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TRODUCTTON

ey =Sy mn

This thesls is devoted Lo a study of measures with

emphiasis on nonatomic measures. We briefly describe here

the. work carried out in various chapters.

Inn Chapter 1, we study various aspects of nonatomic

i

measures based on some characterisations obtained early in

L

the Charpter,

In ‘Chapter 2, the problem - when a mixture
measures is nonatomic - is examined, An example

sufficient conditions are given.

In Chapter 3, we examine when a mixture of
non-ergccic fic.surcs is non-ergodice, An example

sufficient conditions are given,

of nonatoffiic

and five

invariant

and three

In Chapter 4, we study certain borel structures which

do not admit nonatomic measures.
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In Chapter 5, we give necessary-.and sufficient

conditions for an algebra to admit a nonatomic charges.

In Chapter 8, we characterise extreues points of the
set of zll probability measures on a product borel structure

with prescribed wmerpinal probabilities.

Sowme of Yoo Temoliftz of Yoe Thesie ore ofosditoed Lo

various journals for publication. See 31, L4}, (5], 6]

and [7].
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CHAPTER 1

NONATOMIC MEASURES

SOME

CHARACTERI SATIONS

snd notation used in this thesis.

troduction: The following are

1) ‘A borel structure is & pair

a set and 4 1s a o-algebra of subsets

closed under compleméptation, countable

empty set f.

~

1i) A o-algebra 4

some of the definitions

X, 4) where X 1s
of X, i.ee, A& 15

unions and contains

isgald to separable if it has a

counttable generator, i.e., there exists a sequence of sets

Ay Aor ewe in 4 such that the smallest s-alpebra con-

taining Al' ﬂz, LN

1i1) 4 set 4 in a c-algebra

O
b
=

£ (2) LAP and

B=g or B = A,

iv) . c-algebra

i~

is the union of all gtoms of

=
L]

n
ik

4
i

ig s2id to be ai atom

(b) Be 4, B C & implies

on X is said to be atomic if X

‘,
{iw
ik
=
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(v) & function p defined on a c-algebra 4 is sald
to be a .uewsure on A if (a) u(g@) = O.r (b) » dis non-
negative, (¢) A, 52,... e é" kiIIAj =lﬁ for i # ]

jmplies w ( U 4,) 2 T wu(h,) and u(X) { = .
121 §1>1 = ,

(vi) : A measure g on a owalgebra & 1s said
to be two-valued if there exists a real number a 2 0 such

that u(A) = 0 or a for every A in 4 and u(X) = a.

(vii) & measure u on an atomic o-algebra A4 1is sald to

be continuous if wl(i) = 0 for every atom & of -ﬁ_.

(viii) Let x be a measure defined on s-algebra & o
A set A in 4 is-sald to be a g-atom 1f (a)  w(a) 2.0

and (b) Bg a, B C &4 implies p(B) =0 or wu(d)le - .

(ix) 4 measure u on a o-alpebra: 4 1is said to .be
nonatomic if there are no mp-atoms in A, BEquivalently, &g 4,
u(L) > 0 implies there exists Be & , B (L & such that

0 < u(B) < u(i)-'
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4t

- (x) 4 measure u  on a c-algebra i is said to have

Darboux propezty if the range of - u 1is an interval, i.e.,

) s he s} = o0 w0l

(x1) Let (X, &) and (¥, B)- be two borel structures.
The product borel structure (X2< Y , & X E) is defined to be

the product space X XY and the preduct o-algebra & X B

_generated by the family {A'x B: 4g 4y BEBY}. If u andl n

are two measures defined on 41 and B respectivel the
, = D Yy

. product measure on 4 X B 1is denoted by u X m.

(xi3) If A 1is a measurc on a product o-algebra u X B,

the marginals of A on 4L and B are denoted by 7\1 and 7\2

respectively and are defined*by the following eguations

A (L) = A (A XY) for 4 in &
A, (B) = XM (X XB), for B in B.

(x1ii) Let u and # be two measures on a c-algebra 4.
# 1s said to be absolutely continuous with respect to # (in

notation, u << ¢ ) -if L¢ Ly n(al'=0 -i.nilj-plies p(is) = 0.
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—lem
%iv) Let g and 7m be two measures on a o-algebra.
o and 1 arc séidﬂto be éQuivalent (in notation, & # §) if
<< and n<< u.
xv) If E is any collection of subéetsiof-a set X,

‘o(D) denoctes the s@allest_d—algebra on X containing D.

- FOR 4NY OTHER UNEXPLLINED TERMINOLOGY USED IN THE SEQUEL,

REFER {11, flalmos] or x{l, Berbarian] or 122, Neveul.

Some characterisations of nonatomic measures are given

in Section 3 of this chapter.

2. Some known results: Here, we record some.well‘known
results which we use in the sequel. If the proofs of these

results are simple, we write them down, otherwise we give

references,

Proposition 1.2.1: Every separable d-algebia is atomic.

Proof: Let ﬂl‘ ﬂé,... be a generatbr for the o-algebra

S

on X. For a subset ‘r" C Xl we denote A = AO’

=X -~ A = Al. The non-empty sets among the collection


http://www.cvisiontech.com

i
Lot

Sl a “o is a"squen@Q of.. Qs

rr . i j.. . e
B % p B 1 P

and 1's } are the atoms of 4 and their union is Ko

Proposition 1.8.2¢7 There is no two-valued continuous measure

on a separable o=-algebra.

Proofy Suppose g is a O-g (o > 0) valued continuous
measure on a separable cg-algebra L . 'Let' _Ill, Az,.... be a

generator for 4. For any natural number n, there exists -

1

1 =0 or 1 such that wu(a ™ = q, Aq

i
1, .02 .
n ns,"n +.. isan

' i Y
atom of 4 and pu (All n ;’;22 0 pes) ® gy giving a contradic-

tion to the continuity of the measure .,

Corollary 1,2,3: & measure u on z separable o-alpebra A 1s

nonatomic if and only if p is continuous.

M: CIf ¢ is npnatomic, then it is obvious that Kois
continuous. Suppoée K is continuoﬁs and not nonatomic. Let
A be a p-atom of '.[—i' 'Con.sidrer the borel structure

{4, f; Q t—f_;), where i ﬂ‘f‘_"_l 1s the trace of the 0'7-'algebra 4 on

Ly 1eey, 4D {_—;‘= {I,i nB:. Bg g}. with the measure 7n definéd
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~Ge
by n =u / L0 kL , the restriction of w to 4l & . But

An

15

1s a separable o-algebra and = :is a two-valued mes sure

on 411

iho

. This is a contradiction to proposition 1.2.2.

Proposition 1.,2.4: (Liapounoff): Every nonatomic measure has

the Darboux property.

Fof proofs, see L20, Lindenstrauss; PP 971] or

.18, Koshi, pp. 29].

Corolliary 1l.2,5: Let p be.a nonatomic measure on a c-algebra
4. Given 46 4y u(4) 2 0y 0 o & w(A), we can find Be A,

B (C 4 such that n(B) = a.

roof: Restrict the measure p- to 4N and observe that

Iy
e

the restriction is nonatomic on 4 0 A . Then arply proéposi-

tion 1.2.4‘:-

Remark 1: = It is not true that if a measure has the Darboux

F3

. property it is nonatomic. Here 1s an example.

Let X be the get of natural numbers, 4 the class of

all subsets of X and the wmeasure u on 4- 1s determined by
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the conditions Hi{n})qu“%' for every natural number: n.

Range of p = (G, 11, but m 1is not nonatomic.

3. Characterisations of nomsfomic measures: ' We bepin

with g

Lemma 3 .3,1° Let pu be a nonatomlc measure on a o-algebra

and A€ 4 ., Then there exists a separable sub o-algebra

it

g

of A containing 7A such that u is nonastomic on § .

roof: Case (i) 'w(A) >0 and u(Ac)A> 0. Let Ay =4 and

A; = A°, By Corolléryr;.2.5,'we can find sets : AOO' AOl‘

in A such that (a) Ay U A , =

fip Toel <k 0 ¥ %ol = fo

11
L - =
(b) AOO i 501:" 71 (C) .‘1.1(—5*00) = H(AOI) =95 ;U( &0)1

(d) hig U A, 5:51, (e) _ﬁlo 0 gll'ﬁ:g, gpd-
(£) g(ﬂlo) = g(ﬂll) = % u(Al). More generally, we can define,

for every finite sequence il' 12, se oy ik of 0's and 1'g,

sets ﬁ.l‘ i o B in 4, by induction on I, satisfying
(a) - o, ' ;
. j&lf 12[ L3R 2N J H ik — lﬁlf i2| s vy ik-l ! ”
(b) & ‘ . U 4., -
ili 12""" ik"lg O LifL_i iZ'-..,' ik-l‘ l

I

;ii

-—

10 Igr eeer 1y,
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c) A, ILIE0 Fiati . TRl | =
‘ ( ) llg izgo--; ik-l' 0 'Lllg 121000' ik-lg i g'
and
’ i l | ¥
(d) H(A- ) ) H(A- i o | i )_

ll' 121.-n' ikr 11! 12! kel

- This scheme ¢an be repfesented pictorially as follows:

i L e i iy TR |
400 foo1 foo Fo1r 0 Moo fror f10  Mim

Let B=o{4 t 45,15, ... 1Lsany sequence

.il'iiém‘..'!-ik
O's and 1's } .-

B 1is separable, and the atoms of B are the nonempty sets

among 0o A, i

kz-l 11‘ 1 :Whel"e il! -12; . .‘,' .. 1s any

2[0-;£ ik
sequence of O's and 1's.. From the constructimof these

sets, it is clear that u:measure.of every atom of :§ is zero.
Hence, wu 1is ﬁﬁnatomic on B. -Obviasiy, Lie B -
Case (ii) w(a) = wiX).

Let B be a set in ‘such that B (C &, w(B) >0

Hi=
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and p{i - B) » O, Let 4. = B and 4, = fi= B, VRepegt the

0 s

procedure outlined in case (i) to get a separable ‘sub

. o=algebra .containing 4 on which u 1is nonatomic.

Case (ii1) p(i) = 0.

= W T : :
s in case (ii), operate with 4L~ .

Theorem 1.3,28 Let u be a messure on a owalgebra A .
The following statements are equivalent.
i) 4 is nonatemic on .

1i) # 1is nonatomic on some sub c-algebra of A.

111) u 1is nonatomic on some separable sub c-algebra of 4.

Proof: i) &> (11)  is'trivial.
11) =>(i1i)  follows from Lemma 1.3.1.
iii) => (i) 1Let B be a separable sub ¢-alpebra

of A such that u is‘nonatomic on B, Let‘ A€ L. Let

_(__} = o‘{g 1 A}. _Clearly L 1is separable. If ~-Bl' Bz,...,

ll‘Bszqo is a generator

is a generator for Eg_then Ly B
for G. Comsequently, every atom of { 1is contained in some

atom of B. Since g is continuous on By u is continuous
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on (. Hence u 1s nonatomic on (. This implies u 1is

nonatomic on é.

Proposition 1.3.3: Let A be a measure on a product

o-algebra 4 X B of X X Y, and let A, and A, be margi-

nals of X on 4 and B respectively. If one of . the margi-

nals is nonatomic, %then A 1is nonatomic.

is nonatomic on 4 is equivalent to saying that

Proof: A i

A is nonatomic on the sub c-alpebra A X ¥ of 4 X B. By

"Theorem 1.3.2, A 1is nonatomic on X

e

Hive

Remark 1): The converse of the above propé%ition is not

true. Here.is an example. Let (Iz be: the unit sgquare

-{(x. vhw 0 241, 0Ly < l‘} gquipped with the usual
borel o-algebra., Let ¢ and 7 be two continuous measures on

this borel o-zlgebra with total mass % each concentrated on

the lines x = % and 'y = %‘ respectively;

. i
1 '

2
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g4 + % is nonatomic, but none of t'ﬁe marginals i1s nonatomic,
In fact, for both Jrhc m:’.rqinals{%} is .a measure atom.

However, in the case of product measures, we have a
different picture,
m;_._g_,ﬁ__ Let (X, :ﬁ_a)‘ end (Y, B) be tiro boi’el struc-
tures with measures 4 and 7 on A and B respectivelf.
Let (X X ¥, & X B) be the product borel structure with the

product measure u X n on 4 X B. # X7 is nonatomic if

and only if atleast cne of W and + 1s nonatomic.

Proof: Suppose 4 dis nonatomic on ﬁ '
Then ¢ X 7n = n(Y)] "u., a scalar muli-:iple of .uy on AX Y,
Consequentiy £ 2 n 1is nenatomic on é X Y. By -
Theorem 1.3.2. | nw X %o is noﬁatomic on é X B.
Conversely, suppose p X 7 i; nonatomic én A X Be By
Theorem 1.3.2., there exists z sepsrable sub c-alrebra g Of,
é X B on which p X mn is nonatorﬁic.- Ve cen find separable
sub o=algebras él e é and -"l C B such that ¢ C ;"“}

uX1n 1is nonatomic on I‘l X B

7 If p and m are not non-

atomic on _31 and §1 respec’rlvely, then they are not
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continuous on I‘l and ]_31 respectively. Consequently, we

can find Al atom of

,u(fxl) > 0 and 'n(Bl) > 0. Obserwve that 111 X By 1is an

5;“;1 and . Bl atom of 1__31 such that

atom of fl X By and (p X 'n)(f'fl X B) = ;;_('le).'n(Bl) 2 10k

But this is a contradiction to the nonatomicity and hence
contii’li.lity'of #u X m on él X Ql' So 'eilther v or m

is nonatomic,

alternative proof of Theorerﬁ 1,344 using Fubini's Theorem.

