannon's bound,

25 3i 'The Ch;-cimétic Index of an g«graph

Agsobserved in the previous section, for dtiy graph G, q(G) 2 ?(G).
And, {f G is bipartite, then g(GJ = d(G)s How-e\fer, in gene#il, we may Have
q(Gj > (Gl In fact, we give below examples of s-graphs G such that
q(G) > d(G)+s.

Lets = land h = 2ms-r, wherer 20, m > [ .1:_;3] , be any two

integers, We shall show that there exist s-graphs G such that d(G) = h and

q(G) > hts,
Consider a graph K with 2mtl vertices vgy Vireees ¥ in which
each pair of distinct vertices is joined by exactly s edges,.

Clearly, Kis

an s-graph which is regular of degree 2ms. Now, if h = 2ms-r is even
then, by the theorem of Petersen (Corollary 1. 3, 2}, K has a partial graph

G which is regular of degree h, If g(G) £ hts-l then, since any matching of

G can contain at most m edges, we must have m(ht+s-1) > | E(G) | =

1 h(2Zm+l) or m < [ Ul 1 which contradicts the assumption that m > [ G, J .

Hence, q(G) > 2 hts, If h = 2ms~r is odd, then it can be shown that K has

a partial graph G such that d(G, vo) = h.l, a(G, Vi) =h fori=1, 2,,.., 2m,

Ag before, it is easily proved that q(G) > h+ts.

It will be proved below (Theorem 2, 3.1) that for any s-graph G, we
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have the upper bound q{G) £ d (G)+s, Obviously, in view of the above
examples, this bound cannot be improved in general,

We first recall some notations and state some facts which will be

L
used in the proof of the theorem,

Let f be any g~coloring of a graph G, For any vertex v, we denote
by cf(v) or simply by c(v) the set of colors which are assigned to the edges
incident with v; c(v) or simply c(v) denotes the set of colors not belonging
to c(v)e For any two fixed colors i.and j, the partial graph of G defined

by the set of edges colored with i or j is denoted by G, i
14

Let G be a finite graph, and f be a regular g-coloring (g > 2) of G,
Let i and j be any two fixed colors. Then, the following statements are

easily verified,

(2.3.1) Any connected component of the graph Gy ; is a cycle
or a chain (possibly an isolated vertex), If v is a vertex such that i & c{v)

and j¢ c(v), then the connected component of G; i which contains the
H

vertex v, is an (i, j)-alternating chain with v taken as its first vertex.

(2.3.2) © Vis Vs V3 are three vertices such that one of the
colors i and j does not belong to c(vr) for eachr =1, 2, 3, then all the thrce
vertices MURPY & cannot belong to the same connected component of Gi, je
(In fact, this follows from (2, 3,1), since a chain can have only two terminal

vertices, )
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We shall now prove

Theorem 2. 3, 1. H If Gis an s~graph which is locally bounded then
d(G) € q(G) & d(G)l+s. The bounds are best possible

in the following cases: s }, 1 and E(G) = 2msar where

r+1}
r>,0,m>[ Z‘J.

Proof: To complete the proof of the theorem, it only remains to show that
a{G) £ d(G)+s, the rest having been proved above. Let d(G) = h, It is
clearly sufficient to prove that G possesses an (h+s)=coloring which is regular,
We shall prove it first for the case when G ig finite; then, assuming it to be
true for all finite graphs, we shall prove it, using the familiar argument

of Konig and Valko [15] ¢ for the case when G is infinite (but locally bounded).

G is finite: If G has only one or two edges then the assertion holds
obviously., We can, therefore, use induction on the number of edges in the
graph G Delete any particular edge ey = (v, VO), say, from the graph G
and let G! be the partial graph of G defined by the set of remaining edges,
By hypothesis, G' has an (hts)~coloring f which is regular. By suitably
modifying the coloring f of G', we shall obtain a regular (hts)-coloring of G
80 that the edge ey = (v, vo) will also be colored, The operations used in

modifying the coloring are as follows:

(I) Interchange colors i and J on all edges of any particular
connected component (or connected components ) of the

3
graph Gi, i.
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(II)‘. Assign the color j to an edge e = (v, u) if j&<€(v) {1 c(u),

It is evident that if the initial coloring is regular, then any coloring

obtained by using (I} or (II) any number of times is also regular,

Now, obviously, d(G*!) < h and d(G!, vo) £ h-l, so that, since

the number of colors used is hts, we have | c(u) | > s for all vertices
u, and IE(VO) | = stl. If there is a color j& c(vy) (1 €(v), then, using
(1), we can define g(eo) = j and g(e) = f(e) for all other edges e C E(G), and the
assertion will be proved, Let, therefore, ¢(vg) {1 c(v) = ®. Clearly, then,
E(VO) C  ¢(v), and for any chosen color e Z(VO)‘ there is an ij-edge

e, = (v, Vl)' say. (Obviously, v Fe VO). If there is a color jﬁz(vl) 0 Z(y),
then, using (II) successively, we can define g(el) = j, gleg) = i; and

g(e) = f(e) for all other edges e & E(G). Assume, therefore, that

;(vl) N clv) = O, and let us assume further that E(vl) N 'c':'(vo) = @), Then,
clearly, ;(vo) Ugtvl) o ¢(v), and , Z(VO)UE(Vl) ‘ > 2stl, Since

there are at most 2s-1 edges in G! joining v to v, or v;, clearly, for some
~color izﬁg(vo) U:(vl), there must be an i,-edge ¢, = (v, VZ}" say, such
that v, ¢ {VO" vl}‘ Let us assume further that 'E(vz) is disjoint from each
of the sets c(v), -E(VO)" _c—(vl), As above, it is then seen that for some color
136’ g(vo) U Z(Vl) Ug(vz), there must be an ig~edge e; = fv & v3)v, say, such
that v3¢ {VO, vy VZ}“’ Continuing the process, since d{G', vg) & h-l,

it is evident that there must exist an index k, 1 £ k £h-l, such that we can

find i -edges e = {v, vt), t=1, 2,,.., k, satisfying the following conditions:

t
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] (1.) Vi é{vo: Vitsees thl} 1=l 24000, Kk,
(ii) for eacht, 1 < t £ k, there is a (unique) indexr, 0 £ r £ t-1,

such that i, & c(v ),

(iii)  <(v), c(vg)s c(f_vl), eee,; cfv 1) are mutually disjoint,

k-~

and further, we have one of the following cases:

