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INTRODUCTION

Tue body of mefhods known as Dynamic Programming {(d.p.)
was developed by Bellman and was successfully applied by him
to solve practlical problems in diverse fields (see L2] and
the papers cited there.)}. These methods revolved around an
intuitively appealing principle which Bellman called the
principle of optimatity. A general formulation of d.p.
vroblem was given by Blackwell {3, 5] which is narrower in
scope than Bellman's but includes many important applications
12} and offers a proper framework for asking the many inte-
resting and mathematically sophisticated questicons that arise
in d:pf. Strauch, Brown, Maitra, Furukawa, Dantas, Hinderer
etc., have investigated some of these questions in detail.
Using slightly different terminology from {3}, a few other
suthors like Derman, Veinott, Ross and Fisher have also

worked on similar problems,

A general theory of gambling has been developed by
Pubins and Savage in their book ‘How to gamble if you must!
(19)). ~ Some problems which arise from their work have been
investigated by Strauch, Sudderth, Freedman, Crnstein etc,

It should be mentioned that Dubins and Savage employ finitely
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additive probability theory and this, in itsel#, has led ©

much interest in the study of finitely additive measures,

In.Chgpter I of this thesis we use slight modificatis
of the gambling terminology to discuss simultaneougly both
dup. and gambling problems over discrete time. After inty
dticing the necessary definitions (section 1) we state'mg
general problem precisely (section 2), give examples 1
(section 3) .and prove certain general results regafdingtﬁ

optimal reward functions and optimality equations (sectim

4 and 5). In section 6 we collect some facts fromgmes sure
theory which are used in the next three sectiocns where we
‘study neasurable gamblinglsystems. In many of the sectio
we freguently make digressions into related guestions of

intercst. Consequently these sections contain results whi

we do not use later.

In chapter II we consider problems over continuous
time, As a fruitful theory of gambling over contimuous il
is not available yet, we adopt the d.p. terminology of [
and discuss iny d.p. over contimious time. In sections
to A we discuss an extension of the discounted d.p. probl

in which gctions can be taken at discretey randomly choss


http://www.cvisiontech.com

~iii-

points of time'and states vary contimuously over time. Our
methdds are essentially those of [3]. In sectiogﬁ“& and=5-
we allow both states and actions to vary continuously ovef
time assuming that the states =x=(t) (in &%) sétisfy a
stochastic differential equation specified by known diffusion
coefficients, The resulting problem is ¢ssentially a problenm
of stochastic optimal control. We prove results ma inly

relating to measurability.

In poth chapters and sspecially in chapter II there are
quite a few questionsg that remain unanswersd and we hope
these and the large number of interesting open-problems
listed in the book of Dubins and Savage would attract iarger

contributlons to these areas.
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CHAPTER WL

Os - The Problem:

Our general problem can be described loosely as follows:
Suppose we are in a gambling house whereih the rulcs regarding
when we can play and what games we can play depend on a system
with a state space F., Periodically, say once a day,; we observe
the state of the system -~ for instance, the amount of money with

us on that day. ©Suppose the observed states cver the first n

days are fl""'fn’ then the rules of the house specify
exactly one of the three alternatives - (i) we must quit the
house (ii) we must stay in the house and play (iii) we have
the chaice to decide whether to play or to quit. In case we
gquit on the nzﬂ day, either by choice or by compulsion, we
receive an amount u(fl,..., fn). If, on the other hand, we
stay,; we must choose a probability measure Y on F from a
given set of probability distributions on F. The outcome of
such a *‘play' is that the system moves to 2 new state fn+l
distributed according to ). It may happen that the system

moves successively through the states fl' fz,... without our
quitting the house on any da}j in such a case we receive an amount

u(fl, f . )e A specification of what we should do in each

2: e
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conceivable situation is calied a poliey. The problem then is
to find a policy which will maximize our expected reward. Some-
‘times there may be further constraints on the policies that we
can use, in whilch'cases we must try to maximize our expected
reward by using oniy those policies that satlsfy the gliven
constraints. In the next section we infroduce the definitions
and notations which will enable us to state the problem more
precisely. Note that the above problem isAnonstationary over
time while the gambler's problem in the‘foqmulation of Dubins.
and Savage [ 9], is stationary. But as pointed out in Chapter 1Z
[9], such a nonstationary problem may be regarded as a stationary
one by modifying the state space F. We find it more convenient
to work with the nonstationary problem as such, making suitable
modificationg in the definitions of terms like ‘policy available
at f£', Also note that we have allowed the possibility that the
gambler plays indefinitely. This enables us té treat many
irfinite stage problems, like drmamic programming, in our frame-

work more naturally.

1. Definitions and Notatlons:
As most of the terms we use are merely modifications of
corresponding terms used in [91, we suppress their interpretas

tions., Let F be a nonempty set, A partial history over F is
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a finite string of elements from F and a history over F is
a unilateral sequence of elements from F, Let W(F) denote the

space of all partial histories and H(F) that of all histories

over F., So W(F) = U F' and EK(F) = N
n=o

history which is the only element of F° is denoted by @

. The empty partial

If x= (flreees fm) and x!' = (fl‘,..., fn‘) are partial
histories, we write xx' or (x, x') for the catenated partial
history (f)seees e £1%0eees £1')0 If h= (£ £, 4eee ) is

a history then we write xh or (x, h) for the history

(flga.., £ fi‘, fé'.... )3 also we let h/n denote the partial
history (fi‘...., fg ) for any n 2 0 and sometimes we write
h/= for h. For any function g on W(F), 8y Will denote
its restriction to F?’ If g 1is any funCtion‘on W(F) or on
H(F) and if x€ W(F), then we dencte by glx] the function

with same domain defined by glx}(+) = g(x, «).

A gamble on F 1is a finitely additive, nonnegative and
normalized set function defined on the set S(F) of all subsets
of F., Let G(F) denote the set of all gambles on F, A stra-
tegy over F 1is a function on W(F) intoc gG{(F). If F is a
o-algebra of subsets of F, we denote by W(F) and E(F) the

o-algebras z fn and EN respectively. A strategy o over
n=0 - p= ‘ '

F 1is said to be F measurable if (a) for all x in W(F)
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o(x, ) is countably additive on F and (b) for all 4 in
F, o(+y &) is W(F) measurable - i.e. Gn(-, 4) is a En ;
measurable function for each n 2 0, ®Such a ¢ dinduces a coun-

tably additive probability measure p, = pg(g) on H(E). )

Let o be a strategy over F and g be a function on
H(F) into the extended resl line R = f-e, ©). g is said to
have o structure at most O if, for some d-aigebra i of sub-~
sets of F, o is F measurable and g is a H(F) measurable
function whose integral under pd(f) exists. We observe that if

g is also H(F') measureble and o 1is E"measurable, then

fgdpo_(_}"_‘) = [g dpc_(_l?') ; hence we can let [gdo dencte fgdpo_.

Proceeding by transfinite induction.‘for each ordinal o » O,

we say that g has o structure atfmost o ify we can find a
subset N of F with o, (W) = such that for each fg N,

glf] has olf] structure at most B(f) for some B(f) < a and
moreover [ (J glf] de [£]) Go(df) exists., We then define

S gdo tobe [ (f glflae If]) Go(dfj. Tt is a réutine X

matter to check by induction on o that [fg do is well-defined,
g 1is said to be ¢ structured‘if it has o structure at most

a for some ordinal aé the smallest such o 1is called the o sir
ucture of g+ The structure of an inductively integrable g'in

" sense of chapter 2 191, will be referred to as the Eudoxus
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structure of  g. .If g is induotively integrable then it is <

structured for any strategy .o and its o structure is at most

the Eudoxus structure of g.

4 stopping function (s.f.) over F 1is a function on
W(F) into the set {O, l} . Using such s.f. a over F means
that if we are in a gambling house with state space F, we
declde after observing a partial history x that we‘shall guit
the house if a(x) = 0 and stay in it if a(x) = 1. A stop
rule over F ig a function t on H(F) into the set
Ny, (=i 4 Oam Lo a2, deee m}— such that, for every h, h' in H(F),
t(h) ;'t(h‘) whenever hit(h) = h'|t(h). Every s.f. a deter-
mines a stop rule t, defined by: ta(h) = o if a(h/n) =1
for all n 2 O, otherwise t,(h) is the smallest m 2 O such
that a(h/m) = 0. Conversely, for any stop rule t we can find

at least one s.f. & such that +t = ta' A s.f. a 1is finite

if t, 1s finite.

The set of all strategies over F and that of all stopping
functions: over ¥ are denoted by I (F) and A (F) respecti-
vely, 4 policy over F is any element of % (F) X A(F) |
Suppose U is a function on W(F)} U H{F) into ﬁ, 2 is a g.f.
over F and x€& W(F). We denote by Ru(a, x) the function on

H(F) into R defined by Rylae x)(n) = ulx,(n/t g (B)).

alx
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Observe that if wa(x) is O then R,(a, x) = u{x) and if

a(z) 1s 1 then R, (2, x)if] = R (a, xf) for all fe€F., If
= {c, 2a) is a policy, we let Iu(n)(x) denote the integral
of R,(a, x) with respect to olx] whenever the latter is de-

fined - ie.c.; if Ru(a, x) is olx] structured. It is then

clear that Iu(ﬁ)'(x) = u{x) ‘if a(x) = 0 and Iu( 7)(x) =

FfN I (m(xf)el(x, af) if alx) = 1, where o(x) (W) = 0,

o, Gambling System:

By a gambling system (g.s.)we mean a 4~tuple

g= (Fy [T+ T, u) where (i) F is a nonempty set; (ii) [~
is ‘a correspondence which associates with each x in W(F) a
nonempty set | (x) of gambles over F; (iii) T is a function
on W(F) into the set {Q, i 2} and‘(iv) u 1s a function on
Ww(F)U B(F) ‘into R. F is called the fortune space or state
space, r- the gambling constraint, T the stopping constraint
and u the reward function for @ . F, r_ and u play the
same role as in the gambler's problem of {9 ]J. The role of T
is this: suppose we have experienced a partial history x, then
wé must quit the house with a reward u(x) if T(x) is Oj
if T(x) 1is 1, then we must play and choose a Y from [ (x)}
ik T(g) is 2, then we can do either of these. The gambler's

problem of {9 ] corresponds roughly to the case T = 2.
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Let G = (Fy [+ T, u) bea gesey x€W(F) and
w = (o, aj be a policy over F., =® is said to be available in
G at x 1if the following conditlons are satisfied:
{a) Iu(ﬁ)(X) is défined; (p) for each n 2 O, there is a sub-
set A, of F*  ywith U[X](An) = 1 such that for each y¢€ An'
alxy) = T(xy) if T(xy) is 0 or 1 and o(xy)e MM(xy) if
a{xy)= 1. The condition ‘(b) says that from x and using =,
in every situation that can actually arise until the time of
quitting the housey =% prescribes only those cholces which are
allowed by | and T, = is said to be strictly availsble in
¢ at x if it is available in G at x and if condition (b)

is satisfied with A = P for all n 2 0,

We ghall dencte by A(gQ, x) the set of all policies
available in 'g at x and by AS(Q, x) the set of all pclicies
strictly available in G at x. A& permissible class of policies
for G dis a function D on W(F) such that D(x) Es A(Gg, x)
for all x in W(F). ©Suppose D{x) is nonempty. Let
U%(x) = Sup {Iu(n)(x)z e D(x)} . UE(X) represents our maximum
expected reward if we have exPerienced x and are constrained to
use policies from D(x). Any = in D(x) satisfying
Iu(%)(x) = U%(X) is said to be optimal in D at x. Let DH{x)
denote the projection of D(x) to = (F), i.e., Dl(x) =

~{U€ Z(F) : (o,a)8 D(X)‘ Tor some a€ A (F)} e We write


http://www.cvisiontech.com

B

'I'B (o, a)(x) for the quantity sup {Iu(cr, a')(x): (o,a')e D(x),
for each n > 0, a‘(xy) 2 a(xy) for almost all y¢€ F with
respect to U[XJ:}. Let EB'(G)(X) = inf {EE'(G.a)(x)=

(¢, a)e D(x) for each o€ Dl(x)}.LDefine ‘%% () (x) =
Supa{gg'(d)(x) : o6 Dl(x)}-. Then %E’(x) represents our maxi-
mm éxpected reward if we have experienced x and using policies
from D(x) we are forced to play for as long a time as possible
The quantity obtained by changing the supremum in the definition
of ED (oy a)(x) into infimum is denoted as ;% (o0 a)(x)e TLet

Iz (o)(x) = sup {;% (0 a)(x): (o4 a)€ D(x)} and y% (6)(x) =

[ ]

sup {ggj(c)(x) o€ Dl(x)}'. A strategy o is V optimal.in D
at x if 3; (o) (x) = VE‘(x); similarly for V optimality.
Whenever the context is clear, we shall drop the subscripts and

superscripts in Iu' t J t U%, iy .'VD etc,

The general problem, which we shall refer to as the gam=-
pling problem (g p.): may now be stated thus: given a g.s.
¢=(F, [ Ty u) and a permissible class D of policies for
G, fina U(x), V(x), V(x), optimal policies and optimal strate-
gies in D. at x, whenever D(x) is nonempty. It can be obser-
ved that r_ and T are only of mincr importance for the speci—n
fication of the problemy what are neéded are the fortune space

Fy the reward function wu, the class D of policies and the
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fact that Iu(n)(x) is defined for all = in D(x). However
in most of the situations, the clasg D arises from a r- and

a T 4in some natural manner and this is the reason for intro-

ducing them.

3. Examples:
We now consider a few sequential problems that have been
studied 1n the literature and discuss how they may be regarded

as gpeclal cases of the gambling problem.

I. Dynamic Programming (d.p.) - (A). We begin with the d.p.
problems investigated by Blackwell [3,5 }, 8trauch [B5] and
others, Using the notations in {25 ], we suppose'that 2 dePe
problem specified by Sy Ay gqyT 4y B 1s given., This may be
regarded as 2 gepe 1in one of many ways. For instance, let
F=8 U & assuming without loss of generality that § and A4
are disjoint, Let T ® 1 and the reward function u bBe such

=] Ne )
that u(sl, a3t Sg1 321 ces ) = nilﬁ lI‘ (Sn| Eaek .Sn+l) if
5,68 2,84 n2l, Define [ as "ollows:
- {yeam: ¥
{al-ls,a)} 1r x

G(F) otherwise.

h]

A
J
4

1} if % = (y¢s), y€ W(F),s€8

1

(yesea), yE W(F), s€ S, 2 €4

i1

In the above definition, a (*{s,a) denotes any sextension of
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L4

q(*|s,a) to a gamble on ¥, Let g = (F, [{ T, w) and D be
any permissible class for G such that D(s) is the set of all
Borel measurable policies strictly available in G at s, for
s€ 5. Then it is clear that Up(s) = %D(s) =V, (8) = v*(s)

for all s€ S.

(B) Derman [ 8 ], Ross [23 ] and others consider the problem
of minimising the average expected loss. It is convenient to
use the notations of [25] to discuss this set up as wells Let
the average income from a plan 7 be defined as Ix(m(s) =
1im inf L In(ﬁ)(s). We wish to maximise this income over all

r
n =;v
measurable plansy denote this maximum by w#(s).

For reformulating this problem, we may take F and r—
as in (A) above and let T ® 2, Define u so that

il n . -
Ulsyr apseees spy aps sp) =g 2 sy ay sje) A
sje s aje A, Tor each n 2 1, let an ‘be the sef. over F

such that an(x) is 1 or O according as the length of

x {on or 2 2n. Let D be any permissible class for

g = (F, [ ¢ Ty u) such that D(s) = {}G, an)e As(gq s)t ¢ is
Borel meagurable and n gZL}-. Then it is easy to verify that
Vp (s) = w(s) for sé 8.

Several other formulations of discrete time de.p. Problems

1ike those of os L1651, Bollman (21, white [28], Hinderer [12]

= (0]

sam nlen b o trasted an gemhling nroblemg din anplognine wmy,
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IT. Gﬂmbllmﬁ Theory:

The gambler's problem in the sense of Dubins and Savage
{ 9 1 is clearly 2 gep. in our sense. : n fact, but for some
technical annoyances, the converse is also true,) To spell aut
the details,; given a gambler's problem specified by FJ,[-J.u',
let F=70t, [(x) = [(A(x)) and u(x) = u' (A (x)) for
x # § where A(x) denhotes the last coordinate of x. Let
(), ul¢) pe arbitrary and T & 9, Define D(x) to consist
of all policies (o, a) strictly available in this gss.
G = (F, r", T, u) at x such that aflx] is finite. Then the
functions UD(f) and §D(f) are respectively the utility U

!
and strategic utility V of $he house r” .