"if part'. Suppose, ;.r‘ is r'ion"atomic.‘i Let Ee . X B setis-
fying H X 3 (BE) > 0, Then ¢ X ;'n (E) = f 77(EX) u(ax),
wﬂére E_ = x~-section of E = {ye Vo3 (x,'y)‘_e E‘}

See Theorem B of {il, Halmos, pp. 144]. Lef '

A "—'{XG X3 n(EX) > O} . Since u X u» (E) > 0,‘ we have
#(4) > 0. There exists Al C_ iuy ‘!‘l in{j suchl’“chejt«gtw |

0 < u(4g) <‘ p(4i)e Let F = (4 X VA E.

K> n(F)

J ?}(F};) z(dx)

il

S w(E) w(ax) > o0 .
‘f)‘l X

B X n(E) = [ n(E) wlax).

{1
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since k(A)) < p(4), we have .
p X alF) < u X m(B).
This proves the nonatomicity of u X<X-m.

Conversely, let u X m be nonztomic. e shall prove that if

4 in A4 is o u~atom anéd B in B is a m-atom, then 4 X B
isa M X m - atom,.:

Let C be in 4 X B contrined im 4 X B.

u X o (C)

i

Jon(Cy) wlax)

=J!1 11.'(Cx) plax). | |

gince ¢ C By n(Cc) =0 cr n(B).
Let 4 = {xe X: -n('CX) > 0} . Then AlC A and u(Al) = Tg-
or w(A). Ccnscquently, m X 71 (C) =0 or wu(i).u(B). This

shows that either » 1is nonatomic or 7 is nonatomic.

i‘heorem 1.3.5: Let u and #» be two mensures defined on a

c-algebra f4. Let ¢ be nonatomic ﬂnc m << M. Then = 1isg

nonhatomic.
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Proof: By repeated arplications of Theore¢m 1,3.2 and
Corollary 1.2.5; we have the following deductions. # 1s non-

atomic on solle separable sub o~algebra B of =2 [ 1is

i

continuous on. B =2 % is continuous cn B =2 1 1s non~

atomic on B == » 7n 1is nonatomic on A.

Alternate proof of Theorem 1,3,5 using Radon-Nikodym theorem.

Let 1 <<‘ . Let f be a version of the Radon-likodym
derivative of % with respect to wum. Let A in é be such
that «{4a) > ¢, Let B = {g:: f(x) » O}-. We have
m(a) = S fdav = [ fdp. Since w 'is nonatomic, there

A BnaA : - .
exists 2 C in A contained B N A such that

O <¢ u(C) ¢ (B0 ﬁ).A Thus, we have 0 < %(C) < n(A). This

proves the nouatoumiclty of & ..

Theorem le3.6: Let u be a measure on g o=-algebra A

u 1s nonatomic if and only if the ranre of every nrobability..

measure = << g is 0, 11,

Proof: The proof of the ' anly if' part is a consequence of

Theorem 1,3.2 ~and Liapcunoff's theorem, Suppose A "1in A
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is a p~atom. Define a set function 1n on é as follows.
nC) =1 if o4 0C) = u(4)

=0" 1f ufA 0C) =0 s

-

-1 is a well defined probability measure on A and 7 <<
But Range of ﬁ =~{O, l}f « This contradiction shows that
L_ )

<
i

4 1s nonatomic.

4. A Generslisation

Let Hiv Hgr seey Moy be n measurés defined on s
Borel structure (X, A). Let pu = (“l' Horeoay “n)' o is

said to te nonatomic if esch My 1 <ign, is nonatcmic,

Theorem 1.4.1. # 1is nonatomic if and only if there exists
a separable sub o-algebra B of A4 such thet u 3is non-
atomic o 3 el Sange of " p on B is same as %he'Range of

i} on A

Proof': If w 1is nonatomic on B, then, by Theorem 1.3,2.,
K 1s nonatomic on A« IT 4 1is nonatomic on 4y then, by
repeated aprlication of Theorem 1.3.2, we can find g separaﬁle

sub o-algebra C of 4 such that o i nongtomic on g,
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h
-

The range of u on ; :4{(ul(a), ooy gn(ﬂ)) g AB & } is a
compact subsst & of R®,  For a proof of this resull, see
.12, Halmos, pp. 421]. Let Yyt Ygr e+- Dbe a dense subset

N il .
b iy & . < 1 i 1 >
of - B, Chouse one 4 from each ?f it (-{yi} Y, 121,

where the map f: 4 —=> E is givenby f(4) = (”l(A)' pz(ﬂ),

s ey ,‘-Ln(fi)) . Let 2 - G{fxi: i 2_ l}, al’ld B = g{gg ]2}-
B 1is separable and u 1is nonatomic on B. Further, the range

of 4 on

Hlvy)

centains the sequence Vi i > 1. Hence range

cf u on = range of u on 4.

Lilvs]

5. 4 property of nonagtomic measures

Theorem 1e5e1. ;et v and #n be tvo nonatomic probability
measures defined on a o~-algebra |, satisfying wu(4) = if

and only if %(A) = r for some O< r < 1, or equivalently

,{ﬂé Q: e(A) = #}

Proof:_ =step 1l. Suppose r =

1

{[16 A n(A) = I'}. Then u = n.

=

We prove, by induction on n, p(4) = lﬁ if and only if
R H ! 2 l | !
n(A) = 5% v+ Where n  is any natural number. Suppose,.
1 B "y
w(d) = ;E if and only if (&) = 5% y Where k is some
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natural number. Let ‘Be 4 be such that wu(B) = _E:% "
. O I = o

Liapouncoff's thecrem, we can find & in A4 such that

and B

R - Y
u(A) = k and B C A e can alsoc find B o

A--satlslying

=
o~
t
l_l
S
il
N3
[
=
P
t
o
S’
n
"%
i

Observe that

w(B) + u(Bg) = ;%

1

#(B U By)

...7 —-u-—:-l‘- ' ° SR
= @B U BE)."'ZK ~(B) + =(B,),

and

| SRR
.U'(B) + H(Bl = Bz) = 2k = ‘P:uB L (Bl - iBz)]

by induction hypothesis.

By addition, we obtzin
— Sl
2n(B) + n(By) = 20— ).

1
KA

Consequently, n(B) =

By

in
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=1 8B

-

A-similar argument shows that if Bc 4 and n(B) = ﬁ,
T ' . 2

then u(3) :‘ME:%-‘ Any real nmumber r ,in (0, 1] admits
Sk

a dyadic expansiomn _

1 Cee st * - ; -
I’:""H]—"'i'—l',l“'-ﬁ-..., where nl, n2' ¢ ls
ol g2

an (finite or infinite) increasing sequence of positive
natural numbers. Consequently,” w(&) = r if and only if

n(i) =r for every 0 < r £ 1., g(a)

Il
n

0 if and only 1f

n(4)

It

0 follows from the fact that u(B) = 1 if and only

~

if #(B) = 1. Hence u = n;

Step 2, e —% for some hatural"numﬁer n. We prove
2
that n(A) = —— if and only if m(:) = ——:, Let A 1in
2n—l . = 2n-l‘
L be such that w(A) === ., Let B 1in 4 be such that
B( A and p(B) =—=.
2
1 L
w(B) === = gx(B) =
gl gl
p(a = B) === = nln-B) = %
2 2
Consequently, mn(L) = 2(—%) = %—l'
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Repeating this argument, we note that

if and only if n(4) = 2 .

tof

p(4A) =

L]

Step 1 shows that p = 7.

Step 3. Let rp be.;ﬁ& real number in o, "B Agsume,

. without loss of generélif?, T < %. We prove, by induction
on n, u(4) = r/2% if ana only ir #(A) = f/Zn.

Suppose n(@) = r/Zn .if and only if n(A) = r/2n is true for
some natural numbefu n. Let B in A be such that

u(B) =rr/2n+%. Let A in 4 be such that B C:\A

aﬁd iu(.é‘;),;-:.r/.?n. Lret "By and By in A besu.ch that
Bo C B C A° and |
W(By) = 7/2% w(By) = z7ePtL,
By induction hypothesis, it follows that

#(B) + w(By) = r/2" = u(B U By)

"

=> n(B UBy) = r/2" = n(B) + n(B,),

and

u(B). + u(B; - By) = /2"

It

"B U (B, - B}

=> n{BU (By - By)] = r/e™ = n(B) + n(By. - B,).
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By addition, we obtain,
2n(B) + n(By) = 2(r/2").

Therefore, =#(B) = r/2™1. Thus, we find that w(A) = r/2"
if and only if mn(A) = r/2" for any natural number n.

Let 0< s< r. There exists 0< s' < 1 such that s = rs', =

But s' has dyadic expansion s' = *%F E “%—'+... for some
‘ : el 2
2 2

increasing (finite or infinite) sequence n hz,.;;' of

positive natural numbers. So,s = —%f-+ “%f teee u
ol g2

Consequently, m(A) = s if and only if =(4) = s. Let k be
any natural number such that —% {r. So; we have in pgrti-
2 l

cular,

u(d) = == if and only it n(4) = —&
K only i &

Step 2 shows that u = 4.

flternate proof of Theorem 1,5.1.

The proof of Theéorem l.S.l"fcan be very much simpiified
if we apply the following theorem of Liapounoff.

'Let Hit Hor ewcy My be Ln nonatomic measures déiined

L
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{on a borel structure (X, h).‘ Then the range'of-‘

= g uz, ST T T PO R T R Aeé}

i1s a compact and convex subset of the n-dimensional Fuclidean
Space, R, For proofs see 118] and .20].

In the proof of the Theorem, it is'enough if we show
that the range of (u, n) 1is the diagonal, B , of the unit

square, IXT .,

‘ 1T :
(rl.rz)‘
—- - (r,r.
L ) i“r‘
]
r f
f
]
k)
! .
0 r 1

If thc range, R of (g, ﬂ)';{, D , let (rl, r2)€ R
with thé proﬁerty rl # Toe Since R 15 convex, then the
lines‘ Ll and L, Jjoining (0,0) and (rl, rz), and
(rl, r2) ahd (1, l) réspectively lie ent'irrely in- R. The
TG g eithér‘éﬁts L, or L, at (7, rs). Clearlylj
o £ T Thisdgiﬁes a cgntradiction to the hypothesié:of thé

Theorem,
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6. The cage of infinite meggures

In this section,.we shall sce¢ how far the resuits of
Secticn 3 of this Chapter are valié in the case of infinite
Megsures. JIn tﬁ;s section, we allow measures to take values
in thé nonnegati§e extended real line [0, «]. Before embark-
ing on this problem, let us be clear ‘about the definitions of
nonafomicity in-the case of infinite measures vogue in the
literature., ALccording to Jchnson {l%, DD 650]; a Measure
u defined on a o-algebra g is non#tomic if A€ é, u(d) > 0
implies there exists Beg 4, 3 C 4 such ﬁhat w(B) > 0 and
(i = B) > 0. The definition we adopt here is the following.
LE é, u(i)y > 0 implies thére°exis£s BE 4, B‘C: % sHelnithat
0 < u(B) < u(t), These two definitioﬁérage not same.
measure nonatomic in our sense is nonatomic according to the.
definition of Johnson also. ‘Take any atomless g-élgebra é
on X,,i,e.tl he é, A A ¢ inmplies théfe exists a BE 4 such
that B#@ B C 4 and B £ A Dezine @ -son 4 as follows.
“(A) =0 if 4 = @, and H(A) = if AF ¢ for A8 4. wu
is nonatomic according to the definition of Johnson but is not

nongtomic in our sense.
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However, these two definitions ¢f nonatomicity are
equivalent in the case of semi-finite measures. A measure u°

on a o-algebra 4 is said to be gemi-finite if Ag 4,

w(A) = % implies there exists a 56 4 , B ( 4 such that
0 < p(B) < p(A). The eguivalence of the two definitions of
nongtomicity is easy to verify in the. case of semi-finite

measures. Note that every o-finite measure is semi-finite,

Proposition l.8.1. Let u be a semi-finite measure on a

separable o-algebra A, u is nonatomic on A4 if and only

if u is continuous on Al

Procfs If wu is nowatomic, then it is continuous. Conver-

sely, et u be continuous and not nonatomic. Let Ac A Dbe
a pu-aton. Clerrly wm{4) > 0. Since v 1s semi-finite,

pu(A) < =, XNow, censider the borel structure (A, A D %) and

is sceparable and p/Ah 1A

the measure p/AN A on ANA. .0

is two-valued and continuous measure on 4L 4 . Bubt this is

a contradicticn to Proposition 1.2.2.
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.~ Lemms. 16,2, - Let u be a o-finite nonatomic measure on a

c-algebra . Let :Ae'é. Then there exists a separable sub

154

o-algebra B of A -such'that 4g B and w« 1is nonatomic on

i

g {

roof: Since p is o-finite, we can write u = I My o where
n ] izl-

|

I

each py is a finite meagure on 4 and supports of ui‘s

are disjoint. By Lemma 1.3.1, for each i 2 17, we can find

a separable sub o-algebra B, of 4 ~such that 4Ag B, and

_—

My is nonatomic on @i. Let B = U{‘gi i1 2_1.} . CléarlyY

B  1s separable, 46 B and each M; 1s nonatomic on B..