(1) ~c:':m(vk) Nelv) == P, or
(2) :(vk) . E:_(vr) == @O for somer, 0 £ r £ k-l

a
In each of the above cases, we shall now define/regular (h+s)~coloring g

of the graph G,

Case (1). Z(vk) N :(v) #@: It is clear from the conditions (ii) and (iii),

that there is a unique sequence of verticea

[

& C(V ), & Z(V );0.1, .2 = —(':_(Vp

such that ik = ]
Patl Py Pa Pa.l Pa

); 1P16 C(,Vp M

1 0

Now, let jeg(vk) N ;(v). Using (1I) successively, we define the

coloring g as follows: gle,) =j, gle, ) =1 , gle =4 oz
! Pa Payl Pa.l Py

gle )=1i , gle )=1i and gle)=1i(e) for all the remaining edges e C E(G).
1 U -PY U

Evidently, g is an (hts)scoloring of G which is regular,

Case (2). Z(vk) mE(vr) == @, for somer, 0 £ r £ k-1: Let

1@E(vk) N E(vr)_, for some r, 0 4 r £ k-L From condition (iii), i¢ c(v),
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-
so that there is an i-edge e' = (v, v'), say, incident with v, (Obviously,
vist= v , v == vk). Let jCc(v), Consider the graph Gil, i From (2, 3, 1),
the connected component of G;' 3 which contains the vertex v, i_s an

(i, j)-alternating chain with first vertex v and last vertex u, say. We denote
this chain by A4 (v, u). Since the given coloring f of G' is regular, and
jeclv), ) evident that u =t vi Also, since i(:“é'(vk) 0 'E“(vl..)‘,‘ from (2. 3. 2),

both v,, and v} cannot belong to /U (v u), and if any one of them belongs to

/Uv‘(v, u), then, it must coincide with u,

Now, from conditions (ii) and (iii), we can find a unique sequence of

vertices,

(2' 3'4) Ve = qu+11 qu:---: Vqln qu = VO (qb_,l,l > qb>... >QI >q0)

such that iqé -c:_(vq ) for j = btl, b,,s., 1. Since ié,-c_(vr), from conditions
j i1 :
(ii) and (iii), it is seen that i =#= iy for any t=1, 2,..., r. In particular,

i #: iq foranyj=b+1, b;o.o’ 1.
3
Now, let us assume first that we also have i =¢= lp for any
t
t=a, a-l,..., l. Now, using (I), interchange the colors on/(.'L (v, u) and

let f! denote the ooloring of G! so obtained. If u #:vk, then, it is seen

that with respect to f!, we have i £¢(vy) Mc(v) and ip.e E(-\rP ) for
j 5.1
j=a+l, a,..., 1, Hence, as in case (1), using (II) successively, we can

define g as follows: gle, ) =i, gle. ) =1i , gle b S e gfen: )= B
= _ P Patl Pyl Pa Py -
gleg) = ip and g(e) = f'(e) for all other edges e EE(G), I u-= Vs then it is
1

seen that with respect to ', we have i ¢T(v_) () c(v) and i € "c_(vq ) for
j Jol
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j=b+l, b,..., l, Hence, again, as above, we can define g as follows:

g(e)zi, g(e )= i =1 ,...,g(e )=i ,g(e)zi and
> B Yy AU U R T g

gle) = £'(e) for all other edges e C E(G).

] g(eq

Finally, let us assume that i = ip for some t, 1 <t La. Then,
t
i=i € cv, )n<v,). Now, using (I}, interchange the colors i and j
pt Pt 1 k pt
on M (vy u), and let f! denote the coloring of G! so obtained, If u =+ v

) MNe(v) and
t=l

ip€ 'E(va ) for j = t-l, t-2,,,,, 1. Hence, as above, we can define g as
j j=1

follows: gle, )=1i_, gle ) 2i ..., gle )=4 , gle)) =i and
P’ P TP R Py P B0

gle) = f'(e) for all other edges e £ E(G), Suppose, therefore, that u = Vp e
t-1

Pt 1’

then, it is seen that with respect to !, we have i, G g(vp
t

Then, it is seen that with respect to f!, we have 1p & E(vk) rcl{v) and
t

je?(vp ) where en = (vo, p )isa j.edge. Hence, using (II), successively,

t-l t t
we define g as follows: g(ek) = ip ; g(ep ) = ip 5 g(ep )21 yeensae
i t a atl a-l a
ceey gle, ) =i s gle ) = i» gle ) =i 3000, g(e-o )=1i_, g(eo) =1
Pe P Pi1 P2 P =1 wPp Py

and g is defined as f! for all the remaining edges,

Thus, starting with any regular (h+s)-—coloring of Gf, we have
obtained an (b+s)-coloring of G which is regular, This, by induction,

completes the proof of the theorem for finite graphs,

G is infinite, If the chromatic index of each connected component of G is

less than or equal to h+s then, clearly, q(G) < ht+s. Hence, it is sufficient
to prove the theorem with the assumption that G is connected, Since,

moreover, G is locally bounded, G has an enumerable number of edges. Let
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e ez,. .. be an enumeration of the edges of G in some order. We denote
by G (n=1, 2,.4. ) the partial subgraph of G consisting of the edges

€1r €yre0as en and the vertices which are incident with these edges. If

2
n<m, G, isa partial subgraph of G and each regular coloring of Gm
implies a regular coloring of G which is called the restriction of the coloring
of G,,,; the coloring of Gm is said to be an extension of the coloring of G,
Obviously, the graphs G are finite; and since, as proved above, the theorem

holds for finite graphs, each graph G has regular (h+s)-colorings but

only a finite number of them.