ITI. Statistical Decision Theory:

A wide class of sequential declsion problems may be looked
upon as gambling problems. For instance, consider the problem
of choosing a decision d from & decision space K about
the true parameter value © in.ﬁil_on the basis of sequentially
observed random varlables Xt Xot ee which have a joint
distribution P@. If we take n observations before making
the decision d, we assume that our loss is L(6, d) + nc
where L is a known function on () XK ’and ¢ is a known
constant. We wilsh to minimise our expected loss when © has a

known prior distribution traightforward reformulation
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of this situation is obtained as follows: Let q(@, fl"'“' fn
denote the conditional distribution of Xn4l given

Xy = Tyreeeq X, = £ and let q(@) denote the marginal distri.
bution of x;, under Pg. Define F = () UK UR assuming
that these three sets are disjoint; here R denotes (==, =),
Let | be a gambling constraint such that (&) :{E} and for
any x in W(R), [ (& x) = {a(d)= de X } U {‘a(G, x)]- where
g and g (6, x) are any extensions, of £ and q(@, x)
respectively, to gambles over F, Set T(exd) =0 if ee (),
x€ W(R), d6 X and T = 1 otherwise, Also let u(exd) =

~L{6, d)~- nc where n is the length of x and u = -~ other-
wise., With this g.ss ¢= (F, [, Ty w) and D= As(g), our
problem. ig one of finding UD(ﬂ) and the optimal policies in

D at ¢,

It suffices to mention at this stage that several other
problcms such as thoge of optimal stopping, sampling with and
without recall, discretec search and discrete optimal control

(seel7]) can be similarly rephrased as gawmbling prcblems.

dowever it should be noted that if we do not adopt the
approach of assuming pricr distributions for unknown parameters,
some of these problems involve ideas from two-person games and
consequently will not fit into our optimization setup. . More~

over cptimization problems like d.Pe. have their counterparts in


http://www.cvisiontech.com

two-person games. S0 it seems worthwhile tc enlarge our notion
of g.p. to enable us to study minimax problems as well,
Towards this end, we define a two-person (zerc-sum) gambling

| system as a 5-tuple G = (F, ¢ Ty u, X) where G'= (F, [ Tyw)
is 4 ges. and X is a nonempty proper subset cf W(F), X is
thought ¢f as the set of positions at which player 1 must play
and Y = W(F) = X ag the set of positions at which player 2
must play. 4 strategy for 1(2) 1s a function on X(Y) into
G(F); thus strategies over F can be identifiled with pairs (z.,n)
conéisting of strategies ¥ for 1 and % for 2. Similarly
se«fs, -and policies for 1 and 2 are defined. A permissible
class of policies for G 1is defined as one which is permissible
for ¢! . The value for player 1 1s defined as ﬁD (x) =

Inf gup I, (), ﬂé)(x) whore the infimum is taken over policies
2 for 1 and supremum over policics Fiy for 2 such that
(7 ﬁé)e D(x). The guantity cbtained by interchanging inf and
sup is denoted as Wp(x). G 1is said to be determined at x

i ﬁD (x) = wp (x).

Note that perfect information games of Gale and Stewart

{10} etc., may be regarded as two-peérson gambling problems.,

4. Cptimality Equations:

In this section we study scme simple properties of the

[ 11 ], stochastic games {18], game variant. of optimal stépping
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optimal reward functions Up, GD' Yo Wy and W, . We first

consider the optimality equations which play an important role

in the thecry of d.p. 1
Definitions: Let G = (F..r_f T, u) be a gess and v be a ;
function on W(F) into R such that J v(xf) Y (af) exists
whenever T(x) # 0 and Ye [ (x). v is said to be conserva-
tive for G 1in ecase, for all x,r )

v(x) = ulx) if T(x) =0 y

£ su S v(xf) Yy (afr) - if T(x) = 1
Yye ?_(x)

-

£ max ju(x), sup JSulxf) Yaf)] if T(x)=29.,
Ye [M(x) ‘

v 1s said to be excessive for G if thé above relations hold

with < replaced by 2. If v 1is bcth excessive and conservatiwe

for

152

then v 1is said tc satisfy the U-optimality equation
for G-

Suppose D 1s a permissible class of policies for Gy D
is sald to be proper if D(x) is nonempty for all x, D is
said to admit continuation if; for each x in W(P) and (o,2) in
D(x) such that a(x) =l,wehme(c,aﬂ3ﬂxﬂ‘ibrahmﬁ;ﬂl
(a, a.) f under o(x). We say that D admits extension in Q
if the following two conditions held: (i) whenever T(x) = o
there is a (o, a)€ D(x) with a(x) = 03 (ii) suppose T(x) # 0
and Y €& [ (x). Then for any set {nT: re F}- of policles such
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that  m€ D(xf) for all £, we can find == (o, 2) in D(x)
satisfying a(x) = 1, o(x) = )Y and =ixf] = xf[xf] for a.a.f
under Y. D is said to be U-regular for G if it admits both

continuation and extension in G

' With these definitions we have the following simple result.
Thecrem 1: Let G = (F, [+ Ty u) bo a ges. and D be a
proper permissible class for G such that [ UD(xf) Y (af)
oxists for all Y& [ (x) whenever T(x) # O. Then,

(a) Up 1is conservative for G if D admits continuation.
(p) Uy is excessive for G, if D _admits extensicn in G.
(e) U, satisfies the U-optimality equation for § if D

is U-regular for G.

Proof: Clearly (e¢) follows from (a) and (b). Also it is
rcadily seen that Up (x) = ulx) if T(x) = 03 it is therefore
enough to consider fhe x's for which T(x) # O. Suppose D
admits continuation and T(x) = 1, Then for any == (o, 2a) in
D(x), o(x)e [ (x)y a(x) = 1 and =e D(xf) for a,a.f under
o(x). Hence I(m)(xf) 1is defined and does not exceed UD(xf)

for all £ N where o(x)(N) = 0. 8o
I(n)(x) = f I(x)(xf)e(x,df)
F-N

< S U(xf) olxedf) & sup S Uy (x£) Y (af).
yel (=
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Hence, taking supremum over ~# in D(x), we have
Up(x) < sup s Up(xf) Y (df). The case T(x) = 2 is similar,
_ Ye [(x) ‘

This proves (a). ‘ o

Now suppose D admits extension in G and T(x) = 1,
Fix € > Oy k > 0, Ye [(x) and let 4= {fe F: Up(xf) < oo} "
For each f€ F choose a policy 7% € D(xf) such that
I(me) (xf) 2 Up(xf) = € If fe A and I(m)(xf) 2k if ff A,

Since D admits extension in G there 1s a =® = (c,2)e D(x)
such that a(x) =1, o(x) = Y and #xf] = mlxf] for all f¢ N
where Y (N) = 0. 8o,

Up(x) 2 T(M(x) = TR (x) Y (af)

g£ Up(xf) Y '(df) - € + k- Y.(F-2), .

Taking supremum over k, Up(x) 2 S Upxt) Y (ar) - €. g

As this is true for all € >0 and Ye [ (x), we have

Up(x) > sup ‘fUD(xf) Y (af), The case T(x) = 2 4s again

Ye I (x) '
similar, This proves (b) and completes the ﬁroof.of the theorem,

Remarks: (1) Note that the gambling problems in all the examples .

™

of section 3 have or can be assumed to have proper permissible

clagses which admit continuation., In example II they also admit o

extension. The permissible classes in example I may be taken to
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admit extension if the action space A 1s countable., However,
if A is ﬁncOuntable, the permissible classes dc not admit
extensicn, 7

(2) Simple examples with deterministic gambling sysbems can be
constructed to show that the assumptions of the theorem regar-
ding D can not in general be weakened. For instance, to show
that Up need not be conservative for G 1f D does not admit
continuation, we proceed ag follows. Let F be a nonempty set
and | be a gambling constraint which is deterministic in the
sensec that, for every x in W(F), each Y in [ (x) is a one-
point gamble a(f) for some f€F, Let T & 1. Then for any
reward function wu, the g.s. G = (Fy T2 Ty w) 1s such that
-R(g. x) does not depend on u, #Also any permissible class D
for G can be identified with 2 subset of H(F) so that
UE (x) = sup {u(x,h): he D(X)}‘. Noew if D does not admit conti-
nuation, we can fing X, € w(F) and hj = (fo, hi) in D(xo)
such that h; £ D(xofo). Su by defining u(xo, ho) =1 and
u = o otherwisc, we have U% (x,)) =1 and [ U%(xof) y (af) =0
for all Y &€ r_(xo). U, 1is therefore not conservative for G.
In a similar way the condition tﬂat D admit extension in G
can be shown to be necessary, in general, for UD to be exces~
sive for gG. ‘
(3) Suppose D 1is a proper permissible class for a gese

¢=(Fy [, Ty u) and let == (0,'a) be an optimal policy in
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D e = =i W(F). Set A= {fe F: Uplxf) < w'} . ®vis
éaid to safisfy fhe U-optimality criterion for D at x 1if,
either a(x) = 0 or for each € >0 and k > 0 we can find
N CF with o(x)(N) = 0 such that I{n)(xf) 2 Up(xf) for
f€¢ &- N and I(n)(xf) 2 k for fg AU N, D is sald to satisfy
the optimality criterion if, every optimal policy in D at any
. x satisfies the U-optimality criterion at =x. It is easy to
observe that if Up satisfies the U-optimality equation and if
\D admits either extension or continuation in G, then D satis-
fies the optimality cfiterion. Thig fact in~determiniétic or
measurable‘gambling problems yields the principle of optimality

in its familiar form.

Now we pasgs on te consider the equations satisfied by VD ;
and YD in many gambling problems. For simplicity, we consider~f
only those reward functions which are bounded, nonnegative or 2

nonpogitive, ;

‘Definitions: Let G=(Fy [, Ty u) be a ges. and v bea
function on W(F) into E which is either bounded or of constamt"
sign., v is said to satisfy the V-optimality equation for
glacy P | S

u(x) it T(x) = ©

= sup S vixf) Y (ar) i T(x) # 0.
ye ™ (=) | |

i

v(x)
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Let D be = permissible‘cléés for G. D is said to admit sub-
stitution by stopping funétions,‘ift for any x in W(F) and
policies (o, a) and (o', 2') in D(x) such that a(x) = a'(x)=1,
o' (x) = olx), olxf] = o'{xf] for a.a.f under o(x), we have
(cpa')e D(x)e D is said to be V-regular for @ if D admits
continuafion, extension in g‘.and substitution by se.fs. Let

o8 DY (x). o is said to stopin D at x if alx) = 0.

for every s.f. a with (c,a)€ D(x). o is said to persistently
contimue in D at x if, whenever (o,a) € D(x), there is a
s.f. a' such that (o4a')€ D(x), a'(x) =1 and a'lxf] 2 alxf]
for a.a.f under o(x). Observe that if T(x) = O then every

¢ in DH(x) stops at x and if ?(x) = 1 then cvery o in
D;(X) persistentl& continucs at x. N

Lemma 2. ‘Let G = (F,'r_, T, u) be a gess such that the
reward function u is either bounded or of congtant sign. Let
D be o proper permissible class for § which is V-regular.

Then, for any x in W(F) and o€ DA (%),

i

JD(G)(X) ulx) if o stops in D at x

= [ Jp(e)(xf) olx,df) if o persistently

continues in D at x

|

Min [u(x), S ED(G)(xf) o(x,df)] otherwise.

Proof: Clearly if o stops at x then ED(G)(X) = u{x). To
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complete the proof in the other two cases 1t is encugh to show
that Inf {E(o‘,a)(x): (cr2) € D(x), alx) = l}:—‘ i ED(G)(Xf)G(X,df).
Fix a s.f. a such that (c,a)e D(x) and alx) = 1. Let €20

and, k > O, Since D admits continuation, (042)€ D(xf) for
asa.,f wunder o(x) and so ce‘Dl(xf) for all fﬁN, c{x)(N) = 0.
Leti A & {fﬂ’ N: -J'D(o') (xf) < m}. For each fg N, choose ap

such that (o4ap)€ D(xf), ap(xfy) 2 alxfy) for a.a.ye o

under olxf], n > O satisfying

I (o, ap)(xf) 2 Tp(e)(xf)-€  if fe4
2 k if fg NUA .

Fior | f€ N choose any (&f. af)e D(xf). Since D admits exten-
sion in G. there is a (¢', a')€ D(x) satisfying o'(x) =

o(x), at(x) = 1, o'ixf] = olxf] and a'{xf] = '-é,f[xf] for asa.t
under o(x). 4s D admits substitution by s.fs., - (oya")eD(x).
Klso, I (04a)(x) 2 I(o,a")(x) _Z_£3D(0')(xf)o'(3:,df)- e+ko(x) (F-).
Since € and k are arbitrary, I(e,a)(x) 2 f E*D(cr)('xf) o{x.df) and

conscquently, ‘J‘D(Oj)'(x,) 2 f ED(G')(xf) o(x,dfy. The reverse

inequality 1is obtained similarly.'. This completes the proof,

Since JB: - g‘g where v = = U, we get the following
gxpression for dp under the assumptions of the lemma:

Ip (e)(x) =ulx) 4if o stops in D at x

]

gD(c)(__xf)d(x..df‘) if o ©persistently
continues in D at x |

= Max [u(x)S QD(O‘)(Xf)'o'(x,df)]  othefwise.
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Using lemma 2 and the above remark we can prove the following

~theorem, We omit the ecasy proof,

Theorem 3: Let ‘g = (F, r-, Ty u) be a ges. with a reward
function which is either bounded or of constant sign. Suppose
D 1s a Veregular proper permissible class of policies for G
such that whenever T(x) = & every strategy in rDl(X) persis-
tently continues in D at x. Then Vy and Vy satisfy the

V-optimality equation for G

Remarks: (1) Observe that in all the examples of section 3 the
permissible classcs admit substitution by Se.fs. and also satisfy
the condition that every o in Dl(x)ﬁ persistently continues

In D atix I T{x) = 2

(2) As remarked.earlior, the condition that D admit contimua-
gicEon, End extension in G can be shown to be necessary in general fo:
‘UD to satlsfy the U-optlmalaty equatlon. In fact this can be

done by conslderlng examples in which T 2 13 but in that case
UD = ﬁD = VD and U—optlmallty equations and V-optimality equa-
' ul

tiong are¢ the same. Hence U—reﬁerlty of D 1is necessary for

VD and VD to satisfy the V-optlmallty equatlons. We now give
an example of a determlnlstlc ZeSe wlth a U=regular proper
permissible class D which does not admit substitution bY Sef§e

and such that vD does notfsetisfy the V—optimélity'equation.
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The condition that é pefmiésible class admit substitution by
s.f s, is & very natural restriction, for it says that whether
or not a policy 'm can be used after experiencing a partial
hiétory x should depend only on what % prescribes for parti-
al histories of the form (x, x'). ' Consequently our example is
quite artificial. Let F = {0, 1}, [(x) = {a(0), 3(1)} for
all x, T 22, ulx) is 1 4f x 1is of even length and is O
otherwise. We now define D: D(x) = {(d, a)e AS(Q. x)ta(xy)= 0
for y # ¢ iff o(@ = 8(0) } . Tt is easy to check that D
admits continuation, extension in G and that “every strategy
in Dl(x) persistently continues at x, for all x€ W(F).
However %D(x) =1 if x 1s of odd length and ﬁn(x) =0

otherwise. Thus VD does not satisfy the V-optimality equation.

Now we shall briefly mention, without'proof. an analogous
result regarding the functional eqhations satisfied by ﬁD and
ED in two-person gambling systemq. Suppose G = (F, r_,T,ng)
is a two-person ges. and D 1is a permissible class. For
simplicity assume u is bounded. Let D admit continuation
and extension in G. Suppose further that D satisfieé the
following two conditions: (i) Let x€ X. If o= (sl. al) is
a policy for player 1 and ﬁg a policy for player 2 such that*
(7 4 zg) is in D(xf) for a.a.f. under Z,(x) and a,(x) = 1.
then there is a policy Ty for 2 such that (nlgﬂé)B'D(x)
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and for a.a.f. under &, (x), = (xfy) = = (xfy) if xfye Y.
. el 2 2

ii) Let =x€ Y. Suppose (ﬂ{. né)e D(xf) for a.a.f under
gg(x) whéfe Ty = (Eé.'az) is a policy for 2 with a,(x) =
then there is a policy = for 1 such that (7p s né)e D(x)
and ﬂitxfy) ﬁi(xfy) if xfye X for a.,a.f under Ez(x)

With these conditions on D we can prove that

) = ) i T(x) =
=  sup WL (xf) o ir T(x) =1, x€X
YR I ) Y (an ’(x) = 1, x
= W, (xf) if T(x) = 1, x€
)’8 F(X) S Y (df) if T(x) .x Y
= max Lu(x)y sup. S Wy(xe) Yae)] ie (x) =
= min fu(x), inf [ ¥ {xf) Wan)l ir T(x) = g,
1 Bf— x)  xEY,

We have similar expressions for MD with X, Y interchanged,
sup -and inf interchanged, max and nin interchanged and ﬁb

replaced by Y throughout.