= ¢ . 1s nonatomic on B,

Remark 1.6,3: The agbove Lemma is not true for any nonatomic

™=

neasure., .2 ?ollowing is-a counter example. Let for every
x¢ I, the unit interval, (Yk, Ay ”X) ‘be a nohatomic proba-
bility cpice such that Y _n Y, = ¢ if x # z. Let

Tl " o B, ard é:{ U 4yt A €4 and & =g for
oy A xeI * X =X -

all but a countable number of x's or AX =.YX for all but

a countable of X'S:} . A 1is a o-algebra on Y. Let

= T H,e f 1s a semi-finite, non o-finite, nonatcmic
xel 77
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measure on _4s. Now, we claim that p is not nonatomic on

any“sééé}aﬁle éﬂbfséaigebraxbf QQ Let § be a géparéblé suﬁ'
oc-algebra of é.; Let ,BlF'Bz";° be a generator for B.

Since the collection-of séts‘of'the form xgjfhx with Ay = /)
for all but.é countable number of x's 1is a génerator for diy
we can assume each Bi ;s of the above form. -igjl Bg is an

atom of B and is of the form - U A - with 4 = Y. for all
X o xex ¥ T | =

but a countable number of x's. Consequently, this atom of

B has y-measure <, Hence # 1s not nonatomic on 3B.

Theorem 1.6,4: Let g be g o-finite measure defined on a

L AR i N Bl e

o-algebra 4, The following statements are equivalent

i) u is nonatomic on A.

—

ii) p is nonstomic on some sub o-algebra of i

ii1) u is nonatomic on some separable sub c-algebra

“ef e
Proof: (1) = (ii) ‘is trivial.,
(i1) ==> (iii) follows from:Lemma il E). 2

(1i1) => (i)  Let B be a separable sub
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c-algebra of 4 such that u 1s nonatomic on B. Since u

is o-finite, there exists a sequence  Aj, Az,..; of setg in

4 such that Ay N4y = ¢ if i # j, U A =X and

321 *

i (Ai) ¢ «« for each i. Since u is continuous.on B,

/ &; 0 B is continuous on. Li 0 B for every i. Hence
p/ ;0B is nonatomic on 4; 0N B . This implies that
TV VN is nonatomic on .y n 4. Thus, we observe that

b=

4 is nonatomic on .

mark ., 6.08 Theorem 1,6.,4. 1ig not tfue if we relax the

=
0]

|

condition of o-finiteness of thec measure u. The example
given in-the Remark 1.6,3 will serve also as a counter example

in this situation.

£

Theorem 1.6,6. Let ¢ be any o-finite measure and let: A

be any semi-finite measure on a o-algebra A such that-

A< M. IF is nonatomic, then N 1s ncnatomic,

Proofs If A  1is finite, then, by Theorems 1l.6.4 and l.3.Z2,
A 1is nonatomic. In the general case, suppose A is not

nonatomic. Let Ae 4 be A-atom of 4. Since X 1s semi-
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semi-finite, X (4) < . Define n(B) = A(BQA)/A(4), for
Be 4s © 1s O~-1 valued méasure oi- 4 amd % << u. By

‘what we have remarked above, = -‘is nonatomic. But this igs a

contegdiction, Hence A 1s nonatomic.

: ¢
Remark 1.6,7.,  Johnson 13, Theorem 2.4, pp. 6537 proved

the following result., 'Let g be a ¢-finite measure and A\

be ‘any arbitrary measurc defined on a ow-algebra 4 and

A << ue If g is nonatomic,then so is A.! Note that his
definition of nonatomicity-is different ﬁrom ours. WYWe do not
have such a general theorem in our case. In our Theorem 1,6,6,
neither the semi-finitenegs condition on A nor the o-finite-
ness coendition on u can be relaxed. The following examples

make this point clear.

Let u be any nonatomic measure on 4o Define (&) = O
if p(4) =0, == if wu(4) > 0, for 4 in Ls A is a
megsure on L and A <L u, Certainly, A 1is not nonatomic,

Note that N 1is not semi-finite. This shows that Theorem

1.6.6., 1s not true for any general messure A.
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Let & Ube the mea sure on A  described in Remark 1.6.3.
We note that  u. is nonatomic, scmi-finite,but not o-fénite,

measure on

i

xeI X X, =X

By o= ¢ for all but a couritable number of x's and = 1,

otherwise. A ik a ‘0°-1 valued meaéure'on it and A < Mo

Certainly, A 1ig not honatomic. This shows that the c-finite~

ness condition on w of Theorem 1.6.,6 cannot be relaXed.

4

- v ——
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_ CHAPTER 2

' MIXTURES OF NONATOMIC MEASURES

o v

1. Introducticn. The problem tackled in this Chapter is
the following, Let (X, 4) and (Y, B) be two borel struc-
tures, Let F be a nonatcmic transition probability defined

- | :

on X X B; i.e.y P 1is a function defined X X B taking

values in [0, 1] satisfying

(1) 'E(x._-) is a nonatomic probability measure on

B for every x in X, and
(41} P(+, B) 1is 4 - measurable function for every

B in B.
Let A be a probability measure -on é. It is‘easy;to

verify that the get function_ 4 defined by the formula“

u(B) = f P(x, B) » (dx) for B 1in

nd

is a probability measure on B. <uestion: Is g nonatomic?

Let us call p the mixture of P with respect to A.

=29
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The answer.turns out to be no, in general. Section 2
gives Tive sufficient conditions under which every mixture
becomes nonatomic, Séﬁtion 3 glves an eiample of a nonatomic
transiticp probability P and a probabllity measure .h sﬁchr
that the mixture o off P with respect to A is not non-
atomic.:

'THROUGHOUT THIS CHAPTER P STANLS FOR ﬁrNGNﬂTOMIC

TRANSITION PROBABILITY,UNLESS OTHERWISE SPECIFLED.

The following proposition gives a sufficient condition

on A to engure the mixture & to be nonatomic.

Proposition 25;:£, If X 1s a discrete probability measure,

i.e., concentrated on a countable subset of Xy then the

mixture u of P with respect to A 1is nonstomic,

Proof: Let z o, 9 be a representation of i, where

n>1l % *n
an's are positive, Z a, =1 and Xyy Xgre.. 1s a sequence
: n> 1l ,

of points in X. Then

ule) = néj_an P(xﬂ, o) .

It is & straightﬂbrward VErification_to show that M 1is

s e, e L-‘n
B N R "
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2, Sufficicnt condltlons

sy rasara:. A L Rt -

Theorem L.2.1 M B 1is sepérable, then the mixture v of

any. P with respect to ény probabflity measure A 1s non-

atO_miC.:_. i

n .

Froof: By Corollary l.2.3., we know that continuity and

nonatcmicity of measure on are equivalent, Since ¥(x,s)

iixy)

i1s a continuous measure on B for every x din X, 'u 1is

contimious and hence nonatomic on B,

Theorem 2,2,2. If‘-{P(x, «y: x in X } is a dominafed
family of nonatomic probability measures, i.e., there exists
a o=finite measure ? on B such that r{x, ')‘<< @ .fOT

every x 1in X, then any mixture g of P is nonatomic.

Proof: By a theorew of Halmos and Savage (see, for example,
)L-22, Neveu, pp. 122]), thle family. {P(x, ) x i X} .is.
gquivalent to a‘countablé subufamily {IﬂXﬁJ «): n 2> l} ’
i.ed, P(x, B) =0 for.every x in X 4if and onlyﬂif

P(xn, B) =0 for every n 2 l. If o (<) = (““.)P(kﬁ,-)
e n>1 2

then the family {P(x, ) 1 x in X} is 'éQuiVelent to 7.

1

» '_!.
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By direct argument, one can see that = 1is nonatomic on B.
If w is a wixture of F, then << m. By Theorem 1;3.5..

4 1s nonatomic on B.

Theorem £,2.3. Let X be a topological space having a coun-
table dense subset, and A4 be thé c-algebra generated by open

subsets of X. Further, assume that P(+, B) 1s a continuous

function on X for every B in B. Then any mixture of ¥
.is nonatomic,
In grder to prove this Theorem, we need the following

Lemmas.

Lemma 2.2.4, Let ,? be a ncnatomic measiure on. B and =#
be a two-valued measure on B. Then q and % are mutually

singular, .

Proof: 'By Lebesgue decompdsitiQﬁ'theorem {(see, for exampié,
111, Halmos, Theorem C, . pp. l?é]), we con write 7? ? ?i + 92 '
where = §; <<y and Q and m are mutually singular. -Since
ﬁ is‘two-valuédf ?i fc;n take on gt'@oét 27Valges. since

Ql < ? . by Theorem 1.3.5, ql is nonatomic., Herce, ?1 = g, -
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?2 = q and so ? and 17 are mutually singular.

Lemna S.8.35. ¢f ?l‘ qz, see 1is g sequence of nonatomic

;. measures and ﬁ is a two-Valued mea sure alL defined on B,
. then there exists B in B such that 7 (B) n(¥) and
S (® =0 for every i 2 1.

Proof: Assume, without loss of generality, ?i(Y) 2 O ficn

)

every 1 2 1l. Let

q (+) = 2 ?n (MT) qn 'j

Then ? ‘is a nonatomic measure, and by Leﬁma Ceeday q and
n are singular., There exists a- B in B such that
n(B) = »{(Y) ~and (f(B)' = 0., This implies (?i(B) = 0 for

every i 2 1l.

Proof of the Theorem 2.2.3.

Let u be a mixture of P with respéct to A. Suppose.
K is not nonatomic. Let B, be a u-atom. Since u(B ) 2 0,
the open set U ={x in X F(x, B ) > 0} hes pos:.tive

A-measure. As X containg a dense denumerable set, U contains
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a dgnse denumerable sej:, sayr  Xqpa 1":2,'. oo+ The measure u

on Boﬂ_,B"z i.s twc.a_-v.alueQ. I:’l(‘xn-, ‘.) = 'P(xn, .)/BOQ g,  the
restriction of P(xn, o) ~to B OB is a sequence of non-zero
ﬁonatanﬁc mesg sures o'n_ Béﬁ B. By Lemmz 2.2.3., there exists
a B ‘in BriB C B, " such that p.(-B)' .-:'p,(_BO) and

P(x,r B) = 0 for every "hnl_>_ 1., Let < 5{3{: im, wk:

P(x, B) = O}. C is a closed set and each x

A is a member

of C. So, U ({ closure of{xnt-nz_l},(: C. Now,

0 # u(B,) = u(B) = ¥(x, B) A(dx)

= [ B(x, Bj’h(dxﬂ + ' P(x, B)xdx)
U : uC

=0+ 0 =20, " a contrgdiction.

The second term is zero ‘follows from the fact

P(x, B) ¢ 0 if xeg U°.

p(x.-'BO)

This shows that u is nonatomic.

.

heorem 2,2.6. Let X be a Lindelof topological space and

i ——

=

be the o-algebra on X 'gene'rated by the open subset of X.
Further, assume that F(+; B) is a continuous function on X

for every B in B. Then aty mixture 6f ‘¥ is nonatomic.
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Proof: Let u be a mixture of P with respect to A. Let

B' g B be such that u(B ) is positive.' Then V ={;c in X:

T3(:;, B, ) >0 is an open set of pObltive A= measure. Let
v ={x in X: P(x,.B) l} Then V= U V. Since
= © e I

A(V) 1is positive, there exists a patural number N such that
?\(VN) is positive. Since Vy 1is closed, it 1s Lindelof.
For every B.(: Bo, B in B, define VB = {x in X

P(x, Bd) > ¥(x, B) ». -I\T_-]:f } '.. ’VB :Lsan open set for every

B (: Bo' B in I_@; Now, {.VB : B__(_"_” Bo‘, and B in E} is an
open cover for V. For, let x €& V. Then P(x, ‘BO) >
%i- N—;l,_—- . By the nonatomicity of P(x, *), there exists C

in B, C B, such that

Plx, B)) > P(x, ©) > YT -

Consequently, x 1s in VC' ‘By Lindelof property of VN'
we can find a countable sub cover for Vi from_{VB : B C B,
and B in E}. Hence, there exists B in B, B C B,

< P{x, B) < P(«:.B )

such that A(Vg) 1is positive. on, Vg, \1}1

S0, 0 < u(B) < u(BO). This proves the nond.tomn.clty of e
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.f‘t)r ltl.le next re.sult.,l we nged the fOllOWiéﬁg defin'ition.s L
énd resﬁits. |
A cardinal number m 1is said to haye measure zero‘if
X 1is any set éf cardinelity m, and u is:a finite Qontinuous
Hmeaéure onthe,pgwet set P(X) of X implies .u is identi-

cally zero..

