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INTRCDUCTION

.

This Thesis is divided into six chapters the first threec
chapters constltuting studies in Boolean algebras and the last
three chapters constituting studies in measure theory. We give
below a sketch of the main problems treated in this Thesis,

CHAPTER 1. A Decomposition theorcm due to Sobezyk and Hammer [28]
Implies that strongly continuous charges on Boolean algebras play
a role similar to that of nonatomic measures on Boolean g-algebras,
Rudin [25] and Knowles [14] gave nccessary and sufficiont condi-
tions for the Boral o-field of a compact Hausdorff space to admit
a nonatomic measure, But there are no necessary and sufficient
algebraic conditicns for a Boclean o-algebra to admit a nonatomic
measure, In this chapter we solve the analogous problem of exis-
tence of strongly continuous charges on Boolean algebras. .We also
eXamine the richness of strongly conklnucus char%es in the space
of all charges on a Boolean algcbrea.

CHAPTER 2, Given any charge on a Boolcan algebra, equivalently,
given any charge space ((() , 4, 1) one associates a natural metric
space (g(u); dH) with it, 4 ﬂatural question that arises is: How
a,)
Teflect on A& and u? This problem is treated in this chapter,
& satisfactory picture emerges when () , &, p) 1is a measure
space, thn.(ﬁfl, A‘ f) is a gharge space the problem is solved
Partiall

far the topological propertics of the metric space (a(u), @
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: ' (ii)

CHAPTER 3: The contents of this chapter are inspired by a paper
of B, V, Raoc [23]. For any Boclean algebra A the class of all
subalgcbras of A4 forms o complcte lattice which we call L&.

The questicn of distributivity of LA is not very interesting

becausc 1t hss o trivial solution, 1In this chapter we deal with
the complementation in L,, . characterisation of A suech that
e,

L& is a complemcnted latitice is still lacking. In addition to
the study of complementation in L£ we also gcneralize B,V,Ranols

results in scveral dircetions.

APTER 45 The origin of Chapter 4 13 a parcr ¢f ¥V, Fickcr
{7] who attompted to charactorisc countable chain condition in
B= N where (( )+ By y) is a measurc space and N 1s the collec-

tion of all w-null sets, We demenstrate that the main theorenm

of {7} is incorrcct and provc a stronger version of Ficker's
theorem for certain typces of measures,

CHLPTER b: The problem of this chaptcr was suggosted by
Professor M. G, Nadkarni, The proMeem is : Giyzn two real valued
measurable functicns f and g defined on g Borel structurc

(X, B) when does there exist a nonatomic probability measurse

—
——

which makes f and g 1independent, If nonatomicity is not requi-
red the problem has a trivial solution, Here we solve this
problem when X 1s the rezl line ang B 1s the Borel o-algebra

of the real line, We consider some extensions glso,
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(1ii)

CH.LPTER 6: Darst and Goffman 5] gave an example of a Borel
aubset of RX R of positive measure which containg no
rectangle of positive measure, In this chapter we exhibit a
Borel subset of R x R of full Lebesgue measure which contalns
no rectangle of positive measure by techniques different to
those of Darst and Goffman, Bairc category versions of these

results werc also obtained,
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CHAPTER 1

e e g e R A R W Wy bl Wb Wb e e e L S s it W A G GEE P e e i b G B A R

1, Iptroductlon Thils chapter is devoted to a study of
decompesition of charges and exlstence of certain types of
charges on Boolean algebras. For notions in Boolean algebras
we follow Sikorski L27] and we denote abstract Boolsan.algebras
by Roman capltals 4y B, C etc., The operatlons of join meet,
differenée. complementation in Boolkean algebras are dencted by
Ve Ay =+ ' respectlvely. The order in Boolean algebras is
denoted by £. Fleldsand c-fieldsof subssets of a fixed set are
denoted by Fy g etc, The following are soms of the raleva{nt
definitions needed in the sequasl, For topological notions, we
follow Kelley £13) and Kuretowski {iz],

Definition 1,1,1. & gharge x4 on a Boolean algebra B is a.
real valued nonnegative finitely additive function defined on

B vanishing at the zero element, 0, of B,

Definition 1,1.2, A measure A on a Boolean algebra B is a
countably additive charge on B,
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Definition le.l.3. Let u be a charge on a Boolean algebra

B, An element b € B is said to be a u= atom 4if (i) ul(p) 2 O
and (ii) a € By, a {b implies either ufa) = 0 or

ula) = p(b).

Definition l,1ls4, A charge un on a Boolean algebra B 1is
said to be nonatomic if b& B, wf{b) 2 O implies there exists
a€B, a <{b such that 0 < w(a) < u(b).

Definition 1,1,5. A charge pu on a Bonlean algebra B 1s

said to be stronglg;pontinuous' if given & 2 0 there exists a

finite partition b1y b2, S¥ehert bn cf the unit element, 1.
of B (i.eey by Vby V... Vb, =1 and by A Dby =0 for

i # j): such that “(bi) { & for every i,

Definition 1.1.6. A charge x on a Boolean algebra B 1s

said to be strongly nonatomic if b €B., wlb) 2 @2 O implies

that there exists a € By a < b such that wula) = a.

The following theorem makes clear that the three notlons
introduced in Definitions 1.l.4,¢ 1.1.5 and 1,1,6 are same for

measures defined on Boolean o=algcbras,

Theorem 1,1,7. Let A be a measure defined on a Boolean

cealgebrs A, Then the following statements are equivalent.
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i) A is strongly nonatomic on A.
ii) A is strongly continuous on £,

1ii) A is nonatomic on A.

Proof: (i) ==> (ii1). Let € > 0, If A(1) < €, the partition
we give for 1 is the single element 1 itself. If (1) 2> g, let
n be the least positive integer satisfying n -g- < A (1) < (n+1)%,"
We choose bl' bg:---: bn Successively as follows., Let ble A

be such that A(by) = . Choose by & Leby satisfying
.th |

= £ : t _
A(bz) = . At the 1 stage choose by < 1= (b;Vb, ... V by _1)

SatiSleng ?\(bi) T ge bl' bzf.-ct bng 1- (blv bzv ot o0 bn)
1s a partition of 1 satisfying A(by) < € for every i anad
Mi- (B Vb, V.eo Vb )] <6,

(11) ==> (ii1). Let b€ A be such that A(b) = « > 0, Let
Byt boreesy b be & partition of 1 satisfying :\(bi) < o

for gvery 1., Oné. of the elements b.lAb. bzﬂb,..., bnA’o,

t

say 1P, has the property O < A(by ADb) < A(b).

(1ii) ==> (1). This may be proved by using a transfinite

exhaustion process, See, for example Halmos [11, p, 174j].
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Now we masy ask the question whether the preceding theorem
is true for charges on Boolean algebras, Observe that 1n the
proof of the implicaticns - (i) ==> (ii) and (ii) ==> (iii),

We have not used the information that the charge A 1s countably
additive and that the Boolean algebra is a ow-algebra, The
following examples demonstrate that the converse implications

are not true for charges on Boolean algebras,

Example 1,1.8. Example of a strongly continuous charge which is

not strongly nomatomic: Let X = {0y 1) and F ¢ . ri.74 of

subsets of ¥ consisting of sets which are finite disjolint
unions of intervals of the form fa; b) where a and b are
rational numbers, Let x be the restriction of Iebesgue measure
to F. Then n is a strongly continuous charge on g but not

dtrongly nonatomic.

Example 1,1.9. Bxample of a nonastomic charge which is not

strongly continucus: Let X = [0, 1] and let F be the field
of subsets of X generated by the collection of all intervals
of the form (a, b] C [ %. %). Let w be the restriction of
Lebesgue measure to E, g 1s a nonatomic charge on E but not
strongly vontinuous, For g = %, there is no decomposition of

¥ which satisfies the required properties,
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2. A& decomposition theorem, If X 1is a measure om a Boolean

o=algebra 4, we can write X = Ayt where A is a nonatomic

2 1
measure on A and AB is a completely atomic measure on 2, i.e,

we can write Ao = i%;Laiui' where eech ey 2 0 and each My

is a O=1 wvalued measure on A, The proof is fairly easey if
one starts working with all the A-atoms of A, Sgbezyk and
Hagmmer [28, Theorem 4,1, p. 842] gave a similar thooren

for charges defined on Boolean algebras for which we give below

a simple proof,

Let X Dbe a compact Hausdorff space, B the o~-field

generated by compact Ga subsets of X and El

on X generated by compact subscts of X. We call B and B,

the o-field

the Balre and Borel o-filelds on X respectively, If, in addi-
tion, X 1is totally disconnected, then the field of a2ll clopen
subsets of X generates B. This result follows from Stone-

Welerstrass thecrem, The following Lemms is useful in the proof

of the decomposition theorem.

Lemma 1,2.,1. ILet u be a measure on a ¢-field ¥ of subsets
of a set Y and G a ficld on Y generating F, u 1is strongly

continuous on F 1if gnd only if p 1s strongly continucus on G.
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- Proof, If part is trivial, Let u be strongly continuous on

F, Let 430, Let m be a natural number such that & < d.

There exists a partition Fyy Fyeeo.y F of Y in F  such that

m u(Y)
m u(Y) +

1) (Fi) <’ l:] d for every i,

For each 1, we can find G; € G (See Theorem D of Halmos

{11; p, 56]) such that

(F,)
w (P, Bgy) < ;—“(%5

(Assumc, without loss of gencrality, ;u(Fi) > 0 for gvery 1i.)
Since G;(C F; U (F; 86;): we have

1ey) < w(FOLL + grgyd
' (V) + I
= “(Fi) Eliﬂ{Y) ] < d,

0 )
F,. - U G
1 427 8

' n n
Further, u (Y - U Gi) Lu (U
' i=1 i=1

n n
1
LU Fy-G) < 5 ulF DGy <& <a,
deae = WS B S
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l!l’?—

n
Disjoimtifying Gy Goreeen Gy and X e U Gi‘ we get a parti-
‘ i=1

u(Di) ¢ d for evcry 1. L

Theorem 1,2.2 (Sobezyk and Hammer {28, p. 82]1), Let u be

a chargc on a Boolcan alggcbra B, Then we can write

g o=y + I Ay Myt where

i) K, is a strongly coatlnuous charge on B,

11) ag 2 0 for every 1, and

ii1) pge 121, isa O0-1 valucd charge on B,

Prooft Let X be the Stone spacc of By C the field of all
elopen subsets of X E the Bairc o-field on X and T the
isomorphism between B and C. The charge H 71 on C is
indecd g measurc on the field g. Since € is a generator for

By we can extend pu T“l from C to B as a measure A oOn

B. Nowy; we can write X =X _+ I a, A,: Wwherec
= . 0 . i 731
iz 1
i) A is a nonatomic measure on B,

o]

ii) @y 2 0 for cvery 1, and
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1ii) Ajqe 1 21y 1isa0-1 valued measure on B ,
Restricting Ai‘s to C, and then transferring. them from c

to B via T, we get the required decomposition of y on B.

The fact that K is strongly continucus follows irom

Lemma 1,2,1.

‘Remgrgz Uniqueness of such a decomposition can be prowed easily.

3e ?xistence thcorems.

Definition 1,3.1, Let B be a Boolean algebra, A4 collection
of nongzero clements {billiglistOOOtik: ilg oresay 1, is any

finite sequence of O0's and 1's, k 2.11}' in B 1s said to be

a tree in B if
i) bO v b1 = 1,

ii . g . V b, . .
l) bil’lg‘lsi...' Jdk-‘l' O 11'12‘13'-‘-! ik-l' l

= b. . 3 nd
bll!IZQOOOI lk_l! -

iii BE : | oL X = 0,
ii) 11'12"“'lk-l,0 A 1y1dgreees 1y 441
We use the following thecrem in the proof of our main

theorem,
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Theorem 1,3,2, (Tarski - See Sikorski {27, (b,?), p. 2111).

Let A Dbe a subalgebra of a Boolean algebra B. Then

every charge My on A& can be extended to a charge u on B,

Theorem 1,3,3, Let B be a Boolean algebra, The following

statements are equivalent,

i) Therc is a nonzero nonatomic charge on B,
ii) B contains a tree,

ii1) - There is a nonzero strongly continupus charge on B.

Proof: (1) == (ii), Let u be a nonzero nonatomic charge
on B, Since u(l) > 0y, we can find b, and b; such that
boVby =1y byA Dby =0 and 0 < ulb,) < w(l),

0 <u(by) < ull). 4pplying this technique at every stage, we
obtain a tree in B,

{43 — PR . . i Lo >
(11) == (iii). GTet {ﬁﬁjﬂlgf""lk k21 and

il‘ iggn... ik is any finite sequéence of 0O's and 1's }- be a
tree in B, Let A be the subalgebra generated by this tree.
In fact, A is precisely the collection of all finite disjoint

Rl

joins of elements of the tree, Definite ,uo(b:.L N il
E k*
2

lli2t-o . ‘ik)

ko can be extended in the obvious fashicn as a probability
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charge Hy on A, Note that M4 is strongly continuous‘on A,
By Theorem 1.3.2,, there cxists a prebability charge Hg On B
which is an extension of 4. Obvicusly, Ho is strongly

continmious on B,

(iii) == (i), The procf of this implicétion is elready

ineluded in Theorem 1.1.6,

Remark: The eguivalence of (i) and (ii) is proved in
Bhaskara Rao and Bhaskara Rao {3] wusing the following Rudin~-
Knowles Theorem and some difficult arguments,

tTet X be a compact Hausdorff space and El its Borel o=field.
There exists a nonzerco regular nonatomlc measure on El if and
only if X contains a perfect subset' (a subset of X 1is

sald to be perfect if every element of the subset is an accumu-
lation point of the subset). See Rudin 125] and Knowles L14,
Theorem 1, p. 64]. The proof given here is simple and uses
Tarski's Thecrem, We obtain below Rudin-Knowles Theorem for

compact totally disconnected Hausdorff ‘spaces as a corollary

tc our Theorecm 1,3.3,.

Definition 1.3.,4., Let B be a Boolean algebra, An element b

€ B isanatomof B if b #0 and a € By, a b implies

either a =0 or a = b.
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Definition 1,3.,5, Let B be a Boolean algebra, B 1is said to

be atomic if 1 is the joln of all atoms of B,

Definition 1,3.6. B is said to be nonatomic if B has no atoms.
Definition J.3.7. A Boolean algebra B 1s said to be super-

atomic if every subalgebra of B ig ateomic or equivalently the
Stone space X of B is scattered, l.e.: no subset of X 1is

perfect. Sec Sikorski {27, p. 35].

Corollary l,5.8. A Boclean algebra B 1s superatomic if and

only if B docs not contain a trec.

Proof. If B contains a tree, then the subalgebra generated by
the trec is nonatomiec, Hence B can nct be superatomié. i’y B
is not superatomic, then there exists a subalgebra A of B
which is not atomic, This implies that there exlists a nonzero
element é e 5 sueh that a is disjoint from every atcm of A,

We can find agr ay in & such that both are ncnzero, a/ vV aj= a

and ag Aay = (5 8, and a; tan similarly be decomposed,

Thus we obtain a collection of honzero elements
{ail'iz'°°"ik LT T 11’12""'lk is any finite seguence .
of O's and l's‘}' in & with the properties

i) a, Va; = a

/(—:; i S j‘l"ﬁf‘?éf a;v |
K": Y . 1
= ?) tg K;BA%A“ é"j’—“’é//\;bé/
‘ ; N o i /:’,:;‘1
Ve L
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]2
ii . Voa, . i
ll) ailllzlcoo!ik_lt 0 ‘lllglzgcg.g lk_lg .

- aill izgo.-] ik_l!

d iii) a, | . o i R
an lll) allllg"“llkhlf 0 A all' 121--01 lk—l' 1 0]

Defin} . . T a. .
ning bl]_'lg'o..[lk - all|12|-ccl lk if

il'iz!lll'ik% (OI O' O"‘.! O)

= aill12l0¢olik v 8‘1 if (illiz‘.."ik) g (O‘O"'b' VO)

for every finite sequence il' 12""'ik of O's and 1'w, we

obtain a tree in A and hence in B,

Corollary 1,3,9., (Rudin-Knowles), Let X be a compact

totally disconnected Hausfordd space, There exists a regular
nonzero nonatomic measure on the Borel o-fleld '§1 of X 1if and

only if X contains a perfect subset,

Proof, Let X be a regular nonzero nonatomic measure on 21.
Then its support (= X - U°{V : V open and A(V) = 0 ). is a
perfect subset of X, Sec Knowles {14, p. 65], IFf X conteins
‘a perfect subsct, then the field g of all clopen subsets of

X 1is not supcratomic., By Theprem 1.3.3 and Corollary 1.3.8,
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there exigts a nongzerc strongly continucus charge A on C.

o)
Since ko is = measure on C: we can extend AO a8 a measure
N to the Baire o=field B of X, ll zan be extended as a

regular measure XA to the Borel o-field B, of X. 3See Halmos
{11, Theorem D, p. 239]. Since A, is strongly continuous on

Cy scis 2 on @l. Hence X 1s a nonatomlic measure on B,

" Corollary 1,3.10. Let B be a Boolean algebra. B is super-

atomic if and only if every charge u on B 1is of the form
Y  a:Ms v where
i>1 *+*

i) as 2 0 for every i, and

ii) I isg O0-1 wvalued charge on B for every  i.
Breot s This follows from Theorem 1,2,2.