Now, the regular (h+s)-colorings of the graphs G, Gyrevs imply
regular (h+s).colorings of G- Since Gj has only a finite number of colorings,
there must be one among them which is a restriction of an infinity of regular
(h+s)-colorings. Let ué fix one such coloring of Gl’ We now consider only
the extensions of this fixed coloring. Each of these implies a regular

(h+s)-coloring of G Hence, by the same argument as above, GZ has a

2.
regular (h+s)-coloring which is a restriction of infinitely many regular

colorings. We proceed in this manner to get fixed regular (hts)-colorings
of the graphs Gj, G,,... such that each is an extension of its predecessor.

Thus, each edge of G is assigned a well-defined color which evidently,

defines a regular (h+s)-coloring of G. This completes the proof of the theorem.

As an important special case of Theorem 2. 3.1, we have the

following:
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&

Theorem 2.3,2. If Gis a linear graph which is locally hounded, then,

q(G) = d(G) or q(G) = A(CHL. For any integer h > 2, there

exist linear graphs G such that E(G) = h and q(G) = htl.

It may be remarked that the proof of the inequality q(G) £ E(G)-l-s

in Theorem 2, 3,1 is algorithmic, so that, given any finite s~graph G, we
can always determine a decomposition of its set of edges intoyd{G)+s sets

each of which is a matching of G, (We may, however, have q(G) < d(G)+s.)

Let s 21 and h be any positive integer, It was shown that if h is of

r+i
2

which d(G) = h and q(G) = E_(G)+s. We make the following

the form 2ms~r where r =20, m > [ ], then there exist s~graphs G for

Conjecture: Let G be any s-graph such that d(G) cannot be expressed in the

r+1
2

form 2Zms-r wherer > 0 and m > [ ]. Then, q(G) < d(G)+s.

The conjecture is known to be true only for a few special classes

of graphs,

Note: Theorem 2,3, 2 was announced in [10]. The upper bound q(G) £ E(G)+s,‘

for finite s~graph G, was first obtained, independently of the author, by

V.G, Vizing [247.

2. 4. Duality between Cover Index and Chromatic Index of a Graph

It was remarked earlier that there is an apparent duality between
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the concepts of the cover index and the chromatic index of a graph. In the
light of the results obtained so far, we may, however, add the following

remarks:

1. We proved (Theorem L 3, 1) that if G is a (locally finite) bipartite
graph, then, k(G) = E(G), and, as is well-known, we also have q(G) = 4(G).
It was observed that, in the case of bipartite graphs, the equality k(G) = ,c?(G)
implies its counterpart g(G) = d(G), It is not known, however, if the converse

implication also holds.

2, It may be observed that Theorem 1. 4.1 and Theorem 2.3.1 are
counterparts of each other, and it is tempting to ask if any one of them can

be derived from the other, Very little is known in this respect.

3, It can be easily seen that if G is a regular graph, then,
k(G) = g(G) if and only if q(G) = d(G). . Unfortunately, as one might expect, .
such a relationship does not hold in general. For instance, if G is the
graph of Figure 1, then, k{G) = :;(C}) but q(G) = E(G)+1, and if G is the graph
of Figure 2, then, q(G) = a(G) but k(G) = EJ(G)-I; -In general, for any s =1
and any fixedr, 1 £ r € s, one can construct examples of s-graphs G such
that k(G) = E(G) whereas q(G) = d(G)M+r and also, examples of s-graphs G such
that q(G) = d(G), whereas k(G) = N(G)-r. Hence, one can only ask, - . ¢,
for some criteria under which both the equalities k(G) = P&}(G) and q(G) = a(G)

hold simultaneously. Also, it would be desirable to have criteria under which

the equality k(G) = d(G) or q(G) = d(G) holds.


http://www.cvisiontech.com

CHAPTER 3

ON BASIS DIGRAPHS

3,1, Introduction and Summary

In 2 directed graph or digraph D, a vertex u is said to be reachable
from a vertex v if there exists a path in D from v to u. The set of all
vertices reachable from v is denoted by RD(V). A digraph D is defined to be
a basis digraph if there is no partial graph D' of D (different from D) such

that RD‘(V) = RD(V) for all vertices v,

In the present chapter, we consider the problem, proposed by
O. Ore [19], of determining the largest number of arcs in any basis
digraph defined on a vertex-set with n vertices, In sections 3,2 and 3. 3,
a few preliminary len;mas are stated and some auxiliary results concerning
the structure of basis digraphs are obtained, Let D be any basis digraph
with n vertices, In section 3,4, we first obtain Theorem 3, 4,1 "I D
is acyclic then it has at most [% j| arcs' which is a consequence of a
well-known theorem of P. Turan [23] and the fact that a basis digraph having
no circuits can have no triangles. We next prove Theorem 3, 4, 2 "If D is
strongly connected then it has at most 2n.2 arcs', Combining these results,
the following general theorem is then proved. Theorem 3,4,3 '"If Dis
any basis digraph with n vertices and k strong components then it can have

2
at most 2{n-k) + [ L ] arcs', It is shown (in section 3. 5) that the bounds
4

45
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given by the above theorems are exact and the structure of extremal basis

digraphs is determined.