Sikorski and Marczewski [25, Theorem 3, pp. 137] proved

the following theorem,

Igggzgg.r Let X be.a_metric space such that it contains
a dense subset whose cardinalityfhas measure zero. Let p . be
any finite measure on the c-algebra A on. X generatcd by
all open subsets of Kf Let _Va t w £ D be any famlly of

open subscts ¢f X such that H(Va) = 0 for every o in D,

Then u( U V.) = 0.
acD &

' Theq;@mizgé.?: Lett X be a metric space such that it con-
tains a dense subset whose cardinality has measure zero, Let
A Dbe the G-algebra on X generated by the open subsets of K.

Furthor, assume that P( B) is a contlnuous function on X
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for every B in Bf, Then any mixture of - P is nonatomic,

Proof: Let x be a mixture of P with respect to A, _Let
B, é g-‘be éuch that y(Bo) > 0. Then the sét V.:‘{}c in.. Ks
P(#.BO)S C{}has ‘hqmeasure'positive. Fgrfevery set B in
g. B C B, define Vy = {x in X: P(x, B)) > P(x, B) > 0.
VB is an'open set ang the family

{VB : B in B, B C B‘o'}
covers V., For, if x e V, P(x, Bo)‘> Q. Since P(x, *) ié
nonatoic on':g, fheré exists C in E; C'C: B, suéh that
0 <'Pfx, C) ; P(x, BO). Consequently,”x'e Vge By the Thecrem
quoted in the paragraph preceding the statement of Theorem

24247, there exists a E in: B, E C: BO such that

=
=

AMVg) > 0 since (V). > 0. Consequently, 0 < p(E) < p(B).
This proves the nonatomicity of u.

3 M3

Remark. For the nonatomicity of all mixtures of P;b
Theorem 2,2.1 lays conditions on the borel structure (Y, B)y
Theorém 2.2,2 on the family {._Pﬂ(x, ) ¥ in X}' of

measﬁres} énd Theorems 2,33, 2.2.6 and 2.2;?‘ on (X, é)
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and the family'{iy(-, B) : B in B }-of—funcﬁions.

L4

3. Bxample. An examination of the theorems proved in
Section 2 makes it clear that' thc desired counter-example will
~ be pathological. The proof of the felldwing prbpositibn is

Casye

Propogiticii 24341 Let (X, g);-be a borel structure, wherc

X is any uncountable set and A the countable co-countable

q-algebra on X. Then any real valued function defined ¢n X
1s f-measurable if and only if it is constant on a co-coun-

table subset <f X,

EXémples‘ Let X be any uncounfabie-set and 4 ¢ the countgble
.co~countable o-algebra on K. For eéch' x in X, let
(Y 1 BX, My ) be a nQnatomic probability space., Let

=‘I_'[X Y . the product space qnd E = B, the prodﬁct

. ek
o-algebra.. Fix f_ in Y, Let £ = f /X = {x} , the

restrictioh of f to X - {x}r. For every B in B, define |

X G

on X - ‘{x} }- if we 1dunt1fy ¥ = gx X - % !x} YZ, as

B _fu-th soctloncf B"{g(:'c)GY : g6B and g= T
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a product space of two spaces and B = B_ X ‘J 1 v as the
g : = =% gX-{x} .

corresponcily product of the o-algebrasg, we can easlly verify
that {BX : Be E‘}=EX . (See the_éeneral discussion in (11,
Halmog, Section 34, pp. 141-142],) P : X X By = 10, 11 1is
defined as follows _?(K, B) = “X(Bz)' For every x 1in X,
P(x, *) is a nonatomic probability measure on B. For,
suppose PF(x, B) } 0. There QXisﬁs C in B, such that
¢ C .Bx and 0 < p (C) < ,uX(BX). ‘Let D=(c X 11— Y)ns.
, ZEX -~ {1:}
Note that D is in B, D(C B and D_ = CnB, = C. Conse-
quently, O < P(x, D) < P(x, B). Since every B in B is a-
countable dimensional-cyiinder, it follows that B = ﬁ' for
all but a countable number of x's, or, = Yx _for all but a
.countable nurber of x's. Consequeﬁtly, F(x, B) = O‘ for all
but a countable number of .x“s, ory, =1 for all but a COﬁn-
table number ofifx's.' By Bropositicn 2,3.1, -P(E;;ﬁ) is
ﬁ - measurable for evecry B iﬁ B. iet " bé‘thé' O - l'"
valued measuré cn é defined by A(A) = 0 or 1, acccrdihg i

as & 1is countable or cocountable. Let u - be the mixture of

P with respect to "Ae Then u is 0 -1 ‘valued and hence
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carmot be nonatomic. In fact, x 1s a degenerate measure at

fof

-

Remark. If one wants‘to construct a bofel structure (Z, g).

g transition precbability Q on Z ><‘g, and a probabi}ity
measure 7 on G such that the mixture of @ with respect to

]

n 1s not nonatomic, one can proceed as follows.

Let (X, &) and (Y, B) be two borel structures, ¥ a
traﬁ?ifion,probability on X X B. it this stage, do not assums

anything additional on P. Let A be a probability measurc on

Ay and ‘¢ the mixture of P with respect to . Define a

transiticn probability @ on (X X ¥) X (é‘>< ) as

no

follcocws.

S iix, ¥). C) = v X P(x, -)}v(c) for C 4n 4 X

L X B
Qllx, ). v] is a probability measure on i X B. Further,.
QGle, Cj is L X g-—measurable for every C in 4 X Be For,

let D = {C in 4 X B : 9i*y C1 is A X B -"me'asurable}~

Then D contains {1’1 X B: 4 in A and B in @}, closcd

under complementation' and countable disjoint unions. Further,
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D ié a monotone classs Hence 2 = 4 X B. Note also that

Q is nomatomice if P is nonatomic, Nowy A X g is an

invariant measure for @y le8ey

f QL(Xi Y): ¢l d(x X H)(Xt .V): for

A X o Lcj =
! ¢ in 4 X‘g.
For, if
niCl = J Qilx, ), 0) Ax X w)(xy ),

then n ‘
n(a X B)= [ Qi(x, y), & X Bl ax X w)(x, y)

= [ Dn X Blxy )& X B) d(x X p){x, ¥)

I a(n) Blx, B) ad X p)(x, ¥)

= a(4) S F(x, B) adx) = A(M)u(B)e .

. ; !
Thus the probability measures 5 and A X g agree omn

{A XB: 4 4dn 4 and B 1in B}.Hence n = X X il

Regarding the counter-example in the setup of a single
. ' ~ ol
borel structure, teke 72 = X X ¥, C = 4 X B, wherg the

borel structures (X, %) and (Y, B) are the ones constructed

at the beginning of this section. Since g and A are 0O-1
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D
/
valued, XA X u 1is also 0-~1 valued, and hence x X g 1is
not nonsicmic ¢n Co The mixture of @ with respect to'

AX g is itself, where Q is thc trahsition probability on

Z X

{1 {ap}

cocnstructed as above using ¥ and A, TFurther, note
: g

that Q - is nonatomic.

Further remark. The contimuity conditions dquoted in

Theorems 2.2.3, 2,2.8 and 2,2,7 cannot bc relaxed to measura-
bility. If one wishes to cunstruct a counter example, one can
take the example given in Section 3 and proceed as Ifcllows.
Take X ‘tolbe any separable,.orELindeldf,'or metric épace with
a dense subget of cardinality measurc zerc and A any continue-
ous Measure on theiborcl o-algebra of X. The rest of details
. 1 |

procced exactly as they arc carried out in Scction 3.

4, Nctes. The following Theorem 1.2° which appears in
Ak Johnsen, pp. 6511 beaFs somé resemblance to the problem

.

considered in this Chapter.

=

Suppcse oy ig a family of nonatomic measures and

o= B My Thenn p is nonatomic alsc.
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It should be noted here¢ that his de?;nition of nonato.
micity of a measure is different from ours. His Thecrem 1.2
is not true with our definiticon of nonatomic_-i-ty._;-__ For, let u
be a nenatomic probabllity measurc on a o-algebra A, and let
My = K for every natural number n. Then A= I uﬁ is

' ‘ n2 1
nonatemic according to the definition of Johnson, but nct

aecording to cur definition of nconatomicity.

. ——
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CHAPTER 3

MIXTURES OF INVARIANT NOK-ERGODIC
; _PROBABILITIES

l.. Intrcdueticn,

— e et e ey

Let (X, 4) and (Y, E) be twe berel
StTUCthQS( f -a measuréble transformation from. ¥ to X,
le€uy T;lIB is in— B for every B in E. A méasure g on
B 1is said to be invariant if wp(B) = y(‘l’"1 B) for every B
in B. A measure u on B 1is said to be ergodic if B in
By B = 71 implies- ulB) = 0 or g(BC) = 0, A measure u
on B 15 said to be non-ergodic if it is not ergodic. Let P
Le a trangiticn prebability on X X B with the fcllowing

property.

P(x, *) is an invarient non-ergodic probability measure on
g fer every x in X

Let u be a mixture of P with respect to some probability

measure A on é.‘ It is obvious that u is an invariant

probability measure on B.

b
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Question: Is p non-ergodic?

What is the releyance of this prdblem? “What can yOu'éay
about mixtures of ergodic probability measures? The represen-
f;tioﬂLﬁhecrem.éevéidﬁéd:in {7, Blum and Hanson, pp. 1125-1129],
as we will find out, is a problém of miitures of invariant
ergodic probability measures, and see hov welare led to the
fcrmulation of the above problem. The following is a brief

description of the representation theorem of i2].

Let P dencte the collection of all invariant probabi-

lity measures on B, and Ee the collection of all ergodic

: : 2 " ‘
. measures in P. The following assumptions are made.

i) # 'ﬁﬂ

o

H

= e

11

147 P = P, i.eey, A(B) =0 for every A 'in

if‘and only if #4{(B) = 0 for every m in‘ Ee' A suitsble

g-algebra E on P, is defined inéuring'the measurability of

the following:real valued maps on Py

n—>w(B), m in P, and B in B .

E
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The theorcm is 3 given any A in P, there exists a;probabi~
3 i J
lity meagure g, on B such that

AB) = S (@) any ()

A close scrutiny of this equation suggests that we can refor-
mulate the represcntaticn theorem as fellowse Define

P: B XB 10, 1] by the formula

P, B) = m(B).

F satisfies the followiﬂg properties.
i) Pl», *) is an invariant ergodic probability

messure on B for every n in 'Pe, and

ii) P(e+, B)  1is E-measurable for every B in B.

The reprcsentation‘thcorem says that every invariant prcbabl-
1lity measure A, ergodic or non-ergodic, is a mixturce of the
invariant ergodic transition probshility P with respect teo

)

some prcbability mecasure My On the borel structure (Ee,

{§zal

These results led us to the questionkwhether mixtures of

invariant non-ergodic transition probabilities retain
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the flavour of non-ergcdicity or not.

4 sclution to this problem is the core of this Chipter.,
Section 2 gives a counter example and Section 3 gives three

sufficient conditiong for every mixture of P to be non-ergodic,

£, Example, The example given here is modelled along the

lineg of the e¢xample given In. Chapter 2,

Let X% -be any uﬁoouhtable set, A the countable - co~
countable s—algebra\on  Xy and. » the probability measure on
A glven by a4) =0 or 1 gccording as A is countable or
co-countable subset of X.

Fo?_gvery x in X, a quintuplet (¥, Bt Myr Ty Y,

is assceiated with the following properties,

i) (YX, EX) is a borel structure. -

ii) Tx is a measurable transformation from

W * -f« 3
{x inte Ik.

111) y, € Y, and is a Tixed point of 'TX,.

in€.| TX 'VX:'VX'
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iv) . is an invariant, non-ergodic probability

measure on B.

Let Y'= ] the prcduct space, and B = || By the pro-

r th
xex * 0 ® XX ¥
duct o-algebra on Y. Define a transformation T : ¥ —> Y by

(1) (x) = TAf(x)}, £ in Y. It is a routine piece of work

to check that T ig méasurable. Let fo be the elcment in

7

Y defined by fO(X)

Jer Yor x in X, Clearly,

3
H
i
H
gl
o
ot
H
ol
i

. | £ /X - {x}, the restricticn of f_

te X —-{);} . For every B in B, define BX_= finth section
of B ={ (X) in Y.: ge B and g=f, on X- {X}}.

Note that B_ {B : in :g}. Now, P4 X XB-— [0, 1]

ig defined by the fermulea

P(x, B) = yXCBX); for x in X and B in

Lot
L

The properties of P are listed below.
i) Plx, *) is a probabilityemeasure on B
for every x in X,
ii) P(x,") igian invafiant measure for.every

x in X,
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111)

iv)

| A0k

~

“This follows from the fact that for every B

in By (T"FB)_'s T7T Bl. The fact that.is

ingtrumental in establishing the abqvé identity
-is _ Tfo = fo'
‘P(X} *) is a non-gfgodic measure for
every x in X, |
Let B% be an invariant sef under TX .with
the property O < “x(Bﬁ) { e
Let B'= I C, where C, =B

ZeX
- and - C, =.Yz for 2z ﬁ X. B 1is available in B

X

and invariant under T. Clearly O < P(x, B) < 1.
P(*y B) is A-measurable for every B in B.
Since every B in B 1is a countable dimensional

cylinder, it follows that By = § for all but a

countable number of x's, or = ¥ for all but

a coﬁntable number . of: x's, Consequently,
Pfx; B)‘% 0 for all but a.éountable number ofs
x'éy or’ =‘l‘“ﬁpr:all-but a countable nuber of

X's,
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Noﬁ} let us take the mixture u of P with respect to
A« & is an invarient, © -~ 1 valucd measure cn B. Hence

M 1s ergodic.