We conclude this section with an application of the above

functional equations for ﬁb and Y-

Theorgm 4: Let g = (F, [+ Ty 4, X) bo a two-person g.s. such
that u when restricted to H(P) is bounded and continuous

(from the product of discrete bupologies on F to the usual
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topology on R). Then for all x€ W(F), WiXx) = Wy (x). where
D= AS(Q) !l

Proof: Since every bounded contimuous function on H(F) into
R can be uniformly approximated by an inductively integrable
function L9, ﬁp: 19], we may assume that u 1itself is induc-
tively integrable on H(F). We prove our required result by
induction on the Budousg structure of the function u restricted
to H(F). Assume that for all x and for all ordinals § < @
we have shown that wu(x, ») 1is a function of Eudoxus structure
< B imﬁlies ﬁb(X) = Wp(x). Lot u(x, ») be a function of
Eudoxus structure < a, Then for each f& F the function
u{xf, ) is of structure < By for some fp < a. 80

ﬁb(xf) = ﬂb(xf). qu_mﬁs(g) ig a proper permissible class
which admits continuation, cxtension in G and also the two
conditiong (i) and (ii). Congequently ﬁD and Wj satisfy
the functional equaticns given above. This fact together with
the oquality Wp(xf) = Wp(xf) shows that Wh(x) = Wy(x).

This completes the induction step and our proof,

Remark: If we let T =1 and [ be deterministic, then the
"two~person g.s., G = (F,,rﬁ, T, u, X) corresponds to the games
of perfect information studied by Gale and Stewart | 113,

Then the above theorem says that if the pay-off function ﬁ ig
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continuous: then the game is determined. This shows in parti-
cular that if § = I where E 1is a clopen subset of H(F)
 then the game is determined. In fact much more is known, viz.,
ir §=1I; vhere E 1is a Gaaa. then the game is

determined.

5. Mixtureg of Strategieg:

.-

“ The typical probiem'investigated in this section is the
following: given a g.s. G = (Fy [+ Ty uw), let T**(x)
dencte the convex hull of [ (x) for each x€ W(F) and let
G* = (F,:r_f T; u)e Consider D{x) =_{(c,.a)€ A(Gg, x): aix]
is finité'} and thevcorresponding permissible class I* for

G*. Then is Up = Upy ?

Here we look-upon. G(F) as a subset of RS(F). Thus a
subset K of G(F) is convex means that for amy £, m € K
and 0¢ agl,af+(1-a)ne K, A& net {Y} is said to
converge to Y/ if ;)/OC(A') —> Y(4) for all &4 (F. G(F) then
becomes a compact convex set, For any K (G(F) 1et K,
denote the smallest closed convex set containing K. We shall

need the following lemma.

Lerma 5:  Letg be an inductively integrable functicn on H(F)
into R. Suppose rh(x) C o(F) for all =xe€ W(F) and o*
is a strategy over F such that o*(x)e€ (r_(x))o for all x.


http://www.cvisiontech.com

06~

Then for any €> O there exist strategies o and ot
satisfying:

(a) o(x)e M(x), o'(x)e [(x) for all x& W(F)

(b) [fg do' -6 L[ gdo* < [ gdo + E.

Proof: By induction on the Fudoxus structure of g.

-

Theorem 63 let G = (] r-,-T, u) be a g.s, such that u 1is
: LN

either bounded or of constant sign. Let go & WP r—o‘T' u)

where E; (x) = (r_(X))o for all x in W(F). Suppose

Dx) = {(o, a)e a (g x): alx] is f-initel and

p,(x) = {(o.a)e alg,, x): alxl is finite } for all x in W(F

Then Up(x) = Up (x) whenever D{(x) is nonempty.
0

Proof: Clearly UDQX) £ Tp (x). Let (o*, al)e Do(x) and

€ > 0., We mdy assume, withgut loss of generality, that
o*(y)e rg(y) for all y. Now Ru(a, x) is an inductively intd
ble function if u 1s bounded, since alx] 1is finite. So by
lemma 5, there is a o such that

f Ru(a. x)de Ix] 2 S Ru(a. x)do* [x] - € and (o,2)€ Dix).

so Uplx) 2 Iu(d, a)(x) > Iu(d*.a) - & and €, 0¥, 2 belng
arbitrary, UD(x) 2 Up (x). If u is a non-negative urbounde
functicn we work with ?:he functions Ru(a, x) A n and use tt

fact that Iu(o*,a)(x) = gup [ [Ru(a,x)A nldo*lx}. For u g
n A
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we make use of the first inequality in {ii) of B

This completes the proof of the theorem .

In applylng the above theorem we would like to know what
Ko, is, for any given K. The followmg s:mele result answers
it o a certain extent.
Theoren é, - Let K be any non-empty subéet‘ of G(F) and
Ye G(F). Then Y6 K, 1ff there is .2 set X and a function
g on X into K such that for some € G(X)+

)/(A) I g (x)(Maut), & CF. |

‘ ‘ i k ,
Proof: Suppose  YE Koo If Y= ¥ a, )/i where a; 2 0

k , j=1 %t

)/ie K and % a; =1 then we take ‘X to be Ky g to be the
1 K

identity function and wu = E a; a()/ ) Otherwise we can find

a net {)’a} in K such that )/ —> Y and each )/ is a
finite convex combination of elements from K, Hence by above
we have a 4 € G(K) such that' )Y (4) = fg (8)u (ag) for all
o and A C F. As G(K) is “compact , some subnet ‘of {;..}
converges to a“u in &(X). It ig then easy to check that
Y(4) = f E;(A)u (d&j) for a1l A C F. . ‘

Co_nversely; suppose X is a set, g : X —> K, uE 8(x) and
Y () = [ g (x){(&)u ('dx-) for all A (C F. Clearly Ye G(F).
| Kk

k
If u zaa(xi) wherea 20 x;€X and Zal_l then
i=1 , T
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. k

Y= T asg (xi) s Conscquently Y€K . If u does not con
=ik »

centrate on a finite set then we can get a net {“a} in G/X)

converging to p such jhat each Mo concentrates on a finite |

set, If ), 1is the gamble on F corresponding to @,y i.e.

it Y, (4) = Jg (x)(a)y, (ax) for all A C F, then Y,6XK_.
It is easy to see that {Y&} converges to Y. 8o, YE Ko' i

Remark: In applying the above theoremé, we must ensure that

there is at least one policy (o, a) available in G at x such
that alx] is finite. This needs that the s.f. Tyl{x] is finit
where T, is defined by : Tu(y) = 1 if T(y)el and T,(y) =0

otherwise. In gambling problems of example II (section 3),

T=¢2 and soc T, £ 0. In d.p. prchlems in example (&),
T, ¥ 1 and consequently the above theorem does not apply. Butl
in positive d.p. problems, the optimal income v* does not
change if we let T Z 2, Thus in some extensions of positive
d.p. problems in which measurability restrictions are not
imposed, for instance if S and A are countable, we can use
the theorem, Noticing that if K(B) = {a(£): re E } where

E (__F, then (K(E)), = {)% G(F): Y (E) = l:} we can conclude
from theorem 6 that in such situations, the actions on various
days can be chosen deterministically but depending on the past

histcry.
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We do not know if, under the conditions of Theorem 6,

%D(X) = \_ID (x). We give belew a weaker result in this direction. !
(o

Given G, &, as in theorem 6 and o€ Al(go, x), o 1is said to
be eventually in rat 'x if, for each hE€ H(F) there is an

n 21 such that o(xy(h[n))e [ (xy(h|n)) for all n 2 n,.

Theoren 7: Let G and _E_},O be as in theorem 6 such that the

reward functicn u is bounded and let D = %(_Q—,). Suppose
DF(x) = {(o‘,a_)eﬁ-(‘go, x): o is eventually in [ at x}. Then

UD(x) = UD*(X)l \-ID(X) = Vpe(x) and  ¥p (x) = ¥pe(x).

[

Proof: Let (o%,a)€ D¥(x). If a(x) = O then

I(o*,a)(x) = u(x) < Up(x). If alx) =1 thenlet t(h) be the
first n such that o*(x, (h|m)) € [ (x,(h/m )) for all m>n
he H(F). Then t 1is a i‘init-e stop rule over F and conse-
quently g(h) = I (c*, a)(x, h/ t(n)) is an inductively integrable
function on H(F). The cquation Iu(d*.a)(x) = i g(h)’cr*[x](dh)
can be verified by induction on the Eudoxus structure of g.
Now by using lemma 5, we can get a strategy o such that

oly)e [ (y) for all y and [ g(n)olxi(dn) 2 Iu(cr*,a)(x)— €
for any pre-assigned € > 0. Define o' as follows: ‘

o! (x,(lh[m)) = o*(x,(h | @) for m 2 t(h) and he H(F)

o' (y) ='¥g(y) otherwise. Then _(p", a)e D(x) and

Iu.(cr',a)(x) 2 I (o%, a)(x)- €. This shows that U(x) 2 Upy(x),
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but the réverse‘inequality is obvious. So UDCXJ = I&ﬁ(x).

The equolities regarding V and ¥ can be proved along
similar lines, using the equation

?D*(d*)(X) ='f'ED*(G*)(x,h[t(h))c*ix](dh) for strategies o*
which persistently coﬁtinue in D* at x.
Repmarks: Theorem 7 can be used in discountnd d.p. prcoblems

because, in such problems, any two strategies available at =x

and agreeing for next N days differ in their expected rewards

by af most BN |l ri|. Hence the'above theorem would imply that,
we can restrict ourselves to using actions: deterministically.
Of course here we are not considering the question whether we

can also choosc them measurably.

6. Some facts from measure theory:

We first fix some notations and terminology. 4 Borel -
_space is a pair (Xy &) where X is a set and & is a o-alge-
bra of subsets:of X. 4 1s then called a Borel structurec for
X A funetion on X into Y is said to be §¢ B measurable
if 4 1is a Borel structurc for X, B is a Borel structurc for
Y and f'l(g) C &4 . For any class L of subsets of X, o(L)
denotes the smallest Borel structure f;r X containing _y';m

.

L is called a generator for o(L). For each a < i, the
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first uncountable ordinal, we define Ea as follows: Eo = %,

i La is the . class of countable unions and complements of sets

in U L, Then o(L) = . U La « If K and L are ._

1
clasgses of subsets of X and Y respectively, then a function
f on X into Y is said to be of class « relative to

(K, 1) 1f £ (D) C K

ar A collection F of functiong ig
said to be of class a relative to (K, L) %g, for each coun-

table subclagss L' of we can find a countable subclass XK'

L
of X such that each f in F 1s of class a relative to
(gt'—él). A collection F of é. B measurable functions is
said to be of bounded class if, for some‘ @« < o and genefa-

tors X and L for 4 and B F 1s of class a relative to

(Ky L)e The smallest cardinality of a generator for 4 is

denoted by w (&),

We denote by R the Borel structure for R generated by
the intervals. For amy Borel space (X, 4) let P(4) be the
set of all countably additive probability measures on § and
E{%J be the smallest Borel structure for P(g) making-;he func-
tions p —> p(A). measurable, A€ ﬁ' Ir (y, E) is another
Borel space, we denote by xQ(Elg) the set of all functions
q : XX B—>R such that ql(x, «) € P(Q) for all x€ X and
q(+, B) is

1

+ B measurable fomsall B€ B, -In other words,
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Q(BJ4) 1is the set of all &, P(B) measurable functions.
A X B or AB will denote the Borel structure for X XY

genefated by {A.X B: A€ &, BE 5}-. There is a natural mapping
% : P(4) X Q(BJA) —> P(A B) defined by

n (py@)(E) = [/ Ig(X:y)q(x.dy)p(dx), E€ 4 B. 7 (pyq) is
also denoted as pg and the exact range of & 1is denoted‘by
By (& B | o | .

Let (X, ﬁ) and (Z, g) be two Borel spaces. BSuppose Y
is any set and EP is a function on X X ¥ into Z. A Borel
-structure B for Y is sald to be admissible relative to
(&p, lzi,-v-g) if ¢ is &X B, C ﬁeasurable. Y is'saltid to be
admissible relative to (q). f’__L,'g) if thefe is an admissible Borel
structure for Y. The following theorem of iumann [ 1 ] and
B. V., Rao [-22] gives fneces-sary and sufficient conditions for

Y to be admissible.

Theorep 8: Let (X, 4) and (Z, C) be Borel spaces. Let ¢ be

a function on X XY into Z. Denote bfr* F' the set of all
functions ¢ (e, ¥)e yE X and let l £ $ XX F ~> 7 be define
by = (xy £f) = £f(x). Then the following statements are equiva-
lent: |

(1) Y is admissible relative to (9 &, C).
(2) (YY) 4is an admissible structure for Y relative to

(q)'r *}' C‘ ‘ &
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(3) There is an admissible structure B for Y relative to

(¢, A, C) such that w(B) < w(g)'é%,

{4) Each fE€F is "A, 9 measurable and F 1s admissible
relative to (‘7% éq 9)1

(6) Bach fE&F is A, C measurable and F is of bounded
class. .

Proof: Clearly (1) —> (é) and (3) —_—> (i)

To show (2) —> (3): Let L bea generator for Cy of cardina-

lity w((_l); Since q) (C) (__ AX s(¥), for cach C€L we can

I!]

get a countable class IE(C) (_ 8(Y) such that

-1
9 (Cle A X a(g(c)) Let K denote the union of g(c) as C

-1
ranges over Q. Clearly qJ (L) C AX o‘(K) As ¢ (L)
generates (P (C) it is clear that B = o¢(K) is admilssible

A, C)s Moreover w(B)< cardinality of

relative to (§,

K< w(C)e 5%0

To show (1) —> (4): Let B be an admissible structure for Y
relative to ((P, 4, C). Bach f& F is then a section Q)(- v)
of the measurable function q) and 1s therefore A C measu-
rable. Define a function g on Y into F by g(y) (P(-
and let F be the largest Borel structure for F making g

B: F measurable. Then it is easy to verify that. F is

adnissible relative to (=, &, C).
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To show {4) —> (5): Let F be an admissible structure for

F relative to (m, A, g), We wish to find an a < ui- such
that F is of class a relative to (4, C). Let L be a
countsble subclass of (. ;fl(g) ‘being countable, we can get

a countable subclass X of such that ="1(L) C c(K) X F.

I

Let D = A X Bs A€ K: BE i « Then for some a < W s

ﬂfl(g) C D, .+ It is then easy to verify that for each LEL

and f€ F, the f-section of « (L) is in K. But the
f-section of ® T(L) is £ T(L). o f-l(é)‘(: Ky for all
fe F.

To show (5) > (4): Let F be of class a relative to AN

where M generates C. Fix any countable class L (O M.
= - : = =

—

Then there is a countable class K (C A4 such that each f € F
is of class a relative to (g, %). For each x€ X, Let x

denote the o(K)-atom conteining x and for any 4 (T X 1let
a={%:xe4}. Then {4: a€o(X)} forms a Borel structure

for X. Ve can define a metric on X such that the sets A
as A ranges over the field generated by K form a clopen
base for X. Similarly for (%, G(E)). Let d be a bounded

oy

metric for Z and define 9(fyy £.) = sup a (f.(x), £ (x))
it So TR ST 1 g

for fl‘ f2€ F. Then ¢ 1is a metric on F. Consider the map

¢ on X XF into Z defined as g(%,f) = F(x). This is well
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defined since each fe€ P is o(K), c{L, measurable and conse-

quentiy must be constant on eéch i.‘ IF is easy to verify that
g is continuous in f for fixed %€ X and 1s of Borel class
« { in the ‘sonse of Kuratowski t13]) < for

cach fixed f€ F. So by a theorem of Kuratowski [13,pp. 3783,
g - is of Borel class a+ 1 and hence measurable. In other
words, there is a Borel structure E(E) for F such that for
all Le L, g"l(i) is a measurable subset of XXF. It is
then clear that m (L)€ 4 X F(L) for all L€ L, Let E be the

smallest Borel structure for F containing F(L) for all

countable L C g. Then = 1is E.XE, C meagurable., 8o F

is admj.ssible relative to (m, ﬁ. _Q)-

To show (4) —> (1): If & is an adnissible Borel stfucturc:
for F, lct B b thorsmallcstlBorel structure for Y Vmaking
the map y -> @( y B F measurable. Then it is easy to
see that B is admlssible relative to (@, A, C) This proves

the theorem.