3. 2. Basic Concepts and Preliminary Lemmas

Consider a digraph D with set of vertices V(D) and set of arcs

A(D) as defined in section 1. 2, A sequence of the form

(3-. Zo 1) P(Vl, Vr+1) = (Vl, VZ) (VZ, V3)_,.... ¥ .(Vr, Vr+1)

where -(vi, v

_iﬂ)eA(D), i=1, 2,ie., r is called a path in D from v, to

Vsl For convenience, we take the empty sequence consisting of no arc

-

of D to be a path from any vertex to itself, The length of a path is the number
of arcs appearing in it. The sequence (3. 2.1} is a circuit if all the arcs
appearing in it are distinctand v = vy A circuit (3, 2.1) 4s said to be
elementary if the vertices Vir Vpseses YV are distinct. A digraph is said

to be acyclic (or circuit-free) if it has no circuit.

In a digraph D, a2 wvertex u is reachable from a vertex v if .there

exists a path from v to u, The reachability set Rp(v) of a vertex v is the set

of all vertices reachable from v. Two vertices are mutually reachable if
there exists a path from each one to the other., It is easily proved that two

vertices v and u are mutually reachable if and only if Rp(v) = Rp(u)e A

digraph D is said to be strongly connected if every two of its veartices are

mutually reachable. Equivalently, D is strongly connected if RD(V) = V(D)
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for every vE V(D).

Given a digraph D, there is defined a binary relation ‘v "in V(D)
as follows: for any v, u £ V(D), v ~ u if and only if RD(V) = RD(u), ie €4 ,
v and u are mutually reachable. It is obvious that ~~ 1is an equivalence
relation and thus defines a partition of V(D)

V(D)=USi, § NS =9
1

(3. 2. 2) Bs Ssawens B J

k!

5, are nonempty sets such that any two vertices vand u

where Sl’ SZ" cer S

belong to the same set Si if and only if v ~~ u, The subgraph of D defined
by the set of vertices Si is denoted by D; and the digraphs Dl' Dosreses Dy

are called the strong components of D, It may be noted that the strong

components of any dig-raph D are uniquely determined and their number is

fixed (which may be infinite if D is infinite),

Corresponding to the partition (3, 2, 2), we define a digraph DC,

called the condensation digraph of D, as follows: the vertices of DC are

denoted by S/ S;54445 Sy and there is an arc (Si’ Sj) c A(DC), i =k j,

if and only if (v;, vj) € A(D) for some v;€ 5; and v & Sj'
We state below a few lemmas which will be used subsegquently,

Lemma 3, 2,1, The strong components Di’ i=1], 2,sae, k, of D are

strongly connected and are maximal subgraphs of D with this property,

Lemma 3.4, 2, The condensation digraph D¢ of any digraph D is acyclic.
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For the proof of Lemmas 3, 2,1 and 3. 2. 2, see, for instance,

Harary et al. [13], Chapter 3.

Lemma 3.2.3. A digraph D is strongly connected if and only if for every

nonempty subset V! of V(D), V' =& V(D), there exists a path (3.2.1) in D
such that (i) r > 2, (ii) Vis vr+16 v, o (iii) viC—V(D)-V’ for i=2, 3,ces, T3

and (iv) the vertices v, vs5,..., v, are distinct,
172 T

The proof of Lemma 3. 2. 3 is omitted here.

3.3. Basis Digraphs

-

in a digraph D, an arc (v, u)€ A(D) is said to be basic if it
appears in every path from v to u. A digraph D is called basic or a basis
digraph if every arc of D is basic. In other words, D is a basis digraph if
there exists no partial graph D' of D (different from D} such that
RD,(V) = RD(V) for all vertices v. Evidently, if D is a basis digraph then it
can have no 'arcs in parallel' (i, e, arcs which are identified with the same
ordered pair of verticas) or 'loops' (i.e. arcs with coincident endvertices).
A digraph having no arcs in parallel or loops is called linear., Thus, any
basis digraph must be linear. (It may be remarked that there is a natural
one~to-one correspondence between linear digraphs and irreflexive binary
relations. Thus, all the results and properties of linear digraphs may be

stated in terms of such relations and vice versa).
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We prove below two theorems which throw some light on the

telationship of basis digraphs and their condensation digraphs,

Theorem 3. 3.1l. If D is a basis digraph then there is a one~to-one
correspondence between the arcs of the condensation
digraph D of D and the arcs of I) which have their

endvertices in different sets Si where the sets Si are

defined by (3, 2. 2).

Proof: By definition of D, corresponding to any arc (Si, sj)G A(DC) thére
is an arc (v, vj)éA(D) for some v;¢ S5; and vje S;. Let, if possible,

(vi, Vj), (ui, uj) be two distinct arcs in A{D) where Viy w0, ¢ Si and

M uj€ Sj' Since D; is strongly connected (Lemma 3. 2. 1) there is a path
P(Vi’ ui) in Di from v, to u;. Similarly} there is a path P(uj, vj) in I,
from u to Ve Then, P\vi, ui) fu;, uj) P(uj, vj) 1s a path in D irom v; to v,
in which the arc (Vi’ Vj) does not appear. This shows that {v;, v.) is not

basic, contradicting the assumption that D is a basis digraph. The proof

is then completed by the definition of the digraph D€,

Theorem 3, 3, 2.