Remark., In the convex set P of all invariant measures, an
invariant measure is an extreme point of P if and only if it
is ergodic. Our example shows that a. certain generalised convex

ccmbinaticn of non-cxtreme peints gives an cxtreme point i

Se Sufficient conditions. If Kyt gé; PR is a sequence

of invariant non-cergodic probability measufes on B and

Gp1 o1 ese 1S 2 scCQUence of nonnegative mumbers with the

1, then the probability measurc T «

property T o, = . M. 1s
= gt i>1 t ¢

invariant and non-grgodic.

Theorem 3.3.1. Let X be a Lindelof topological space, 4

the c-algebra on X generatéd by opcen subsets of X. Let P be

an invariant nen-ergodic transition prcbability defined con
X X B with the additional property that P(+, B) 1is a conti-
nuous function cn X for every B in Be Then any mixture of

-

P 1is non-ergodic.
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‘Progf. Let & be a mixture of L P. with respec t to some
probabilifty measure A on A, Sup“ose # 1s ergodic. For

every B in Bt défine UB :.{; in Xs (X, B) > © }, and

B -{ X P(x, E)J( 1 }. Becouse of contlnulty, UB and

VB are open subsets of A. Con31dgr the famlly F = {jj i B

in B, B 1nva¢1ant and u\B) }' -{. 1.6 in- By C inva-
riant and wu(C) = l}-. Note that A(U Yy =0 if B 1is in 'g,
B inveriant and w(B) = 0. Also x(vd) =0 if € 'is in B,

Ia

C invariant and u(C) = 1. Further, the family .F is an open

cover for X. For, if x is in X, there exists an invariant .

set D in B  such that O < ¥(x, D) < 1, gince P(x, o) is

non—ergo&iC. Since p is ergodic, u(d) =0 or = 1., Inany

case, x¢ Up or xé Vp.From E we can extract a countable sub-

cover for .X. Since every set in F. has X measure 2zero,

ol

AMZ) = 0, a contradiction. This proves the theorem.

The basic idea in-the proofs of the following theorems is

essentially the same as that used in Theorep 3.3.1.

i

Theorem 3,5.2. * Let X be a metric space containing7a:densc

subset whose cardiriality has measure zcro. Let A be the

"
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o-algchra on “Xf'generated by opén subsets of X. Let P be
an ianriﬁnt non;chodic tfénsigion probability en X X B |
wit? tﬁcgadditidnal properéy that Fle, ﬁ) is a coﬁtinuous func-
tion on "X for every B in B. Then any mixtﬁrc of P is
, noneergédic.
_Egggﬁ. Lef # be a mixture of P yith qe;pecf to A
Vsupposc y' is ergodié. For every B iﬁ: B, define
.UB ={x in x PGz, B) > o} and Vg = {xe % pGx, D)< 1)
As in'thp §fobf 6f ThebremS.S.l, we note the fol;owing.'”

i) Uy and Vg arc open subsets of X,

ii) The faﬁily E ;{ﬁ%a:_ B in B, B ‘inVariaht_

;and u(B)

i

o}u I ¢ 1 B C inverem

X}

i

and u(C) l} is an opcn cover for X,

iii) For every set Up in E and V, in F,

we have A(UB) =0 = A(VC).

Consequently, by the Theorem quoted in the paragraph
preceding thce statcment of Theorem 2.2.7, l—measuré'éfrthc unicn
of all sets in E is zcro. This implies A(X) = 0. But this |

énsprassivhl OCR Asbichtimnizatiolusing a wetenierkedasvalastion ¢opy«
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—r

Theorem aLQLQL- :iet Xrgﬁéfa ﬂaqsddrff topological spage, é
the c-al;sbra on X geﬁeraﬁed bgopénmsubsetg_of__x, aﬁd A oa
regular probability measu:é‘@h {g.';.e., R(A)_z.&naik(c): g
compact subset of X and O C: A}-,ikm eyery 'A in é. Let P
be an invariant non-ergodic transition proﬁability oIl 'X X B
with the additicnal property tha£ P(°;.B) ié a continuoué
function on X for every B in é. Then the ﬁixture w of

P with respect te A 1g non-ergodic.

Proof. First, cbserve the following. If V : agD is a
family cf open subsets of X and A(Va) = 0 for every af D,

then A ( U Va) - 0. This follews frcm the regularity of .
ac D

More precisecly, for every compact set C (S g Va‘ 2(C) = 0.
aED

As in the casc of the previous thecrems, define

Uy :{xe X : P(x, B) O}and Uy ={Xe X : P(x, B) < 1} for

every B in 3. .

Note:

i) Uge Vg are open subsets of X for every

L]

B 1in BE,
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ii) the family £:={F%_: B in B, B invariant
aid (B = o}.tI {vc : C in B,

invariant and u(C) =J§} is an open cover

for X, and

%1i) every Uy "in E, and Vy in E has

A-Meggure ZoTo.

Conscquently, A-measurc of the unioh of all sets in 15
is zercs This implies A(X) = 0. This contradiction shcws
that nu 1is non-ergedic,

e e
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CEAPTER 4 N

NON-EXISTENCE OF NONATOMIC MEASURES

1. Intfodugtiona " The following intéresting result appears
in 123a, Rudin, Theorem 5; pp. 41]. ‘There are no regular

nonatomic messures on the Borel o-algebra of any compact

£

Hausdorff space «; no subset of which is perfect'. Question:.

B

Are there any nonatomic measures on the Borel o-algebra? When

We sav meagures, the meagure identically equal to‘zero is

excluded in our arguments,

The purpose of this Chapter is two-fold. One is to

examine the question posed in the first paragraph, in detail,

i

in certain ordinals spacc and the other is studying the borel

structure itéelf of this space.

The space, we have in mind, is X = 10, 1, the collec-
tion of all ordinals less than or equal te the first uncountable

ordinal @ . Let X = (0,2 ). Equip X and X with order

topologies. X .is a compact Hansdorff space ccntzining no
q ‘

~55-
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perfect subsets. A ncnempty closed Subseﬁ“of'a topological

space is saia to be perfect if it does not contain any isclate

N -

point, For the topologieﬂ-zaspecta of"thé spéceé X an& X
are'céncerned, refer (14, Kellcy, ppe 29, 30, 57, 59, 76, 131,
132, 162, 164, 165, 167, 172, 173]. These spaces &ro used,
mostly, iﬁ-ﬁonstructing c&untér—examples in Topology énd SC
thgir topological properties are investigated, in'detaii, iﬁ
the literature. But their borei structure doés net seem to

have received proper attention. In {11, Halmcs, pos 231]) ¢ =

-
r

vreperty of the borel subscts of X 1s cbserved.

A measurc A defined on the Borcl o-algebray 1eCey the
o-algebra gencrated by open subscts of a Heusdorff topologilcal

space is s2id %o bhe regular, if for g¢very Borel set B,

(Bl ‘= Su.p{;u’(c) : ¢ compact and C ( B }

We were tnable to obtain’s completc solution to the
problem posed in the first paragraph of this Section, Hewever,

towards the ond of this Chapter, it i observed that there arc
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no nonatomic measures on the borel c-algebra of some special

spaces of interesc,

2. The borsl structure of }: 8" sib st Ul coF X 43

said to be unbéﬂndédlif giveh‘any & ih X there exists a B
! . N\

in A such that g > . In i.ll,l Halmos, ppe 2311, it is
observed-thatithe ciaés foél; unbounded closed subsets of X
is closed under the formation of countable intersections.
Further, every borel sﬁbset ‘A of .X has the property:  either
4 or A% coutains an unbounded cl;sed‘éubset of X, Let B \

denote the borel o-zlgebra on X. We define a neasure & on
& »

B ‘as follows.

u(B) =1 if B contains an unbounded closed
subhset of X

= D otherwise, for B in B.

In view of the above-remarks, it is easy to verify that w is
a measure, and further it is_continuous, lecey  m{ {5:} }y =0

for x in X. "Further, note that pu 1s not regular. Ths
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following theorem gives a complete characterisation of the

-
o

borel subsocts of e

Lfheorem 4.2.1. Let gl =‘{A.C: i : A or A° containg an

unbounded clos=d subset of X}r. Then B = gi.

Ergof; We need only Qb prove 21 C: B- Let A be any

. unbounded closed subset of X, It sﬁffices to prove that every
subset B of A% 1is Borel. Assume; without loss c¢f genera-
lity, @ ¢ B and 0 ¢ A,

N

e, For'every o« in ‘A, a' stands for the first suqcéeding

ordinal of o in 4. «' exists for any o 3in & since 4

is uhbounded,

We ghgll eipress B as a countable union: of sets Ay
where each 4, 1s a sct having atmost one element in common
with (a, a') for every o« in 4 and we show that any such

set is Borel. T

2°. Let f be, any functiom defined on a subset C of A

such that o < f(¢) < o' for every & 'in C, We shall prove

AR e L S e
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that £{C) ( C A% is Boifela' “gince g < flg) < o;i, we can
write f(a) 2 o 'ﬁi where each A, AiS'dpeﬁ and

A C (o ar')" Nov} .rf(C) = [} B, wherec B..= U A, .
lo =g N ' 131 & 17 qec o

Each B, 'is cpen and hence f(C) 1is Borel.

3% Since & is closed, for any B in i%, 8 #Q | there
c¢xists an o dir 4 such that o < g < a's For, if EL is the .
first element in 4 such that o > £ and g = Su_p{a: 96 &

snd 8 < B} Cthen g o= o'.

4°, Define a set valued function g on 4 by

g(a) ={56B; a < B < a:'} . for o in A

Tt is easily seen that' U g(a) = B. Tor e__ach a in 4, we
ﬂs‘ 0’.6 oy : ¥

shall'fiz sn coumcraticn for the Gl(.."’lcnog of g{a) whenever

gla) # g f'lle sets .-"—.n = U {nth element in the enumera-
. Tk f“ - , (xe‘ ".S‘t I

tion of gla) whenever there ig nth element in the enumera=

n>l1 B

tion of g(-oc)} + n21l, are Borel by 2° So, B= U A,

‘Hence B. is Borel..
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3e MoasnresJ@;_jiJ The following result of Ulam 1s well
known. Gooy fur example, Lemma 2 of {12, Halmos, ppe. 111]. We

give herc an alterunate proocf.

Lomma 4,341, Let Y be. any set of cardinality < }S}Jf

There is no continucus probability measurc on the power set
P(Y) of Y.

Procf. it is engugil if we treat the case: cardinality of ¥
=}N}l. Suppose theée is such a measure. A on P(Y)., By.
theerem 1 of (23, B. V. Rao, pp. 614], product s-algeﬁra
P(Y) X P(Y) = P(Y X Y), Identify ¥ ‘with X. Let D)
={w16% a L By ar B in X}Mﬁ\D2=£W:BMG>Bl

o 1B m fla 'X}. By Fubini's thecrem, X X 7“(:1)1) =0 =1 X A(Dg).'

Hence A X A(Y X YY) = 0. Hence such a A does not exist.

1
- 4 g )
Lemmg 4,3.2, Lot X hoe nny continuous measurc on B. Then

A =cu for some ¢ 2 0.

Proof. By Lebesgue decomposition thscrem [11; Halmos, i?p. 1347, |

we can write k.= Al+'hz, wherc kl << g and Az l e So,
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D]

N = CR for seme ¢ 2 O and therc exists a Berel set Y such

that xz(ﬁz) = n. (1) and p(Y) = O¢ By Theorem 4.2.1., Y 03B

P

= ¥(Y), and o /_Y_Q B is continuous. Iicnce Dy Leima £e3.de,

Ay E Q.

Corollary 4,543, Ther- is no nonatomie measure oni B . -

TheoTem 4,5,4, Any measure A on B can be written as

ITER S where ¢ 2 6 and is concentrated on a countable
i =

-
T

subsget of e

Proef. A can be writtaen as hl‘+ hz where ll is cpntinuous
and Kg igs concent¥ated cn a countable subset of XK.