Corollary 1,3,11, Bvery infinite Booleanh o-algebra B admits a

nongaro strongly continuous charge on it,

Proct: We shall exhibit a trec in B, There exists an 1lnfinite
SCUeNCe 871 Agreess of ncenzerc pairwise disjoint glements in
B whose join is 1, Partitioning the given scquence into two
disjoint infinitc subscquences and taking their join, we obtain

a partiticn bo' bl of 1, Carrying out this proccdure at
every stage, we obtain a tree in B. Theorcm 1,3,3 completes

the procf.,
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4, Denseness of nonatomic charges. Let B be a Boolean algebra,

P the collection of all probability charges on B, and @ the

collection of all strongly continuous probability charges on B.

P 1is equipped with a topology by defining convergence as follows:
A et yy in E converges to a u in E if g (b) converges
to u(b) for every b £ B, Rhaskara Reo and Bhaskars Rao [3]
proved that the collection of all nonatomic probability charges

on B is a dense subset of E if the Stone space, X, of B 1is
perfect, In the proof of this result they make use of the follow-

y -

ing result due to Knowles,
'Let X be a compact perfect Hausdorff space and B, its Borel
o=field, The collection of all nonatomic probablility measures

¢

is dense in the space of all probability measures on gl'

See Knowles {14, Remark, p. 65].

In this 'section we prove the stronger result that Q is
dense in 2 by simple, direct and more transparent methods and we
do not use Knowles' result guoted in the previous paragraph in
our proof. We can obtain Xnowles result for compact totally dis-

conmected perfect Hausdorff spacesas a corollary to ocur theorem,

Lemma 1,4 1 Let B be a Boolean algebra whose Stone space, X

is perfect, Let b € B be a nonzero element, There exists a
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sttongly continuous probabllity charge x4 on B such that
p(B) = 2a

Proof: Consider the Boclean algebra A =Db A B

= &b Ae t cEB 3’.

X is perfect is equivalent to the fast that B is nonsatomic. It
is easy to construct a trce in the Boolean algebra A, There
exists a -strongly continuous nonatomic probability charge Ko
on A& in view of Theorem 1.3.5. i, can be extended to a
probability charge 4 on B by putting w(b') = 0, i.e.,
le) = #O(b A ¢), Thus K 1s a strongly continuous probability

charge on B satisfying ufb) = 1.

Proposition 1.4.2, Let B be a Boclean algebra whose Stone

spacey, X is perfect, For every O~1 valued charge u on B
there exists a net n, of strongly continuous probability charges

on B such that M, converges to in the topology of P.

Proof': The proof of this proﬁasition is essentially contained in

the proof of “If part of Theorem l.,4.3.
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Theorem 1.4.3. Let B be a Boolean algebra, (@ 1s dense in

P if and only if the Stone space, X, of B 1is perfect,

Froof: If part., Let g € E. By Theorem 1,2,3, w¢ can write

K= + & a. H., where
O izl 1l n

i) H, 1s a strongly contimzous charge on B,

ii) a; 2 0 for every i and g (1) + £ a, = 1, and
. ° 121 4

iii) M; 1s a O-1 valued charge on B for every i 2 1.

Let Fi= {bGB:gi(b) =l} r 1 2 1. For every beFi,

fix a strongly continuous probability charge g(%) on B such
that ,u(,:)') (b) = 1, Consider the product set Fi x Fg x Py x ...

with the fcllowing partisl order. (cl. Cot ve- ) jf(dl,dzq...)

if ey X dy for every i, Fi x Fy x FS i is a directed

set. TFor every (bl‘ b2' ees) B Fl X Fz X ooy let “(bl'bz"“)

Ty

iz1 i

. Then, it is easy to wverify that

H(blt bzl.os‘) e g *
Wo claim thet the net {u(bl'bZ'“') t (byy bgr o..) €

Fl b F2 = S P }- converges to u in the topology of P, Let
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.

wnere N is the set of all positive natural numbers, Let
Ny =N - Nl = {_3]_: dot ee. } Since each Fi is a maximal
filter, c¢' € F. for every k > 1, Let (dl, Aot ) 2

Ik
( Bl 52 35
Cl ! 02 | { CS 1 o--)l
W‘iﬁel’e Cil = @ irf i-= lll izy i3| ase
%
Ci = C' lf A= ,jl' j2| 33' [

This implies that di L T il’ iz, e < B STICH

Note that

-c) () : (bl, bor o) € Fi x Fy X .u’}

Hence the net {y( -
b,y b
l[ 2“‘

converges to go(c) + % ay yi(c) = u(c). This completes the
i1 |

proof of if part of the theorcm.
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Only if part. Since X 1is perfect is equivalent to the fact
that B is nonatomic, it is enough if we prove that B has no
atoms. Suppose b € B is an atom of B, Take any probability
charge w on B such that u(b) = 1, By hypothesls there
exlsts a net My in g which converges to u. Sinece b 1is

an atom, ”a(b) = 0 for every o whercas wu(b) =1, This is a

eontradiction.

Corollary 1,4.4. Let B be a Boolean algebra and Q ‘the
colleection of all nonatomic probability charges on B, 91 is

dense in P if and only if B is nonatomic.

Proof: Note that Q (C 9

Combining Theorem 1.4.3 and Corollary l.4.4, we have the

following comprehensive theorem,

Theorem 1,4,5, Let B be a Boolean algebra, Then the follow-

ing statements are equivalent,

i} B is nonatomic.
ii) The Stone space of B 1is perfect.

iii) Q 1is dense in

i+d
-

iv) g, 1is dense in

lird
.

A A P g A ——
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CHAPTER 2

TOPOLOGICAL PROPERTIES OF CHARGE

e s S T g g A e A

— -

1. Introduction. In this chapter, we study topologiecal -

properties of charge algebras asscciated with charge spaces,

The following are some of the definitions needed for the deve-

lopment of this chapter,

Definition 2,1.1. A charge space is a triplet (), &, u),
where () is any set, 4 a field of subsets of ﬁ:l and u 1is

a charge on ﬂ‘

fbstract Boolean algebras B with a charge u defined
on B come also under the realm of the above definition, For,
by Stone's representation theorem; we may replace (B, ) by
(C) Ay 1) where () is the Stone space of B and A the
field of all clopen subscts of ﬁ:l.

With the help of the charge u defined on the field 2 ,

we can make [ & pseudo~metric space by defining the distance

function d,u on L x L as follows. d# (£y B) = u(AA B)., Let

A{(g) denote the collection of all equivalence classes of 4
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under the equivalence relatiocn, L ~B if u(AANB) = 0,

On A(x), there is a natural metric d, (abuse of notation!)

H
defined by d!u([li] « IB]) = u(AODB), where [4&] and (B] are
equivalence classes of /L containing A and B respectively,

We eall (& (w), dﬁ) the. chsrge algebra associated with the

charge space ({1 : £, u).

Definition 2,1,2. A measure space is a triplet (), By A),
where () is any set, B a o-ficld of subsetsof (Jand A is

-—

a measure on B,

The pair (B (A), dk) is called the megsure algebra asso-
ciated with the measure space ( (), B, A).

The central theme of this chapter is to characterise the
topological properties of charge algebra (4 (u), d#) in terms
of é and . In our treatment of this topic, a satisfactory
picture emerges in the case of measure algebras and some partial

results are obtained in the case of charge algebras,

The following concepts are used in the characterisation

of compactness of charge algebras.

If # 1s a twow~valued charge on L&, then

H=
i

={6¢c2: u) =0} isa maximal ideal in 4 and

{ Aes!
i

{ren: un) = ul (1)} s a maximal filter in 4.
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Definition 2,1.3. Let Hit Hor e be a sequence of two-~valued

e.» be the corresponding maximal

charges on ﬁ, Let El' ;2.

ideals cf g and El‘ Eg, «.. be the corresponding maximal

filters of y as defined in the previocus paragraph. The

sequencc ppr 1 2 1 1is said to be disjoint if

[
ot

1 J
£ InIl #£ @
nl ~

for every sequence Bl. azr eee ©f O's and 1's,

where I% 2T 'snd B = F
= :n Zn =

.. BEquivalently, a sequence p,, 1 2 1 of two-valued charges
on 4 is said to be disjoint if for every (finite or infinite)

sequence 1yy igre.. of natural numbers, there exists A 1in £

such that p, (A) = 0 for every k 21 and uj(ﬂ) = uj(ﬁil)
k
for every J # ik for any %k 2 1,

Notice that any finite sequence of distinet two-valued
charges on L are disjoint, /[lso, any infinite sequence of
distinet two-valued measures defined on a o-field B of () is
disjoint, This can be proved as follows, Lot il' ig, o
be any sequence of natural numbers and -gjl, Jo ...}. =

N - {il, Ll }.. whore N 1is the set of all natural numbers.
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Now, we claim that given any ik' there exists Ak €B such that

By (Ak) = 0 and yjp(Ak) = K (C)) for every p 2> 1, For, .

k P ,
since W. and p. are distinet, there exists B_€ B such
lk Jp . P =
. (B =0 d . (B = M. . Take = U B_,
that ylk( o) an qu( o) uap(ﬂ) A B
Let A= g A, Then u; (4 = 0 for every k 2 1 and
k21 k
. (&) =pu, (()) for every p 2 1.
Ip Ip

The following is an example of a sequence of distinet O0O~1
valued charpges defined on a field of sets such that it is not
aisjoint, et () ={1, 2, 3.... }, 4 finite cofinite field

on ﬁ:l and

ui(8) = 0 if 4 is finite,
=1 if LA is cofinite, and
My = an—l' the degenerate measure at n~1.

For the sequence. of natural numbers 2;4,:6,..., therec is no set

L in A for whieh

it
|
U

0 = uy(4) ué(ﬂ) He(h) = oo and

i

I
n
n

ﬁ-f-lQ‘rt) HB(A) = #5('&)
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The following is a basic Lemma used inherently in many

of our arguments.

Lemma 2.1,4, Let w bc a charge defined on a figld L of
subsets of a set (). Then (&(w), ) is isometrically
isomorphic tc a dense subalgebra of a measure algebra (B(A), d,).

In fact, B(A) is the metric completion of §CM)¢

Proof: Let X be the Stone space of A(u): C the field of

all clopen subsets of X, Ty isomorphism between A(u) and
¢,and B the Baire o-ficld of ¥, The charge uT]™ on C
is strietly positive and countably additive, and so can be

cxtended to B as a measure, A, The Boolean algebra

(1, d,T_l) ig isometrically isomorphic to a dense subalgebra of
=T

(B(A), d,). The isomorphism T, is defined by Ty0= {c] € B(A),

for C in

(Hw!

, where [0l 1is the equivalence class_Fontaining
C. Denscncss follows from the fact thet glven any Baire set B
in B and € 2 0, there exists = clopen set C in € such

that A(B& C) < €., Further o1 (epacy) = (e, D) =

. 1
= 4,(Lcydy £0,]) = a,(T,0q ¢ TyCy). Composing T, and Ty

d
utT

comvletes the proof of the Lemma.
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2, Compactness,

. Lemma 2.2,1, Let ( ()4 By ) be a measure space, where X

is completely atomic, Then the pscudo-metric sSpace (g. dk)

is compact, where d, (4, B) = AM(AMAB) for A, B in B,

Proof:; Since d, 1is a complete pseudo-metric (see Halmos
|11, Section 40, Exereise 1, p. 169}), it is enough if we show
(B, dA) is totally bounded,

case (4). The number of A-atoms is finite. Let Al,Az,... An
be the K—atbms of B. Let € 2 0, Let Bjy4Bgoe...y B Dbe

the scts of all possible unions of Aq. Az,w... An. Then the
family of open sphercs  S(#&, €). S(Bj, g) ¢+ =1 tom

covers By where S(B, €) = {I’ in B dl(B' 4) < 6}.

Cazdlal i The number of A-atoms is infinite, Let
L1 Lot ee.  DE the x-atoms of E. Let € 2 O, Let

R(ﬁ:) =a, > 0, Let N be such that ayg, * agy * ... <C.
Let Byr Bow e B, be the collection of all sets:obtained
by teking all possiblc unions of the sets Byv Bgeeenn By

and U L. Then s(g, €), S(Bi, ), 1 =1to m is
‘ iz N+1

a cover of B, For, every B in B is essentially 4 union

of A-aptoms,
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Lemma 2.2.2, Let { () By A) bc a measure spacc, where A

is a nonzero nonatomic measurc on B. Then the pseudo-netrie

space (B, dl) is not compact,

Proof: It is enough if we show that the space (B, dl) is

n —
not totslly bounded, In fact, wo show that U S(ﬁi, %) #B

i=1
for every finlte sequence Al' ﬁgf.... An in B . Let

Bl' le ae e Bm be the atoms of ﬂl‘ &2, cesy An' i.,e., the

a o
collection of sets Al o 4 o Ann , where each

3
l.g a2n

- o _ 1 .
3, =0 or 1 and Af = A;y A = A = ) - A;. Let

Cl’ Czn cesy Cm be such that Ci is contained in Bi and
R . n

l(Ci) = gj\(Bi) for every i, Let C = igl Cy»

every £ 1is a union of atoms, a routine calculation yields

Since

] o

o
TAB) = A (00) 25, ir (L) 2L
i=1 .

d?\(ﬂ-il C) =
Consequently, in this case, C £ S(Ai, %) for every 1, If
2D ¢ 1, by what we have proved above, the pscudo-metric

Space (E, du) is.not compact, where nCB} = [1/2 (CYyIAB)

for B in B. Hence (B, dl) is not compact,

Lemma 2.2.3. Let ()4 By A) be 2 measure space such that

in the decomposition A = Rl + lz, where ll is completely
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P e

atomic and A, 1is nobatomic r(LL) > 0. Then (B, a,)

is not compact. B

Proof: Let 4d be the pseudo-metric on B induced by kg.

Ag

Obviously, d, £ dy. If (B, 4,) w ere to be compact, then
2 = .

(g._dkz) will be compact, a contradiction to Lemma 2.2.2.

Theorem 2,2,4,. Let (). B: A) be a measure space. Then

(g’fdl) is compact if and only if A 1is completely atomic.

Proof: Follows from Lemmgs 2.2.1, 2.2.2 and 2,2,3.

Lemma 2,2,5, Let (M,d) be a pseudo-metric space and (M, d%)
the metric identification of (M,d). Then the natural map

from M to M+ 1s open, closed, continuous and onto,

Proof: See Willard 130, 2¢, p. 20].

Corcllary 2,2.6,. Let (frl, B, A) be a measure space., Then
the measure algebra (@(k),rdl) is compact if and only if X

is completely atomic,

. Ppoof: Follows from Theorem 2.2.4 and lemma 2,2,5.
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Theorem 2,2,7. Let X be a Stone space, 1.e.: a compact

totally disconnccted Hausdorff space, ¢ the field of all
clopen subsets of X, and u a charge on C. The charge
algebra (olu), du) is compact if and only if
i) u = § ajM;r for some sequence (finite or
>l
infinite) Byt D 21 of O=1 wvalued charges on

£y where ai‘s are positive real numbers, and
ii) the family pu, * n 2 1 is disjoint,

Proof: Let B be the Baire o-field of X. Let X Dbe the
extension of u to B. By Lemma 2,1.4, (g(u), du) is
isometrically isomorphiec to a dense subalgebra of (g(ll, dal'.

Suppose (w4 d”) is compact, Then (B(A), dl) is compact.
By Corollary 2.2.6, A 1s completely atomlc, We can write

A= % aiki’ where ai‘s are positive real numbers and
is 1l

Ay's are O-1 valued measures on B.(If in the representa-
tion of A only finitely many O~1 valued charges are involved,
then (ii) is trivially satisfied .) For any O-1 valued measure
n on B, there exlsts a unique point x in X such that |
= a%. where aX is the Dirac measure concentrated at x,

Sl ofen, aX(B) =1 if x 6B €B, = 0 otherwise., Consequently,
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we can write A = £ a. 8 for some sequence x. : n 2> 1
izl + % = =

of points in X, Let n; Dbe the restrietion of A, to €.