The condensation digraph D° of a basis digraph Dis a

basis digraph.

Proof: Suppose that D is not & basis digraph. Then, there is an arc

(Si, Sj)€ A(D®) which is not basic. Let

(S 4 Si ) (S‘ r S- ).l.(sl 3 S~ 9’ S = S,’ S- = S
' T L, B Y L R
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be a path in p° from 5; to Sj in which the arc (Si’ Sj.) does not appear, By
the definition of DC_, there is an arc (vi, Vj)é A(D} where vié Si, Vj c S;j and

there are arcs (u, , v. )€ A(D) where v, ;4. ¢ S5,t=0,1,,.,, r, Since
't M4l i ot

the digraphs Dt are strongly connected, there exist paths P(Vi, uy )
0

P(vi b U Jyeee, Pv, , u, ), Pv, , v.) where P(v, u) is a path in D, if
1 11 1 1 1 J t

T T r+l
both v, u belong to S, = V(Dt)’ But, then

P(v,

1' ui)(ui’vi)p(vi’ui)"‘.P(vi!ui)(ui'vi )P(Vl !vj)

0 1 1 1 T T T Tkl r+l

is a path in D from v; to vy in which the arc (Vi’ v ) does not appear. This,
by definition, contradicts the assumption that D is a basis digraph. This

completes the proof of the theorem,

3. 4. Largest Number of Arcs in a Basis Digraph

We now consider the problem, suggested by O, Ore {19] y of
determining the largest number of arcs in a basis digraph with a fixed number
of vertices. The problem is of interest only when the number of vertices
is finite. In this section, upper bounds on the number of arcs in a basis
digraph with n vertices are obtained, These bounds are shown to be best

possible in the next section,
We first obtain the following;

Theorem 3,4,1. Let D be any basis digraph with n vertices. If D is acyclic

then |A(D)] < f—nz.}
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Proof: Since D is acyclic, (v, u)€ A(D) implies (u,- v)@ A(D), so that any

two vertices of D are joined by at most ong arc. Algo, it is easily verified

that a basis digraph which is acyclic can have no triangle, i.e., a subgraph

consisting of three vertices which are pairwise joined by arcs. Hence, from

1 c 2
a well-known theorem of P, Turan [23:]., we must have IA(D) ] < { %.,}g
We next prove the following.

Theorem 3.4, 2. Let D be any basis digraph with n vertices. If D is

strongly connected, then 1A(=D) I £ 2n-2,

Proof: We may assume thatn > 1 for,otherwise, the theorem holds

trivially, Let

- l... ] ?“
(3.4.1) (VOI' VOZ) (VOZ’ v03) (VOnO VOI), n, 2,

be an elementary circuit in D (by Lemma 3, 2, 3, taking V' as consisting

of a single vertex, such a circuit in D always exists), Define

Vo = £v01, Voprese e v0n§ . The partial subgraph HO qf D consisting of,
precisely. the arcs appearing in (3. 4.1) with V(HO) = V, is clearly strongly
connected, and since D is a basis digraph it is easily seen that Hy is, in fact,

a subgraph of D, I V, =t v(D), by Lemuma 3. 2, 3, there exists a path

(3' 4, 2) (V, V].].) (Vllr vlz)'°' (vlnla U)l ‘ nl >/ 1!

in D such that v, ué& VO’ vlié V(D-)---V0 for i =1, 2,..., nyand the vertices

Viprree s Vlnl are distinct, Define Vl = VO u {vll’ Vigreres 'vlnl\ﬁ « Clearly,
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the digraph H; consisting of the arcs of H, and those appearing in (3. 4, 2)
with V(H;) = v, ig strongly connected and since D is a basis digraph, H,

is a subgraph of D, Suppose we have already defined, proceeding in this
wély, the digraph Hj-l and V(Hj-l) == V(D). Then, by Lemma 3, 2, 3, there

is a path

(3. 4. 3) {v, le) (vjl’ vjz)... (vjnj;. u), nj =1,

in D suci1 that v, ug V(H,

J_1), vjiGV(D) = V(Hj_l) fori=1, 2,..., n: and

J

the vertices vjl' ij, o4 i, vjn.j are distinct, Define Vj = V(Hj-l)U {le‘ ey vjnjs.

Then, by the same argument as above, the digraph Hj consisting of the arcs
of Hj-l and thosg appearing in (3. 4, 3) with V(Hj) = Vj is a subgraph of D,
Since D is finite, by induction, there must exist an index r = 0 such that
We = V(D) and H, = D. It is clear from the way in which the graphs Hj

are defined, that
lA(HJ') I =n0 + (n1+1) +-oo+ (nj+1), I = O, 1,-.;, I‘.

In particular, we have

(3. 4. 4) la) | |am,) |

]

nyt(ng4l) +o..t (o, +1)

(2n-2) - !-(no..Z)-[- j}; (nj-l)J.

L)l

Since ng > 2, nj >1lforj=1, 2,..., r, the term in parenthesis on the

th'j’“c e
right hand side of (3. 4, 4) is pesitive, Hence, !A(D) I £ 2n.2, This
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completes the proof of the theorem.

We now prove the following theorem for general digraphs which,

as is easily seen, includes Theorems 3, 4,1 and 3, 4, 2 as particular cases.

Theorem 3. 4. 3,

L.et D be any basis digraph with n vertices and let k be

the number of strong components of D, Then,

kZ
IA(D) I £ 2(n-k) + ['74—].
Proof: Consider the strong components Di' i=1, 2,...; k and the conden-

sation digraph D° of D defined by the partition (3. 2, 2) of the vertices of D.