4s a consecquence of the above results we derive the
following
Theorem 9: Let (X, A) and (Y, B) be Borel spaces apd Q
be a subset of Q(B|A) Let =t P(é) X Q —> P(é E) be the
beaigc function (p, q)-——> pg. For any set F of measurable
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functions from X into R donotc by £ the map (x.f) —> £(x).
Let. L be any generator for B. Then the following statements

are equivalent:

( ;

g

).

0
e

(1) Q is admissible relative to (wm, P (4),

iy

(2) The set EB = {q(-l B) : g€ Q} ig admissible relative to
(zy &4, R) for cach BE€ L.

(3) By is of bounded cless rolative to (4, R) for all BE L.

Proof: To show (1) —> (2): Tet Q be an admissible Borel
structure for Q relative to (= P(A4), P(& B)). Define
3 1 X —> P(&) by a(xxéﬁ) = I,(x) for all 4 in A. Then 0 |

is &, P(L) measurable. <Consequently the function
n(xy q) = (8(x), @) is &X gy P(4) X § neasurable. For any

BE By the mep Ay : P(4 B) —> R defined by X glu) = wX X B)

is measurable., Hence the maps = A, 0 TOoMm on XXQ into

&g X B
R arc Q, R measurcble. I Thus Q is admissible

relative to (gB, é: ﬁ) and so {gB(-, q): a6 Q} is admissible.
relative to (¥, & R) for each BE B. But gB(X;q) = q(x,B) 3
for all q€ Q. This shows that Ep is ad&issible relative to

(E: f}g E) for all‘ BE §.

(2) <—=—> (3) follows directly from the equivalance of (4) and
(5) in theorem 8.
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we make use of the first inequality in {11) of S

This completes the proof of the theorem ,

In applying the above theorem we would like to know what
KO is, for any given K. The fOllOWiIi!é simple result answers
it fo a certain extent.

‘Theorem,é{ Let K be any non-empty subset of G(F) and

Ye 6(F). Then ye KO i there is, a set X and a function

g on X into K such that for some M€ G(X).:
Y (A) = f g (x)(Maulx), 4 C F.
X ,

-k
Proof: Suppose YEK . If Y= % a, Y, where a; >0
k 0] i=.l 1 1 s
yie K and ¥ a, =1 then we take ‘X to be K. g to be the
L k _
identity function and g = ¥ aia(yi). Otherwise we can find
i=1 _
a net {)&}- in .KO such that j& —> Y and each -)& iz a
finite convex combination of elements from K, Hence by above
we have a 4 € G(K) such that' Y (4) = [r (A)u (dE) for all
K 3
o and A C F. 4as G(K) is compact, some subnet of .{g&}
converges to a4 in G(X). It is then easy to check that

Y(a) = £ g(AYu (ag) ror all A C F.

Converselyy suppose X is a set, g ¢ X —> K, #€ G(X) and

Y (2) = [ g ()(&)u (dx) for all & ( F. Cleaily Ye o(F).
X |
i=1

]

If w aia (xi) where ay 2 0 xie X and % a, =1, then

1 1
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Proof: For each BE€ L and n 2 1, we can find a compact subs
set K (B) of X such that p(K (B)) 21 - L and q(+, B)

p= ]
is continuous when restricted to Kn(B). Let K(B) = U Kn(B)
oo ‘ =1
Let K(B) = U K(B) and K= 0 K(B) . Definc
mml. =L g S BE L

q's X X B —> R by q'(x, B) = q(x, B) if x€ K and

i

q'(x,B) = u{(B) if xfK where u is a fixed probability
megsure on E' Since p(K) = 1 it is clear ﬁhat pqa = pa'.
Nowlif g denotes q'(?,BO) for some BOG E, then we shall
check that g 1is of Borel class 3., For any closed set C "of
R, g 7(C) 0 K (B,) is closed in K_(B_) and hence closed in X
for all n 21, S g- ()N K(B) isan F, in X. K

=T

being a Fy, inX, g (C) 0 K(B)) 1 K =g (C)1 K isan¥_,

o0
in X. But - (C) 1is either z1(C)AK or LgH(c)nX]U (X-K)
aecording as u(BO)E ¢ or ‘u(Bo)e C. In either case él(c)
is a F e set-in;lX. This proves g 1s of Borel class 3

and completes the proof of the theorem.,

Remgark: If (Y, B} 1is also a standard analytic space, then
we can find an o < @, such that any q'€ Q(@lﬁ) satisfying
condition (ii) above is of Borel class « as a map from X

into P(B).

The next fact we need is a result regarding mixtures of

probability measurecs.
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Theorem 11: Let (X, 4A) . be a countably generated Borel space

and let w€ P(é). Sup;ose Y 'is a separable metric space, g
its Borel o-algebra and K 1is a closed convex subget of P(@)
in its weak topology. Let g:.X —2> K be ﬂl g(g) measurable
and defined ¥ (E) = [ g(x)(B)uldx) for EEB. Then £ eX.

Proof: Clearly. f#, € P(B) Without loss of generality we can

assume that A containg all singleton sets of X, Let L be
a countable field generating A. We can give a metric on X
such that. & is its Borel c-algebra and L forms a cloper
bagse for X. DNow.if n 1is concentrated on a finite set, say
1 y = |
k k
W= T a;0 (x4), then ﬁu = T a; g(x;) and K being
i=1 ~© ‘ i=1
CONVeX , ﬁﬁe K. Suppose g 1is a continuous function and u

b

} is'any Probability on &, Choose a sequence '{“n} in P(é)

such that each My is concentrated on a finite set and

Nn'~—> ¢ in the weak topology of P(4). By above g gE pﬁu K
= n

for all n. We shall show that By —2 gﬁf Let f be a
bounded eontinuous function on ¥, Tt is then easy to see that
h(x) = f f(y)g(x)(dy) defines a bounded contimuous function

on X, as g 1is continuous. Consequently

f h(x')un:(cijc) —> [ h(x)u(dx). ILe. [ £(y) g (ay) ~>f1(y) ,@u(ds

Thie a¥ows +hat “1- —D 01)_ and - K heinge eloced. @ € K,
, ¢ N
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Thus we have proved the theorem for functions g of Borel

class O and any u€ P(A)

We proceed by induction and assume that the theorem has
been proved for all functions g!' of Borel class <o and
for any pM'E P(é). Let puE ?(é) and Vé be of Borel class «,
Then g = Li@ g, where g, is of class < a (Note that

X is ofndZmeision 0)., Let ﬁfn_ be the element of K cor-
‘resbonding.to B and ud. It is enough to show that ﬁ%.—> %ﬂ
Let f be a bounded contimuous function on ¥ Since

gn(x) —> g(x) we have [ f(y)gn(x)(dy) —> [ f(y)eg(x)(dy)

for all =x€ X and by bounded gghvergence thedrem,

ST £(y)g, (x) (aydulax) —> ff £(y)g(x)(dy)n (ax). This proves

that Q%_—-> EL and completes the proof of the theorem.

The next two results were proved by Sudderth [27 } for

standard Borel spaccs.

£
Theorem 12: Let (X, &) and (¥, B) be Borel spaces. Defim

a function ? on P*(i B) into P(E(Q)) as follows: 1if

4 =pq then Q(u)(B) = p( {x€X : a(x)€ E}) for all Ee P(B),
Then -¢ is well-defined and is measurable (relative to

P (5,2) ﬂ.P*(g E)‘ and P (g(g))).

-
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Proofs Let m = pg and p = p'q'. Then P =p'y we must
p ( {xs q'{x)e B ) for all

1

show that pl {x: a(x)e E})
EC E(@). §(§) is generated by sets of the form

.{z; ep(g) :A__;;(B)>c},BE}1-=3 0 c<1l. 8o given EGE(E)‘
we can find Bne B and c, such that E dis in the.a—algebra

generated by {g : g (BY) 2 dn}_, n>1l. Since qlx, *)

and q'{x, *) are both conditional probabilities, there is an

NC A such that q(xs B) = a'(x, B ) if xg¢ N for all n21

and p(N) = 0. Consequently

p ( {x:alxle 8}) = p ({xt ¢'(x)e B} ). This shows that §

is well=defined.

To prove @ is measurable, 1t is enough to show that
u—> ¢ (£)(E) is measurable for all: EG_P(?) and it is enough
to congider & of the form {jg I 4 (B) > c'§ where BC @,

0 £ ¢c <1l., 8ince the indicator function of the set (c,_l] is
a 1limit of contimuous functions on L0, 11 and siﬁce continuous
functions on 10, 1] can be approximated uniformly by polynd-

mials, it 1s enough for us to show that p —> Sg (q(x,B))p(ax)

is measurable for any polynomial g on 10, 1].

Let C be a countably generated sub o=algebra of A and

e

n C.
resll =

. Let q,(x, B) demote a fixed version of Eu(ye Blgnxy)(_x),

be finite sub=-algebras of C such that U C_  generates

it
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Then the maps ﬁ_*—>Afg (qn(X,B))p(dX) are measurable and
q,(x:4B) == B (ye Blg X Y)(x) a.s. (p)s. Consequently the map
u—> [ g (E#(ye Big X Yl(x)p(dx) is measurable.

Now thoe family {Eu(ye BlC X ¥): G (€1 A and € 1s coun-

i
i

tably generated } is a p. martingale which is uniformly bounded.
Hence by the martingale convergence theorem [ 19, PP.88J, there

is 2 4 measurable random variable 2z such that
(1) Eu(zl§3< ¥) = Eu (ye B|§ X Y) for all countably generated
¢ C 4 and (ii) E, (ye BICX ¥) =—> z in 1Y(p) norm.

From (i) we conclude that. z = q(*y, B) a.s (p). From (ii)

and the fact that E, (y& #fC X 1) is uniformly bounded by 1
ve nave [ | g(Ey(ye BlC X ¥) - g(q(x,B))|p(dx) =—> 0, Hence
g —> [ g (a(x, B))p(dx) 4is measurable. This completes the

proof.

Corollary 13: Let (X, g) and (v, §) be Borel spaces and let

Ce A X P(B)., Define g: P,(4 B)—>R by ‘ i
g(u) = p( {x6 X: (x, q(x))€ C })if wu = pg. Then g is well- |

defined and is measurable.

Proof: The fact that g 1s well-defined can be proved in the [
same . way as-we'proved @ is well-defined in theorem 12. If Cg

is a rectangle, then thcorem 12 can be applicd te show that gi
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'-is measurable. Thc proof for arbitrary C -then follows, as
the class of € for which g 1s mecasurable is closed under

complemgnts and countable disjoint unions.

Now we turn our attention to some questions regarding
stopping rules, Let (X, 4) be a quoi space and
o ='{§n fn 2 O_} be a sequence of i;f?gzging %}p o-algebras
of A. A stopping rule for Ol is a function t on X into
the set N = {0y 14 2, «.. ©} such that [t < n]e 4, for all
n> 0, Let T(0r) denote the set of all stopping rules.
Suppose {Yh}: neé ﬁ.} is a family of uniformly bounded or non-
negative real-valucd random var?ab!@s defined on (X, é)%} Let
v(ip,t) = f e (%) (x)p(dx) . for each pe€ P(ﬁ), t€ T( M )« Then
for each te T( 0t ), v(+, t) 1is a measurable function. We are

intercsted in knowing if sup v(p,t) 1s a measurable func-
te T
o

tion of P for a fixed T, C'T(0t )., For this purpose, we
introduce certain toﬁologies on T(Or). Given any subsot M

of P(%), dgfino a topology for T(Jt) generated by the class
consisting of {te T( 07 )i pit # £, < e}. pEM, € > 0O,

t € T(07 ). We shall call this (completely regular) topology
the M~topology for T( 07 ). Suppose To is a subset of T(OT)

whose induced M-topology is separable, i.c¢. admits a countable

dense subset. Then for any countable dense T, (C T,
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te T

sup vi(p;t) = sup v(p,t) and consequently sup v(p,t) is
tE Tl tE TO 1

a measurable function ¢n M relative to P(4) 1 M, R.
strauch [24 ] has shown that T(JT) is scparable in its P(4)-
topology if each 4~ in Jv  1is countably generated. In fact
Strauch assumes stop rules fo be'finite—vﬁlued, but it is sasy
to see that his arguments go through even for stop rules in our
sense, Since the M-topclogy containg M!'-topology if M ) M!,

this shows that T({dr ) 1is geparable in its M-topology for’

each M whenever (7 consists of countably generated o-algebras,

In such a case if the M-topology for T(#r ) is pseudometriza-

|
‘ble then every -To C T( 1) will be separable in its MAtopol%J
One gituation in which the M-topology for T(J1 ) is peeudome-
trizable is when M 1is dominated by a o-finite measurable u.
This 1s becausc if M 1is dominated by u we can get a coun-
table swpset M. ={p ¢ n 21} of M which is equivalent to
My then the M-topology for T( (U ) is the same as the
. (e
{po§ -topology for T( (% )  where P, = PN ;h: p_. But the
n=1 & 4
|

{po} ~topelogy can be pseudometrized by means of the pseudome-

-

tric d(t, t!') = po(i.t ¥,
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7. Measurable Gambling Problems:

Definitions: A gambling system & = (F, g I3 W) s sdid e
be F measurable if the following conditions are satisfied:
(1) F 4is a Borel structure for Fj (ii) for cach x in w(F)

and Y in [ (x), Y is countably additive on F so that, by

identifying gambles which agree on F, we can regard (x) also

as a subset of P(F); (iii) The set

¢ ={(x, ¥ )t xew(E), Yo [ ()} € W(®) X B(B);

H ol

(iv) T = iJe W(F) for 1= 0,1,25 {v) w is W(E) + H(E),
meésﬁrable. ._ | -

Leﬁ G be a E measurable g.s. We denote by Am(gx £) the
set of all =#®E A(G, x) which'are E measurable. Let
Asm(g, %) = As(gi x) N ﬁm(ﬁ, %Y. These sets hay be-empty. In
most cases we shall assumc that'%hoy are nonempty bj requiring
that ¢ satisfy the conditiong: (a) There is a function £ on
W(F) into P(F) such that E(x)€ [(x) for all x and E is
W(F}, E(E) measurable; (b) wu is either bounded or is of cons-
taﬁt sign. fAny F measurable g.s. satisfying (a) and (b) is
said to be a standard F measurable g.s.

Let G be a standard F measurable ges. . SUppose  Z
denctes the gpace of'all  E measurable strategies o over F
such that o{x)e [T(x)' for all x and let A denote the space

of all F measurable s.fs a over F such that alx) = T(x)
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whenever T(x) # 2« Then Z X A C B (G x) for all x.
: . |
Let D(x) =2 X A and D'(x) = Am(ﬁ, x) for each x. Then

it is easily verified that UD = Upia VD = VD' and ED = ED"

A

!

In vhat follows let ¢ = (F, 3 T, u) be a standard F
= p
ig

measurable g.s. Denote by M(x) the set {jue P(H(F))

{
for some 0‘62} for all x€ W(F). Opservc that cach g in

M(x) can be written as f = Hy Ho Hy eo- where i, € P(F) and )

Hy € Q(F | En_l) n > 2. The. space P (4 B) will be denoted 5

n=1

by P*(En) wvhen A is F and B is F. 1If therc is no

=a
possibility of confusion we shall write W. W, H, H for

w(F), w(F), H(F) and MH(E) respectively. For each p in P(H)’

and n 2 1 1let un denote 1ts marginal on En, i.e.

un(A) = WA X F X F‘X;.. ) for A4¢ En. The map @n(u) =
is“then E(E), E(En) measurable. Let P*(E) denote the set
of a1l u in P(H) such that p"€ P,(F") for all n 2 2.
Let P*(H) denote the Borel structure P(H),ﬂ_P (H)s As we

observed carlier, M(x) (_ Pa (H) for all x in W. We now

examinc the question of measurablllty of these sets.