Thus, w¢ have u = X 2}
izl

the family Hy nzs1l 1s disjoint. Let 011 Ogtw.. be a

i Ky oOn Cs We have to show that

scquence of 0O's and 1l's, Let Bi;. @i t »+e. be the subsee
1 2
quencc of all 1's in the given sequence al, 62,..,. There

exlsts a Bairc sct B containing all the elements of the

stquence Xy ¢ X3 ¢ ... and none of the rest of the clements
1- a

of thc sequencc X1 Xz. eesre OSince the iscomorphism between

(o(u) . d“) and (B(A), dk) is onto, there exists a clopen

set € in C such that ABA C) = 0. It is easy to check

that x; s n2l is contained in 7 and x ? &\t
n

3
k Zi_ for any n > 1, Obvicusly, ce 4 1.7,
it - n>1 =4

Conversely, lct g4 = I & with the property thaet tho
nsl

family u, ¢+ n 21 is disjoint . (If in the representation of

n“n

4 only finitcly many O-1 valued charges are involved then
¢ (w) 4is finite and hencc compact.) Let A and A be the
extensions of K and Ky respectively to E. It is obvigus
that A~ 1s O-l valued. Hence A 1s completely atomic

on B. So, (B(A) dk) is compact by Corollary 2.2.6. In

order to show that thc isomorphism between (g(u), d“) and
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(B(x), dl) is ontoy it is enocugh to show that for every Baire

set B 1in B there exists a clopen set € in (C subh that

AMBOD 0) = 0, Note that we can write' = E for some

a, 4
21 %
sequence Xq: Xg1 o.. Of polnts in X. Let X; 1 X

1 it

be the complete subsequence of X1 Xg» «-. available in B.

. .

Consider the seguence al, 82. «.. Where ai = 1. for'every
: ' n

nz2l and 5, =0 if %k # i, for any n > 1. -Take any €

{1 'an
in n_?_l E_n .

proof of the Theoremn,

Then A(BO C) = 0, This completes the

-,

Corollary 2,2,8, Let () é!,ﬁ) be a charge space, Then

(é(u)g dﬂ) is a compact mefrie space if and only if

1y oy = f ajy My for some sequence (finite or
iz 1
infinite) By #1221 of O=1 valued charges

on A and ai’s are positive real numbers, and

==

i1)  the family My ¢+ 121 is disjoint,
We characterise Boolean algcbras B such that (B(u), dn),

is compaet for every charge u on B,

Theorem 2,2,8, Let B be a Boolcan algebra, (B(H){'d“) is

compact for cvery charge u on B if and only if B is

finite,
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Proofy The if-part "iS'"-:tI'iV-ial. Sincé (B(,u), Bu) 13
éompéc% for every charge 4 on B, by Corcllary 2,2.8 and
Corcllary 1,3.10, B 1is superatomiec., If B is infinite, we
will exhibit a sequence of - O=i walyed Shavges on B, whidH
is not cisjoint, Let X be the Stone space of B, X is an
infinite set, In X we can find a convergent sequenne of
distinct elements. Lot X+ be the sct of all acoumlation
points of X and X be the set of all accumilation points
of Xl.: Since X :%e infinite and scattercd, Xt - X2 £ 4.
Let x, € X* - ¥°. Sincc x, 1g an isolated point of XT,
there exists a clopen set UXO containing X, such that
UXOQ X‘l = {xo} . This is possible since X is totally
disconnected. Since x_ € X v, # {x,} and U, is infinite.

Let X1 Xgtee. be a sequence of distinet elements in UX .
= o

We elaim that Xyt Xgr oees converges to x_. Suppose nct.

Thenn there exists a clopen set . containing x, and an
‘ - 0

infinite subsequence Xi 0 Xy teen of Xqv X ses Such that
1 12 - '

{*411 Xizs .-.}ﬂ on = @, Since X is compact, let y be
an accumulation point of x; 1+ X3 1 ... . Since
- Ll 2

Pk S ) and U is closed, y € U_ . Note
;l 12' %o 5 %o
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that ¥y also € Xl Hence y = Xge Since {Xi]_' Xi2' ...}

HVX =,?5 and Vx

is eloscd, v £ v, . But this is a
o _

o) o)
eontradiction,

et Y = {xo, X1t Xgr ooe b o The fleld C of all

elopen subscts of Y is a homomorphic image of B, But C

-

ecan be identified as the finlte=-pofinite field of some ecoun-

table set., On there exists a sequence of O=1 valuod

HQ

charges which is not disjoint, BSee page 22 ., By transfer-
ring these charges to B, we obtain a sequence of 0O-1

valued chargcs on B which is not disjoint,

~

5. Completencss, If ({): Bi 2) 1s a measure space, then
the measure algebra (E(h), dA) is & complete metric space.

In this seetion, we find necessary and sufficient conditions
under which a esharge algebra 1s a complete metric space. If

a chargc algebra  (&(u), du) is completc metrie spacc, then

(u) 1is a complctc Boolean algebra, For, by Lemma 2,1.4,

=

complctencss of the metric space (A{w)y dﬂ) ensures isome-
tric ismorphism between (&(u), dH)' and (B(A), 4,). 8ince

(A) is a complcte Boolecan algebra, we find that A(u) 1is

1o

also complcte,
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However, the complcteness of the Boolean algebra Auw)
neced not imply the complctencss of the metric space (é&u), du).
The following is a counter cxamplc. Let () be the set of all
natural numbers and & = P(()), the power set of (). Let
Ml, bc any O0-1 valued charge on & such that u, (§31}) = 0

for every natural number n, Let oy, = [ the degcnerats

n=-1'
measure at n~l1 for mn 2 2, Let W = i%jla% My - It is easy
to verify that the family {“n .0 i} is not disjoint.

Notc that gﬂu) = é.iS a complcte Boolean algebra., Let X be
the Stone space of é, E the collecetion of all clopen subsets
of ¥ and B the Baire¢ o-ficld on ¥, 4&ssume, without loss of
gencrality, that u 1s defined on (. Let A be the extension

of u from ¢ to B as a measurc, Observe that X 1s comple-
tely atomic. WNote also that (A(w). 4,) 1is isometrically iscmber
to a densc sub-algebra of (g(l). &y )" L (g(u). dﬁ) is a com-~
plete metric space, then the above isomorphism is onto. Since

(B(a), d,) 1is compact, this would imply (4(u), d,) is compact.
But this is a contradiction to Corollary 2.2,8,
The proof of the following theorem is essentially due to

Green L9, p. 258]. Green was intercstcd in getting necessary

and sufficisnt conditions for the completcness of the metric
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spaces .7( ( )y Ay u) for 1 ¢ p <= for a charge space

( .(.__).l ét M) .

Theorem 2,341, Let X Dbe a Stone space, C the field of all

clopen subsets of ¥, u a strictly positive charge on Cy B

the Baire o-field on X, and A - the extension of u from

¢ to B as a measure, Then (C(u), d#) is a complete

- —_—
b= b=~

metric space if and only if

i) ¥ i& ewxtremally disconnected, i,e., closure of

every open subset of ¥ is open, and,

11) a(U) = A(U) for every open Baire subset U of X,

Prooi: Suppose (c(u), du) is a complete metric space., From
the remarks made at the beginning of this section, it follows

that ¢(u) = C 1is a complete Boolean algebra, Consequently,

its Stone syace X must be extremelly disconnected, Since the
natural isocuactric isomorphism betwcen (g(u). du) and

(B(A), dK) is onto, givecn any Baire set B there exists a
clopen set € such that ABAC) = 0, Observe that every non-
enpty open Baire set has positive A-measure., This follows from

the fact that clopen sets form a hasis for the topology of X

and cvery clopen set has positive A-measure. Let U be any
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open Baire set, and C the clopen set such that AMUDC) = 0,
Since U = C is an open Baire set and A(U - C) = 0, we have
U-¢= g, This-dmplies U0 ( U C C. But MC=-1T) =0

which implies x(TU = U) = O.

Converscly, in order to show that (g(g), dH) is a com~
plete metric space, it is sufficient te exhibit a clopen set C
for every Baire set B such that AMBAHC) = 0. If A(B) = 0,
enpty set, &, would do. Let A(B) » 0. Since A 1s regular,
i,e., the A-measure of every Baire set is approximable from
below by the A-measure of compact Ga subsets, we can find a

sequence 0f compact Gy subsets G, contained in B such that

A(B ~-U C) = 0. By hypothesis, Ar(c, - ¢0) = 0, where CJ
ny1 B n n n
denotes the interior of C,. Consequently, (B - T c®) = o,
ngzl n
Let C be the closure of the oren set U Cg. Then
n 1
A(C - E Cg) = 0, Thus, we find A(B AC) = 0 and notice that
nyl © |

¢ 1s clopen.

Corollary 2.3.2, ILet u be a charge on a field & of ().

Then (4A(x) . du) is a complete metric space if and only if

i) thnc Stone space X of 4(w) 1is extremally

digconnected, and
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ii) ATU) = k(ﬁ) for every open Baire subset U
of ¥, where A 1s the extension of u from
the fiold g of all clbpen subsets of X
to the Baire o-fleld B of X, (It is

assumed that u is defined on C.) as a

negsure.,

The following theorem gives a set of conditions which are

intimately r<lated to the given structurc.

Theorcm 2,3,3. Let (C) + & #) be a charge space. (éﬂp). dﬂ)

is a complete metric space 1f and only if

i) A(u) is a complete Boolean algebra, and

i1) u 1is a countably additive function on the

Boolean algebra &(u).

Proofs: Suppbse (é&u), d“) is o complete metric space. FProcee-
ding along the lincs of Lemma. 2.l.4, we conclude that (&(u),. d,)

and (E(k), dk) arc isometrically lsomorphic, The isomorphism
that works between these two spaces also preserves i and A,

Hence (i) and (ii) follow.
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Conversely, let X be the Stone space of 4&(w), C the
ficld of all clopen subscts of X and B the Baire o-field on
X, We can assume that u is defined on C. Let A Dbe the

extensicn of wx from C to B as a measure, Since a(w) 1is

a complete Boolean algebra, X i1s cxtremelly disconnected,
Countable additivity of u on the Boolean algebra C implies

that for every.disjoint sequence Cy1 Cor eve of clopen sets in

Ciuw (T Ci) = u(Ci). In order to show that (AW 4 d“)

izl 131
is a complete metric space, in vicw of Corollary 2,3.2, 1t is
sufficient if we show that for cvery open Baire set U,
A(B) = 2MTU). Sincc A is an cxtension of W from C to By

for any hatural number n, we can find a disjoint sequence

C?‘ s i 2 1 of clopen sets such that U ‘C? contains U and
: izl

£ w(cd) ¢ M) + I Scc Halvos{1l, pp> 50 and 54]. Let

i2 1 n

¢"= T C; and c= Q_c" ¢ is clopen and u(e™ =A™ ¢
iz 1 n2l
AMU) + % for every mn, Sinecec C° contains U for every n,

C contains U, Obscrve that A(C - U) = O which implies

A(T) = a(U),
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4, Conncctedness.

Temma 244,11, Let (L) 4 By A) be a measurc space, where A

is ncnatomic, Lot B € B. Then there exists a system

{,Bt eB:telo, 1]'} with the following properties.

I = # and By = B
i) B, C B, if r £ s, and

©i11)  A(BL) =ra (B)  for Or <1,

Proof, If A(B) = O, then we can toke B, = g if 0 r <1l

and B, = B, If A(B) > 0, by Liapounov's theorem, there exists

1l
. st .
B; e E sueh that A(B;) =5 A(B). There exist BL_ and Bén
I'»)
in B such that By C B) C By and By = §§ A(B), M(Bg ) =
2 2 3 ) -2
2 2 2 P2y

#zé—A(B). Ccontinuing this process, we obtain, for every positive

2%

dyailc rational %=(< 1) scts such that A(B_ ) = K- A(3)

I
g? of 5 2

2
and satisfying (ii). For any positive real number I < 1, define

B, = U ma. B, € B and A(Br) =r A(B). Take B, . # and
E ¢r on
2 s

Bl = B, Then thc systen {:Br : r ¢ [ 0,13, }satisfies the proper-

tics (i), (ii) and (iii).
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Lemna 2,4,2, Let (( ). B: A) be a measure space with A
nonatomic, For every B in B with A(B) > 0, the pseudo-
metric space (B, dl) contains a homeomorphism of {0, 1] with

g and B as end ﬁoints. .

Proof: By Lerma 2.,4.1, we can cefine a map T from [0, 1]

into B as foliows. ™(r) = Bpe dh(T(r), T(s)) = A(Brll Bs) =

= |r - s] A(B). Clearly, T is a homeomorphism.

Corcllary 2,4,3, Let (L L. By A) be a measure space with A

nonatomic, Then the pseudo-netric space (E, dh)' is connected,

. ot e ATt it

Proof: For every B in D, we can find a connected subset of

By by Lemua 2,4.2, containing B and f.

Lenma 2,4,4, Let (Qg é: i) be a charge spacey and 4 € A.

Consider the charge space (& & 0 4 QA), where 4 N 4 is

the trace © L on 4 and K is the restrictlon of g to

—

a0

g

. Then the pseudo-metric space (4 O 4 d“A} is a conti-

nuous image of (& 4 ).

Proof: Define T 3 &=—> & & as follows. TB = 4 0 B, Note

=

that dH&(TBl, TBy) = w(4RBy A4 0 By) £ w(By ABy) = 4, (B,Ey).

Hence T 1s continuous, It is alsc onto,
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Lemma 2.4,5, Let ({). & 4) be a charge space, Let r De
ahy nonnegative real number, Then {A € &4 u(a) < r} is a
(&) < I‘} is an

closed subspace of {d d“) and {A € 4

open subspace of (4 d‘u).

Proof:  In fact, {A ca: pla) g r} = the closed sphere

{&e i‘ (jll.l'(.%h,t &) _{_r} and {4‘3.8 g. pl4) < r}: the open
sphere {ae &l du(ﬁq 4) < I‘}.

Theorem 2,4,6, Let ()« By A) be a measure space, Then

the pseudo-matric space (_E-, dk) is c-o:r\me.c;‘teé-i"f and only if

A is Bonatomic.

Proof: If A is nonatomic, the connectedness of thoe space
‘(E, dy)} 1is proved in Corollary 2.4.,3. Suppose (E, d?\) is
comnected, Let i€ B.with A& >0, (403, dl‘g is con-
nected, Let A(4) > & > 0, Then there existsra B in B,

B econtained in & such that A(B) = 8.‘ Suppose not.

{B & &ﬂg': 2 (B) < e} and {B e AHE : k&(B) > e}ar_e
nonempty disjoint open subsets of & 1B whose union is 4n B.

This implics that (& 0B, dy ) is disconnected.
~ -y

Corcllary 2,4.7. Let ,(D_.; By 3{). be a measure space. ‘Th'en

the measure algebra (g(?\) . d?\) is conhected if and only if A

is nonatouic.
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Thecorem 2.4.8, Iet s 4, #) Dbe a charge space., If the
vseudemetric space (4 du) is connected, then x 1s strongly

nonatomic,

Proof, The proof of this theorem is contained in that of

Theoranm Z.4.,60,

Theorem 2,4,9, et (), &, n)- be a charge space, where &

is a o=field, The pseudo-metric svace (4 d“) is connected

1f and only if u 1is strongly nonatomie,

Proof: Only if part follows from Theorem 2,4,8, Using thé

fact that 4 1s a o-field, one can prove the if part imitating

the steps involved in the proofs of Lemmas 2,4,1 and 2.,4.2 and

Corollary 2.4.5.

We arc unable to obtain neccessary and sufficient condi-
tions for the connectedness of the space (s dg) assoclated
with a charge space (ﬁfl. ay #). We do not know whether the

condition that g is a o=ficld can be relaxed in Theorem 2.4,9.

5, ITotal disconnectedness.