Let D.1 have n; vertices so that we have n = mtn,t. .. tny. Evidently, any

subgraph of a basis digraph is a basis digraph. Alsoc, since the digraphs Dy

are strongly commected, by Theorem 3, 4, 2, we obtain \ A(Di) l £ Z(ni"l)‘

. c . A .
Further, since D" is an acyclic basis digraph (Lemma 3, 2, 2 and Theorem

4

. _ 2
3. 3. 2) having k vertices, by Theorem 3, 4,1, we obtain 'A(DC) | £ [ B ] "
Now, since every arc of D either belongs to one of the digraphs D; or has

its endvertices in different sets S;» by Theorem 3, 3,1 we obtain finally

(3.4.5) |a(D)| = |a(py)] + la,) | +...4 la(@)| + |A(D%) |

S 2(n)-1)+ 2(nz-1) + ..+ 2(ny -1) + [ k2 -J

= 2(n-k) + { l‘;]

Hence, the proof of the theorem is complete,
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3.5. Extremal Basis Digraphs

4

Any basis digraph with n vertices and k strong components is called
kZ
extremal if it has exactly 2(n-k) + [ T ] arcs. In this section, we show
that the bounds on the number of arcs in a basis digraph given by the

Theorems 3, 4.1, 3,4. 2 and 3. 4. 3 are exact and determine the structure

of extremal basis digraphs.

Consider a digraph D with n vertices. Let Vs Va, V3 be mutually
disjoint subsets of V(D) such that V(D) = V{U VU Var Ter \ N4\ =+,
so'that n = nl+n2‘+n3; Suppose that D satisiles the following conditions:
(i) anarc (v, uw)€ A(D) if anda only f v&V; and u &'Vi+1 for i =1, 2, and
(ii) ] A(D) l = nz(nl+n3) = [ E;—] - Then, D has a specific structure,
In the following, any digraph with this structure is said to be of type L

It is easily seen that for any n 2 1 there exist digraphs with n vertices

which are of type I,

Evidently, any digraph of type lis an acyclic, basis digraph which,
by Theorem 3,4,1, is extremal, Conversaly, we assert that any extremal
acyclic basis digraph '~ must be of type I. To prove this, let D be any such
digraph. Itis clearly sufficient to show that D has no path of length greater
than 2, Now, as observed in the proof of Theotem 3, 4,1, any two vertices
of D are joined by at most one arc and D can have no triangles. Since,
moreover, D is extremal, by the Theorem of P, Turan [23], the digraph

D is then such that its set of vertices V(D) is decomposed into two sets
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V'and V' [V! A\ V! = @, V(D) = V! U V") where (v, u)¢ A(D) if and only if
veV!, ug Vior u€ V', vEV', Let, if possible, (v, va) (VZ" v3) (v3, vy)
be a path in D of'length greater than 2, We may assume without any loss
of generality that v,€ V. Then v, EV!and v,, v4C V. From the above
observation, either {v1s v4)~€-‘A(D} or (v4, vj) € A(D). However, neither
of the cases can occur since, as is easily seen, the former contradicts
the assumption that D is a basgis digraph and the latter that D is acyclic,

This proves the assertion,

The above discussion is summariszed by the following:

Theorem 3,5,1, For any n > ], there exist extremal acyclic basis digraphs

with n vertices, A digraph is an extremal acyclic basis

digraph if and only if it is of type L,

A (linear) digraph D is called symmetric if for any two vertices
v, uof D, (v, u)€ A(D) implies (u, v)& A(D). Any digraph D with n vertices
is said to be of type Il if it is (i) symmetric, (ii) strongly connected, and
(iii) IA(D) | =2n-2, Equivalently, D is of type II if it is strongly connected
and has no elementary circuits of length greater than 2, (It is easily verified
that a digraph is of type II if and only if it is a 'symmetric tree!, See [ 13],
p. 260), It is known that for any n > 1, there exist digraphs with n vertices

which are of type II,

Evidently, any digraph of type II is a strongly connected basis
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digraph which, by Theorem 3, 4, 2, is extremal. Conversely, we assert

that any extremal strongly connected basis digraph must be of type IIL. To

prove this,"let D be any such graph with n vertices., If n = 1, the assertion

holds trivially. Otherwise, since | A(D) } = 2n-2, in the notations of the

proof of Theorem 3, 4. 2, from (3. 4, 4) we must have ny = 2. Since the

circuit (3, 4,1) was chosen arbitrarily, it follows that D can have no circuit

{3. 4. 1) which is of length greater than 2 which proves the assertion. Hence,

we have proved the following:

Theorem 3, 5, 2,

For any n > 1, there exist extremal strongly connected
basis digraphs with n vertices. A digraph is an extremal
strongly connected basis digraph if and only if it is of

type 1L

In general, we now have the following:

Theorem 3. 5. 3,

For any integers nand k, n > k =1, there exist
extremal basis digraphs with n vertices and k strong
components, A digraph is an extremal basis digraph
(with a fixed number of vertices and strong components)
if and only if its condensation digraph is of type I and each

of its strong components is of type IL

Note: The results contzained in this chapter are to appear in [11] .
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CHAPTER 4