Tneorom 14t The sct M= {(xy Wi x€ W, ue M)} is in
WX Py (B, | |
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w

Proof: Obscrve that the mapping c¢: WX W-=—> W dcfined by
c(xy y) = xay is WX W, W meagprablé, Since the sct

¢ = d(x: ¥ )t xe W, Ye [ jeyx E(E), thig shows that

¢y = {xyy Ve xe W, ye 7, Ve [(x) fe,uX F¥ X B(F) f@*"”g
all n2 1. et M) ={(x, u): x€ W, ue P (W), (x, g (w)eC)
and for n 2 1, let M_ = {(x, u): x€ W, ue P, (H),

™~
K0 yEFR 2 (x4 yo Hpyy (W))EC, ) = 1}, Clearly

M€ W X«P, (H) and by corollary 13, M € WX B (H) for all n,

| It is casy to check that M= 0 M and so MW X B (H).
n=o = N

-

This completes the proof,

Our next lemma is designed to cover various special cases

of intercst.

Lemma 15: Let 7 (x) =1{ta[x] : atih } for cach x in W and
let u be either bounded or non-negative. Then (a) T (x) is
separable in its P(H)-topology if F 1s countably

generateds;

(p) 1Ir '3O(x) is a densg subset of J (x) in its M(x)-topolOgy,
‘th h ( = h|t (2
en tes(}lfx) S u(x,h|t(h))uldn) tef?:%}c) J ulx;hlt(n))ulan)

for all w€ M(x); e
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(¢) If e ‘is a countable subset of A such that

T (x) = {taii}: 8t 'Ao} is a dense subset of 77 (x) in its

M(x)-topology, then the map (F 2 (Gee) —>t§;u:$( )fu(x.hlt(h))u(dh) -
: e i .

1s WX P (H)¥

measurable,

. ot

(d) 1If f]'o is a countable set which is a dense subsget of
J(x) in its M(x)-topology for all x, then thd map ¢ is

i_ng _I_’*(I_'_I). :I:-i meagurable.

and 2 = FUX FX FX...(n

i

Proof: (a) Consider X = H, 4 =

Then 07 = {{‘n tn2 0} ccnsists of countably generated ’

o-algebras., Consequently, by the extension of Strauch's result
mentioned in the last section, the set T(O¥ ) of all (measurable
stop rules is separable in its P(H)-topology. If C is any
dense set in T({07 ) and t1r £, T( Jt ) then it is casy to see
thit G = {t' ' = max (t;., min (t, t,)) for somd. t€C}
is dense in T={t' : t, < t' Ct,y t'€T(0¢r)}. Given any
tens e 5 1 2 o G
i : = ” E = , * g :
x in W, set tl_ tT*L—x] and t2 tT*'[x]': where T* is defined
by: T*(y) = 0 if T (y) = 0 and = 1 otherwise, Then tl,t2er(f>z )
and corresponding J is J{(x). Hence J(x) is separable in itg

P(H)~topology.

Ed

(b) 4is straightforward.
(¢) For cach a6 4 the map @, (xse) = J ulxshlt, [ 7(h))ulan)
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is a y;xg(g) measurable function on WX P(H). Consequently

sup . ? (xy u) is also a measurable map on W X P(H) ‘gince
ag A

Ag is countable. But from (b) it follows that

?(x.u) sup @a(x,u) on- M  and by theorem 14 ME WX Byl
at A -

Therefore ¢ is WX P,(H) measurable,

(d) 1is broved in exactly the same way as (c). This compietes

the proof of the lemma,

Remarks: If (F, F) is standard analytic then P,(H) = P(H).

In d.p; problemg T 1 z2nd so p 1is a singlefon. In most
other cases T = 2 aﬁd g is countably'generated so thaf
Y (x) = T(% ) 1is separablc and (d) is applicable. Various
other possibilities are also covered by the lemma. For any

LE WX P (H), let pr(A) denote the projection of A onto W,

Let W* be the Borel structure for W gencrated by the class
{pr(i): re WxP(H)}. If (F, ) is standard amalytic, Wt

is such that W* 0 F®  is the o-algcbra on F® generated by

all amalytic subsets of F* for n 2 1,

Thecrem 16:  Suppose § (x, ) = sup S u(x,hlta[xl(h))u(dh)
ach

is W X Py(H)y R moasurablc on M, then Uy is a Wy

18-l
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measurable function on W,

gup {I_(cya)(x) : o6& %, atAY “ﬁ\w

Sup {o (xau) & ue u(x) }

[ 4

H|

Proof: 'UD(X)

3

So {x : UD(X) ? c} = pr { {(x,u)e M: @ (x4u) 2 c}-) for any
¢€ R and hence is in W+. This proves that Up 1s W*

—
-

measurable,
Ir (F, P) is standard analytic, U, 1is W measurable

shows that -UD.‘restricted to each Fn is measurable with

“*respect to the completion of any probability on-‘gn. The situs~

-

tion regarding VD is even simpler. For each o in Dl(x)

‘it is easy to see that }D (6){(x) = I(e,T*)(x). Consequently

T+ belng measurable, using theorem 14, we can show that ‘Vb(x}

is a W R measurable function on W for any reward function

u - bounded, positivé'or negatives Similarly for XIT

- We now éhow that the sittation in two~persoﬁ gambling
systems regarding Wb and ED is vefy different, Suppose we
are given a two-person g.s. G = (F, [, T, u, X) which is
'standard F measurable in the sense that g' = (F, [, T, u) s

stdndard

1= 1

measu:able and X6 W(E). Agsume further that

T 21 which 1s the simplest situation as. A then becomes a

1 4
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singleton. The question we ask is whether Wy and Wy are
necessarily 7@* measurable where, as befoze, D= Z XA, Ve
show below that even if we assume | to be deterministic and
(F, E) to be:a standard Borél-space, the measurability of WD

and Mp can not be séttled so easily.

Consider the follcwing auxillary problem: given a bounded

Borel measufable function g on the unit cube I X T X I where

I = [0, 1], let £(x) = sup inf gl(x,y.2), x€ I; we know
ye I z€ 1

that f need not be Borel measurable on I. But is it at least
Lebesgue measurable?  The relevance of this to the problem in
“the last paragraph is quitc obvious. Wc now gsettle this latter

guestion.

Theorem 17: The following two statements are equivalent:

i) There isa P C A set E C I which is not Lebesgle
measurable.
ii) Therc is a bounded Borg¢l measurable function g on

I X IX I such that f(x) = sup inf g(x,y,z) is not a
: - ' yel .z€I. .~

Lebcsgue measurable function of X.

Proof: To show (i) => (ii): Let B be a non Lebesgle maasu-
rable P €& A& subset of I. 8o there is a coanalytic subset
D ef I X I such that E 1is the, prcjection of D to the

first coordinate axis. Now IX I - D belng analytic,
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we can find a Borcl subset B of IX IX I such that D is
"the projection of B to the first two coordinate spaces. In
other words, for any x€ I, x 1is in E 1ff for some yé€ I,
there is no 2z€ I such that (x,y,z)€& B, Define g to be
the indicatcr function of B. Then I 1is the indicator func-

-

tion of ® and is non Lebesgue measurable.

-
To show {(ii) =—> (i): It is enough to show that for any c€ R,
the set Lf > c] isa P C 4 subset of I. Let

h(x,y) = Inf g(x,y.2). Then Lf > c} = Proj| {h > ¢}
AT i

where ProjI denotes the projection to the first coordinate

axis.

[(h>c]=IXI- 0 f[hcec+ %] g
=1

ih < ¢ + %} = Projr y 1 lg < c + %] where Projy, 1 stands

for the projection to the first two coordinate axes. Since g

is Borel measurable, Lg < ¢ + %] is Borel §3 so Lth < ¢ + % is
analytic for each n. Hence Lh > ¢l 1is coanalytic and its

projection &f > ¢} isa P ¢ A set. This proves the theorenm.

Remarks: (1) It is known that the statement (i) of the
theorem can be proved using the axiom of constructibility and

je therefore coneistent with the usual axioms of set thecry,
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This shows that we can not hope to prove that ED- is W¥

measurable even in very special cases, For, let F =1I, F =
Borel c-algebra on I, T =1 and | (x) = {a(f): fe I}< for
21l x€ W. Define % = T1T® T and ulfy. fo. fs,..,) =
g(fl, o, fiar where g is a Borel measurable funetion on
IX IX I. It is then easy to check that Wy (f) =

i (f) = sup  inf g(f,f‘,f“)' on 1. Congequently 'ED on
frugl " 81

I need not be Lebesgue measurable and so My need not be W*

measurable. Similar remarks apply to Wb. |

(2) In the deterministic situation considered in remark. (1),
whatever measurable X and u are given, we can find a sui-
table Borel measurable function v on. W(I) X BE(I).x H(I) such

that Wy (x) = sup . inf v(x,h,h'). This can be shown as
| he B h'eH | '
follows: let h :'(fl. Tor aee )y ht = (fi, fl, o.. ) and
x€ W(I). Define v(x,h,h') = u(x,h") where h" = (ff, féh...)!
- if xfi‘;., f;;g X and féf is fﬁ otherwise.

The maps (x,hh') —> £! are measurable as can be verified by

- L
and fn ig T

induction on n. Consequently v is Borel measurable and it is
i . . - ol ) - k
easy to sée that MD(X) = sup inf v(x,h,h'). This proves that
5o e L h h‘ 1= ) .
the set { Hp ¢}l isa P C & .set for all c€ R, We shall
see later that the same result,holds for nondeterministic

problems also provided (F, F) is standard analytic.
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-8, Measurability of the set M:

In this section we consider some measurability problems when

the permissible class

BO is smaller than D (we are still

using the notations of section 7).

It is clear that the tech-

niquesof Lemma 15 and Theorem 16 are applicable for any such

D,i thus for instance if M'= {(x,p): g o=
in Dy (x) y dis in

are @* measurable,

o

WX Pe(H) and if T

what conditicns M' is measurable.

pd[x]

1l then U

for some

D
o

o

and v

Therefore it is of interest to see under

4

D

We shall discuss this in

WL R e

P

o

certain situations which are frequently encountered in applica-

tions. Suppose

g.s. with T 2 1 and suppose | (x)

G = (F!l—l- B a)

fully - for instance, it might depend on the last coordinate

of  x or on first and last coordinates of x etc.

These

cases can bg considered together by assuming that there is a

sub o-algebra go of W such-that the set\ .C = {(X, Y )

does not depend on =x

is a standard E meagurable

o
X€E W, V€ r-(x)}-belongs to WX P(F)., Let I denote the set

of all strategigs o in ¥ which are wo‘ P (F) measurable.

Agsuming 2 to be nonempty consider the set MC = {(x, L

=D,
oixl}

to the permissible class DO

s¢ 52,

for some o

a B l}'.

in EO}

Hence if MO

Clearly M° corresponds

is measurable,

defined by DO(X) = {(G,a)=

i.el

sy
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MPe WX g*(g) then we can conclude that Uy 1s W* measurable.

However the quéstion of measurability of M® is far too
general to admit aﬁ eaéy solution, In this connection we
indicate a class of problems many of which may be regarded as
special cases of the measurability problem of M°, Let
iC0n SRRk, 4= H(E) and®®  denote the coordinate random
variables on () , n 2> 1., Consider the five sets of probabi-

lity measures ¢ oI é which meke {Xn' n 2 l} respectively~
(i) independent (ii) identically distributed (iii) stationary

(iv) martingale and {v) Markov chain. Are these setsrmeasurable
subsets of Pu:&)?' It is fairly easy to show that the sets (i) -
(iv) are all measurable. The fact that R 1s countably gene-
rated is refleatedly made use of in the above proofs. We shall

" now show tipt the set in case {(v) is an analytic subset of P(é).

Though this result is not of immediatc use to us the technique

used in its proof can be applied in many important situations.

Theorem 18"  Let )= B(R), A = H(R) and x, denote the
coordinate random varisbles on () (n 2 1). Let
K =-{M€ P(g): {Xn‘ n 2 l} ig a Markov chain under M:}-

Then X 1is an analytic subset of P(&).

Proof’: As is well—knoﬁn, (R, g)gnd (P(R), P(R))are both uncoun-
table standard Borel spaces and arec consequently Borel isomor- :

phic., Let g : R —> P{(R) be a Borel isomorphism, i.e. g 1is
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one~to-one, onto and g, él are measurable. Let g and gl

be of Borel class [ where B < Wy

We have shown in theorem 10 that each probability measure
A on RX R can be written as A = pgq where ©pE€ P(LE).
g€ Q(R|R) and q(+,A) 1is of Borel class 3 as a function on R
onto R for every A 1in a countable generator'for g. AP
we remarked then, thig fact implies the‘existence of an o < Wy
such that each A€ P(RX R) is of the form pq where D€ P(R)
and g s iRe—=> P(E) is of Borel class a. Now choose and fix
a Rorcl measurable function U on RIK R ints R such that
every Borel measurable functiom f on R into R of Borel
clags o % H' ig a scetion of Uy i.c. for some at R
v = Ula, +). Such a universal function exists [13, pp. 369,393}
Define V& RX R—> P(R) by V(a, x). = g(U(a, §)). Then Vv
is Borel measurable. Further if gq : R —> P(E) is of Borel
‘class o, let f : R —> R be defined by f(x; = gl (q(x)).
Then f is of Borel class a+ 8 and so f = Ula, ») for some
2€ R, Therefore q.= V(a, «). Consequently any A€ P(RX R)

can be written as A = p.V(a, ¢) for some pe€ P(R) and a€ R.

Consider the map A ¢ P(R) X () —> P(4) defined by
/((pl al’ ,8-2!'!.- )= p.v(all ') ‘V(azl ..) v(as't .)- L . K iS
Borel measurable and it is easy to verify that

»

,, [l PT?jI‘ {(#t Py 871 85 e sg wi # = A(p, a7 512.1---)} where
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Proj; denotes the projection to the P(A) axis. Hence ‘l

is analytic. This completes the procf,

The aboveg proof can be modified|to show that many other
interesting classes of measures on P(é) are alagbanalytic.
Similarly in d.p. problems the éets of measures correspon—'
ding to Markov policies, semi-markov policies, stationary
policies etce.y can be shown to be analytic by analogous

arguments,

Turning our attention back to gencral M°, we shall now
establish the measurability of M° ip a relatively simple

situatign,

Theorem 19: Supposec g 1s countably gefcrated, Fle EO for

3ll n 2 0 and there are countably many @O—atoms Em(m 2 1)

o0

such that W= U

%
E . Then M°c WX P, (H).
l m = — =

Proof: Define §, : WX P(H) —> P(WX.F") by §.(x, u) =

3(x) X pP, Clearly ¢, 1is measurable for all n 2 1, Let

¢t WX WU be defined by c(xyy) =x.y. ¢ is WX W, W

measurable, Fix n 2 0, k 21 and a W atom E (C Fitk

y o=l : . L — . n
and let A = ¢ (B). Define Lnyg.(E) = {(x, ©): x€ F
#€ B(H) and for any BE F, Ae 3+ (g) n PO,

Bpap (xe) (A XB)O, (o) () = 9, 1 (xam) (A X B) 0, (x, w)(4)].
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n+k

gince F 1s countably generated, each F is countably

generated; consequently in the definition of Lhk(Eg it ig «’

enough to vary A and B over countable fields generating

s1(E) n En+k and F respectively. This fact and the measu-
rablrity of the maps ?k and @k+l show that

Ly (E)€ Enx -_-P(E)' Let L, denote the intergection of

Lnk(E) over all @O atoms E contained 1n Fn+ . DNote that

each wp—atom is contzined in some 7,

oQ =]
Set L= g L and L= 1 L_. BEach is measura-
n =il nk o n 1k

ble as there are only countably many Eo—atoms and sc -

Le wX E(@) . We shall now show that M° = L0 M where

M= {(x, p) g = (] for some o€ Z‘}. Since
olx ’

ME WX P, (H)  this will show that e w x P, (H) ,

(a) Let (x, m)€ M, S up=7p for some o€ 2% Clearly
olx] ;

€ T and hence (x, MyE M, Let x€ Fn, k21 and E be a

ygatom with B (C PP we must show that  (x, m)e Lnk(E)'

Let 2€THE) 0 F™% ana ¢ = {ye FF : (my)en}.
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1§

Observe that @, (x,u){f X B) Klox B) = i uk+l(Y:B)Hk(dy)
, G

oy

J o(xy, B) Mk(dy).
€

It

But if y€ C then (x, y)€ A and c(x,y) = x.y€ E«. As o is

wo, P(F) measurable, ¢ is'constant on E., Hence

—
e
—

o(xyy B) = £(B) for some € P(E). So §,;(xu)(aX B) =

= r(B). #%SC). Similarly @, .4 (x,u)(ﬁo X B) = E(B),yk(co)

¥

K . .
where C_ =-{y€ FX : (x,y)€e Ao}-. since ¢ C c, if

e :“’co) = 0 the required equality in L# (E) is trivial to

check,
Pag ) (&) X.B) ;

Otherwise Z(B) = + Therefore

W (g,)
Paq (i) (X B) w(C) = 9,1 (xuw)(A_ X B)K(C). However
pk(CO) = ¢, (xu) (4 ) and W5(e) = @k(x.u)(ﬁi. We thus have

(xeu)€ Ly (B). S0 M° CrLax.