; topological sPace is said to be totally disconnected if

i¥ has a base consisting of clopen (open and closed) sets,
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fhoorem 2,5,1, 7Tet (Q_. By A) be a measure space, Then the
spaco (By d,) 1is totally discomnected if and only if A is
eonpletely atomic,

*

Eroof:  Suppose A is completely atomic, lLet Y Ao
be the A-atoms and 1(&1) =ay 2> 0, The scts

{B,e;g.é A&IUAigﬁqu&lREB}

?c(&in)}
A

where (2 demctes essontial incluston and 111 dpseens i, ‘is any

-:{‘B E B: A(B 0 Ail). =AY ivea MBA A )
- = 1 n

B _{ BeB: a(BA 4.0 =0 or ... MBO 4)

finite se$ of natural numbers, afce clopen and form a basis for
the kopolegy of (g ¢+ 4,). Henee (}=3, d,) is totally disconnec-
tel, Conversely, let (}__3_. dA) bo tetallyf..disc_‘ennen:tgdg Suppése
A ds not completcly atomic, Then there exists A in g Stich
%l‘mﬁ Ala) > 0 ang ﬁhg restrieticn Ay of A te A né is rone
Cacondc, | He can find B 4n Ey B containnd fn .4 such that
AMB) 20 and Ma- B)'> Q. :S;i,r;ce- 4,(By & - By 2 0; we can
£ind a elopcn sct B; such that B €B; and & =B E By. Let

1_3__‘2: i;_':: = ‘2*1 30, { a Ik I=‘31; »ﬂ 22} is a nontrivdal disconnecetion

of (4l I__En 'dlé)' But (L B, d;“) * 1s cemncctod by Theorgm 2,.,2,6,
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This econtradicticn shows that A is completely atomic,

Qorollary 2.5.2. Lot (), By A) be a measure spacc. The

measurc algebra (B(X), dh) is totally disconneccted if and only

if it is compact if and only if A 1is completely atomic,

Remark, If A is conmplctcly atcomic and &1, ég. SE are the
A-atons of B with k(&i) = a; > Oy then (B(2), dk) is homeo=
merphic to ( = Xi' d) y where Xi = -{0, l}- for every i, and

i>1
d((xlj:xztuo')l(yllyzl'c-)) = iE;l di(xilyi) With di(Xi.Yi) = a.i

Now, wc turn our attcntion to charge space,

Theorenm 2,5,3, Let (ﬁ:l. -9 4) be a charge space, If

M= 2 agHie where a.'s arc nonnegative rcal numbers and g.'s
izl . i
are distinet 0-1 valucd charges on 4, then (4, du) is totally

digconnccted,

Proof: Lssunc, without loss of gencrally, 4 to be the collec-
tion of all clopcn subscts of a Stonc space X, Let B be the

Bairc o-ficld on X, The gxtension A of g from é to B

as a necasure is comrletely atomic. Hence (@. dk) ls totally

disconnected, (& dp) can be vicwed as a subspace of (B, dl)'
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and conscqucntly, 1t is totally disconnected,

1

Corcllary 2,544, Lot ()¢ & ) be a charge space, If

K= Ay My

4t Wherc ai's arc nonnegative real numbers and

Z
i>1
uy's are distinet 0-1 valued charges on &, then (&{u), du)

is totally disconnected,

Remerk: The converse of Corollary 2,5.4- 1s not true, Take any
countablc algebra admitting a strongly continuous charge, By
Theorem 1,2,2 and the uniqueness of the representation; it is
not possible to write a strongly continuous charge as a countable
sum of two valued charges, The charge algebra of a-countable
algebra 1s always totally disconnceted since it is a countable

metric sbaca,

It will be interesting to characterise total discobnected-

ness of a charge algebra,

6, Local compactncss.

Theorem 2,6,1. Let (ﬁil, By A) be a measurc space, Then the

pseudo-metric space (B, dA) is locally compact if and only if

it is compact.,
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ProeEs G (E. dy) 1s locally compact, we will show that X

is complelely atomic, There exists a closed sphere

Sig, r]l = -{A € E: A(4) < r}- (r > 0) which is compact, If A
is not completely atomicy, find a B in é such that 0 < A(B)< r
and the restriction Az of A to BO é is nonatomic, Now,

(B 0B, d is a continuous imagce¢ of 8l@y r]. The map

)
Ag

T : Si#, rJ] —> B 0B is defined as follows, TaA = A 0B,

Iy Tarr Thg) = M40 B Ay 0B) g Mo Da) =a (4, 4),

These rolations show that T 1is continuous, Furthcer T is onto.

Conscquently, (BN B, dy ) is compact, But this is a contradiction
= B

t0o Lenmmna 2,2,.2,. Honee A  is completely atomic.

Corollary 2,6.,2, Let ((), By A) bec a measurc space. Then
the mcasurc algebra (§(l). dl) is locally compact if and only
if X is completely atomic if and only if (B(2), dy ) is

compact,

Theorem 2,6,3, Let (), g, 4) be a charge space., The fol-

lowing arc equivalent.r
1) (A(w), du) is lccally compact,

ii) (é(#); d“) is compact.
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Prgof. Let X be the Stone space of 4&(u), C the field of
all clopen subscts of X ang E the Baire o-ficld on <X.
Assumc that g d1s defined on g. Let A Dbe the extension of
# from C to B as a measurc, Note that (E(l), dh) is the
metric completion of (éﬁu). du). In any Hausdorff space, a
dense locally compact subspace is open, See Kelley {13, G,

p. 163], Consequently éiu) is a dense open subgroup of E(A).
In any topological group, any open subgroup is closed. This
implics that the isomctric isomorphism from A(g) to B(A) is
onto, 8o, (B(A), dl) is locally compact, By Corollary 2.6.2,
(g(l), dk) is compact, This implies that (é(u), du) is compact.,

Remark: The above proof incidentally shows that if Alw) is
open in B(A) then &(w) = B(A), It will be interesting to

know if open can be replaced by Ga.

7. Perfectnecss. &4 nonenpty subset of a2 metrie SPace is saiad

to be perfect if every point of the subset is an accumulation point.

Theorem 2,7,1, ILet (L) By A) be a measure space. The
measure algebra (B(A), dk) is perfeet if and only if the range
of A is infinite,
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Frocf: If the range of A 1is finite, then B(A) is a finite
metric space and hence is mot verfcet, Suppose range of A is

infinits, First notc that the following two statcments are true,

1. If *» is a nonzorv nonatomic measurc, then B(A) is
perfect, For, by Lemmas 2,4,1 and 2,4.2, g(x) con=-
tains a homcomorphism of {o, 1], 1Ir ?(k) is not
perfect, then it i1s a discrecte motric space giving rise to a
contradiction, (Bvery none-discrcte topological group is

nerfeet,)

2, If XN 1is complctely atomic and the numbcr of A-atoms
is infinitc, then B(A) is perfect, This follows

from the Remark made aftcr Corollary 2,5.2.

Now, for any general X, decomposc [ ) = 21 U £t12, where
A is completely atomic on £ﬁll and A 1is nonatomic on 12.

ﬁfllil @(A ) 1is iscmotTically iscmorphic to a closed subspace
i
of B(A) and §f12£1 B(A ) is isomotrically iscmorphic to a
2
closcd subspace of B(M), If B(X) is not perfect, then it is

a discrete metric spacc, In vicw of the statements 1 and 2,
this implics k(ﬁflg) = 0 and thc number of A-atoms is finite,

Hencc range of X 1s finite. This is a contradietion,
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Theorem 2,7,2, Lot () s 4 M) bo a charge space. (4(R) d”)

is perfcet if and only 1f the range of u is infinite,

Proofs  If the rangc of u is finite, then égg) is a finite
metric spacc and hencc is not perfect.‘—Suppose that range of g
is infinite, By Lomma 2.,1.4, (54“)! du) is isometrically
isomorphic to a dense subalgcebra of measure algebra (E(l). dk)'
Note that the range of A 1is infinite, By Theorem 2,7.1¢

B(A) 1is perfect., Notc that any dense subset of a perfect metric

spacc is perfect.

8. Dimcnsion, For notions in dimension theory, we refer to

Nagata [18],

Thoorcm 2,8,1, Let (.= Lo¢ 114 § = Borel o=f{icld on ﬁil,

and A Lobcsguc measure on B. Then dim B(A) =

Proof: First, wc note that B(A) contains a homecmorphism of
{0, 1], This is clcar from Lommas 2.4,1 and 2.4.2. 8incs

aim [0p 1] = 1, we have aim B(A) 2 1. Lt (2= x),

B® = thc product o-ficld B x B and AZ

2

the product measure
£

Ax A on B

. We will show that the measure algebra §2(1

. - 2
contains a homeonmorp™. . of ﬁil . The rolevant map
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T: ()% —> B2(3®) is dofined as follows T(a, B) = tho
cquivalence class containing [0, «] x [0, B]. Clearly, T is
ong-onc, Further.‘-x2[T(al, Bl)‘ﬁh T(azg Bz)].g ]al— a2|(31+ Bz)
+ By = Bgl(ay +ag) + Jog = ag| By - Bol. This shows that T
is’continuous. Hence it is a homeomorphism, Consequently,

dim gz(kg) 2 2, By von Neumann-Halmos theprem (see [11,
Theorem C, P. 175]), §2(R2) and g(k) are isometrically .
isomorphic, Hence dim g(k) 2 2. Repeating this argument, we
conclude that dim E(A) 2 n for any natural number n, Hence

dim B(?\) =

Theorem 2,8,2, Let (()¢ §; A) be a measure space with A

il

oy

nonatomic, Then dim B(A)

Proof: By a.theorem of Bhaskara Rso and Bhaskara Rso [1], there

exists a separable sub o<field D of B such that. X 1s nonato=-
mic on D. Note that D(A) is isometrically isomorphic to a
closcd subspace of B(A). By Theorem 2,8,1 and Von Neumann-

Halmos theorcm cited darlier, dim D(A) = =, Hence dim B(A)=o,
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Theorem 2,8,3, Let ()} : By M) be a measure space such that
in the decomposition of ()= K:ll U ﬁ:lz;-where A is completely
atomic on £fll and A is nonatomic on | 12, we have

ML) > 0. Then dim B(A) = =,

Proof: WNote that the natural mapping fronm (ﬁilz il g)(l ) to

2
B(A) is an isomctry, where A is the restriction of A to

ﬁilg.ﬂ B. Henec dim B(A) = oo,

Theorem 2,8,4, Let ({), By ) be a moasure space., Then
dim B(A) = 0 or e, dim B(A) = 0 if and only if A is comple-
tcly atomic., din B(A) = e if and only if the nonatomic part of

A 1s nongzcro,

Proot: Use Theorem 2,8,3 and Corollary 2.5.2.

It will be intercsting to classify infinite dimensional
measure algcbras in the Light of transfinite dimension, The
reader may note that we have not tackled the dimension problem

for charge algebras which scems %o be difficult)

- w———
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1. Introducticn, Let B be a Boolean algebra, We dencte

by Lp the collection of all subalgebras of B, On LB we
define a partial order < as follows, lLet € and D € LB‘
We say € <D if ¢ (C D. With respeet to this partial order

&

the last element B itself, For any family {Ca} C LB' sup goc

a complete lattice with the first element a{o, 1} and

Ha
[4H

= the subalgebra of B generated by the family {Goc§ and
is denoted by gca. Similarly, Inf G, =,% C, and is denoted by
& Ccc’ The symbols V, A as applied to families of subalgebras
should not be confuscd with the same symbols used. for the elements
of soume fixed Boolean algebra, In the context it will be clear

in what sense thoée symbols are used, The primary object of

this chapter is to study the Lattice structure of LB._

Some of the natural ques.tions.that arise in the study of

the lattice LB are the following.

30w
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5]

i) Is Ly distributive ? i.e,, 1s it true that
CA(DVE) = (CA D) V{(CABE) for every Cy
Dy B in Ip? -

'ii) Is Ly complemented ? ise.y given any C

in LB does there exist a D € LB satisfying
CVD=B and CAD ='{O, l}-? (we say that

D is a complement of C.,)

We remark that the lattice Ly 1s distributive if and
only if B consists of four elements. The if part is easy to
see, If B consists of more than four elements, take three non-
zero disjoint elemehts ay by ¢ from B satisfying a Vb Vfc
=1, Tet c= {0, a¥b, ¢y 1}, D={0s a7V ci by 1} and
E=§0,07c, a1} . Uote that ¢ A (DVE) #(CAD) V (CAE)

The study of the second gquestion is the central theme of

this chapter.

2. Is Iy complemented?

We need the following definitions,

Definiticn 5,2.1. Let B be a Boolean algebra and I be an
ideal in B. We have the natural homomorphism h : B —> B/I
defined by h(b) = {bl, where B/I is the quotient Boolean
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algebra and L[b] is the equivalence class containing b. We

sey that _h_admits o lifting if therc is a subalgebra € C: B

such that h restricted to € 1is onc to one and takes C onto
B/I. We call C a lifting-of h. (Actually h becomes an

isomorphism between ¢ and B/I.)

Definition 3.2.2. 4 closed subset Y (C X, a totally disconnected

compact Hausdorff space is said to be a retract of X if there
is a continpous map f : X —O0Oyy  guch that £ on Y is

identity. See Sikorski [27, p. 46].

Let I be an ideal of a Boolcan algebra B, Let X be
the Stonc space of B. Then the Stone space of the quotient
Bouloan algcbra B/I  can be identified as a closed subset ¥ ( X.
(sce Sikorski- {27, p. 31 - last paragraph].) The following

thocrem connects 1ifting and retract,

Theorci §,2,5, The feollowing are equivalent,

1) The natural homomorphism h ¢ B —> B/I  admits

a lifting

2) The closcd subset Y is a retract of X,

Prcef is casy and we omit it,
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_gfinition's.z,é: Let B bc a Boolean o=algebra and I be s
o-idcal in B, Then the natiral homomorphism h t+ B —=> B/I is
said to admit a o-lifting if therc is a subalgebra ¢ ( B ‘
which is a Boolcan ow-glgebra by itself such that h restricted

to C 1is on¢c tc one and h takes € onto  B/I.
4s a first rcesult regarding complementation we have

Iheoren 3,2,5, dny finite subalgebra 4 C B has a complement
in Lg.

n
Proofs Let 87 ae-+92, Do all the atoms of A, So g ay = 1,
We shall straightaway construct a complement of 4., Let
Fit Foveeoy Fy be any maximal filters in B containing
'al,...,an respectively, Let F = Fqy 24,.. 8 Fn' Then F is a
filter in B. Let C be thc Boclean algebra gencrated by F
in B.

5o c={beB:b or B'EFY .

{o, 1} < (1)

LAVe = B - (2)

We claim thet aldc

H

Proof of (1) Let b € 4 AC Dbe such that b # 0 and b AL

b € € and so we can assume without loss of generality that
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b€ F, 8Since b E}IA.b = 83 V see V aj for some atoms

13 k

By e By of 4. Take a j such that J # il,..f,ik and

1<jgn Sinee b€F, bEeF; and a; also €F,. But

b A aj = U ' S8 O E PR a5 e Fj , 2 contradiction,

Proof of (2): It is suffieclent to show that every element of

B which is £ ay belongs to & V C, Then,by similar a‘rgument,'

every element of B which is £ a3 belongs to &V C for

all j., Then for any b € B
b =1{(b A al) v (b A a2) V... V{(bA an) e AV C

Let ¢ € B be such that ¢ < a;. Then either ¢ € F, or

1

~-c€&F., If c€FcVa ...V a €F and hence

<
agh(eVa, oo Va)eavVe,ie., ceaVvVe If aj-ceF

by a similar argument,we have a; - ¢ € AV C. But aq € a4V C,

l!
Hence ¢ € 4V €, This completes the proof of Theorem 3‘.2.5.

Our next theorem characterises complements of certain sub-

algebras of B. We need the following notation and Lemmas,

For an ideal I in a Boolean algebra. By by B{I) we mean
the Boolean algebra generarted tyv. I in B. So = .,
. B(I)={08B:c or 0'813-.
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Lemma 3,2,6: Let C be any subalgebra of B. 'Q

Then B(I)VC={b€B:b&c€I for some cBC}.

we show that D 1is a Boclean algebra., Let by: by € D. 8o
there exist cj: ¢y € C such that by Aecy €I and b, &e, €T
Note that (bl 1] bz) _ﬁe(cl v 02) £ (bl &cl) Vv (b2 502). Since

I is an ideal in B, and C 1is a subalgebra of B

(b V bg) A (e V 02) € I. Hence b; Vb, € D,

ot

Next let D € D, Then bP'Ac' =bANc€ I. BSince ' €
' we have b' € D, Obviocusly 06 D and hence D 1is a subalgebra
of B, |

Now, note that ¢ C D and I (C D. Consequently ,
D ) B(I) V C. On the other hand,let b € D. There exists
¢ 6 C such that bHc =d € I, Thus b=ddec with d € B(I)
and ¢ € C. Henece b € B(I) V C.

Lemna 3,.2,7, Let C be a subalgebra of B such that

B(I) & C :{o, 1}. Then given b € B(I) V C, there exists a
unigue ¢ € C suech that b H e € I,

Proof: Fxistence of at least one ¢ € ¢ such that D &c e I

is guaranteed by the previous lemma, Suppose cqy and Co € C
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and b Ae; and b Dey € I. Then oy Aoy €I and c; Doy, 6 C.
Since B(I) A cC = {O, l}'.wo have ¢y £$02 =0 or 1, Since I
is a proper ideal ¢y QA cg = 0 d.e,, ¢y = ¢y

Theorem 3,2,8, ILet B be a Boolean algebra, I an ideal in B

and B(I) be the subalgebra of B generated by I.