Lomila 44342, gumpletes the proof,

Corcllary 4,3.5. Every regular measurc on B 1s concentrated

on a countable number of points of X.
pein ‘

Procf, Let A be & regular measurc on, B. By Theorcm 4,3.4.;

we can‘write A = cu + q, where"? is cencentrated on a epunba-

ble number of pcints of X, Since p 1is not regular, c = 0.
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4, Megeurahle fupctiong on X,

Theorem 4,4,1. A rcal velued functicn on X 1is B-measurable

-

if and only if it is coqétant.on an unbounded cloged subéet‘of
X. -

Proof. Let £ be¢ any real valucd funetion dcfined on i.
Suppose f is constant on an unbounded closed subset of X,

~iecey f(x) = ¢, for every x in A, where ¢ 1is a real nunber

and A is an unbounded closed subset of X, Let B be any

S

borel subsct of the real line. If ceg B, then ffl(B) :) S

and hence, - ffl(B)e B. If cg By then {f’;(B)]c iy and hence,

F

f“l(B)e g. is gwmeasurablc.: Conversely, let £ be

B-measurable., If C denctes the borel o-algebra of the real

linc, then £+

(¢) 1s a separabic sub o-algebra of B. - Restric
the measure p to f"l(g). By propositicn 1.2.8., u is con-
centrated on an atem of f"l(g), iece, therc exists an atom 4
of f"l(g) such that g(4) :.1. Evidently 4 must contain an

unbeunded clesed subsct of * X, and c¢bserve that f is constant

on the atums of, f_l(g)-
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B. Somg general cases. The_following ﬁemmé is in tho

folklor:.

L

'

e

Lomna 4.5.1. Let X be a zompact T2 topological space and B
its borel o=nlgebra,. - For rogular measures on B, continuity

and nonatcmicity are eguivalent,

Proof. If u 1is nonastemic, then it is, obvicusly, continuogé.
Suppoée' 4 is coentinucus and met ncnhatemic. Let B 1n g bc
s upeatom. -Since ‘u is regular, we can choose B to be ccm-
pact, Turtiher, w 1s two—Vaiued e B Q1B. . In ?iew of those,
it suffices to show that there are'no two;valued regularlccnti-l_
nucus méasurés on B. For any measurc K oon By there exists

a peint x. "in X such that x(U) > 0  for every open subset

o]

U of X acrlaining X e If noty for every x in X, there

cxists an open'sdt UX containing " x such that u(UX) 0.

o]

‘{UX tx in Y} “is an cpen cover for . X | Extracting a
finite subcover, we ncte that u(X) = 0. If g is twe-valued,
regular and continucus, then “({EXO} ) = Inf{:g(U) : B open

subset of X . containing xq} « This gives us ¥
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# ({%:}) = u(¥), a contradiction to the continuity of the

Measure ji e

Thecren 400.2;, Let X be a compact Hausdorff space, no sub-

set of which is.perfocf and eﬁcry.singletcn is a Ga._-Then
-there are no nonatomic measures on the borel ¢-algebra B of
X. |
Ezggi. -Lef ¢ dencte the Baire c-algebra of X, i.cey the
G;algebra goncrated by compact Ga subsets of X,A Evepy'
measure on g' can be extended, uniquely, to B as a reguler
measure. By the ﬁypothesis of the theoreﬁ;.all éinglétcné‘are
haVaiiable-ih Ge #et 4 be a ncnatcmic measuré on g. Let
Ao be the regulqrisation of wu. This. ”Q cén be obtéined in
twolways; Lot (X)) pe the collection of all continuous
fuﬁctiéns dﬁ X. The linear functional L : C(X) —¥> R
defined by |

L(f) =f( fau .. fem £ 1:1“_ C(K) .-\
.iS nonnegative and continuous. By Riegsz reéyesegtation thecrem,

there exists a regularmeasure #, on B such that

v
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S fdw = [ fawx_  for every f. in OfX).

The other way is to restrict u to glland then find the

regular extsnsion My to

HE:J

Since m- is nenatcmic, it is cpntinpous. Ko, is also
continucus. Réasonﬁ i/ g 1is coﬁtinueus; By the preceding
Leming, any regular contiﬁuous neasure is nonatcmic, ilerice Mo
is nonatomic. The result of Rudin, stated at the beginning of

the Introduction, is contragicted,

;

Remark.” The rroblem of the existence ¢f nonatomic measures

cn the power set ¥(X) of a‘set X comes underlthc purview

of tiae central wnrcblem stated at the beginning of this Chapter.

For, it is possible to give a compact Havadopff topology 7 on
4 such that (i) no subset of X is perfect under J and

(11) the o-algebrs generatoed by 7 is the class of all subsets
of X, P(X). More preciscly, this topology T ¢an be obtained
as follows. Let xor be a fixed peint of X. Lot To be the

diserete topolegy on X "'{Xo} . Do one point compactificaticn
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el B {xo} by adjoining the point x_, to X -{xo} . The
resultant topology ) fulfils all the requirgments. So, the
Tollowing questicn‘remains cpen., Does there exist a nonatomic
nleasure oi the power set of any set?- Under Continuum Hypcthesis,
Ulam {26, Satél S pﬁ.'lé9] proved that theéc is no nonatomic

measure on the power set of any set,

e
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CHAPTER 5
EXT STENCE OF NONATOMIC CHARGES

=

1l. Introducticn. There are no satisfactory necessary

and sufficient conditiong for a o-algebra to have a nonatomic
megsure definedién it. However, in‘certain topological
measure spabes,-such qharacterisétions ﬁere-obtainéd. See,
for example Theoreﬁ 1@ LA, Kéowies, PP. 64] énd
Corollgfy 5.5‘Of {21, Luther, pp. 458], The problem tackled
here is to give characterisations of algébras admitting
nénatomic charges. The characterisationé ggven'here turn out
‘to be very simple. One chafactefisation gives condifions on
thg alg bra and another on its Stone space; ‘Thésé‘reSu;ts
providc é char%gtgrisation of superatomic Boplean algebrass

The following are the pertinent.definitions used in this

Chapter. There may be a repetetion of one or two_definitiéns.
- : ‘ "

These are included to make this Chapter complete in all

details . R S T

e "'6’7"' 4 ) ) 5 i - ‘ '
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i) 4 fleld is a collection of subsets of a set ~ closged

under coupdicuaentation, finite unicns and contains empty set,
4.

1) For the definition of Booclean algebra, we refer to

l_io

(12, tialmcs, pp. 5] or (24, Sikorski, pp. 1]. The zerc
celement ana the unit elemeunt of a Boolean algebra are dencted
by O anc 1 respectively. Furthcr, %he join and meet of two

cleicnts are denvted by V and A respectively, and the

complement of an element of Boolean algebra by prime, ' .

Bcclean-algebras arc indicated by'ﬁcman capital letters
iy By C ... and the elements by a, b, ¢, };b ‘éfc., with
orwithou% suffiﬁes. Ficlds of scts are denoted by fy By ©
ve. and the oloments by h, By, C ... otce, with or without
suffixes. Whether we are_fackling with a Booléan algebra or
a field of sets will be made clear in overy situaticn so as

1

to zive nu room for confusicn in the notation,

The joiiiy, meet and complcmentation in the case of fiecld

of sets are dencted by U, 1 and g respectively.
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4 g=ficld of subsets of a set X 4g a field on X

closed under countable unions.

Here, we wish tc point out that these conventions are
‘used only in this Chapter. In the other Chapters, we, usually,
deal with o-ficld of sets and revert to the ncmenclature of

calling such entitics by o-algebras.

ra s

Ther— is nothing to distinguish between ficld of sets
and Beclean algebras in view of the Stone represcatation
Thecrem, This statement is amplified at the end of this

Section, Whatcver notion we introduced in Boclean algebras,

they can be defined, verbatim, for ficld of sets.

-zerc, real valued, nonncgative and

ii) A _cherge is & nor

[

finitely additive functicn whose domain of definiticn is

cither a Boolean aleehbra or a ficld of sets, vanishing ot the
” T " 1 =]

zePo element or cmpty scb, as the case may be.

iv) 4 charge & on a Boolean algebra 4 1is saild to be

for every a in 4 with wu(a) positive, therc
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exists a bl in 4 such'that_ b < a' and 0 < w(b) < ula).

v) Twe Boclean algebras “.4 and B arec said to be

iscmorphie if therc exists a ocne-cne and onto Map & from &

to B preserving the operations - join and complementation.

vi) 4 ccllection of non-zsro elements g, . . B
llllgt.ll' lk ]
1

k21 and il' iz, .8y ik is any sequence of O!'s and 1'%3

in a Boolean algebra 4 is sald tc be o Lree it A if

Y e ——

Va,

1 ] -
( ) & ll[ l2|oo-' lk-lf gl

il)izgunoi ik—llo

a5 g 0 . e
. lll 1«2:--?1 lk-—l

ailg izgoonl ik—ltro A ailg iggocc, ikﬁll-l 2 O‘

and (3) a Va, =1.

©a ]

Vii) In a compact dausdorff gpace, X, Bairs (borel)
o-field is the.o-field gencrated by compact Ga (compact)

subsets cof XA,
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viii) 4 measure is.a charge whose domain of definition
is eitner ficld of sots or a o-rficld of scts and is countably

. additLVQ »

1® A measurc on the berel o-field of a compact
Hausderff spece 13 gald to be rgpular if the measurc of any
berel sct can be approximsted from below by the measurc of

compact subsets,

%) . Boclean algebra is said to be super-atomic if
ites Stone gspace is scattered, i.Cey contains no parfect subscts.

See .24, Sikerski, pp. 35].

#zi) & Beolean nlgebra B is said to be atonless if
be By b #0 implics thore exists a€ B: such that a # 0,

a#b and a < b.

The follewing results are used in the sequel without

eXplicit mention,

iny measure on the Balre o-ficld of o compact Hausdorff

v

space can be extended uniquely zs a regular measure te its
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borel ¢-field, See i1l, Halmcs, pp. 239].

iny Eooleam rlgebra A 1s isomorphic to the field
of all clopen subhscts of scme compact Hausdorff totally:
disconnected spacc X. £ 1s called the Stong space of 4.

See l24, Slkorski, pp. 241 or [12; Halmcs, pp. 791,

2. Preliminary results.

-Proposition_ Se2.1. Let g be a measure on a o-ficld L

—

and B a fleld whilch generatcs Ae IT u  is ncnatomic oh

49 then % 1s nonatomic on Be.

Proof. Suppose p 1s not ncnatomic on B. Then there exists

asst I in

115l

such that w(B) is positive and € in B,

¢ U B implies «(C) =0 or u(B). In other words, & is

W

two-valued cn B B o B B is a gencrator for B

——

o
[ ]

Heneou : ¢ 1is two-valucd on B 14 o This 1s a contradictiocn.

Remark, Thc conversc cof-this Propositicn is npt true. Let

X = 0, 1}, B the ficld gencrated by the intervals
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(2, b1 C i3/8, 5/8). Restriction of Lebesgue measurc M to

this field is nonatomic and [Hange of A /Bl A (%, ) = g,

Hence A/ o(B) “docs nct have Darboux property. For, [Rangc
of A/ B} 1is a dense subset of {Range of A/ o(B)]l. A can,

e

not be nonatomic ocn o(B).

The feilowing result is proved in (2L, Luther, Lemma 3.4,

Dp. 45671, Herey, we give an alternatce proof. -

Proposition S.2.2. Let X be a compact Hausdorff space,

B and & Bairc and borcl o-ficlds ¢f & respoctivelya
(i) If ¢ 1is a nonatomic measurc on B, thoen any extension of

this measure S¢ 4 ic nonatomic. (1i) If g is a regular

nonatouic measure on .y then ite restricticn t6 B is

nenstomic,

+d

rocfe (1) folleows from Theorem 1.3.2. Fer (ii), suppose g

is not nenatonic on Be Let B be a uy-atoem of B. Since
gvery meosurc on B is rcgular, we can chouvse B to be a

compact Ga. ¢ 1s two valued measure on B 0 B. Further,
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BB and BO 8 arc the Baire and berel o-fields:of the
compacty udsusucrif space B, In view of these observaticns, it

ls sufficient to preve that if ¢ is 0-1 wvalucd on B,

thoen its regular extension to 4 is alse U-1 valued. If i

3 i g
is U~1 wvalued on By thero exists a peint x in ¥ suckh

that every open Bairc set (hence every Baire set) containing

‘X has mecasurc 1, The degenerate measure 0, 1s the regular

extension of p to 4L and hence 0O-1 wvalued, i

The following thcorum is taken from (17, Knowles, \
Thoerem Ly ppe 647, ‘ -
Thecrem 5,8,3. There exists a regular ncenatomic measurc on

.

the borcl o-field of a compact linusdcrff gpacc if and cnly

if X contains a nperfeet sct.

Conmbining ALochLtlcn De2el and Tuoecrem -5.2.3, we

obtain the following roesult,

Theorcti Heads Therc .exisbs a.nonatonic measur. on the Baire

bt
4

o= field of a ccupact Hausdorff spzec X if and only if
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containg a perfect sect.

Propost

& the

4 such that U A. 1s alsc in Q. Since

- =

Eip£;§J245. Let X be a compact. Hausdorff spacc and

ficid of all clopen subsets of X, Then cvery charge

is.» measure on 4 .

—

Let be a disjoint sequence of sets in

i‘-.l' ;‘4-2, L

U A, 1is

compact, all but a finite number of elecments of this sequence

are c¢mpty.