ON PSEUDOSYMMETRIC DIGRAPHS

4,1, Introduction and Summary

All directed graphs considered in this chapter, are finite,

A digraph D is called pseudosymmetric if for every vertex
v £ V(D), the outward degree of v equals the inward degree of v We first
note a few characteristic properties of pseudosymmetric digraphs, in
section 4, 2, A well-known characterization, due essentially to Euler [2.1,
is provided by Theorem 4, 2,1 "A digraph D is pseudosymmetric if and only
if each connected compon ent of D possesses a circuit which passes through

every one of its arcs once and only once',

In section 4. 3, we ifitroduce the concept of a ¢ircuitsymmetric
digraph which is apparently stronger than the known concept of a path-
symmetric digraph. Each one of these is shown to be weaker than the
concept of a pseudosymmetric digraph. Specifically, we prove the following
Theorem 4, 3.1 "If a digraph D is pseudosymmetric, then D is circuit-
symmetric', Also, we have Theorem 4. 3. 2 "If a digraph D is
circuitsymmetric, then D is pathsymmetric'', As an immediate corollary
to Theorem 4, 3,1, we then obtain Theorem 4, 3, 3 ''If a digraph D is
Pseudosymmetric then D is pathsymmetric', which was proved earlier by

A. Kotzig {16] and later, in a slightly more general form, by the author [ 5].

57
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A Kotzig [16] first asked the question "Is the converse of
Theorem 4. 3. 3 true?'" which remains unanswered. It may now be asked
if the converse of Theorem 4, 3,1 or Theorem 4,3, 2 is true. We believe
and, thereby, conjecture, that the converse statements of the above theorems

also hold,

In conclusion, some remarks on the problem of analysis of

digraphs are made and a few unsolved proklems are pointed out.

4.2, Pseudosymmetric Digraphs

Consider a (finite} directed graph D with set of vertices V(D)
and set of arcs A(D). We recall that for any vertex v éV(D)_, the outward
degree d+(D, v) of v is the number of arcs in A(D) with initial vertex v and
the inward degree d7(D, v) of v is the number of arcs in A(D) with terminal

vertex v,

Definition 4. 2. 1. A digraph D is said to be pseudosymmetric if

(4, 2. 1) a*(D, v) = a"(D, v) for all v € V(D).

Let G be any finite, undirected graph. A cycle in G is said to be

Eulerian or unicursal if every edge of G appears in the cycle once and only

once. It may be asked under what conditions a given graph G possesses a

Eulerian cycle. The mathematical theory of graphs had its origin in unicursal
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problems, in particular, the celebrated Euvler's problem of the 'Bridges
of Konigsberg's Euler [2 ] provided the following criterion: "A graph G

possesses a Eulerian cycle if and only if (i) G is connected, and (ii) the

degree of each vertex of G is even",

In a directed graph D, a circuit is called Eulerian if every arc of
D appears in the circuit exactly once, It is well-known that 'a directed
graph D possesses a Eulerian circuit if and only if it is (i) connected, and

(ii) pseudosymmetric', Thus, we have the following,

Theorem 4, 2,1 A digraph D is pseudosymmetric if and only if each

connected component of D possesses 2 Eulerian circuit.

Consider a digraph D and let S be any subset of V(D), Extending
the previous notation, let d*(D, S) denote the number of arcs in A(D) with
initial vertex in § and terminal vertex in V(D)-S; similarly, let d-(D, S)
denote the number of arcs in A(D) with terminal vertex in S and initial
vertex in V(D).S, Clearly, if S is empty, then d+(D, S) = d”(D, 8) = 0, Now,
if we add (4, 2, 1) over all vertices v&€ S and cancel out the common part from

either side (i, e,, the number of those arcs which have both of their

endvertices in 8), we get
(4. 2. 2) a*(p, s) = a(D, 8) for all § & V(D).

Conversely, by taking S = {v} , it is seen that (4, 2, 2) implies (4, 2, 1) trivially,
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Thus, we obtain the followings

-

Theorem 4, 2,2, A digraph D is pseudosymmetric if and only if it satisfies

the equalities (4. 2, 2).

An immediate consequence, which can be easily derived from
Theorem 4, 2, 2, is that "if any subset S of vertices of a pseudosymmetric
digraph is !condensed’ to a single special vertex (where all the arcs of the
digraph which have exactly one endvertex in common to S are joined with

this vertex), the condensed digraph so obtained will also be pseudosymmetric

We state below another elementary characterization of pseudo-

symmetric digraphs.

Theorem 4, 2.3, A digraph D is pseudosymmetric if and only if the

maximal number of mutually arc-disjoint circuits passing
through each vertex v of D equals the number of arcs

having v as initial {or terminal) vertex.

The proof of the above theorem, which may also be derived as a

corollary to Theorem 4. 3, 1, is omitted here.

4, 3, Circuitsymmetric and Pathsymmetric Digraphs

In the following, all paths considered in any digraph D are assumed

to have at least one arc, Two paths are said to be arc-disjoint if they share
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no arc in common, For any two vertices v, u of a digraph D, the maximal
number of mutually arc-disjoint paths from v to u is denoted by PD(V? u)

and the maximal number of mutually arc-disjoint circuits each passing

through both v and u is denoted by qp(v, u).
We now introduce the following:

Definition 4. 3.1. A digraph D is defined to be circuitsymmetric if

(4, 3.1) aplv, ) = pD(v, u) for all v, u ¢ V(D).