Then the following statements are equivalent,

i) B(I) has a complement in Ly -
ii) The natural homomorphism of B onto B/I
admits a 1ifting .
iii) The Stone space Y of B/I which is a closed
subset of X, the Stone space of B, is a

retract of X,

Proof: (i) => (ii), ILct h : B —> B/I be the natural

homomorphisn, i.e., h(b) = {pb] for b € B, Let C be a comple-
ment of B(I) in Ly, We shall show that ¢ is o lifting of h,
S0 we have to show that h I_'Gstric-ted_ t¢ C is one to ocne and

onto B/I,

N\

Since B(I) V ¢ = B ,by Lemma 3.2,6,for any B € B there
is a o €& € such that b#Mc € I, So hie) = [e] = [b]. Hence
h restricted to ¢ is cnto, Sinece B(I) AC = {9, l} 2 0V
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Lomma 3.2.5, there is a unigque ¢ € C such that b Act I,

Hence h restricted tc¢ ¢ i1s one to one,

ii) =2 (i). Let € be a lifting of the natural homomor-
phim h: B—~—2>3B/I. We cléim tﬁat d is a complement of
B(I).

‘Let bec AB(I), Bither b € I or D' € I. Suppose

be I, so h(b) = [b] {0]. Since h restricted to C 1is one

3}

to one and since h(b) h(0), we have b = 0., If b' € I then
n(b?!) = {pt] = [0]. 4gain since h restricted to C 1s one to
one and gince h(b') = h(0) we have b' = 0y 31.2.; b =1,

Hence ¢ A B(I) =40, 1}.

Now let us prove that ¢ V B(I) = B. Let b € B. Since h
réstricted to ¢ is onto B/I thefe is a ¢ € C such that
n(e) = [b}. i.c. c¢Ab € I, By Lemma 3.2.3 b € B(I) V C.
Hence B(I) V ¢ = B, l

(g

The equivalence of (ii) and (iii) was stated in Theorem 3.2.3,

Renarkss If B(I) has a complement in Ly, any dompiement of
B(I) is isomorphic to B/I.

Henice if B(I) has a complement in Lg, then any two ¢om-
plements of B(I) arc isomorphic., This statement-is not true

fcr any subalgebra, 48 an example we have
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'S :{1. 2y 34 4}) B 8 P(X)., € ={525a_ Xy {l: 2} {3, 4}}7
D :{ﬁ, 7, 11, 4} iz, 3}} and E =48, %, {1} , 35},
fe,a} . {1,5},{1.2,4} : {5,2,4}}.

Then D and B both are complements of €. But D and B are

not lsomorphic,

Now we give an example of a Boolean algebra B and a sub-

algebra A. of B such that & has no complement in LB'

Thecrem 3.2,9. Let N be the set of natural numbers and P(N)

the power set of N, Let ¢ be the field of all finite e0finite

gubsets of N, Then C has no complemcnt in LP(N)‘

Prcof:  Chserve that C 1s the field generated by the ideal I
of 21l finite subsets of N, If ¢ were to admit a complement
in LP(N) then,by Thecrem 3.2.4, the Stone space f N - N, of
the quotient Boclean algebra P(N)/I would be a retract of BN,
the Stone space of P(N). But B N - N is not a retract of

~

8N, Scc Gillman andJeriscn (8, 6Q: p. a7].

Tr thac next two sections, we study certain classes of
Boclean alzebras in the light of complementation of Boolean

algebras,


http://www.cvisiontech.com

-50-

Se Cl,' Boolean algebras,

In this section, we¢ introduce a new class of Boolean

algebros,

Definition 3,3.1. A Boolean algcbra B is sald to be a U

Boclean algebra if every subalgcbra of B has a complement in L

Theorem 3,3,2, Bvery finite Boolean algebra is a Cl ~ Boolean

algebra,

Proof: This follows from Theorem 3,2.5,

Theorcii 3.3.3., Let B and D be two Boolean algebras such
that D is a homomorphic image of B, If B is a Cl = Boclean

algcbra sc is D,

Proof: ILet h: B——>D be.a homomorphism,mapping‘ B onto D,
Let E b¢ a subalgebra of D, Let F = {b € B h(bh) € E}-.

It is easy to verify that F is & subalgebra of B, Let G be
a complemcnt of F in Lp. Now, we claim that h(G) is a
complcment of E in Lne Letd € E A h(G)., There exist b1 €
by € G such that h(by) = d = h(by). Clearly, b, € F, Since
FAG= 10, 1}, b, =0 or 1, Hemee d =0 or 1. So
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we have B A h(G) = 40, L} , Since F and G gemerate B,
n(F) and h(G) generate h(B)., But h(F) = E, h(B) = D. Hence

® V h(Gg) = D,

Theorcenm 3,3.4, Let B be any infinite Boolean o=-algebra, Let
N be the set of all natural numbers and P(N) the power set of

N, Then P(N) is a homomorphic image of B,

Proof: Lot bl' b2,... be a sequence of nongero, palrwise dise-

joint elements in B such that b, Vb, V ,.. =1, Let F F

1 2 1!
bc a sequence of maximal.filters in B containing bl' b2, ses

2[5“‘

respectively, Define h &8 B —> P(N) as follows.
h(pb) = {n: b € Fn}. Clearly h(0) = g and h(1l) = N.

h(a; V ap) :{n: a; V oag € Fn_} ={n: a) € Fn} U {n: fazan};

For, let n € LHS. V a, € F . Then either a;, € F_  or

43 1
_ o t ' =
ag € Fo If not, a; Z Fy ‘ag 4 B =2J a; € F v ag € F) =2

aj A laé € F, =2 (al v az) A(aj_A a’z) = 0 € F, which is a

contradiction, If n € RHS, it is obvicus that n € LHS,

Similarly, wec can show that h(al.A a2) & h(al) n. h(ag). Next,

we claim that h 4is onto, Ict Nl = {:nl, No o ...'} be a subset
of N, Then, h(b, Vb, V.. )=N

1 Dy 1°


http://www.cvisiontech.com

-] -

Corollaly 3,35,5: Let B be any infinitec Boolean co=-algebra,

Then B is not a € - Boolean algebra,

Proof: If B werc to be a Gy~ Boolean algebra, then P(N), by
Theorecm 3,3.3y would be a Cy - Boclean algebra, By Theorem 3.2.9,

P(N} 4is not a C; - Boolecan algcbra,

gorollary 3,3,6, Let X be any infinite set, Then the power

set P(X) of X is not a ¢, - Boolean algebra,

[

Corollary 35,3,7, Let ¥ be any set., Then P(X) is a

C, - Boolean algebra if and only if X 4is a finite set.

The trend of thesecresults crcatcs a gloomy pleture concern-
ing thc ¢xistcnec of good Cl - Boolean algebras, The following

result somewhat retricves the situation.,

Thcorcm 3,3,8, Let X be any sct and € the field of all

finite co~-finite subsets of X, Then ¢ 1is a Cl - Boclean

algebra,

Proofs Sinecc is a superatomic Booleam algebra, every sub-

InNa o

algebra D of is atomic, Sec Sikorski (27, example D, p.35].
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Case (1) : One of the atoms of D is cofinite, Then

D is a finite algebra. Hence D has a complement in L, , by

Hoy

rr

Theorem 0.2.5.

Case (ii) : BEvery atom of D 1is finite, Let

{p,: ae [} be the collection of all atoms of D. Choose and

fix cnc element x € Da' Let § be the subfield of C genera-
tedby{{x}: x€X x#x, for any (x}. If M is the
set of all x 's, ’5.‘:{&('_',}{ : A0 M =g and A is finite
or & ) M and A is cofinite} . Now we claim that B is a |
complemcnt of D. Let H €D A E. H is either finite or
cofinite, Assume H is finite. Since H € D, then

H=D°‘1UDO‘2 U...U D, for some ajy Ogr esey @ 1in s

Therefore, H = (D {x } ) U (Dagq-{xaz} s o, 1 (Dan— {xaé')U
{xal, X, a1 X“n} . FEach D -{x } ¢ E. Since HE€ E
we get {Xf‘l! X, ..... Xy }8 'E':b This shows that H = g, 1In

the casec when H 1s cofinite, we can prove that, by the same

argument given above H' = g, Hence H = X, This, we have
& 2

. D AR z-{ﬂ, X}. Now, w¢ claim that DV

nm =

= C. For thus, it

is enough if we show t_hat every {x} € ]3 v E, Every {xa} €
e DVE For, D €D, {XGDOC : X;'-‘xa} 6 B so
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‘{xa} €DVE, BEvery {X} such that X#xa for any «

belongs to E , Hence P VE= ok

Remar :. A similar prcof can be given to show that Lc for

the above C is a rclatively complemented lattice (i,e., B, D,

such

i =t

e Lc stch that B < D < B implies there exists g [ LC

that D A F =

(HEus!

and

g

V F=E),

Remark 23 We do not know il every superatomic Boolean algebra

s a Ci—Boolean algebra.

4, Co = Boolean algebras

Definition 3,4,1, & Boolean algebra B is said to be a
€y = Boolean algebra if for every idecal I in B, B(I) has a

complement in LB'

Theorcim 3,4,28 Let B be a Boolean algebra and X its Stone

spacc, Then B is a 02 = Boolean algebra if and only if every

closed subset of X 1is a retract cf X.

Proof,  This follows from Theorem 3,2.8.
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Corollary 3,4,95% Bvery countable Boolean algebra B is a

¢. = Boolean algcbhbra,

P

Proof: The Stone space X of B is a compact totally discons=
ncetcd metric space and for such a space ¥, every closed subset
of X is a retract of X. Sce the Last paragraph in Sikorskil
{27, p. 46] or Kellesy {13, 0, D. 165], This Corollary can also
bc obtained from von Hcoumann - Stone's Theorem 17 of {29, p. 369}

which is stated as Theorem 3,6,7 below.

Corollary 3.4.4., Let B and D be two Boolean algcbras such
that D is a homomorphic imege of B. If B is a C, - Bbolean

algcbra so also is D,

Proof, et ¥ and Y be the Stonc spaces of B and D
rcspectively, ¥ 1s a closcd subspacc of X. ©Since every closed
subspacc of ¥ 1is a retract of ‘X, so also every closed subspace

of Y 1is..

Definition 3,4.5. Let B and D be two Boolean algebras,

The direct ﬁnion B+D of B and D is defined to be the
product spacc B x D with pointwise operations, B+ D is also

a Boclean algebra. Secc Sikorski {27, Section lB,p. 503}, Counta-
ble direct Union of Boulean algebras is defined in an analogous

way.
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If ¥ and Y are the Stone spaces of B and D respec-
tively, then the Stone space of B + D is the disjoint union

YUY of X and Y equipped with union topology.

Corgollary 3,4,6, Let B and D be two 02 ~ Boolean algebras,

Then B + I 1is also a 02 ~ Boolean algebra,

Proof: ILet ¥ and Y be the Stone spaces of B and D
respectively, If every closed subset of X 1is a retract of X
and every closed subset of ¥ 1s a retract of Y, so also every

closed subsetl of XY ke

Remark: The above Corollary does not extend to countable
direct Unions because P(N) is a countable direct Union of
two element Boolean algebras and P(N) 1is not a C, - Boolean

algcbra,

Theorem 3,4.7. No infinite Boolean o=algebra B 1is a 02 -=Boolean

algebra,

Proof. .If B were 1o be a C, - Boolean algebra, then; by
Corollary 3.4.4. and Theorem 3.3.4, P(N) would be a Cy =

Boolean algebra,.

Corclicry 3,4.8, et X be any infinite set, Then the power
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set P(X) of X is not a ¢

o = Bocolean algebra,

Corvllary 3,4.9, Let X be any set, Then the power set

P(X) of X is a Cy = Boolean algebra if and only if X is a

finite set,

Theorcm 3,4,10, Let o be any ordinal number, ILet ¢ be the

field of all clopen subsets of [0, a], where [0y o] is equi~

pped with order topology, Then C is a 02 ~ Boolean algebra,

Proof, It is enough if we show that every closed subset H of
[0, «] is a retract of [0, «]. The idea of the proof is taken
from some observations in the proof of Lemma 1 of Bhaskara Rao

and Bhaskara Rao {2, p. 195].

We shall denote [0y a]l by X, We have to define a map f
from X onto H which is identity on H., Let a  be the
first element of H, Since H is closed there exists a last
element which we call oaqs For B € H let pB* be the first
succeeding element of £ in H, ©8ince H is closed,fOr any
x € [ao, al] - H there exists a p € H such that B < x < p'.

(Such a B is unique) We definc f as follows
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f{x) = a, if 0 <& x < ag
= oy if oy {x L
= 3 ife Bg BN
= gt if x € Legr al] - H

where § 1is the element of H such that

B me By

To eonclude that the f defined above is continuous it 1is

sufficient to show that

for any well crdered transfinite sequence X3

increasing to x| f(xi) converges to x_.

This we prove as follows.

If x_ £ s f(Xi) = o

5 " = f(x,) for all x;. Hence f(xi)

o]

converges to f(xo).

T aq < Kot Xy is eventually greater than g and hence

f (xi) is eventually equal tc aq which is cqual to £(x,).

If x G s al] - H, therc cxists @ &€ H such that B < x, <!

O

and f(xo) = 8'. Then x; 1s eventually in the interval

(B, P') and hence f(xi) is eventually equal to B! =vf(xo)-
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If x_  €H and if there exists § € H with B' = x f(xo) = ¥

O!

and (8, B'l is an open neighbourhood of x_ . Hence eventually

x; 2 B. Hence f(x;) = 8' eventually,

If x, € Hy x F a, and if there does not exist. B € H such

that B' = x then for any § € H such that § < X B! is

also < xo if x € X~ H and x < x, since H 1s closed,

there exists L € H such that x < 8 ¢ Xqe So X4 is even=-

tually in (8, x_J. 8o f(xi) is eventually in (B, x_J. So
f(xo) is eventually in (x, xo]. Hence f(xi) converges

to flx]).

Thus £ 1is continuous and identity on H, Hence H is a

retract of X,

D% Complcmentatigg_in general fields,

" B, V. Rao [23] considered the following problem, ILet X
be any arbitrary set. Let Lf(y) be the collection of all sub
. - & . . , _
o-fields of P(X). Lp(yy 1s a complete lattice with {ﬁ: X 3’

as the first element and P(X) as the last element, +Fer any

family C, of sub o-fields of P(X), V G, is the @b
= o=

o

o-field of P(X) generated?Py the family = G, . and & gé: g
. g B
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L%(x) is said to bhe complemented if for every element B in

. N . 0"
LP(X) there 1s an element D in LP(X) such that

1

BAD ={#, X} and BVD=PX. B. V. Rao proved that if

X is uncountcble, then L%(X) is not complemented, In effect
he showed that the countable-cocountable o~field on X has no
complement in L%(X)‘ In this section, we give two simple proofs
of this result, cne based on measure theory and the other on set
thceory., |

Let the cardinality of X be 77, &leph-one, Let C be
the counteble cocountable o-field on X, BSuppose C has a

complement D 1in Lg(y_')" Then C V D = P(X) ={Y CX‘: Y AD

is countable for somc D € D }. This may be proved along the -
lines of the ﬁroof of Lemma 3.2.6. Morcover, for every Y C: X 4
therc exists unique D € D such that YA D is countable., 4
procf of this result is similar tothat given for Lemma 3.2.7,

Let u be any measure on 2. We can define a2 measure m on
P(X) which is an extension of u by the following formula,

u (Y) = u(D), where D is the unique set in D such that

Y AD is countable, Observe that u is alway; a continuous
measurc, i,e., vanishes for singleton sets, whatever be the
measure { on 2. For, for every {3:}, x € X, empty set f

in D satisfies the property - {x}A# is countable. So,
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w ({x}) =P =0, So, if we start with a O=-1 valued

measure H on D 4, s 1is a O0~1 valued continuous measure on

P(X)., This is a contradiction to Ulam's theorem which states
that there is nc continuous probability measure on P(X), For
a new proof of Ulam's theorem, see Bhaskara Rao and Bhaskara
Reo {2, p. 196]., In Section 6 we use the above argument to

prove a more general theoremn,

Set theoretic proof of the above result is included in the

more general Theorem 3,5,3 to be proved later in this sectlomn,

Let ki3 A be any two candinal numbers, Let X be any set
of ecardinality A, By L% we denote the collection of all
k-fields on X, & collection D C P(X) 4is -said to be a
k-field if D is closed under ;omplementation and < k many
unicns, L§ is complepe under the following lattice operations,

If D, is a family of k-fields contained in P(X), VD, is

defined to be the smallecst sub- k-field of P(X) generated by

{ Qa and U\Q¢ = ﬂ.D& . In this terminalogy, every c-field
- p= (x:

is an 3\5, ~-field, and every ficld is an %% -field. Further,

p 3, '?ﬂb .
LP(X) = Ll and LP(X) = LA . Let Y be a set of cardina-

lity k. k is said to be regular if 7{%5 k and there does not
exist o decomposition { Y;i 1 € [} of Y such that cardinality
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of each Y, is ¢ k and cardinality of r— is < k. For any
cardinal number k, k+, its succeeding cardinal 1s regular,

This observaticn and the following Theorem reduces ﬁhe problem of
cemplementation in _L% for any k to the problem of compiementa—

ticn for the case of regular cardinals, k.