PR ¢

b

ProLoaition Dafla6, Let X be a compact Hausdorff totally

ai scermected space, 1e6ey a Stone space. The collcetion of

clopen

Proof.

clopen

subscts of X 1s a gencrator for the Baire o-ficld of

3
C .
- - -

Finite lincar combinoticns of 4ndicator functions of

getgy hy Stene-¥Welerstrass'! theercm, is densc in the

space of all continuous functions on X.
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Thecrom 5.,3,1. Let L be a Boclean algebra. The following
arc.equivalent.
i) There is a nonatomic charge on
ii) 4 contains a tree.,
iii) & has a countable atcmless sub=algcbra,

f

iv) The Stone space of 4 conteins a perfoct subset,

Proof. (i)} => (ii) is obvicus.

Py

(ii) 2> (iii)o Let {ail’ into'00| ik- 111_ ‘iggo.oo' lk

is any finite sequonce of O's and 1's, k 2_1_} bé a tree
in 4. Let B be the algebra generated by this trce. Then
B 1is ccuntable and atmcsless sub-algebra of . (Finite

disjoint joins of elements of a trec is the Boolean algebra

B guneratcd by the trec.)

(i1i) ==> (iv) . Obgerve that ~ny atomless countable

Boolean algebra is isomerphiec to the field of all clopen

}\?
subsets C of the Canter spacc {O l}

‘
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See 124, &ikorski, C), pp. 28], Consequently, there s a

natural nowmomorphigm from € into A, which is also Oolieronie,

Let X Dbe the Stone space of 4. There exlsts a continucus
. ‘ & ‘ ] N ;\}O I .

funcetion f from £ onto {'O, i 7 « For this regsult, see

th dlscussion in 124, Sikerski, Flrgi three paragraphs of

[p]

page 41, fiow, we clalm that there exists a minimal closed

set P (L X such that the rance of £/ ={0, 1} 7 For tuis,

we procecd as follows. The collection 2 = {F (L X : ¢ closed

, %0 .
in X and Range of £/ € = {Q, l}' ls nonempty and is

o]

partisily ordered by set inclusion. Let C,t @€ b bea’

‘ , ;“}o
chain i £, Then i Ca g %y  For,“let yBJ{O, | « There

ach

3

exi st % € C  such that:f(xa) =y for every o€ D. Since

Cq,: o€ D 1s 2 elizin in Z, X?G C. if B 2 a. Since X 1is
L Lo 2 (8

compact, there exists a subnet of X, ¢+ a€ D converging to some

elemcnt x, ©of X, It is plaln that X, 6 CU for every ae D

L

and f(xo) = Js By Zorn's lemma, therc oxists z minimal closed

set ¥ (C ¥ with the property that the range of

£/ P = {o. 1}3‘%

. Now, we obseérve that P 1ig perfect,
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For, if not, let x be an isolated point of P. Since

ke | R : . . r -\ g = - k. .

P - {Xj 1s compact, (P --{x} ) = f(P) - {f(x)} is e¢losed
Ak’ _ ' :

in {O, l}- + This impliés that~{i(x)} iz open aBd hence

' Far ™

g } '] - T, . 14 -
clopen. But «{O, 1}- is perfect., This contradiction shows

that P ig perfect. This complotes the proof.

(iv)’?=> (i) Let X be the Stone space of 4, D the
collection of gll clopen‘subsets-of ¥ +and B the Baire
c-field dn Y, Since X ‘contains a perfect subsct, there
exists:a noretemic measure: i on By by Theorcm 5.2.4., By
Proposition 5.2.1., u / D is-a nonatomic charge:on D.

Transfer ¢/ D to A. Thus we have a nonatomic chargec on A,
Remark. If a Boolcan algcbra 4 coutains a trec, then we

L

can define a nice nonatomic Charge cn the algebra B 'gencrated

by the trce, This charge on the sub=algcbra B can be oxtendeg
to A as a chargs. Sco (24, Sikorski, (b.7). Pp. 211]. But

there is no guarantee thsat semc extersion of a given nonatomic

charge will be nonntomic, An inkling of such a situntion is

provided in the Remark following Proyosition 5.2.1.
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'ELgpllarz DedeleCn any infinitc o-field of sets, there is a

nonatomle Cuaigo.

Proof. Let. N‘=~{l, 2y 3, ..:}. We can find ‘Ho; Nl such

ct
ct
=
o
=
o
It

g, N UN

1

1 =,N and Ho' N

Thus, by inducticn oo k, we can fird sets N, 1
L ll| 21 -00111{

for every finite sequence 'il' 12,..., ik of O's and 1's

such that
3 4, n u, q ' =
(a) I Q 1 11, 12!“'i ik_-l‘ l g'

li

{(b) N, U v

ll| 12100071 11{_1' a il' 12300-! ik-l,g 1

W 0 & : |
ll‘ 12[ LI LI 4 lk_"l' f*lfld

and N,

N, . ' ;
(C) ll' l2|o-o| ll.'{_lg 1

llg izgooog il{"‘l‘ 0

ara infinite.

If B is an infinitc o-field on X, we can find ah infinite

sequence of disjoint, nonempty sets Bi1 Bgreee in B such

are both infinite. -
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that U 3, = X. Apply thc above technique to Bl' Bz""‘
R

to get a trec in B. Theorem 5.3.1 completes the proof.

Cornllary Deded. L Bcolear algcbra B, is supcratcomic i

and only if there¢ is no nconatemic charge on B,

+

Proof. Trivially follows frem Thecrem Se3.1.

4, Position of nonatcmic probabllity charges in tne spac.

of all probability charges. # charge wu on a Boelean
algebra A7 1s said to be probability charge if p(l) = L. Let

P denote the collection of all preobability charges on L.

o)

L]

Zquip with a topolegy by defining convergence as follcws.

i

A et E T dn
o

Ha ol

converges to a & in p if ua(a) cen=

verges to wla) for every o in A

Thep _Q_Lﬁ_:‘“_

3

ole  The ccllcetion of all nénatomic probability
charges on g Buolean algebra 4 is a densc subsct of [ if

and only if 4 is stomleseg, or, cquivalently, if and only if

the Stone gpace, X, of 4 1is perfect.
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Progf. Identify A with the field € of all clopen subsets
cf ¥y and ussume, without losgs of generality, that every w
in P 1is defined on (. Let B be the Baire o-ficid on X.

Every # on C is countably additive and consequently, we

can cxtend gy from € to B as & measure, uniguely., Denote
this extensiocn by u. Let @ denote the collection of all

probability measures on Be. The weak-star topology is defincd
as follows., A nst Ay in § converges to a A in - Q if

“§ fd%x converges to Jf £fdx for gvery continuous function f
on X. Define a map Lp from P to @ as follows.

(+) () =5, for w in 2. QP is one~cne and onto, Further,
it 1g a homecumorphism. For this, use the faet that finite
linear combina*icns of indicator functicns of sets in ¢ is

denge 1n the space of all continucus functicus cn X, with

SUPY MUS NOT i,

Let A be atomless, 1.0y ¥ is perfect, Xncwles
W17, pp. 65] proved that if ¥ ig perfect, the cellecticn

of all ncnatomic prcebability measurcs N on B 1s a dense
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G’a SUb sct of go

. ' -l
nenatomic prebability charges on ¢ contains L*) (), ang,

" Consequently is g densc subset of P,

Conversely, suppose X is not perfict, Let x be an

Lscleted point of X. Tote {x} o g

The degeneratec charge

0.€ B« Since the collection of all nonatomic charges is a

densc subset of P, there exists a net K, of probability

charges in F cenverging to a_. But K, Q{:{}) = 0 for

every w  and ax:(-{x}») = 1, This contradiction shows that

X is perfuct.

- e - ———

By proposition D.241, the collection of all

. T T
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CHAPTER 6

MEASURES WITH PRESCRIBED MARGINALS

1. Introduction. Lét (X, B) and (Y, g) be two borel
structures, and (X X ¥, B X £) the product borel structure.
Let u and X be two probability measures on B and ¢
respectively. Let M (g A) Dbe the c;ollection of all -proba-
bility measures r on B ‘><"___Cj -v&ith niarg.inals 4 and A on
B and ( respectively, i.e., & {B X ¥) = ,u(_B) for every
3 in 3} and g (;1{. X C) :-. A(C)V for every ¢ in C. The
product mensure u X A, obviously, belongs to 1"__} (e Mo It

is easr to check that o (u, N\) 1is a convex set,

Preblem. VWhat are the extreme points of M (,u,r )7 A motiva-
tion for thig préblem came from the following theorem of

i15,- Kemp, Lpe. 1356]. 'u X X is an extreme point of

I\__@ k(g X ) if and only if either w is 0-1 Valued or X\ 1is

-1 vwvalued'.


http://www.cvisiontech.com

-S4

4 complete solution to the problem posed above 1s obtai-
ned in tie case when X and Y are finite sets. More preci-
sely, let 811 8g1 esey Apy bl' b2, ee sy bm lbe m+n non-
negative real numbers. Let A Dbe the collection of all non-

negative matrices A = (a;;) of order m X n with marginal

sgums . al| &2,..., an and bl' b2|ooo| .bmq i.e-{

n

'Zl ajy = by for i = 1,2..5q Iy

J= '

m ;

121 aij = ajg for :[ = l|2'o'ocg Il al'ld
a4 2 0 for every i and j.

It is casy to see that A 1is a compact convex set. (4 may

be empty, In fact, 4 is nonempty if and only if

n it T
X a, = % Db..) In Section 2,some characterisaticng are given

=1 *  j=1 ¢
for a matrix 4 in 4 to Be an extreme point of é; AS a
simple consequence,ABirkhoff—‘Von Feumann's theorem on doubly

stochastic matrices is obtained. In Section 4, supports of

extreme points are analysed. In Section &, a characterisation:
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of extreme points. is obtained in the general caset Ab explicit
construction of extreme points is made using measure preserving

transformations.

Let 4 = (aij) be aiy matrix. An ordered sequence

fQs s 4 B: - 4 ees 83 < 1 of elements in A is said to be a
i1d;°% Tigidy Ledy

loop in 4 if (i) k is even, - (1i1) i, =dgr ip = igaee.,

ik-l = ik! (iii) jz = 33! ,]‘4 = 35'.‘--! jk N Jll and (iv) th.e

pairs_(ip, jp), viiere D = 1,24e..4 k, are all distin:t. A

loop in 4 d1e salid to be poéitivé if every element in che

loop is positive. gggport of 4 is defined’to be the collec-

tioir of 2ll pairs (i, 'j) such that a.

: - lt. y
15 1s positive.

2., Charascterisetions. In this Section, we obtain sevcral

charactcerisztions of extreme: points.of fe

Leming 6.2.1. Every row {coluamn) of a matrix A in. A con-

=

tains an even number of elements of any loop in  i.

Freof., - Trivial.
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Lemms 6,2,2, If a; 5 ¢ 8¢ 3 % @z .4 1t s .5 3% o
RS 11917 pdgt Tigle’ Tigds

Fa e -—!. Fany 2 .
Cpdp tplpal

Yess 1s an infinite sequence of elements from a
given metrix 4 with the property that any two consescutive
suffixes are distinct, then we can find a loop in A consis-

ting of elements from the given sequence,

Proof. Let b' be the.first element in the sequence whose
suffix agrees with the suffix of one of the clements 'a!

preccding b'.

Case (i). a' = aikjk and b! = aipjp'

- G AU L p1dper’ aiﬁ-ljp] e e
Case (ii). »~!' = nikjk+l andé b! = aipjp+1.

Then [aik+ljk+l‘ aik+lj1+2§"'; aipjp‘ aipjp+1] is » loep in .. é
Case (iii). a' = aikjk and p' = aipjp+1'

Then Laik;ijk+l‘ aik+ljk+2; ageie aipjp' aipjk+1] is a loop in A.
Case (iv). ;'
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This casze can be disposed of in the same way as Sase {111),

In the proofs of many of the theorems, the.basic idea is
to exhibit a sequence satisfying the hypoﬁhesis of the

Lemima 6.2.24

Theorem 6.2.3. A matrix A 1in A 1is an extreme point of 4

if and only if there is no positive loop in A,

Procf. Sippese { ay 1 cesy ai . ] is a pusitive loop

a N
143" Tlgdon Kk
in A, Let 0 < & < minimum of a; . lesey @, ; « Define two
S T Lyedx |
matricgs B = (bij) _and i :l(cij) as follows.
» b- : = a. B -~ 6' if p iSOdd,
Tpdp  Tpdp
L= g, s = By if p 1s even,
Tpdp '
and biy T 84 if (1, 3) # (ip, jp) for any

P = 142¢e00y Ko

C. . = &, . +& , 1if p 1is even,
“plp “plp

H

L - Gy ifp is Oddf
S D e ™ e ‘

"1
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and Cij = By i (G SR (ip. jp) for any
p‘—"l,2|...|l ke
Note that B and C are in 4, distinct and

A= %(B 4 0).