(b) Let (xu)e LM, u-= pG[x] for some o€ T, 8ince we

have assumed that =° is nonempty, choose a o* € et Suppose

X6 Fns Define a strategy o' as follows:
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(x,u)(Ao X B)/ uk(Co) if ye C, and
W (c)) >0

o' {xy)(B)

H

Prea

i

o*(xy)(B) if yeC, and pf (C ) =0

o'(x') = o(x) if x and x' belong to same wo atom and
6'(z) = o%(2) for other z€ W. In this definition A, and

have the same meaning as in last paragraph. Then o' is

N% O(‘)

, P(F) measurable., It is enough to show that p =5 |
S clx] o' x]

If # = p then #* = o'(x) = olx) = ul. Assume that
o'ix] ' : -
n° = 4§ we shall pkove that #° + = L. For ang ce ¥,
BeF, #° (a0 c)XB) = [ o'xy)(B nfay) 1
, enc, "
= P4 (xa)(a X B). n(c 0 c )/k(c,) it wf(c)) 3 o

= (i)k‘*'l (XI#)(A X B) where A= {(le): ye cn Co} . since
(xeu) € L and nF (Cf c.h = “KLC ne)
0 ) o)

= &1 ((ca o) x B).

Ir - w5(c)) = 0 then 45(C)) =0 and so #"((cnc,) X B) = 0

<+ - ]
= Mk l((c n co) X B). 8ince this is true for each C, corres-

n+k

ponding to an atom E ( F and since there are only

countably many atoms, ﬂk+l (CX B) = #k+1 (Cx B) for each
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ce ¥, BCE This proves that #° —~ = t*1. Thus 0= 4 alge

saé (x, )€ M°, This completes our REQ Ofs

Remark: Suppose I is a countable set and I = $(I). Let 8,

be any équivalence'relation on ¥ for sach k 2 1. For any

probability measure % on H(I) let nk(xl,....xk) denote the

conditional distribution of Xy 41 given Xyteser Xpo

Conslder the set @ of all probability measures % on H(E)

such that for all k and Xjreeer X -nk(xl,.... x) =

ﬂk(xi, e M xk) whenever (Xl"'°‘ Xk)gk(xl"'°‘xk) The

above theorem shows that Q is a measurable subdht of P(H(I))
- . . t -

By defining Qk such that (Xl"°"xk)9k( l""' k) iff

X = X, Wwe see that the corresponding Q 1is the set of pro-

bability measures making the coordinate random variables

{Xn‘ n 2 l}'~ a Markov chain with discrete state space I.

We cbnclude fhis sec%ion with a result regarding two-
Person measurable gambllng sYBtems. Let G = (F, ], Ty u, X)
be a standard F measurable two—person g.5 such that T = 1
and (F, F ) is a standard Borel space. Assume moreover that

for some nonempty proper subset Nb of natural numbers

X= UN Fn. Let D= X A 1in usual notations. - Then we
ne
2 o

have the fcllOwing‘
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Theorem 20: For each c€ R, the set {X: HD(X) b c} is a
' ¥
P ¢ A set in W(F).
o
Proof: If F is countable there is nothing to show. ©o let X

F be uncountable and because of Borel isomorphlsm we may
assume without loss of generality that F is the unit interval
Tl O and F = I the Borel o-algebra on I. As in the

proof of theorem 18, we can get an G <-;wl such that each

can be expressed as A = pg where pé P(I™) and |

A P(I™™)

g : I => P(I) is a Borel measurable functicn of Borel class

«_, for each n > 1, Let g be a fixed Borel igsomorphism of |

n , ] .
I onto P(I) such that both g and sl arg of Borel class

say B (B < ‘wl). vwLet o = sup « and cholse a Borel measu-
ny1l1 B -

ravle function U, on 1 X I® into I such that each Borel

meagurable f on T into I of Borel class « + B 1s some

section Uy fa, *) of Uy Such U, exists for each n 2 1.
) 3 : n :
Define V : I XAI =52 P(E) by Vn(a, Xiteeer xn) =

g(U (ay %jveess x))s Then V, is Borel measurable and each
q ¢ I* => P(I) of Borel class-.a 1is some section v, (a, ¥)

n%l)

of V_. Consequently each AE P(I can be expressed as

AN =p V(a, +) for some pE€ P(gn) and a€ I, Hence for each

ne P(H(I)) we can find p€ P(I) and a sequenNce aj: ags e»-
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from I such that g = p Vl(al, .) Vz(az, +) Vs(ag") A
Let X : P(I) X H(I) — P(H(i)) be defined by

¥ (0y ays ageene ) 7 B Tylage ) Volagy *) er amd

9 ¢ w(I) X P(I) X H(I) — R by 9(xype i ) =S ulxh) X(py wdh)

Then X and § arc Borel measurablc. We have alrcady shown

that the set M= {(x, ) i u for some o€ T ¥ is

= Foixl

Borel measurable. Let c¢£€ R be given. Define
(PC (% D m)'—'(P(Xs P w) if (Xnﬁ(Pt w)) €M and

| otherwise. Then ¢, is also Borgl measurable.

@
)
Now we sha¥l show that the sets tWp >®&I 0 X and

LW, > cln ¥ arc both P ¢ A setsy, Y being W(I) - X,
It can be verificd that Wy 2 cl N X =

{XSX: sup inf @ (x;py0) > ¢ :}whcrc the supremum 1s takeh over
pt P(I) and sgquences {an ERE Na} from I and the infimum
1s over sequences {an : ng NO} from 1. As @C 1s a Borel
measurable function of x; b W it is clear that the set
[ﬂD >elnX isa P G 4 subscet of W(I). Similarly the set
[MD el 1Y = {xe Y s sup inf ?c (xy Py, ®w) > ¢ } wherc the
suprcmum is taken over sequences -{an : né NO} from I and the

infimum over pe P(})' ald sequelces ‘{an : ng No}- from I,


http://www.cvisiontech.com

So W >e¢l]NY 4is alsoa PG & set. Consequently [ED >.cl
. =D . . P "
"jsa P C'4 subset of W(I). This completes the proof of the

theorem,

Remarks: (1) The sets [ﬁ5,> c] can be seen to be C P C A
subsets, If we replace. D by any permissible class such that

the corresponding set M is Borel measurable then the same result
can be proved for such a class also. Thus for instance in stochas-
tic games L 181 the natural permissible class is such that the
corresponding M 1is measurable. Hence the upper and lower value
functions of é stochaétic game are‘measurable with réspect to the

o-algebra genefated by P G A sets.

(2) Bow far the assumptions T =1 and X = U are needed
. is not known, - NO

(3) It is known that under the axiom of existence of a measurable
cardinal, every P C A& set in I 1is Lebesgue measurable. 8o,
in such a case, the upper and lower values of a stochastic game

~arc Lebesgue measurable.

9. Optiral reward in measurable problems
Strauch . 25 ] has shown that in the d.p. problem, any measurable
policy can be replaced by a random semi-markov policy with the

same total expected return. We shall first prove similar results
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for meagurable gambling problems. It should be noted thﬁg'such
results provide another approach for deciding if UD is measu-

rable in problems of section 7.

The result of Strauch, stated above, proceeds by taking
suitable conditional distributions. - 4s these conditional dis-
tributions need not exist in the .setup considered so far, we

.have”tohimpose_more restrictiOns on the class of measp:able
gambsing systems. We first consider. a situafion very similar to
the d.p. problemé: Let G = (F, f; T, u) be a standard g
measurable 2.5« Where (F, E) is a standard analytic space and
T =1, For each x in W we assume that r“(x) is a ciqsed
convex subset of ”P(E) in its wéék toﬁolog 'For each nz2l

we are given a subset Cn‘:.{il(n),.... il (n)},of.{1,2,.l.,n}
n

such that [ (fy4e..:f,) and ulfjie..(f)) depend only on the

coordinates £,y J€ C,. 1l.e. if x = (fli"“’fn) and

j'
. 1
x' = (fi, sy £ ) are such that fij(n) = fij(n) for 1 £ j £k,

then [ (x) = [[(x') and ulx) = ulx'). Further we éssume that
A
C: C, U {n+ 1} for n 2 1 and that u(h) z u(h/n) for

n+l 1
,,,,, n_
every he H. Then we have the follow1ng
Theorem 21: Let o€ %, i.es o 1s an F measurable strategy

such that o(x)e ["(x) for all x. Then there is a strategy
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o*  in ‘é. such that (1} I. (o*, TY(#) = Iu(ng)(ﬁ) —

u

and (ii) for each n 2> 1, 6*(fl.....fn)

depel’lds OI]l_V orl fil'."’ fik if Cn i{ilt.lng ikg .

%

bl R

"

Proof: Let o*(@) = o(@) and for each n 2> 1, let d*(fl,....f

1]
be the conditicnal distribution under Py of fn&l given

filg..., fik (for typogravhic convenience we write il""‘ik
b |

ingtead of il(n),..., 1 (n). Then o* clearly satisfies (1i)s
" . 5

We shall now show that o*(x)e€ [(x) for all x, If g |
' |

ig any function on i such that g(fl""' fn) depends only

on fi tesay fi

then we write g (o e e (B2 ) for -
1 K. & R Tk

g(fl’ LEL S | "n) . Let Jun(fi t e s 0y fik) be the COIldi i OI]al dis.—

1
tribution under p, of the variables fl""' fn given

i reeey fi . It 1s then easy to check that for all A€ F,
a8 k -

‘G%(ﬁilt;-vt flk)(-ﬂ-) = F{l c.(fl]ooogfn)({i)d“n(.ifil'oo-gfik)-

Since o, sunraf)C [ 0L veue ity ) and  [H(Fum jeos B " A8
1 n n 11 lk 1n 11 ik
closed and convex, theorem 11 apvlieg to gshow that

H(£y yaeayfs )€ [, veeer £. )o This is true for all n > 1
n ll lk n ll lk N -

and (fl,...,fn). Mlso ox(f) = o(@)e [ (#). Hence o*e€ I,
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A

A5 U{fq 3Fcress ) = ? W (£ yeveq £ ) it is end®®h to show
112 e 1 n 1l lk
that f un(fi.l,-m.fik)dp =p Iff un(fll...., fik)dpd* for all

n 2> 1. We shall show that for any n 2 1 and any F® measu-

rable function gn(fi,..., f; ) on F%
k

‘or of constant sign, f—gn(fil,..., £y )dpo_z f—gn(fi .....fi)dj
- k F ¥ k

which 1s either boundei

The marginal distribution of f; under p. as well as under

Pox being same, the above assertion is true for n =1,

Lssuming the assertion to be valid for n consider g ,; on

Fn+l. If Cﬁ4i= Cn there is nothing to show. Otherwise

. | f e
Ch4r T Cnp'{n+lj and so g, ., 1s arfunctlon 0.

fil,..., fik'-fnﬁl' Let EG and _EG* denote expectations
under Py and pc* respectively.

Edlgnﬁl(filf"" £ 0 fpep)l = Eﬁ{:adtgn&l(fil"'ij £3 1Fnay)/

Iy K

1
f feevey f ] J
il ik
= It

gi‘l(fil...., fik) B Lgn,,_l(fll,...,, fy fn_,_l)/fil,..,, fik]

=f‘g (f L XTI f. : )G' (f e f.d
o n*l il' 1 lk' n+l 111 ' ¥£
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\ k.
by the property of conditional distribution.

% 1 ;

’ ]
: fn_’l)o";l(fil,. et fik)(dfn+l)dpo,* l
I

1
{
2 »
. e 3 1 A
By induction hypothesis, Eo.Lglllffi ) Eo_*[gn(fi ...,fjk]
| 1

i

fg (f- tew ey f.
n+l iy | i

EB*[gnﬁl(fil""‘ £y ,fn+l)].rrThis proves the assertion for |

k
for n+l1 and completes the procf of the theorem,
A rather obvious mcdification of the above proof yields the

. following result.

Theorem 22: Let o6 ¥ and m 2 1. Then there is a o*€ %

such that (i) Iuld*,T)(y) = Iu(&,T)(y) for alg y€ F® and

(ii) for each n > my, o*{(f;y...y £ ) depends bnly on
: " [ n ‘

e where Cn = {;l,..., ikjg.

Ill'lftf' f w0t f-
il m' Tl 1

Remark: (1) In the d.p. problem an application of Theorem 22
gives the result of Strauch referred to at the beginning of
this section, To-sée this we note first that the reward
function o (s,a,s') can, without loss of generality be
assumed to depend only on s,a by replacing it by rl(s,a) =
S r(s,ays') q(ds'}sya). This does not alter the expected

™= {2n- l}'and

reward from any plag. Now define Czn:
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b
= {zn-]r, 21y}_ for all_ln 2 1., Then the assumptiong of

thecrem 22 are satisfied and‘the conclﬁsion with m=1 shows
that for any measurable plan =# there is a random semi-markov
plan #' such that I(n')(a) = I(m)(s) for all s€ s.
Siﬁilarly, given ga probabiiity measure P on S, we can let
[ (&) = {p¥ and apply theorem 21 +to conclude that there is

a random Markov plan ®" such that pI(x) = pI(=").

(2) An example duec to Blackwéll'[ 25 , Example 4.1] shows that
in the d.p. situation, éiﬁen;a measurable plan = there need
not exist any Markov plan ~m' such that I(®)(s) = I(ﬁ')(s)
for all s€ 8. The same exampie therefore shoys that in
Theorem 22 ”condifioﬁ (ii) can ndt be strehgt ned to say that

for each n 2 m, d*(fl...., fn) depends only on f. ,;.;{ T W
iy i,

(3) Observe that thecorpms of 21 and 22 gé through whenever thé
conditional distributioné G;_ and Ky cxisgt fbr éil n, Thus
for 1nstance, if each gamblc in | (x) is cohcentrated on a
countablo set and is countably additive (x€ W) then the above
theorems would apply with B & s(F)— Ornstein has considered this
situation in L21 J; theorem 22 applicd to hls problem would

imply (uslng his notations) that if V(x) is closod and convex
for all x€ X, then given any strategy S ﬁe can find a semi~

markov stratbgy t such that Fs(xj #iFt(x) for all =x€ X.
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(4) We should mention that the condition T = 1 can be modi- |
f

fied or relaxed to some extent in these theorems. Clearly it
is enough if, for each n, either Tn =0 or Tn = 17 the
proof's also remain valid if we use only those measurable s.fg
a such that t_ 1is finite ang [ta = n} depends only on

.f- |.oo!f- fOI‘eaCh Il.
i K

We now consider briefly a getup which is more general
than that discussed in theorems 81 and 22. Suppose

G=(Fy [, T, 0) is a standard F measurable g.s.i (F, E) is

a standard analytic space, T Z 1 j r-(x) is a clogsed convex

subset of P(E) for each x3 for each n 2 ¥y fn is a

countebly generated sub-calgebra of'-En such that E; and u,

ot B measurable and the

are F, measurable - i.e. u, is

HES

set {(x, Yie. 2B B Y e'f‘(x)}-e F XP (F) and containg
the graph of 2 F + P (F) measurable function. Further we

assume F 4 C F, X F for all n and that u(h) = % u(h/n).
= = = " , n=1

Let ¢€X and m 2> 0, Let Fn m Pe the Borel structure
=iy

for F" generated by Pl xwplmisg F i for all n 2 m,

Suppose for each n 2 m we can find a conditional joint distri-

bution under B of fl""' fn given Fn - which, moreover,
=t
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is everywhere proper (in the sense of L 61)). Then we can
carry out obvious medificstions in the proofs of theorems 21
and 22 to get a strategy o*¢€ % satisfying (1) I(o*,T)(y) =
I(¢,T)(y) for all ye& F" and (ii) o* is F . P(F) mea-

1

surable for n 2 m.