Theorem 3,5,1, If %k is nc¢t regular, then

Procf, It is clear that L];f+ @ Iy Let C be any k-field.
We will show that C 1s alsoeak+ - fiéld. Let Cy ¢ ie r-

be any collection of scts such that the cardinality of [ < k+.
It is encugh if we treat the casc the cardinality of [ is Xk
to-show that ig C; € C. Sincc Xk 1is not regular, we can

write [ = U [; , wherc cardinality of cach r; is less than
- ied

ky cardinality.of J 1is < k and rg's arc disjoint. Now,

IS ehEl T o, NeE Wi Buf - Tat MEkiehe
16| ies jefy ¢ jefly 4 F

for every 1 and cardinality of J is < k i1mplies U Ci € C.

iel” =
, + . k kt
Hcnee € is also gk -field., Thus, we have Lh = Lk -
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Thcoren 3.5,2, If A < k, then every element C in L& has

a complement D 1in Lk.

Proof, First, observe that every celement of L& is a complete

ficld, Hence gvery clcment of L% is atomic, See Sikorskl
{27, p. 105], ILet C, + € [T  be the collection of all
atoms of L, Choose and fix one element x € C,. ILet 2 bé
the k-field gencrated by{{x} : x'#x, for any oc}. It is

gasy to verify that D 1s a complement of C,

Theoren 3,5,3, ILet Xk be a regular cardinal mumber, If X = k,

then therce exlsts an element C 1in L& such that € has no

complement in LP(Xj‘

Proof. ILet ¢ = {AC X ¢ cardinality of A is < k or

cardinality of Af is < k;}. Since k 1is regular, g € Lf.
In proving that € is q%osed under < k many unions, we use
the regularity of k., ©Suppose D 1is a complement of c in

LP(X)' Let I be the collection of g1l subsets of X of

cardinality < k. Then P(X)/I is isomorphic to D bY
Theorem 3.2.8. By the following theorem of Sierpinski (26,

Thecorem 1, p., 451) =

Let ¥ bec a set of cardinality k. Then there exists a
family ‘
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{Xa : g r‘} of subsets of X such that cardinality of each

X, is k4 cardinality of I— is 2> k¥ and cardinality of

X, & Xz is < k for every a # B.

B

There are more than k disjoint nonzero elements in
P(X)/I, namely the family{ [Xa] : af r_}. But, D being a sub-

field of P(X), D can contain atmost k many pairwise nonzero

disjoint elements, Hence D can not be isomorphic to P(X)/I.

This contradiction proves the result,

Corollary 3,5,4, Let k be a regular ‘cardinal. If X = Kk,

then there exists an clement g in LI{ such that C does not

have a complement in "_LI?E B

Procf. et C and I be as decfined in the proof of previous
theorem, It is clcar that P(X)(p = 0, Suppose € has a

complement D in LE, i.e,, D is a kefield the smallest
k-field containing ¢ and h]_). is P(X) and ¢cQOD ={ﬂ. X}.

We shall show that the smallest Tield generated by € and D

itself is egual to P(X).

Smallest ficld containing ¢ and D=CVD in I‘P(X)

§l

P(x) () V
{A g B(%)

g

AABETI for some BE D&,
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by Lemma 3,2,64 Since E is a k-ideal and D 1is a k~field

{A‘\G F(X) :+ A&AB ¢ I for some Be I_)__} is closed-u_nder all

< k¥ uniocns., Hence P(X)(l) v Q is a k-field, Hence G v g
in LP(X) = P(X), Hence D is a complement of ¢ in LP(X)'

This gives risc to a contradicticn to Theorem 3,5.3.

Theorcm 3,.5,54 Let k bc a regular cardinal number, If
A 2 k, then there exists an element ¢ in Lﬁ which has no

complement in L% :

Proof, Iet Y be a se¢t of cardinality k and X be a set of
cardinality A such that Y C: X. .By Corollary 3.,5:4; L%(Y)

contains an elcement which has no complement in L%(Y)‘ It ' is

not difficult to sce that L%(K) containg an elcment which has

no complcment in L%(X)'

Combining the previous theorems,; we have the following -

result,

Theorem 3,5.6, ILet %k be a regular cardinal number and A any

cardinal numbcr,

i) If A < k, then every element in L% has a -

conplement,
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ii) If A 2 k , then there exists an element in
LK which has no complement in L&.
Remark: (i) When N =9%% =k K = 1% contains an element
ACHATK . v ¥ L b P()
which has no complcment in L%(X) furnishing a set theoretic

proof of B, V. Rao's result quoted earlier,

(ii) The abcve results strengthen B, V. Rao's results

is sevorgl dircctions,

(1ii) The problem considered in Theorem 3.5.6 was
suggested by B, V., Rac,

Corbining Theorcm 3.5.6 and Theorem 3,5,1 we have

Theorem 3,5.7. Let A and k be any cardinal nuabers.,

i) If A < k, cvery clement in Lf has a complement
; ' k
- i in. LA .
i1) If A 2 k, therc exists an element in L& which

has nc complement in L% .

111) If A =k and %k is not regular, ecvery clcment

k

in ¥ has a complement in Iy o

A
iv) If A =k and k 1is regular, there exists an

elemcnt in L% which has nc complement in Lf A
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6, Somc Coumplemcnts to the Complementation Problem

In this scetion we consider the complementation problem
in the light of sub o-fields and sub-flelds for specific

examples,

Firstly, the argument given in second paragraph of

.secticn 5 of this chapter gives the following Theorem.,

Theorem 3,6,1, Let 3_ be a o-field of subsets of a set X
containing singletons and satisfying the foilowing property:
There is no nonzero continuous O~1 valued measure on 4 Let
I be any o-ideal in A which contains all singletons. Then
4(I), the o-field generated by I on X, has no complement in
Ly « the lattice of all sub o-fields of 4 .

Proof, Suppose & (E) has a complement 3 in ﬁi . Then the
o-field B 1s iscmorphic to the quotient BooleanzaFalgebra

é/l . The argument ié similar to the one given in the prbof of
Theorem 3.2.8. ©Since B 1is a o~field of sets there is a O;l
valued measure cn g. In fact, any degenerate measure would do,
Consequently, therec 1s a nonzerc 0O-1 wvalued measure u on

the Boolean o=algebra Q/ 5. This measure g can be 1ifted as a

nonzerc measure M on &, Since I contains all singltetons,
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¢ is continuous, Thls contradiction shows that 4(I) has nc

3 o
complcuent in L&

From this theorcm, we rcap a harvest of corollaries,

Gorollary 3,6.2 The conclusion of Theorem 3,6,1 1is True

'wfin

if onc takes & = P(X), the cardinality of X being non-moasu-

4
reble (i,e., there ig no nonzero O-1 valued continuocus measurc

on PO

Corollary 3,6,3, The conclusicn of Thecorcm 3,6,1 1s True 1if

onc takes & to be any scparable o-ficld containing all

singletons,

One can casily derive a version of Corollary 3,6,3 for
gencral separable o- fields with atums playing the rolc of

singlctons.

Corollary 3.6.4: The conclugion of Theorem 3.6,1 is Truc if

cnc takes X to be the rcal line R, & to bc the Borcl
c-ficld on R and I tc be the o-ideal of all Borel nmull scts
(with rcspcet to Lebesguc mogsure) or thc o-fdeidl of all Borel

first catcgory subsets cof R,

Wow, we gcnecralisc Corollary 3.6.,4 to general measurc
spaccs and to gencral topological spaces with sultable modifica -~

tlcons.
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Let (X, &4 M) Dbe a measure space where u 1is o-finite
and A& 1is compiete with respect to u (i.e.y, if 4 is a
g-nulz set, then any subset of 4 1is in ﬁ)- Let E“ be the
ideal of all wH-null sets in 4. |

Theorem 3.6,3., A&Iu), the sub o-field of A generated by the

oc-ideal I ; has a complement in ﬂi if and only if u is

=M s

conpletely atomic.

Froof, Suppose M is completely atomic, Let Al' AE"“ be
g8 collection of sets in & with the following properties,

1) & 's are all pairwise disjoint. 2) _g lAi =X. 3) ERach
1

4; 1is a w-~atom. Since u 1is o-finite u (Ai) is finite for
each i, Given any 4 € & with w(&) > 0, we can find unique

sub-collection &, 1 & .o such that u(a D U 4. ) = 0,
o kﬁl%k

Let B be the sub o-field of & generated by &1, AE‘ o .
~ 1is =
Then B /a 1lifting for the natural homomorphism h : & = é/;u,

—_—

i.e., h(4) = [&]”. Hence B 1s a complement of & (EM)'

Conversely, suppose & (I ) has a complement B in Uz .

o

Consequently B 1s isomorphic to the quotient Boolean o-algebra

L/ T . Since u 1is o-finite, 4 /;“ satisfies countable
= :H e -—
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chain condition, Hence the o=ficld E also satisfies countable
chain condition, So, B 1is isomorphic to P(N), where N is setof
nonnegative integers., Thc o=finite measure u can be trans-
ferred, in a natural way, to P(N) as a strictly positive

l o-finite measure, 4nd any such measurc on P(N) is completely

atomiec., See Theorem 4,5,1, This completely proves the Theorem,
The above theorem raises the following natural gquesiion,
. Docs QJEM) have a complecment in the bigger Lattice L, the

lattice of all sub-fieclds (same as Boolean sub-algebras) of A4?
an agffirmative answer to thiscquestion follows from a theorem

of Maharanm {16] which we quote below.

Theorcn 3.6.6.. (Maharam)., For any measure space (¥, & #)

ﬁith fy a o=finite complete measure, there exists a field of

sets ¢ (C 4 which is a lifting of the natural homomorphism

from 4 onto & /E“ 3

The following question remains open. Let (%, éq L) be a

charge spacc. Does g(;u) have a complement in Lﬁ.?

Now we examince the problem how far the gssumption of comple-
tcness is essential in Theorcem 3,6.6., Below we shed some light

on this aspcct. For this we necd the following theorem.
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Theorem 3,6,7, (von Neumann and Stone {29, Theorem 17, p. 369]
and Theorem 15, p, 367]1).
Let 4 Dbe a Boolean algebra and let I be an ideal in 4 with

the following property.
(x) for every J (C I with cardinality of J < cardina-
lity of 4/I, there exists a € & which is supremum of

all elements in J.

Then we can find a subalgebra B of 4 which is a 1lifting of

the natural homomorphism from & onto L&/T,

Remsrk: In fact, by the above theoremy B is a complement of

A(I), the Boolean subalgebra of & generated by I, in LA "

Theorem 3,6,8. assume continuum Hypothesds. ILet 4 be a

countably generated o-field on & set X, Let I be any o-ideal

in 4 Then A&(I) has a complement in Ig.

Proof, Since &4 1s countably generated, cardinality of é 1ls
less than or equal to c{cardinality of the contimum), Cense-
quently cardinality of 4/ I is < c. BSinee I 1sa o~1dsal,

continuum Hypothesis implies (x) of Theorem 3.6.7 is

satisfied, This completes the proof,
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Remarks, The proof of the above theorem goes through for any
o-ficld & of cardinality £ e¢. The above theorem covers
Borel o= fie¢ld of the reel line, Borel null sets and Barel

o-fleld of the rezl line, Borel first category sets.

Now, we turn our attention to the topological case. Let
(%, T ) be a topological spacc, & subset B of X is said to have
the property of Baire 1f we can find an open set &  such that
BA& is of first category in X, Lect B be the collection
of all subscts of ¥ with the property of Baire. Then B is a
o-field on ¥, BSee Oxtoby {21, Theorem 4,3, p, 19]. Let I
be thc o=ideal of all first category subsets of X, It is clear
that B is complete with respect to E, i.e., Be I, € 1s a sub-
set of B, implies C € B. With this set up the following two

problems arise

1) Does B (I), the sub o-figld of B generated by I,

. o
have a complement in Lg ?

We answer this gquestion in the negative.

2) Does B(I) have a complement in ILp?

We answer this question in the affirmative,

Propositiocn 3.6.9 Let ¥ be the real line equipped with the

e AN

usual topology. Thom @(l) has no complement imn L%'.
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Proof, Note that since B contains the Borel o-field; B does

not support a nonzero continuous (=1 valued measure, Moreover

I contains singletons, Now the result follows from an applica-

tion of Theorem 3,6,1,

To answer the second question we need the following

theorem

Theores 3,6,10, (von Neumann-Stohe {29, Theorem 18, p. 372 and

Theorem 15, p., 367])
Let &4 be a Boolean algebra and let I Dbe an ideal in 4 sati&

fying the following property

(¢x) For any two nonvoid Jl' 32 C: I such that cardins—
lity of J; and cardinality of Jg < cardinality of A/T and
such that every elenment of Jl < every element of J., there‘
exists a € 4 such that ¢ a4 for every ¢ € Jl and

d e 52. Suppose there is a function F ¢ A =2 4 satisfying

1) Fla) A a € I for every a € 4,

2) af be I implies (a) = F(b) for any a and b
in o gy
3) Fla Vb) =F(a) VFDb) for a; b€ &

Then we can find a subalgebra B of A such that B is a
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1ifting of the natural homomorphism from A onto 4/I . The

following thecrcm arnswers the second equation,

Theoren 3,6,11, B(I) has a complement in ILg.

Proof. We vrove this theorewm by using the above theorem,

Opviously the ideal E satisfies (*%)., Now, we define a func-
tion F @ E — E as follows,
"For L€ B, F( &) =b{§:6 X : for every open set V containing
x, VI A is not of first categpry in Xf}.
Then F satisfies the following properties,
0) Fli) € E for every 4 in B

1) MaDHa eI for every 4 in

IHtd

2) 4 BE€ By aABE€ I implies F(4) = F(B)

3) F(aUB) =F(4a) UF(B) for A, BE B,

See lKuratowski [15, pp. 83-85]1].

Invoking Thcorem-3,6,10 and Theorem 3,2.8, we get the result.

Finally we make a remark on a problem of B, V., Rao,

In {23, p. 215], B. V. Rac posed the problen Qf character-
ing sub o-fields of the Borel o-field B of the real line which

have complements in L%. He gives in {23, Theorem 3, p. 215] a
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class of countably generated sub o-fields which have complements

in L Here we givc another class,

Htg Q

e need the following theorem of Blackwell and Mackey.
We shall state it in the form which is needed here,

See Blackwell 14, Section 4] and Mackey 117, Section 4],

Lct B be a Borel subset of the real line, 4ny ccﬁntably

generated sub o-field on B of the Borel o=-ficld on B whilch

separatés points is the Borel o-field on B,
Theorem 3,6,12¢ Lny countably generated sub o-field ¢ of B

in which every atom is countable has a complement in L% :

—_

roof, By a Theorem of Lusin (sce {20, Section 9. p, 14]). we

can get & Borel set B such that B 1 ¢ is a singleton for

. every atom G of ¢, Let D be the o-field defined by

:{ce];: ¢cnB=g or C:)B}, Since B 1s a Borel set

g no

is a separable sub o-field of B .

The o= field D 1 B* is countably gencrated and separates

voints of BS%. By Blackwell-Mackey Theorem D 0l B® 1s Borel
o~ field of B®, €0 B is also countably generated and since
B is a selection C i1 B separates points of B. hgain by

Blackwell-Mackey thecorem ¢ 0 B 1s Borel o-field of B, ©Since
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the o-field generated by D and g contains B we conclude
that»the c=field generated by 2 and S is the Borel o-field
B.

Since any set in C which contalns B is whole space it

follows that D 0 B = {ﬂ,x} Thus D is a complement of C
in LB

The same proof works to prove the following more general

theorem,

Theorem 3,6,13, iny countably generated sub o=-field ¢ for

which ther¢ is a Borel selection (i.,6., a Borel set Bwish B nC

is a singleton for every wtom ¢ of () has a complement in

o Q

I

7. Ultrastructures.

Let B boc a Boolean algebra with the associated lattice
Lg o©of all subalgebras of B, With each element ¢ # B, C € Lg
we can a53001ata an ideal I { D€ LB DgC ?r in the

lattice L When is a maximal ideal (proper) in Ly is of

B.

the form IC ? For this we introduce 'Ultrastructures',

in element C# B, C 6 Ly 1is said to be an ultrastructure
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in Iy if for any D € Ly such that C £ P < B imp;ies elther
D=¢ or D=38, (B. V. Raio {23] defined ultrastructures in
the lattice LGP(X) and gave a characterisation of ultrastruce
turcs). It is casy to see that Ic is a maximal ideal in Ij
iff 0 is an ultrastructure. ©So the problem of characterisation
of maximal ideals of the ferm IG in LB boils down to the
characterisation of ultrastructurcs in LB. We do this in this
scction, ‘

The following charactcrisation of ultrastructurcs in ;B
is similar t® the one obtained by B, V., Rao [23].