Conversely, suppcss A 1is not an extreme point of 4. We can

) Aand

write A = ¢B + (1 - q)C for some distimet B = (by

C=(cyy) in 4 and 0< o< 1. If ag; = 0y then -

bij = oij = 0, 'Siﬁée 4 and B are distinet, there exists g
pair (1,, Jj,) such that a; . #Zb, . . Clearly a. . 1is

i 113 7 iy, \ 133
positive. Assune, withcut-loss'of genefality, a 7 be s e

1 = e L o h o11m i 3 +
There exists ig # Jy such tnat ailjz < hiljz. Note that
ailjz is positive, There exis?s iy # iy such that
By = 7 Ds . j= A such that 4, < b and so on.
16J p [ 3 2. e kil
42 292 :

1ods - Tigds

Thus, we can construct a sequence of positive elements,

8 4 8y % a; . 8: : % eeece’s With the property that any
Thydyt iy Tiglp! Pigigt '
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two consecutive suffixes distinct., By Lemma 6.2.2, we can find

a positive lcop in As This proves the theorem.

Lemitng €.2¢%, If every row and column of 4 contains atleast

two positive elements, then . contains a positive loop.

Procf. It is easy tc construct an infinite sequence of positive

elements in 4 satisfying the hypothesls of Lemms 6.2.2.

Theorci 6.2:5. The Following are equivalent.

(i) There is a positive locp in i
(i1) Therc exists a squere submatrix D of A of crder k
cuch that the number of positive elements in D 1is greater

than or equal to 2k.

Proof. Suppose A contains o positive looP w2y o v 83 4 1
L N

eer B3 1. Let p, = the number of distinct elements among
i

il' iz,...,,_ir and Py = the number of distiﬁct elcments among
jl' jz”"‘*’jr' Assume, without loss of generality, Py < Poe

Let E be the submatrix of 4 of order p-i X Po determined
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by ilf j'2!°"l iI‘ th rows ana Jl' j'z'...'. jrth COlu.mnS

of A Let D be a submatrix of E obtained by deleting
Po - Py columns from &. Since every column of D containg

atleést twe positive elements, the number of positive elements

£

in D2 201. and the order of the matrix D is Py X Py

Conversely, let D be a square submatrix of order X
sucii thet the number of positive elements of D {1s 2 2k and
let L satisfy, furthermore, the minimality property thait for

every square submetrix G of order q £ k-1, G has less tnan

#q posiiive clements. We prove that every row and column of

D containg atlcast two positive elements. Suppose this is

. : W . o
not true. Lt some row, say i h, contain atmcst cne positive

elenent, Lot q = min {Sthe nmumber of positive elements in a
column

column of ~D}.. Case (i), a =C or 1, Choosge = column,

th ol - ' i )
Say gy ccuindning o positive elements. Let © be the
Gl

matrix obtained from D by deleting thc ith row and thc j

column in D. By the¢ minimal property of D, the numb er of'

positive clements in € < 2k - 2. On thc gthor hand, by direct
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computaticn, the number of positive elements in C is

2 €k - 2., ‘ihusy we have a contradiction. Case (ii). o 2 Z.
.Th . . s el
If the 1 row contains only zeros, the number of pogitive

elements in C, as constructed above, is 2 « (k = 1). This
leads to a contradiction, If the ith row contains one
positive element, let F be the matrix obtained from D by

. th
i

deleting the row and the column which contains the

positive element of the ith row. By direct argument, the
number o° positive elements in F is 2 af{k - 1)« By the
- minimal property of D, the number of positive elements in

F <2k -2, This is a contradiction. Lempg 6.2.4 completes

tlie proof,

Frem whet we have done till now, we have the following

comprehensive ' Theorem!'’ .

Theorem €,2.6 Let 4 be any matrix in A . The following
are equivalent.

i) A 1is nct an extreme point of A.

ii) There is a positive loop in A,
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111) There exists o submatrix E of A satisfying the
property thal svery row and column of' E has atleast two

positive elements.

iv) There exists 2 square submatrix D of A satisfy-

ing the property that every row ant¢ column of D contains

atleagt two positive elements.

v) There exists a square submatrix F of A, say, of
order k, satisfying the-property that the number of positive

elements in F ig greater than or equal to &k,

The eguivalence o% (1) and (v) 1is proved by
Lindenstrauss .19, pp. 382]. Aftcr obtaining the results of
the present Sceticn, the author came to know that thce equiva-
lence of (i) anda (ii) 1is also proved in (18, Theorcu 4,

PP.- 265],

3e Scie conscguences.

Theol sl 6,3als (Birkhoff - von Neumann). Let 4 Dbe the

collection of all doubly stochastic métrices of order n. A
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. matrix B in A is an extreme point of 4 if and only if

B is a permubtetion matrix.

-~

Proot, It is obvious that if B is a permutation matrix,

then B is an extreme point of A. Suppese B is not a

permutation matrix. There exists (il' jl) such that

0 < biljl < 1. There exist Jg # i1 su§h that 0 < biljz < 1,

io # i, such thet 0< b, ., <1, and so on. Thus, we have

i b b' -] 01 .I.,..’v

an infinitc sequence by . ¢ by = m B
t19g 2lg S

191
of positive elements in B with the property that any two
consecutive suffixes are distincts By ILemmg ©.2.2, we can

find a loop in B, Theorem 6,2.3 completes the proof.

Remark, For an alternste prbof of Birkhoff-von Neumann's

thecrem, sec .2, Berge, pp. 105-106],

issume a2 is positive, where a = aq+ B ouee =
Assume is positive, where a 1+ agd o toag =

by + by * eee b Define 8y 4= (bi- aj)/a; for i =1

H
!_I
o
e}
o
L ]
-3
=
©
o
[

o lm's . = (ay;) "is a matrix with
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V.

Irow sumg bl 1. b2| e 1- bm| and COlum sums alg 8.21 LRI _an-

.

Soy A 1s a mewmber of A. Call this matrix the pseudo-

product matrix,

Theorem 6,3.2. The bPseudo-product matrix 4 1is an extreme

point of A4 1f and only if either aj = a for some J or

bi = a3 for some 1.

Proof. If either a; = a for some j or bi = a for sone

1, then A will contain only the pseudo-product matrix A,

L

and consequently, 4 "is an extreme point of Le If 8 ¥ a

a 1

for every ' j and by # a for every 1, we can find aqt @g

bp and b, all positive, where q # s and p Zr., Then,

[apq, apgt Apg afq] is a positive loop in A.

Remark. Coimpare this theorem with Theorem. 3. of {15, Kemp,

pp. 135617, ' l . "

£, Supporté bf extreme points.

Propqsition 6,4;1, Let 4 be - B..be.tWngistith extreme
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. points of A. Then the support of A neither contains nor is

contained in the support of B properly.

—— e

Proof. Suppose support of 4 1is contained properly in the

support of E. Let (ilg Jl) be such that b >0 =

. & B. = »
- T 1341

< a, .. Clearly,

There exists o % J; such that biljz 113,

b s is positive., For, otherwise, a. . will be equal to
1142 t1dg-

zero. There exists i, # 1, -such that b; . which

a. =
2o todo
implies bi j 1s positive. Thus we can construct an infinite

22 1 -

sequence b.

113" i

e T I M AR, of peositive
pdg 7 Tl Tigiy

s
slements in B with the property that any two consecutive
suffixes are dirstinct., By Lemms 6.2.2, there exists a positive
loop in B giving risc to a contradiction. A similar argu-
i ' -

ment shows that the support of B 1s not contained in the

support of A properly.

Prdposiﬁion Celels Let A and B be two,distiﬁcﬁ extreme

o -

points of A4 . Then the supports of A and B are distinet.


http://www.cvisiontech.com

»

Proof. Suppose supporté of A and B asare equal., Since 4
anG B are distinct, there exists a pair (iy. jl) such

that . Assume, without loss of generality,

e #.b..
A 51

i & @ B which obviocusly implies a; . ,1s positive.
1131 i L .

114y 141

There exists Jg # §q.such thet ailjz ¢ bilJZ. Since supports

are ejual, a;

1132 is positive, There'eX1sts< 1o 7 il such

that g >b. .., and so on. Thug we can conhstruct. anh
odg Lodg

infinite sequence a A leels O oS

. : gt 8: 2 Y Q; : ¢ 85
11dp7 T1dg ladg Aeds
tive elementes in A with the properfy that any two congecutive
suffixes are distinct. By Lemma 6.2.2, there exXigts g posi=-

tive loor in A, giving.rise to a contraaiction.

Corollary Gel.d. The number of exireme points of A 1is
finite,

Proof. The set of all subsets of JL(i, 7 2 E =1 BE

&F

anid j =1 Te n} is finite.
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8. The peneral case. In the general set-up of probability

spaces (.., By g-) and ;(I,ng, A ),_l?t Fb :“{IBZK y B in

%}U {IXX ot C in ¢C

_}. Let F ©be the linear manifold

spanted by F 4 1l.e., finite linear combinations of functions
from ¥ s -
e)

It is easy to verify that if ¥ and % are in
A (aq By then I d g =-f fd % for every f in F

The proof c¢f the following theorem 1is based on the proof

of Theorem 1 of 9, Douglas, pp. 243].

Theoren 6,5,1, A4 probabllity measure ¥ on B X C is an
extreme point of M (uy A) if and only 3T F 1is dense in
Ll(XXY,]_;:;Xg,E).

Proof. Suppoce

g =gl

Lor

, 1s not an extreme point of M (&, A). Let

b

scne 7 and ? in M (#, 2). This implioes
22 % 2 0 aad by the Radon-Nikodym theorem,there exists a
fanction h in L, (X X ¥, B X G, £ )- such that
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d :
a-g—zh as€e L £ ] end
l"'h#O DeCow lEJo

The function 1-h is orthogonal to F, i.e.,

J (1 - n)dr =/ fdz - [ fhar

J far - f fan= [ fdzr - [ far

=0 for every £ in F.

This clenrly demonsgtrates that F is not dense in
X XY B X £yr)e For, if F yere to be dense, since

the dual I (X X Y, B X gy £ ) of Iy (X X ¥, B X Gz )

i

is L, (X X ¥y B X g, 2 ), the linear functional induced by

1-h on Ly vanishes identically on F would imply l-h= 0

g.€s v £ ], ~ contrsdiction.

Corversely, suppose F ig not dense in Ly (X X v,

n

X Greg ) . There exists an essentiaglly non-zero function
h in L, (X XY, B X ¢y ) orthogonal to F.

Set

% (E)=f hdr, for E in B X C .
E
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Since [ hf dr =0

(o1

for every f in TF, we have, in particular,

i hdr =0, This implies mn (X X YY) =.0s Define

gy (@ =

e (B) =

vhere i h ||, is

ge €. LE ]y the set

S+ Tr%—Ty ] dr , and
E o0

fE il = Tr%fTT-j dg + for EgB X G,

L,-norm of h . Since 1 4 {h/{lh |{, J20

o0

function ql and ?2 are nonnegative.. In

fach, as can be easily checkedgi,? e M (gy AYs We can write
13 l 2 v +

gt ¥s

roo= ' « This completes the proof.

2

We ccrnclude this section by congtructing sowme extrenme
i .

poliitts of ﬂ(ﬁfk)

using measure preserving transformations.

Let T be a measurahlie transformetion from X +to Y

preserving the measures g =and A,y i.e.,

~

=l Sl @k T B everyy S R

[ !
[ ]

Let D be the graph of T, i.e.,

&

'{(X:TX)'f'x in X}.
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Let Pl be the projection map from X X Y to Ko % e €lo
Pl (xy ¥) = x for (X5 5w B 0 % 5

For every E 1in

Tor
>‘<.
e}

+ P, (E 0 D) is available in B. For,

let E: {E in

[lwyj

X

i)

: Py (E D) 8@}. Rectangle sets
are available in E, for Py (B X ©) ﬂ;D] =8a T c. E
is cloéed under countabie unions, aund complementation, for
P.(E°ND) =X . P, (E n D). Houde E=zB X g.' Defiﬁe.a

set function’ £ on

tlwy)

X g " as fellows.

r (B) = ¢ {Pl(EﬂD)], for B in

Lo
X

[ {{ev}
»

£ 1s a probability measure on B X ¢ with marginals u and
Vi £ (B XD =g (e B X 1 2]

=x (BaTt Y =4 (B).

(X X Q) =p (P; L(X X ¢) & D])

= u (X0 T'l C) = u (T-l C)

L}
>

(CYy since T 1is
measure preserving,

D is a thick subset of X X Y under é, i.8., the outer
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H

measure, g* (D) = 1. Fer, if E 1s cny set in B X C con-

taining Dy chen Py (EN D= Pl(D)

*. Loosely spesking,
£ 1s cohcentrated on the graph of T.

- 4 ﬂ
£ is an exwtreme point of M (u, X). Suppose E =g for
some 4 and ? in & (ke M) It is obvious that w* (D)
= q*(D). Fartier, for any E in B X G, ¥ (EQ D) = = (E)

and (f (&0 D):q(}a). If B3 XCeB X g (Bx0o)dopn(C
(B 0 p=d ) X Y. Consequently

n (B X 0 < (B0 g1 C) X ¥] =ux (B A 71 C)

(B X Ciy

!
A

aYiG

i
k=
P

=

)

=

1
[

]
p—

9 (8 X ©) ¢ g ien o) x v

Hence ¢ (B X C)

H]

q (B X C) =x (B X C) for every B in

B and C in g. Therefore, ¢ = q = 4,

Remark. The orem 6.041 1s a generalisation of Theorem 1 of

119, Lindenstrsuss, pp. 379].

e -
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