However an everywhere proper conditional distribution
given En,m need not oxist. In fact, supposec (X,é) is a
standard Borel space and B is a countably generated sub
c-algebra of A, then Blackwell and Ryll—Nafdzewski {6 ] have

shown that a g8 Q(?I&) satisfying q(xB) = IB(X) for all

x€ X, BE § exigtg iff there is a g, A measurable function g
Von X into X such that g(x) and =x belong to the same
B-atom for 21l x. Thus given DE P(é), in order that we can
rind a g€ Q(B|A) satisfying ¢(x,B) = I(x) and
qu(x,A)p(dx) = p(4 0 B) for all x€X, BE By A€ &, it is
necessary that a measurable selection choosing ohe point from
each E-atom exists. We do nct know if this condition is also
sufficient,

We note that the assumption regarding the conditional distri-

bution given En'mbsing everywhere proper is needed only to ensu

that o*(x)e [ (x) for all x. Consequently the assumption
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. . n
is unnecessary if f_ is a constant on each I, Moreover,
as we know that almost everywhere proper distributions always

existy o* can be ghown to be-'essentially available in [ °
(see L&61) - i.e. (o, T)e A (Gyx) for all x€ F* and

satisfies (i) and (ii).

We now turn our attention to a different problem,
Blackwell has shown {Theorem 1 of { 3]) that in a discounted
deP. problem, for any pe& P(8) and € > 0 there is a (p, €)
optimal plan, We prove below the corresponding result for a

measurable g.Ss

Theorem 23: Let G = (Fy [ 4 Ty u) be a standard- F measu-
rable gess and D= XX A, BSuppose n 2 1, 26 P(En)| €20
and K 2> 0O are given. Then there is a ®€ D such that

p ({xeF": I(m)(x) 2 I(m(x) =€ or I(m)(x) 2K}) =1

for any a€ D,

Procf: Let v(x) be the essential supremum of the family

{I(E)(X) : we Iﬁ}relative to p. Hence there is a sequence

nl, #,... in D such that v(x) = sup I(#N(x) a.s.(p).
m

Let w= sup I(#%) and X, be the set all x in F? such
m L,
that m is the smallest integer k satisfying I(ﬁk)(x) 2

wx)-¢ or I(#)(x) 2K acéording_és wix) < or wix) =

Then Xm's form a measurable partition of F%, Define m* such

R —
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/ that m = n:]" on Fk for k <n and wm(xy) = Ttm(x;y)— if
x€ X,y Y€ W. Then #€D and for a,a., x, I(mw)(x) >
viz) - € or I(m)(x) >K according as v(x) < » or

v(x) = o,

Now for any =€ D, i(ﬁ) £V a.s. (p) by the property
of essential supremun. Conscgquently it is easy to check that

p( {I(m) 2 Im) - ¢ or I(m) >K}) = 1.

Hemark: If UD is bounded above on Fn, as in the case of

discounted d.p., then choosing ‘K > Sup UD(X) we get a

Tl
xEFR
(py €) optimal policy - is,e. a ¢ D 2..2h that

p( {I(m) > 1(n) - €}) =1 for any =€ D. However it 1s easy
to give examples in which 'Ub 2 e . pbut I(n) is bounded for
all n in D, so that there need not be a (p: €) optimal

bolicy in general,

A straightforward modificaticn of the proof of thecrem 23

yiclds the following result.

Theorem 24: Let g = (F, r;, Ty u) be a standard E mea su-
rable g.s. and ‘D be arﬁermissible class such that

D{x) = £Xp(x) for all x€ W. Suppose ED (o)(x) is 'gn
measurable on F® for all ¢ in Z. Then for any given

PEP(FY), € >0 and K > 0 there isa o*& T such that
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]

p ( &&ec ™ -J'D (o*) (%) 23D(0‘)(x)— € or ?D(o‘*)(x) _>_K}) =1

for every ‘o' in 3. . |

Toe above theorem raises the question &s o whex ED [) |
is measurable for all o jn . If D= X A then '
Jple) = ey T4 as ‘nclated earlicer and so Jp(o) is measurable,
The more interesting permissibie class is D(x) = T X Ao(x)

where Ao(x) consists of all sisfs a .in A such that alx]

is finite, x€ W, For cach x and history h Ilet N(x.h) be
the set of all positive integers n 2 O such thad T(x,h|n) #1

a—
-—

and  tp [y (h) < n L (n). Define g(Xf h)

inf sup u(x,h|m) for =x€ W, h€ H. The measu~
ne N(x, h) m€ N(x,h)
men

rapllity of the map g 1s easy to.check: The maps

(xy h) — b [x] (h) and (xsh) = tpu[y] (h) are measurable

Define v . (x,h) = u(x, him) if m2n and me N(x,h) and

= - o otherwise. Then Y is measurable and so sup V. is

m

measurable. Lot w._(xh) = sup v (x,h) if n€ N(x,h) and
n - nm

= o otherwise. Then Wy is measurable and so inf W, is

n

alsc measurable. However inf'wn(x,h) = g(x,h).
; i n
Sudderth 126, Thms. Bele 4.2] has showe tlat
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ED (e)(x) = f g(X:h)PG ] (ah) if u is bounded. He works

ix
with the case T & 2 so that g(x,h) = L:;.m u(x: him)
m - oo

but it is easy to modify u so as to apply his theorem for

a general T, (Of course we are assuming in this discussion
that T« ix] 1s finite for sll xj otherwise Ao(x) is empty.)
since g 1is measurable relative to W X H, 35(5) is W

. . T
measurable for gl1 ¢ 1in Z.

suppose D(x} = EX A (x) 1s a permlssible class such
that A (x) C A for all x. In order to decide whether
_ED(U) is measurable for all o, the following lemma is useful

in certain situations.

Lemma 25: Let (X, %) be a Borel space and g = {én: n 2 O}
be a sequence of increasing sub o¢.algebras of é; Let

{Yn : 0 ng wj} .be a sequence of uniformly bounded real
random variables on X. Suppose 4 1is a set of stopping
rules with respect to 7 such that max (t, t') = tvt'e 7
for all t, t'e J , M C P(4) and C is a dense subset of
inlits MhtopOIOgy; Then

inf sup J Yt"‘l du = Inf sup J tht! dH
ted i ] MEC B8 x
t'2t

Pommcach g€ M.


http://www.cvisiontech.com

76 ]

roof: For'each t€J , sup [ Yoo A= sup [ Yo opr QM
t'ed tteJ
2157t

because J is closed under maxima. Let ?n(x) = Yt(x)vn.(X)

for 0 {ng=, As C is dense in J it is easy to see that

sup [ ?t‘ du = sup JS ?t' du for umE M, Hence
iR GIE

Y = : .
sgp J Yoy A t?gpc J Y4 du and t beiry arbitrary

this shows that inf sup [ Y dpg £ inf sup [ Y Au
ted t'e A te ¢ t'ec’ V!

for all € M. To show the reverse inequality let u€ M, t€7J,

€ >0 and X2 sup |Y |. Choose t €C such that

w(it # t 1) <e. Then w(l tvt' # t vt']) <€ forall t’

and conseguently [ Yoo A6 < B Ytovt‘ du + EK.  So

sup S onvt‘ dr £ t§gp W tht' du + EKe £As t,€ are arbi-

trary the required inequality follows. This completes the

pmmfdftkﬁmmm.

Theorem 26: Let G = (F, [, T, u) be a standard F measu-

rable g.s. such that u is bounded. Let D(x) = T X4 (x),
A(x) C A and J(x) = {t .+ ae A(x)} for all x in w,
_ alx]

éﬁgpose there is a countable set C of measurable stopping

rules such that C is a dense subset of J (%) in its
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P(H)=-topology for all x., Then the map x —> TD (o)(x) 1is

W, R measurable for any . c€ 3.

Proof: - For any fixed ¢ in ¥, the map x —> p s
B olx]
Wy P(H) measurable and for any fixed measurable stopping rule

t, the function (x, h) —> d(x, h|t(h)) is W X H, R measu-
rable. S0 the map x —> f u(x, h|t(h)) Po[x] (dR) is W, R

measurable., By Lemma 25 it is clear that

T, (o) (x) = Jnt sup [ oules hlE)vE () ypg (an)

for all x€ W, 8Since C 1is countable this shows that ED(G)

is a2 measurable function of x.

We shall now study conditions under which the optimal
reward functions sgatisfy the ogtimality equations in a measura-
ble gambling problem., We consider a standard F measurable
gess& = (F, [, T, u) and confine our attention to two permis-
sible classes associated with it: (1) DO(X) =¥ X A for all
x€ Wy (ii) Di(x) = T X A (x) where p (x) ={ac : alx] is

finite j for all x€W.

Note that both Do and Dl admit continuation, Conse=-

quently Uy and Ub are conservative for g . Dy and Dy

oF 1
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also adm;.t substitution by s.fs and if F = S(F) then they {
admit extension in ¢ as well. Thus if F = S(F) then Up
satisfiés U-optimality equation for G and .%D satisfies
V-optimality equations for G where D is DO or Dl‘ This
shows, for instance, that im d.p. problems in which the gstate
anil. actlon spacces arc ccuntable and also in prubloms agon-
sidered in Ornstein [ 21] and Blackwell [4], the optimal reward
functions satisfy the optimality equations., In the next two
theorems we consider situations as in général deP. Problems or
in measurable gambling problems of Strauch {24 ] and Sudderth

Lze, 27].

Theorem 27: Suppose G = (Fy [ ¢+ Ty u) is a standara F -
measurable g.s. such that T = 2, u is bounded and (F, g)

is a standard anzlytic space. Then

VDl(x) =y esu o i VDl(xf) Y (af) for all x in W.

Proof: As already noted ?Di(x) & sup o0 vbl(xf) Y (af)

Y BT-{x)
for all x., To prove the revérse inequality, let x€ W,
Ye [ (x) and € > O. Sinée (F, g) is a standard analytic
space P*(g)z‘P(g) and so the set M= {(f, n): fe r,

H = for some o€ I } is a Borel subset of F X P(H).
G'[Xf] =
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By Sudderth's theorem { 26] EEE(G)(y) = [ g(ys h)pc[y] (dh)

for all o€ 3%, y&W where g(y; h) = Tim wu(y, hin).

N o0

Hence V. (xf) =

!

measurable functicn of f, Consequently we can choose a

sl S glxfs; h) w(dh) is a universally
pe (fmgBM |

Borel set N (_ F and a Borel measurable function v such

that Y (N) = 0 and v(f) =V, (xf) for all fZ N, Let
1

L= {(feu)eM: £ N and [ glofy h)u (dh) > v(£) - € or
e N_}. Then L 1is a Borel subsei of F X P(g) and every
f-section of L is nonempty. Hence by a theorem of

von Neumann [16,Thm. 6,3 J, we can find a Borel set N'C F
and a Borel measurable function ¢ on F into P(E) such
that Y (N') =0 and (f, ¢ (£)) € L for all fg N'. Since
M admits a Borel selection, ﬁe can assume without logs of
generality that (f, @(f‘;) & M for all f€ N', So for each
e F there is a

€ ¥ such that @(f) = We can

O pdfle} :
find a o€ £ such that o(x) = ¥V and olxt] = Gf[xf] for

all f. Then

JDl(cr)(x) = [ g(xi h)pg[,y (dn) = [f glxfi n)p(£)(an) ¥ (af)
> S lv(g) -8l Ylat)= [ TfDl

SG le(x) > i VDl(xf) Y (df). This completes our proof.

(xf) Y (df) - e.
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Theorem 28: Suppose G = (F, [ Ty u) isa standard [
measurable ge.s. such that (F, F) is a standard gnalytic

space, T 2 and u is bounded. Then U, and UD satisfy |
0 1

the U-ovptimality eguation for G.

Proof: As already shown, U; and UD are Conservative
0 1

for G . Therefore it is encugh to show that Up(x) 2

i UD(xf) Y (df) for each Y € [(x) and D =D,y or D;.
1 I L -1
Fix € > 0 and let J(xf) be {% [,pj ¢ aCA 0T
{ta[Xf] : aG!&(Xf)} according as D 1is Dy or D is Dl'

Observe that there is a set C of measurable stopping rules

cuch that € is a dense supset of J (xf) in ifs

P(H)~topology. Sc the map w(f,u) = su% Ju(xfhlt(h))uldnh)
» te 7 (xf)

is a measurable function on F X P(H) since the supremum can be

taken over the countable set C. If M denctes the Borel set
{(fy)e FX P(H) ¢ W= Byjep) for some o€ T j then

UD(xf) = gup w(f,u) and hence UD(Xf) is a universally

ﬁ:(f:ﬂ)e M .

measurable function of f. Choose a Borel measurable function

v on F and a Borel subset N of F such that M =gl

and v(f) = Up(xf) for fg¢ N. Let L= {(fyp)e M: £¢ N and

w(f,w) > v(f) - € or ff N }. L. is a Borel subset of
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F X P(H) whose éVery f-section is nonempty., Hence, by
yon Neumann's thecrem L 16 ] we. can get a Borel functicn § on
F into P(H) and a Y-mull set N such that (£,p(f))e M for

all £ and (f, @(f))e L for all fg N', Let C be ordered
as  ty tg! ess o Let Fn denote thc se®wof all f€F such

fhat n is the smallest natural nmumbsr satisfying
S ulxf, hltn(h))@ (£)(an) > w(£,¢ (£)) - €. For each n and

£, choose a sefe ai auch-Ehat & 5= . Define a s.f a

n

te

Ay bxr]

by alx) = 1, alxfy) = ai(xfy) if f€F  ye€W and a=0

otherwise., #Also choose o€ % such that Polxr] = @(f) for all

f, Then (o,a)& D and it is easy to check that I(c,a)(x) >
Siv(sy-€] Y (af). 4s € > 0 4is arbitrary this proves that

UD(X) 2 [ o) Y (af) and completes the proof of the

theorem,

Remarks: (1) The assumptions that T = 2 can be relaxed to
some extent., We used only the fact that C is countabie dense
in 7 (xf) for all f., Similarly regarding the class of s.fs
permissible in D, all we need is that this admit a 'measurable’
continuation, The agsumption of boundedness of u mayAaiso be

dropped. The procf is also valid for instance, when T = 1,
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(2) In d.p. problems by using the above theorem we have

it

the equation U (s} = sup Uy (s.5)
0 - acea 70

= sup J Uy (syars') q(sea,ds').

at A ¢
In the total expected reward criterion, it 1is clear from the
stationarity in the problem, that UDO (542.5') = 7 (s,a:8') +

sup [lr(s,a,s') +
at Jis

+ B Uy (s'). Consequently UDO (s) =
0
+ MDO(S‘)] q(Sga|dS‘)-

#

In the case cf aVerage expected reward, UD (s,a,s‘) = UDO
O .

(s")
so that the optimality squation takes the form

U. (8) = sup S U, (s') a(s,a,ds').
Do € A Do ik

(3) In measwrable gambling problems considered by Strauch
{24] and Sudderth 126, 27], the above theorem implies that
(£) > sup S Uy (££9)Y (df'). Bub again Uy (£1')=0Uy (£')
yel (£) e, B
because of stationarity, Hence Uy (#) & sup [ Uy (£") Y (ar)
Yel (£)

also Up (£) 2 u(f) for all f. These two facts show, by a

1

result of Dﬂéins and Savage L9, pp. 28] that Up  exceeds the
i

utility U of the house. Since the reverse inequality always

U
D
L

holds U = UD_L, which shows that in a measurable problem it is
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enough to use measurable policies, This result was proved by

strauch [221].

Optimality equations play a crucial role in the study of
many other sequential problems, see G+ge 171,

We now turn our attention to the optimal reward le and
optimal strategies. Dubins and Savage have given neat
charécterizations of optimal strategies by studying strategles
which they call thrifty and equalizing {9, Chapter 3]. We
examine, very briefly, how far their results go through in a
measurable setting, We let & = (F, [, Ty u) be a standard
g measurable g.s in which u 1s bounded and T = 2. Let
o(x) = {(c, a): o€ £, ah and alx] is finite } for all x€ W

Let v denote VD. N

Theorem 29: 31‘3’ (o) (x) 2 3‘5 (¢)(x) for all o€ 3, x& W. If
(Fy, F) 1is a standard analytic space then v is the smallest
function w on W such that f{a) w(x) 2 [ w(xf) Y (af) for
all Ye [ {x) and (b) EEF(G)(X) 3_3% (6)(x) for all o€ %,

X6 W

Prcof: By Sudderth's theorem [26, 4,13, Jp (o)(x) = -
J e(xi h) Dyiy] (dh) where g(x3 h) = 1im sup u (x,nin),

D o= ®
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Hence %B’(G)(X) =1 I 33‘(6)(xf) olx, df).