Theoren 3,7,1, Let I and .J be two distinet maximal ideals

in B, Let

A(I,j)={bE}B=b or b'GIﬂJ}.

Then & (I, F) is an ultrastructure in Lo Conversely, every

ultrastrueture in LB is of this form,

Proof., It is clear that 4(I, J) 1is a subalgebra of B. In
fact, (I, J) is thc subalgcbra generated by the idcal I 4 J
in B. Since I and J arc distinct, &{I, J) # B, Iet D be
any clement in Lg which contains 4&(I, J) properly, We will
show that D= B, For this, it is sufficient to show that
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I (C p. (Sinecc I is maximal in B, the subalgebra generated
by I is B itsclf.) Let d € D satisfying d £ 4 (I, J).
Consequently, & and &' ¢ I 0 J, Without loss of generality
assumc that da € I, 4* 2 J, Let b €& I, It follows that

bA d€ I QJ and hence bAd' € D. Now, bAd = [{(bAd ) V a']

Ad € D, Henec b € D, Coansequently I C D.

To prove the converse, we need the following lemma for the
case k = 3. Since it is interesting by itself we state angd

prove for the general k.

Lemma 3,7.2. Let I, I2,..‘, Ik bc¢ k distinct maximal
idcals in a Boolean a lgebra B, Lect Nl' N2 be any arbitrary
partition of {1, 2, 8, ..., k} . Then thore exists a b € B
such that b & I; for every 1 € N; and b Z Ij for every

Proof. Wc provc the Lemma by induction, For two distinet
maximal ideals, the result is obvicus., Assume the result to be
truc for any n-1 (n » 3) distinct maximal ideals. The case
when one of the scts in the decomposition of {l. Ctee. s n} is
cmpty, thce result trivially follows, Assume, without loss of
gencrality , Ny = {1, 2ree g /(} N, ,(+l, K424 .4 n} and

cardinality of Ny 2 1, By induction hypothecsis, thcrc exists
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abelI, forcvery 1<igA  and bfflj for £ +1<3<
n-1, and a @€ I; for cvery 1<1¢ X ‘and ¢ g Ij; for

LA +2<j<n Then bV e € Ii' for 11K and b V p‘gKIJ
for f+1 < j £ n.
Iet B Dbe a Boolean algebra and 1lct D be a éubaigebrg
of B, It is éasy to verify that if I is a maximal ideel in
B, then I 0D is a maximal ideal in D. It is also true thst 1f
I, 1s a maximel ideal in D, there exists a makimal‘ideal,l in

B contalning I,; which we call an extension of I,.

Lemma 3,7,3. Let B be a Boclean algebra and ket T %Q a

Boolecan siybalgebra of B, If every-maximal ideal in D has a
unique cxtension in B, then D = B

\
Proof ., et ¥ and Y be the Btone spaces of B and D

respectively. We identify the Stonc 8paces as the éollectiod\bf
maximal idegls. We define f ¢ X ~2 ¥ as follows, 4
f(I) =D ﬂﬁi._ From the hypothesis it follows that f ig
ong~onc, , flence the inclusion map 1 ¢ D —> B which indqus f
is onto. Oce Sikorski [27, first four paragraphs of p. 34],

Hence 0 = B,
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Now, wc provc the converse part of the Theorcm., Let € be
an ultrastructurc in LB’ We claim that therc is no maximal ideal
in € which admits morc than two extensions in B, Suppose not,
Let I1 be a maximal idcal in C and Jl’ J2
distinet extensions of I; in B, Now, I C I 00, 0 Jg {1

1 J.. be thrce
3

Jl 0 Joe The latter inclusion is stricet in view of the Lemma 3.,7.2.
Now C = B(Il)g the Boolcan subalgebra of B generated by I;.
ig striectly contained in B(JlflJz) = A&Ji. Jé). Hence C is not

an ultrastructure.

Now, we claim that therc exists atleast one maximal ideal
Il in C which admits exactly two dlstinet extensions I and

J in B, In view of Lemma 3,7.3, this is obvious,

Now, obscrve that ¢ = B(Il) (C B(I0J) (because

I CIiIanJ). Since B(INJ) = &I, J) is an ultrastructure
¢ =B(INJ), i.e.y ¢ 1is of the form A(I, J) for some maximal

ideals I and J in B,

4ftcr characterising ultra structures in LB' we make a

remﬁrk about the complements of ultrastructures in LB' Let €
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be an ultrastructure in -LB' Take any element b € B such
that b £ C. Then the Boolean sub-algebra of B generated by
{j:} is a complement of C, Converssly any complement

of the Boolean subalgebra of B generated by an element

b EB such that b #0 and b #1 is an ultrastructure.

The above two statements arc not difficult to prove and the

proof is omﬁtted.

Y —
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CHAPTER 4

COUNTABLE CHAIN CONDITION AND

T s i e e et e A v ARR N L R A e SR W Sk A W S ST M e W

i et i W TS G P A P PR kg A w a

1. Introduction. Let (X, 4) be a Borel structure, In
this chapter we allow measures u on & to take the wvalue =
also, 4 measure u on & is said to be o-finite 1f there

existsa sequence of sets 4r 121 in A such that U hy=Xx
: = i2 1

and up(&y) <= for every i, Let.-m be a g-finite measure on

4. Let . N be the collection of wu-rmull sets in Ay l.84y

s u(l) = O}—. Then 4 - g satisfies countable

=
1
T
[&r]
i -

chain condition, A4 family of sets {Ahﬁ allE él} is said to

satisfy countable chain conditicn if any subfamily of pairwise

disjoint sets is atmost countable, We denote, hereaiter, coun-

table chain condition by £ C C.

There is anothecr notion of measure weaker than o-finiteness,
AL measure g on 4 1is said to be o-sum measure if we can

write u =% Hit where each M4 is a finite measure on 4 .
i2l =

Every o~finite measure u on 4& 1is a o-sum measure, For, let

=9)=
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)y byy vew buoa sequenge of sets in 4  such -that

(1) U & =% and (11) k(4y) <% for cvery 1. Without
1500

loss of generzlity, we can assumc '8y 1 2 Xy Yo be disjoint,
Pefing py ¢ 4a—> R as fellows, ui(B)' = g {B n‘&i) . Clearly,

K= B Hye But g o-sum mecasurc necd not be g=-finttc, Het X
1>1 :

Be any uncountablc set ang countable = cocountable o-f1gld: °

He-

on X. Deofine X and m on « as follows.
A4 =0 if 4 is countable,

= oo 1f & 1s cocvuntable,
ulk) =0 if & 1s countable,

=} if & 1s cocountable,

A ahd u are measures on & and A As not o-fimite, But

A= ‘FSlﬁi. whepe each Hy = He What we want te emphasize on

g=sum measures 1s the following, If p is a o-$um measure on
and N is the eollcction of all  w-null sets fn 4, then

g

Lk

a - N satisfieg © C C. ZIThe preof of this 1s not difficult,

Question * 18 the converse truc 2



http://www.cvisiontech.com

.03

Ficker {7, Section 2,p, 242] came forward with the follow-

ing theoren,

(¥) Theorem, Let u be a measurg on a o-field 4 of X

and @ denote the collection of all sets in A of

p-measure zero. Then & - N satisfies C C C if and

only if u 1is a o-=sum measure,

In Section 2 we give a counter example to show that the
'only if' part of Ficker's theorem is incorrect. In Bection 3
post mortcem is donc on the Ficker's proof of his Theorem (%)a-
In Secticn 4 we improve the conclusion of Flcker's theorem for
a certain class of measureé. In Section 5 we study C € ¢ in

o-fi¢clds,

2. Example. Let B be a Boolean ow-algebra satisfying
C ¢ C such that there is no strictly positive finitec measurc
on B, For example, onc can take the Boolgan g=algebra of all
Bore¢l subsets of the real line modulo first category Borel sets.
See Hzlmos [10.-Lemma 4, p. 68]. Let X be the Stone space of
B 4B thc Baire o-field on X and I the collection of all

first catcgory Bairc subsets of X. By Loomis! theorem {scey

for example, Halmos {10 , p. 102]),the quotient Boolecan
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d—algcbra B/ I and B are isomorphic. Since I 1is a

c-ideal, thc function g defined by the formula,

1

(&) =0 if 4 €I, and

1
8

is a measure on §. Note that § / 5 satisfies € C C and
so B - I satisfies C C C. If Ficker's theorem (*) were
to b; tr;e, we can write gy as a cduntable sum of finite
measures on E which implies that K4 is equivalent to a

finite measure A on B. For, if u = X Mg s then

izl
KMEA= Z _l_] Hi(.) ('=' means u and A have the
= 131 oft #0000 T

same null sets,) Since I is precisely the collection of all

% mall sets, we havera strictly positive finite measure on

B/ I, But this is a contradiction,

3, Post mortam,  For a measure {4 on a g-field A4, there

are two definitions of u-atoms.
(I) & set & in & is said to be a w=-atom 1f
(1) w(&) > 0 and {i1) B € & B A implies
w(B) =0 or u(B) =pu(&).
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(II) 4 set Ain 4 is said to be a u-atom if

(i) w(&) 20 and (1) Bea, B(C a
implies wn(B) = 0 or u(ia -~ B) = 0,

These two definitions ére not equivalent, 4 set 4 & é
which is a u-atom in the sense of definition (II) 1s also a-
u-stom in the sense of definition (I). The following example
demonstrates that the converse is not true, ILet R be the

r¢al line and é its Borel o-£isld, Define

Bt i ==> [0, » ] as follows.

ney

O if lebesguc measure of & = O,
= o if Lebesgue measure of & v O.

4 1is a measure on 4 , and the open interval (0, 1)
is a u~atom in the sense of definition (I) but not

in that of (II).

&n analysis of Ficker's proof shows that he had teeitly
assumed the equivalence of definitions (I) and (II). This 1s as
pointed abcve dincorrect, However some form of Ficker's results
can nonethelessb® rctrieved provided certain conditions are
imposed on the measuré which will ensure the equivalence of

(I) ana (II).
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This last observation leads us to the notion of semifinite
measure., 4 measure g on A is said to be sgmi-finite if
L € dy u(&) = implics there exists a B Ca ,Bc¢ 4 such
that O < u(B) < . It is easy to verify that the derinitions
of mp-atom according to (I) and (II) are equivalent for semi-
finite measures, In thc next section we will prove a stronger

version of Theorem (%) directly for semifinite measures,

4, 4 characterisation of € C C

Theorem 4,.,4,1. Iet u be a seni-finite measure on a o-field
of X. et N denote collection of all sets in & of u-

1)=2

measure zero, Then & = N satisfies C C C if and only if

it is o=-finite,

Proof, It has already been noted that if g 1s o=-finite then

A - N satisfies C C C. Suppose 4~ N satisfies C C C.

If wu(X) < =, there is nothing to prove. If u(X) =,
ghoose kg -84 such that 0 < u(&l) <, Choose 4, € & such
that 4, C X - i and 0 < p(hky) <=, Thus we can find a

sequence of disjoint scts i A?"" in & such that

cach & € 4= N and 0 < p(hy) <. If u(x—tglkl) < =,
= = i—
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. choose &4 € & such that &4 (C X - ﬁ , and 0 < {4 ) (‘m

&, € & 5 C 1_>_1A% wu(d, ;
where w 1is the first countable ordlnal., Continue this process..
Since é.—\g satisfiss C Cﬁﬁﬁm%ﬁera exists a countable ordinal

o« such that (¥ « AB) { o, This implies that u is
ﬁ(zx

o-finite,

Remark, Let & be a o-field on a set X and let N be a

=

o-ideal in & It is easy to prove that 4 / N satisfies
CCC 'if ahd only if ﬁ.ﬂ N satisfies C C C, When N is
the collection of all u-nnll sets of a semi-finite measure wu

on a  o-field 4, the following statements are equivalent,

i) u is o-finite-

ii) 4~ N satisfies C C C

-

iii) & / N satisfies C C C.

5, Some characterisations. In this section, we characterise

c-fields on which every measure is a o-sum measurse,

Iheorcm 4,56,1,  Let A4 be a o-field on a set X, The follow-

ing statements are equivalent.
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1) Every measure 4 on is a o=sum measure.

e e -

ii) Every measure u on is equivalent to a finite
measure A on g, i.e.y the collection of all
p-null sets is same as the collection of all

A=null sets,
i1i) There is a strictly positive finite measure on A.
iv) & satisfies C C C,

v) 4 1is isomorphic to the power set of some countable

set,

Proof, (i) => (ii) ==> (111) == {iv) are all easy.

(1v) => (v). Since g satisfies ¢ ClC it is a complete
field, i.,e,,; closed under arbitrary unions and complenentation,
See Halmos [10, Corollary, p. 62]. Since A is a complete field
of sets,; it is atomie, Hence A is isomorphic to the power

set of some set, See Sikorski [2? 25,1, p, 105], Since g

satisfies C C C, 4 1s lsomorphic to the powsr set of sonme -

countable set,

(v) ==> (i). Let u be any measure on the power set, P(N),
where N is the set of all natural numbers, Note that, we can

write
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K= & s whei'e
121
W& =u (1) if 16 4
=0 | 1f 1 4 4.

R

Obscrve that cach py 1is a measure on P(N), We shall write
each Hy as a countable sum of finite measures, ILet 1 be
any natural number, If u (3 1} ) < e, then we represent by

by itself, If x ({i}) = o, Then we write Ky = E Hyp
n21

wherc, for every n 2 1,

sy, (W) =1 if 164,

=0 if 12 4.

The proof is complete,

T g -
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CHAPTER 5

R e Y A S G G A S e T G et e S e et b A ok g e G A B M e S T a e o

T G T S o B AL g T G S G G WS fee NS D NS G W P GNP G D e ek

1 Introduction, Let (X, B) be a Borel structure, i.e.,
g is a o=field of subsets of X, Let u bé-a probability
measure on B. Two real valued measurable functions £ and
g dofined on X (£™X(B) e B for every Borel subset B of
the real line) are .said to be w-independent if

u{x e X :. f{x) € Byig(x) € Bz}
,u{x e X : £(x) GB]_} u{x e X s glx) E:Ba}

for all Borel sets Bl and 32 of the real line, R,

Generally independence is discussed after fixingla
measure, Here we fix a pair of measurable functions and ask
whenl does there exist a measure u which makes the two measu-
rable functions independent, If u is a degenerate measure

at a point x, € X, d.e., M(&) =1 if x € AEB, and

w=100-
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(&) = 0 if x_ £ & & B, then any two real valued measurable
functions are g-~independent, In this chapler we deal with the
problem of existcnce of a nonatomic probabllity measure on B
with respect to which the given measurable functions f and

g on X are independent, 4 satisfactory characterisation of
the existence of such a measure igs cbtalned in the next section

for X «~ an uncountable Borel subset of a Polish space and

@ -~ its Borel o-field.

There 1s another way of looking at the problem posed in
the previous paragraph which is mere instructive and elegant,

Let B

B, and B, be two sub o-fields of B, @1 and B, are

=57 =

said to be g=independent if

u(B; By) = ;-t(Bl) u(By)

for every By € B; and B, € B,. 4#my real valued measurable
function £ on X gives rise to a sub o-field B, of B

defined by @f = {;f'l(B) : B Borel subset of R}.. Since the

Borel o=field on R 1s separable, l.e.y has a countable gene=-

rator, Bf is a separable sub o~field of B. The following
= b

preposition 1s sasy to prove,
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Proposition 5,1.,1. Let (¥, By &) be a probability space,

Let' f and g be two real wvalued measurablé functions defined
on X, f and g are p~independent if and only if B, and

Qg are py-independent,

In view of the above proposition, the problem is refor-
mulated as follows: Given two separable sub geficlds B, and
gz_ of E, when does there exist a nonatomiec probability

measure g on B such that @1 and B2 are u-independent?

Here, we record some of the facts concerning scparable

o=ficlds which will be needed in the seguel,

BEvery separable o-field is atomic, If B is a separéble

o~field on & set X, then its Marqggwski function, h, ié

defined as follows, Fix any countable generatot Bl‘ Bg, P
2

for B, Define h{x) = ¥ % 1I;(x) for x € X, where
= i21 3 1
Iz is the indicator function of the set Bi‘ See B, V., Rao
i .