In other words, a digraph D is circuitsymmetric if and only if
whenever there exist k mutually arc-disjoint paths from a vertex v to a
vertex u, we can find k mutually arc~disjoint circuits each of which passes

through both v and u,

We shall show that the concept of a circuitsymmetric digraph is
weaker than the concept of a pseudosymmetric digréphq Indeed, we prove

the following

Theorem 4, 3.1, If a digraph D is pseudosymmetric then D is circuit«

symmetric,

Proof: The theorem will be proved by mathematical induction, If for any
v, u€ V(D), pplv, u) = 0, then clearly, we must have qD_(v, u) = 0 and the
equality qD(v, u) & pD.(v, u) holds trivially, Let us assume, as induction

hypothesis, that in all pseudosymmetric digraphs D, for any v, u € V(D) if
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pD(v_, u) < k, where k is some positive integer, then qD(v, u) = pD(v, u).
Suppose that D is pseudosymmetric and let there exist vertices v, uOG_V(D)

such that ppy(vg, uo) = k. We shall show qD(vO, ug) = ke

Now, by our assumption, there are k mutually arc-~disjoint paths
from vq to uy. Let these be denoted by Pl(vo, uo},r Pz(vo, uo),...,, Pk(vo, 9
We can assume, without any loss of generality, that no arc appears in any
of the paths Pi(VO’ uo) more than once. If vy = Ugo then each of the paths
Pi(vo, uo) is a circuit and there is nothing to prove. Suppose, therefore, -
that v == ug. Deleting from D all arcs which appear in P,(vg, uuo),

i=1, 4,..., k, we obtain a partial graph of D which we denote by D'. In DI,

we have, evidently,

(4, 3. 2) d(D’,v)-d( D', vgl=k, a'(o ', ug) = d (D, ughtk

+(,

d D,v)=d (D', v} for allv == Vg

U.O.

We now determine a path from uy to Vo in D! proceeding as follows:
Begin at the vertex ug and choose an arc (uo, ul) with initial vertex u
{(from (4, 3, 2}, there are at least k such arcs), I w =k vg: then, from

(4. 3. 2), thereis an arc (\1\, uz\. & W, = V4 the process terminates.

Otherwise, from (4. 3.2}, there is an arc (uz, u3) different from those
already encountered. The process continues till we reach the vertex Vg
Since the number of arcs ¢n D' is finite, we must reach T in a finite

'
number of steps, Let the path so determined be denoted by Pl(uO’ vo)._


http://www.cvisiontech.com

63

!
The path Pl(uo, vo), obviously, has no arc in commoh with any of
_ !
the paths Pi(vo' uo), and the arcs in Pl(VO" uo), say, and Pl(uﬂ, VO), put
together, give us a circuit Cl(vo, uo) in D passing through vo and up.  Now,
deleting from D all arcs which appear in Cl(vo, uo), we obtain a digraph D"

which, as is easily seen, is also pseudosymimetric, Furthermore, in D",

we have k-1 mutually arc.disjoint paths, namely, PZKVO, Ugdse sy Prlvy g

from Vo to uo, i,es, P (-vo, uo) = k-l, By our induction hypothesis, we can

D!l
find k-~! mutually arc-disjoint circuits in D" each passing through vp and u

which together with Cl(vo, uo) give us k mutually arc-disjoint circuits in D

each passing through Yo and Uy

Thus, we have proved that qD(VO, uo) = pD(vo, uo). The reverse

inequality holds trivially, Hence, the proof of the theorem is complete,
We now have the following:

Definition 4, 3. 2, A digraph D is said to be pathsymmetric if

(44 3. 3) pp(vi u) = p(u, v) for all v,u ¢ V(D).

It is clear from the definitions that (4, 3. 1) implies (4, 3, 3) trivially.

Hence, we have readily

Theorem 4, 3, 2, If a digraph D is circuitsymmetric, then D is pathsymmetric,

As an immediate corollary to Theorem 4, 3,1 and Theorem 4. 3, 2,

we obtain
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Theorem 4. 3. 3. If a digraph D is pseudosymmetric then D is pathsymmetric.

It may be remarked that the proof of Theorem 4. 3.1, which is
apparently stronger than Theorem 4. 3. 3, is quite elementary. Theorem
4,3.3 was proved initially by A. Kotzig [16) and in a slightly more general,
though essentially equivalent, form by the author [5] by making use of the

maximum~flow minimume.cut theorem of Ford and Fulkerson [3] .

A Kotzig [16] asked if the converse of Theorem 4.-3..3 is also true,
It-may now be asked if the converse of the Theorems 4, 3.1 and 4, 3, 2 are
also true. We believe that the converse of these theorems also hold and

thereby make the following conjectures..

Conjecture 1; If a digraph D is pathsymmetric, then D is

circuitsymmetric,

Conjecture 2: If a digraph D is circuitsymmetric, then D is

pseundosymmetric,

Conjecture 3: If a digraph D is pathsymmetric, then D is

pseudosymmetric. .

It is observed that the Conjectures 1 and 2 are independent of each

other and together they are equivalent to Conjecture 3,

4,4, The Problem of Analysis of a Digraph

For any two fixed vertices v, uof a digraph D, algorithms for
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determining the value of pD(v, u) are weil-known, e, g. ; the Ylow-algorithm!
of Ford and Fulkerson [_3 ]. The problem of analysis of a digraph D consists
essentially in determining the values pD(v, u) for all ordered pairs of
distinct vertices v, u& V(D). lLeta digraph D with n vertices be denoted
by Dn. It is known [4] that if D, is pathsymmetric, then there are at most
n.l numerically different values among the possible n(n-1) values
Pp (v, u), v, u E:V(Dn), v == u. Leta procedure of analysis of D_ be
n

called efficient if it requires the determination of the values Pp (v, u) for

n
just n-1 pairs of vertices (so that the remaining ones can be determined easily
with the help of these m~ I values), An efficient procedure of analysis for any
pseudosymmetric digraph Dn has been given by the author [6]. This

procedure of analysis is gsimilar to that given by Gomory and Hu [4} for

symmetric digraphs {or undirected networks),
We now propose the following problems.

Problem l: Find an efficient procedure of analysis for any directed

graph which is pathsymmetric.

Problem 2: Find an efficient procedure of analysis for any directed

graph which is circuitsymmetric,
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