[24]. Moreover, By, = B. Therc is no O=1 valued measure

on any separable o-field B vanishing at the atoms of B,

Since we propose to solve the problem for ¥ uncountable

Borel subset of any Pollish space, in what follows we assume
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¥ = {0, }1 and g its Borel o-fiecld, unless otherwise specified.

This is possible since any uncountable Borel subset of a Polish
space 1s Borel isomorphic to L0, 1]. BSee Parthasarathy (22,

Theorem 2,12, p., 14] or Kuratowski [15, Theorem 2 , Pp.450].

2, ©Some characterisations.

Theorem 5.2,1. Let By and B, be two separable sub o-fields

of B, Then there exists a nonatomic probability measure §

on B such that §1 and B, arc g-independent if and only if

=2

atleast one of the atoms of § or §2p is uncountable,

Proof., If part, Let B € El be an uncountable atom of 'El'
Cconsider the Borcl structure (B, B O E). Let N be any non-
atomie probability measurc on BIIE. Buch a A exists since
(B, B OB ) and (X, B) arc Borel isomorphic., Note that

B € Ba Lift the measure A on B 0 B to a measure 4 on
B a; follows, p(C) =A(B0 ¢) for every CE€ B, u is a

nonatomic probability measure on B sitting on B, Let

B1 € El and B2 € B

By « Sinec B is an atog of B,y either

B C By or F0 By = @, In the first case, g,(Bl n Bz) =

#(B 1 B,) = ul(By), and u(By) u(Bg) =1 x u(Bg) = u(Bz). In
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the sccond case, pt(Bl n Bz) = 0, and u(Bl) M (Bz) =0 x

“(Bz) = 0, Hence B, and By are p-independent,

and B

Only if part, Suppose none of the atoms of B B,

=1
is uncountable, i.e., every atom of B, and §2 is countable,
Let £ and g be Marczewski functions of Elﬁ and EZ respec=
tively., Note that f and g are countable-to-one functions

on L L L {x} anda g~t { x} are countable for every
x €X, Lot & =f£(X), and & = g(®). Then & (C X and

A, C X. Further f and g map Borel subsets of X into
Borel subsets of X, Sec Kuratowski [15, Corollary 5, p., 498].
Consequently, & and &, arc Borel subsets of ¥, Let Gy
and Co, be the relatived Borel o-fields on Al and 4o
respectively, Define T : X —2 Al X A2 in the following way.
Tx = (£(x), 8(x)). & x & 1is cquipped with the product

o=field 91 X 22' Now, T 1is (gt gl x 92) meésurable. For,

f 4is (B, gl) measurable and g is (B, 92) measurable, Let

’ kl and Az be the probabllity measures defined on

A
gl X 22‘ 'Sl and gz respectively defined by

g A

1 i} f-l, angd

- -1
A-z . “—g »

g
1

>
1§
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Observe that

A ({x}) = 0 for every x € 4 For f-l.{ x} is countable
] b. For, £

for every =x € .:.1 and 4 is nonatomic on B, 4 similar
argunent shows that kz({'x}}iz 0O for every x € '9’2 Sincs
Cq and (, are separable, A; and A, are nonatomic proba-

bllity measurcs on ¢, and C, Trespectively, Now, we claim

=2

that X = A, x A5, the product measure of ?Ll ang 2\2 on

1 2
El X 22. For this, it is enough 1f we show that

D\(Clx 02) =?\l(cl) 12((‘,‘2) for every C. and Cy in ¢

=1 and

1

g S 1l -1 =
22 respectively, R(Cl X 02) =u T (Cl x 02) =

=u LMo 8 g7He) T = ube™H(c] . ulg™cy)], since
£71(e) € By g71(cy) € B, and B; and B, are independent,
But p L£7H(0) ] . u [e7HG)T = aq(0y) Ap(G). et ¥ = TX,
Now, we note that T dis also countable~to-one function from X

onto ¥, For Tx = (£(x), g(x)) € ¥, T {(£(x), glx)} =

{y s (f(y)y gly)) = (£(x) g(x))} is a countable set since
f and g are countable-to-one functions, This implics that

T maps Borel subsets of X dinto sets belonging to Ci X 92 ’
In particular, Y € _(_Jl X 92. Note that every seetion of Y
in countable, Fory Yp( ., =—§_g(y) €&t f(x) = f(y)} which

is

is countable since f is countableg~to~one, Since 7\2
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nonatomicy A, (Yf(x)) = 0 for every =x € X, Hence, by
Fubini's Theorem, A(Y) = O which is a contradiction to

A (Y) =1, EHence atleast one of the atoms of B, or B, is

=2

unecountable,

Corollary 5,2.2. Let f and g be two measurable funetions

defined on ¥ = [0, 1], where ¥ is equipped with its usual
Borel o-field, E, There exists a nonatomlc probability

measure on B with respect to which f and g are independent
if and only if either f or g is constant on an uncountable

subset of X,

Proof, Opserve that the nonempty sets among {f—l{x}: x € R}

are the atoms of Bs .

Now, we take up the following broblem: Given two separable
sub o-flields B, and EE of E does there egxist a nonatomic
probability measure u on B such that (i) By and By
arc p-indepcndent, and (ii) the restrictions of u to El

and B, are nonatomic on B, and B, Tespectively? we give

partial answer to this question.
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Theorem 5,2,3, Let 21 and B, be two separable sub o-fields

of B satisfying
i) exactly one of the atoms, say Byr of By is
uncountable, and

ii) every atom of B, 1is countable.

Let u be a nonatomic probability measure on such that

B; and B, are u-independent. Then u(Bl) =

Proof. 4&s in the proof of Theorem §.2.,1, let
i)' f be a Marczewski functicn of §1 !
ii) g be a Marczewski function of By 4

iii) by
iv) &y

v) T : X —> i x 4, defined by Tx= (f(x), g(x), and

I

£(%X) .

il

g(x),

) T = ¥,

Since El contains exactly one uncountable atom Bl' f ang
T map Borel subscts of X into Borel subsets of 4 and
Al X AQ respectively, Let
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e = [ EEE
LS £~1, ang
- -1

kz = HE s

We observe that A = kl ba 12, and A2 nonatomic,
Further,

L=a(D) = [ A (Y A (ax) . et x_=1(B). Note

A

that Yﬁ = X - section of Y for x in Al is countable for

all x # x_,. Since A, 1is -monatomic, 1 = 12(Yk ) Aq ({;xo} ).
s .

R . ‘ - . =] L :
This implies that *1§i¥o}) =1l=yu(f {‘Xo}- ) = u(By).
This coupletes the proof of the theorem, '

The preceding thecrem says that if exactly one of the

atomsg of El is uncountable and all the atoms of gz are

countable, then any nonatomic probability measure H on B
with respect to which B, and B, are independent cannot be
nonatomiec on B,. The following theorem says more on this

problem than the preceding theorem,

Theorem 5.2,4., Let B, and- §2 be two separable sub o-fields
of B .-and let u be a nenatomic probability measure on B

with respect to which El and §2 are independent, Further,
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assume that u on El and u on @2 are also nonatomie,

Then there are uncountably many uncountable atomg in El

as well as in @2.‘

Proof, Suppose the conclusion of the theorem is false,
Let f and g be Marezewski functions of B, and B, res-
pectively. 4dssume that the humber of uncountable atoms in 1§1

is countable,

1% Let 2 =100,1] %[0, 1] = X x X equipped with the
product o~£igld"~ B x J_Ef « Let T g X =22 bpe defined as
follows ¢ Tx = (f(x), g(x)). Since f ang g are (Be B)
measurable; T is (By B x B) measurable. Let A= uT‘l-,

A= ut™t ana Ay = ug™t, We note that Ay and A, are non-
atomle. For this, 1t is enough if we show that A ({x}) = 0
= A, ($x}) =0 for every x € X. Since 1L ($x}) =¢ or

an atom of B; and u is nonatomic on Bir Ay (1x}) =

N fa (1x¥)] = 0. The same argument applies to A,

2°,  Now, we claim that A = Ay X A For this, it is

enough if we verify that

AM(cx D) = Al(C),Az(D)
for every C and D in B.
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A(¢x D) = plf™ e xD)] = i) a ()]

= ule™H (0 1. wle™ MDY, since

£ a)ee Bis g7H(D) € By and B, and B, are py-independent,

Thus A(C x D) = "1(0) x ?\2(D).

A Since T 1is measurabley I =Y is analytic and so
is available in the gompletion of B x B with respect to A.
This follows from capacitability theorem of Choquet. See, for

example, Neveu {19, Exercise 1.5,4, pp. 24-25], :-

4% Iet Cyy Cge oe- De the uncountable atoms of By

Let x; = f(Ci) « 1 2 1. Now, we observe that

YX_=)?5 if x £ £(%), ) _
countable if x € (£(¥) =- {xl.r Xg ..c})

‘where Yé = {y e [Cy 1] 3 (%, 7) € Y} . Y= g if x g £(%X) 1is
-clear from the faect that Y = {(f(x). glx): x ¢ X}. Let
x € (£(%) - §_xl.; Xo 1 ..o} ). There exists y € ¥ such that
_ = 5y E - Lol
x = £(y) . Ypy {g(z, + £(z) f(y)} glf™(£(y))]. Since

Iy) # x; for any i, L (£f(y))  1is countable, Hence
gle™M(£(y))] 1is countable. Thus except for the sot
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Hence Y 1is a null set. See Oxtoby [21, Theorem 14.2, p. 53].

But A(Y) = 1, This contradiction proves the theorem,

Now, we may ask whether the converse of the Theorem5..2,4
is true, More explicitly, suppose Bl and B2 are tWro separable
sub o-fields of B and there are uncountably many uncountable

atoms {B( )} and {B(z)} in Bl ang B2 respectively. 1Is it
possible to find a nonatomic probability measure p on -B

such that (i) B; and B, are p-independent, and (ii) u on B

and y on B2 are nonatomic ? The following example shows that

1t is not always possible,

3. Counter-Example, Let Xl. X2, XS' Xé be 4 distinct

uncountable Pelish spaces, Let Y = Xi U Xé and Z = XS [LED e

and B be the Borel o-fields on Y and Z

et By amd 1B

raspectively.

Let e: Xy — XS :
Fak: ———r X

[

; and

e
o
!

Rl

be four measurable
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functions such that inverse image of every singleton is uncoun-

table, Let X = graph of € Ugraph.of f U graph of g U

graph of h ={(x1, e(xi)) P x; € Xl} U {(f(xﬂ—')' X4)= X, € X;,_r}

U{(g(xS)f XS) Xy € Xg } U {(XZ' h(xz)) i O Yg} ’

o
|

is a Borel subset of Y x Z, i,e,, X € El x §2. Consider the
Borel structure (¥, X n By x 52) with the s;b o~fieclds
Tn(Yx 22) and X fi (-El““‘x_ AR [l(_lél x B ). Nots
that every atom of X 0 {Y x Bg) and every atom of = o
X 0(B, x Z) is uncountable, For instance, every atom of
X0 (Y x Ez)' is either h~2 {xé} X {xé} U f(x4) x {xé}

for sone Xy € Xzz.' or
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-1
e ({xs}) x {XB} U {g(xs)}x {XB} for some x5 € Xi.
Suppose there exists a nonatomic probability measure on

X1 B

B, x By such that (i) ¥ o (¥ x_gg) and X 0 (B x Z)

.are p-independent and (ii) g on X0 (YN Iéz) and u on
X0 @l x Z) are monatomic., We will show that this leads to
a contradiction,

Let A, kz and ?\1 be the extensions of y on

Xn (B xgz) to ByxBor v on X0 (ngg) to ng

and g on X 0 (J§l x %) to B, x Z respectively by putting
mass zero on {Y x Z) ¥. We note that BixZ and YxB

are A - ilndependent, For, 2&(Bl x Z0Y=x -'Bz)‘ =

it

i (¥ (Bl x Z2) 0 X0 (Y x By))

i

poix 0 (By x 2)1, u (¥ 0 (Y x By) ]

A@lxm,MYx%L

Hence A must be a product measure ang in fact, is equal to

7\1 X Ao, It is clear that A

o 1 and 12 are nonatomic, It

is easy to verify that N oX g (X ngraph of e)
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= 0 = Ay X Ay (graph of f) = g x Ag (X 0 graph of g)

Ay X Ay (grabh of h), Hemce X3 x Ag(X) = O.

This is a contradiction,

S0 in the above example we produced a o~field ~ B

with sub o-fields B, and @2 such that B, and B, have

uncountably many (in fact all) uncountable atoms and ! ° B
does not admit a nonatomic messure u which is nonatomic on

both B, and and such that B, and By, are independent

Ba

with reépect to u.

It will be interesting to give necessary and sufficient
conditions for the existence of a nonatomic probability
measure u with respect to which the given sub o-flelds

B

B, and Ez are ilndependent and further 4 on By and u

on B

B, are nonatomic,

—— -
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A BOREL SET OF FULL_ MEASURE WHICH

S e e e G G e G SR D R e G R s S R GE e GE G S TS A S D g WS S
—— gk W e g e e Y e G g g - e G g

— g P D P g O g g

1, Introduction., ILet m stand for the lebesgue measure
on the real line and let n, stand for the product Lebeséue
measure on R x R, In this chapter ﬁe give an example of a
Borel set E in Rx R such that m, ((R‘X R) = E)-=
and B does not contain any & x B suoh thet n{d) » 0 and
m(B) > 0, In [5],R, B. Darst and C. Goffman gave an
example of a Borel set of positive measure (not full) in R x R
which does not contain any rectangle of positive measure., In
8ection 2 we generalize a well known result in measure theory
which we use to construct an exawmple in Section 3. In Ssotion
4 we get the category analogues of the- results of Sections

2 and 3,

~115-
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2. Generalization of a result in measure theory.

' It is well known that {See Halmos [11] or Oxtoby {21])
for any Borel set A C R with m(4) > 0, 4= & =
{:x -y ¢ X E iy € Aﬂ}-contains an open inberval, The follow-

ing proposition generaligzes this result.

Proposition 6,2.1: If _& (C R, B C R aXe two Borel sets with
a(a) >0 u(8) >0 then s=B={x-y:1xeca yen} con

tains an open interval.. ' -

Prodf.< It is a well kmown fact of measure theory-{or ergodic

—— . prg—

theory) that if a Borel set-of positive measure-is invariant
under translations with all rationals, then it is of full

measure (i.,e., complement is of measure zero), Now UL+ ¥ is
' - T rational

R . J) - e e

&. DBorel set invariant under all rationals, Hence

lm ((U4L+») 2 B) = n(B)., Since m(B) > 0 there exists a
r rational - i 3

rational ? such that m({(a +r) N B) >0, Let Cc=(A+1) 0B
Hence C = ¢ contains an interval I. Now
aB = [(atr) -Bl -2 D lc-Cl-r2) I=-r, aninterval,

Hence the proof.
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The example given below is a slight modification of
Darst-Goffman examble, The above proposition simplifies the

proof of our example,

She @Eagp}'g ¢ Let E-:{(x. Y) € Rx R I x~-y 1is an irrational}.
Let &, B (C R be Borel setswdthm(a) > 0 and n(B) > o,

Then by our above proposition A«D3 contains a rat:‘;._onal say

r. Let x € 4y y €B be such that x-y = r, Now (x,¥) ~ cannot
belong to B, So ax B Q;f E, Cbviously mz(R x R~-E) =0,

Thus E is a Borel set in R x R with full measure such that

E does not contain any reetangle of positive eSS,

4, Case of gets with property of Baire.

4 set 4 (C R is said to have property of Baire if A
can be written as a4 =GA P where G is - oppon and P is of
first category. It is known that (See Oxtoby [21]] for any
second category set with property of Baire & - & ::ix-y]x. vy € A}
contains an interval, The following is category analogue -of

prcposition &6.2.1.

Proposition@.“:.l. If &4, B C R are second category sets with

property of Balre then L= 3 = {X-Y | x 6 Ly ¥ O B} contains
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&n interval,

Proof, ILet &4 = G, N Py B= Gy ﬂPz whore Gqpy G, arc open

sets and Pl and P2 arc first catcgory sets. Since 4&, B
arc of Sccond catcgory Gy and G, are nonempty. Take an
interval I such that G; - G, ) I,i.c., for x 6 I,{G, + 0 Gy

is nonempty. Thc following is casily checked for any X =
C+x90 & DGy +x)0 G (P, UPRY.

For x € Ij(Gz + x}0 G; 1s a noncmpty open set and since in R

no open set is of first category (G, + x)0 Gy n(Pl U P} is non-

empty 5 1.coy for x € I ,(B + x}1 4 1is nonempty.
Henec 4 - B :) T

Examplc, Let E be the set conmstructed. in section three,
Just as in Sectlon 3 it can be shown gasily that B is the
compliment of a I category sct which docs not contain any

recetangle 4w x B such that &4 and B are second category

Baire sets,

o -
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