From this eguality it is easy to see that

Ip (@) (x) = f EE-(U)(X, n|t(h)) olx](dan) for any finite stop
rule t, using an induction argument on the Eudoxus structure
of t. Consequently, for any s.f. a such that alxl] 1is finite

we hava

TB'(U)(X) = I‘EE'(U)(X; n|t (h)) oix] (dn)
& - X

alx]

<J v(x, hit (1)) olxd(dn) = I_ (ov a)(x)

alx]

So EE'(G)(X) g'fg (6)(x) for each o€ %, X W.

suppose (F, f) is a standard analytic space. Then v
satisfies (a) onfaccount of Theorem 27 and Vv satisfies
(b) as shown above. Let w be any function on W satisfying
(a) and (b). Since w satisfies (a) a result of Dubins and
Savage 19, pp. 28] shows that w(x) 2 Iw_(G,a)(x) for every

o€ % and s.f. a such that aix} is finite, Consequently

w(x) 2 3gr(6)(x) 2 38‘(6)(X) by (b). Taking supeemum over

all o€ % we have w(x) 2 v(x). This proves the theorem,
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Theoren 30. Let (F, F) be a standard analytic space, o€Z
and ¥x€& W. Define, for each n > 1, wn(y) = 1 if

u(y) 2 v(y) - and = 0 otherwise (y€W). Also-let
i =(h€ H: v(x, hin) = [ v(x, hin, £) o(x, h|n)(df) for all n_>_o}.

‘ L . W
Then i) J%(cr)(x) J_‘]; (o) (x) iff ?Dn(_d)(x) =1 for all n21,

H

and i) 3;(6)(X) v(x) iff Py ix] (L) = 1.

Proof: (i) follows directly from Theorem 7.2 of Chapter 3 in
Dubing and Savage (9]. We merely have to note that, in view of

Sudderth's result [Theorem_ 2, 26} and the universal measura-
il W,
bility of vy Jp(e)(x) = v(o [x]), Ty¥o) (x) = w (clx]) and

EEKU)(X) = u(ocix]) in the notations of [9].

(1i) & 1is universally measurable since v is so.

Moreover v(y) 2 [ v(yf) ¥ (af) for all Ye [ (y) and ye& W.
Consequently the required result follows from Theorems 6.1 and
6.2 of Chapter 3 in Dubins and Savage [9].

Remarks: ‘(l) Dubins and Savage call strategies satisfying

‘3‘3 (o) (x) = FE (o)(x) equalizing and those for which
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-V ' . )
iy (@)(x) = v(x) thrifty. Blackwell l4] has given-highly

ingightful in erpreﬁations of these two properties. He also
observed that in discounted and negative d.p. problenms, witﬂ
fhe criterion of total expected reward, every strategy is

" equalizing. In the discounted this fact is clear from (i)
of Theorem 30. To prove it in the negative cage, one needs
an extension of the theorem to urbounded u which is easy

but we shall not enter into it,

(2) It is worth noting that thecrems 27-30 remain valid
in the situation considered in Ornstcin [21] - 1,e. where

each Y - in r_ is a discrete probability and F= s(F).

Sudderth [27] has proved that in leavable gambling
houses which are also measurable there exist (p, 6) optimal
stationary strateglecs., We briefly indicate, without proof,
an extension of this result: suppose & = (F, Far®, u s
a standard F measurable g.s. such that (Fy F) isa
- standard analytic”space, T =22, u 1is bounded and
D(x) = £X & (x) where A(x) = {acn : alx] is finite}.
Assume, as in theorem £21, that for esach n 2 1; a subset

Cn = {ilg es sy ik} of {l |2 YERE! 1’1? iS given SuCh that
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u(fy1eeer £) depends only on fil...,. fik and

Cn+l (: ‘L U {n+1} ’ Supposc there¢ is g Eorel measurable

¢ s W =2 PE) satisfying (1) ‘(?('x)e [~ (x) for all x and

(1i) for any o¢€%, x€ W the strategy o' defined by
c'(y) =oly) if y #x and o'(x) = §(x) 1is such that

ED(G)(X) = u(x). Under these conditions we have the following

theorem, A proof can be given along thc limss of theorem 3 {27].

Hheoren 31t Given any m 2 1, D€ P(FY), € >0 there exists a

o*€ & satisfying

(a) p({xe ¥ : Tylo¥)(x) 2Uyx) - €}) =1 and

(b) for every n 2> 1, o*(f,4e0.y £.) depends only on
1 n

T te st .o

By setting ¢(x) = a(x) m=1 and C = {n} we get
Sudderth's theoren.

We shall conclude this section and the¢ chapter with a very
brief reference to continuous garbling systems. Maitra {17 ] has
proved the existence of stationary optimal plans in discounted
d.pP. problems when the action space A 1gs compact, the reward

function r(s, a) is upper semicontimuous and the transition
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function ¢q 1s continuous. He uses ajselection theorem

due go Dubing and Savage L9, pp. 38}, The selection theorems
of Kurafowski and Ryll-Nardzewski {12 ] may also be

uged in this connection and {hey yileld slightly stronger
results. Certain extensions to more general continuous

gambling problens are also possible.
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CHAPTER II

!

0., Introduction:

In this chapter ﬁe study some gambling problems over continu-
ous time. We do not attempt to formulate these problems in as
general terms as we did im discrete tiume, put content ourselves
withidiscussions of certain special c¢lasses of them. For

this reason we find the terminclogy of'dyn&ﬁic programming
(d.ps) more sulted for our purpose than the gambling

terminology.

We first consider a continuous-time d.p. problem which
admits of a treatmsnt by discrete-time methods. Suppose we
have a system with a state space §£. We are allowed to
observe the states of the system and choose appropriate actions
at discrste, randomly chosen, points of time. We start in a

state Xq £ 83 we choose an action a from a given set A

o}
of actions available to us and also decide an instant t_ > C
at which we shall next observe the system. The gystem moves
according to a transition mechanism ql(t, X, 1 g1 ) and et
each instant t upto time to we receive a reward

r(xt, aO) if x; 1s the state at time t. If the state at

-92-
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time té isg Xq then we choose aq £ A and tl > 0 depen-

ding on X r 25t to and Xq and observe the system next at

time to + tl; For sach ¢t, to <t £ to + tl we get a
reward r(xt, al)ﬁkwhere Ty is distributed according to

q(t - tor Xy1 agy fl and so on, We wigh to maximige our
total expected re@ard over the infinite future. In order that
the expectations exist we shall discount our reward at time t
by the fact&r Bt. The resuylting problem is a very natural
extension of the discounted d.p. problem of Blackwell [ 1]

froﬁ the discrete time to continuous time. Our methods are
also stralghtforward extenmsions of ‘those used by Blackwell [ 1]
and Strauch { 6]. A fairly-complete treatment of the finite
cagse (i.e. 38 and A finite) using the average expected cost

critericn, over continucus time, was carried out by Jewell [ 5]

Howard t 4] and Chitgopekar { 2].

The above problem is spscified by 4 objects : S, 4, q
and T, We assume & and A to be Borel subsets of complete
separable metric spaces. Let .. T be a bounded Borel meagurable
real~valued function on SX A4 and g be a function on
L0, =) X sXx & X g into L0, 1] satisfying : |

i) a(t, x¢ a, +) is a probability measure on the class §

of all Borel subsets of © 3
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i1) q(+, ¢y *y E) 1is Borel measurablej
iii) q(t + sy %, ay E) = [ q(t, xy 2, dy) alsy ¥y. 2y E) and

iv) a0y ¢ 8y B) = Ig (xS for all t 2 0, s 2 0, x€ S,
ae A.' EB g-
% S
We shall use the notations of [Le6 ] without explicit
mention., Let B = (0, =) X A and regard gq as a transition
function on § given SX B -~ i.e. q€ Q(8|B)y 4 plan =

is defined to be a sequence (ﬂb, Ty 4 ﬂ?. .s. ) such that
n.€ Q(B|X,) where X = 8B... 8BS (2n+ 1 factors), n 2 O.
Each % defines a e €Q ( (){8) where {) = BSBS vuuy
namely ep = R A B eee Dencte the coordinate functions
on 8 () by x(agitde xpr (ags t9)v oo o We shall

call ® to be complete if 5 t, = = a.s, with respect to
ji=o ‘ ‘

e (e

. x_) for each x € 8. # 1is said to be separated if

©
for some 4 > G 1t is true that &, 28 for all 12 0 a.s

under eﬁ_(-txo) for each x_ € 8, % 1is said to be semi-

Markov if for each 2 % 0, m, (o Xt 8ot boreenxy_qran 10t 0

depends only on Ko PN ti' X It is said to be Markov if
i=0
T (ofxo, 8u1 boveees Xy g2 90 Comlt xh) depends only on

nel ‘ :
% % ¢ X, for n 2 0, A Markov # 1s non=random if for
i=o = =

some g » O and for each n 2 0 , there 1is a
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£t {0, »1 X 8 => aXx [a, =) such that
z n=1 il 1L
i (°lxo. P | xn) = f, ( % ti' xn) and it is stationary

if fn = f for all n 2 O, ’

\

1. Optimal rewardst

T

Let =% = (ﬂb. Tt oeee ) be any plan. ‘We shall now define

the total expected reward from =, Define

¢ : Lo, ») X sx () —> R by

-]
- -t , o | :
¢ (t, X1 w) =ae [ r(y, an)q(t - % tie Xpe apy 4y LV
n-1 n : e i :

z ti 46 4" 2% ti' and = O otherwise, where

i=o . i=o ' - ' : ]

W = (racl to't Xl! ‘8-3“1 'l-:l'iov-.o ) and t_l = Q,. Clearly ?
is Borel méasurable and we let

I(m)(x) = fm S -Q(tt % w e (+]x)at.

° M ;
I{n)(x) 1is the total expected reward from =% starting at
the initial state =x. Let v} = sup I(%) where the
supremun is taken over all plans =, Similarly let v§ and
v denote the suprema of I{®) as = ranges over all
complete plang -and separageh'plans reSPedti;ely. Plainly

x> vt
vy 2 Vl 2 V5 .
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It is easy to see that 'v% and ivi need not, in

general, be the same. For example: let § = L0, =), A be
a singleton; let q(t, x, a, *) = 8(x +t) for x 20, t 20

1 if 0 x €1 and = -1 otherwise. Then
2
8

and r(x, a)

vk (0= 1 -

O H

and v{(0) =1 -

‘& Now we shall show that vf = VE in aﬁy problem, Let

(s, &, 9, *) Dbe & given problem, = any complete plan,

x,8 8§ and € > 0. We have to find a separated plan m*

such that I(ﬂ*)(xo) 2 I(n)(xo) ~ €, Let u denote the pro-

bability en(-lxo) and M the supremum norm of r, Given

any # > 0 choose N > O such that M 8" < 4 and also

choogse k 2 0 such that u ({ 'go t; 2 N}) 21 - 1n., Then it
j= :

is easy to seé'that, for any plan =®' which agrees with =

for first k+1 coordimates (i.e. _ni =n, 0<1ig k) we

have |I{#)(x,) - I(n')(xo)l £ (8M+ 1), Also for any #' > 0
~and k2 0 we cam find a o 2 O such that

(L £, 20,041k 21-n'. Fix % and %' suitably

small, depending on €, and define ™ as follows:
w (hy, €) = % (hy, CO (AX t;’?f =))) +:(" Ic(a: 9) E(hi'da)

where C is a Borel subset of By hy€ X,y 1 20 and 8, k
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arc chosen corrcsponding to #'y, . Thus the distributions
of t; are truncated beclow at &8, It necds a straightforward
computation to verify that I(ﬂﬂ)(xo) 2 I(n)(xo) - & for

properly chosen m, #'. We leave the details to the reader.

Even though v = v§ in any problem there may be no i
separated plans which do uniformly better than a given come-
plete plan. We give below an example in which an optimal com-
plete plan mand a pe P(8) exist such that forany € £ 1 and

separated plan =n', p(f T(m) > I(xm) - €]) < 1.

Let 8 = [0, =), A : the set of natural numbers and
q(t, x, ay =) = a(x +t) for all x€ 8, t 20, a € A, The

reward function r is such that r(x, a) =1 Iif

x 1L 1
L+t+.+lgx 145+ ... +F and = 0 otherwise.
Define m as follows: ﬂn(' l-Xo'ao'to""'Xn-l’an-l'tn-l'xn)
: 1 1 Rl 1l
& ra((an,' t,)) where 1 %3 +...% a1 & X % t; <l+g ¢
+ o & 3t - and t_o =l #2244 .0+ wx = 7 .,

= ay - _ n 2 an o 0 *
(n20). Then = is a complete plan and I(®) ® 1 so that

% is optimal. Let p be any probability measure on the
Rorel subsgets of 8 which is absolutely continuous with

respect to the Lebesgue measure A. Let &' be any
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separated plan and € < 1. Let &% be the seallest strictly
positive number such that

i o ; x1= |
e J({t; 2 % forall 120%)| x]=1 forall xes.

Choose a* § L such that L ¢ 3 . Then for any a > a*
and x& L1 + % + .. * E%T y 1+ % ¥ Jo. * %) we have

3 1

6%_-— ] -
() (x) ¢ /2 8at+f 8P at=1-3%(e?- 1),
\ 0 ok ‘

Consequently if a < L 5 .'I(ﬁ‘)(x) < 1= € eond so
‘ Log (1 +€e )

AL I (x) 2 (m(x) - el #o,

=
LAfter these preliminary observations we turn our atten-

tion to the measurability properties of these 3 reward
functions, It is easy toc see that these-functions need not be
Borel measurable. Far example: let 8 =1 UL¥X.Iy HEX
where I denotes the interral LOy 1] 3 1let

q(t, X;, Bl st =.5((::£. a)) if XG I and q(t,(xy y),a, ) =

a{x, ¥)) if (x,y)eIXTI for t 2 0, a€ A, Fix a Borel
subset C of I X I whose projection D to the first coor-
dinate space 1s non Borel and define the reward function r
I{x: y)) if
(x; y)€IX I for a€ &, Plainly, v%:‘vﬁ:vg and V¥ on
I 1is the indicator function ID of D. Consequently the

It

by r(x, a) =0 irf x€ I and r{(xy ¥v),.2)
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optimal reward is not Borel measurable,

However the reward functions are universally measurable.

- To show this, it is enough for us to note the following
points:t (i) The set Z, = {(x, ¥ = eﬁ(- x) for some

plan % § is a Borel subset of 8§ X P(()) where P((D)

is the set of all probability measures on the Borel sets of

(). strauch's theorem [ 6, Lemma 7.2] can be used directly

to prove this fact, by working with the action space B,

(11) The set E=4{pue P({) ): w (1 020 ty = o] = 1 }
1=0

is a Borel subset of P (()) and for each m > 1 the set
E = {ue P(CL): w(l ty 2 = forall 130]) =10} is

also Borel.
(iii) Define wu ¢ [0, =) X § X A X {0, ») =—> R as follows:

' t :
u(s, Xy 2, t) = 8% f 8 f r(g, adq(v, %y 2, dy) dv. Then

o

u 1is Borel measurable and so the function g: 8X Iil——é R
. . oo n-1
defined by glxy w) = £ ul & t., x., a.¢ t.) where
o0 j=o 1T spmt ot g

XO = acnd_ = (ao‘ to‘ Kl‘ al‘ tl‘..n ) is alSO ‘.B:O'J.‘Ql

measurable. Observe that I(®m)(x) = f g(x, w) en(dudx).
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(iv) Let = = 2.0 {(x, )i x€ 8, u€ E yand

-

V4 ,
T, = I 0 {(x. M) XE Sy uE E, for some m 21 } . It is

ea;% to sec that vi(x) = sup J glx, wuldw)
wixaple 25

-

i=0, 1y 2, Conscquently vﬁ's are universally measurable.
Imitating the proof of theorem 8.1 in Straugh [ 6]
we can also show the existence of (py €) optimal rlang fer

v and vﬁ criteria, i.e. given pe€P(8) and € > O thsre

gxists a plan n and & complete plan &' such that

p(lI(m) 2 v§ - €]) = 1 and p(lI(=") 2 v - ¢]) = 1.

However, aé_the example on page 97 shows, a (p, €) optimal

scparated plan need not exist.

2, Stationary geparated plans:

Ls in the discrete-time situation, we shall show that
semi-Markov plansare enough in continuous-time problems also.
Our procf is an obvious modification of Strauch's proof of

the corresponding result in discrete time.

(i

Theorem 1t  Given a plan =® there exists a plan w* which
is semi-Markov such that I(#*) = I(w)., If = is complete,

™ can be chosen to be complete and if n is sevarated,
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®* can be chosen to be separated.

& . :
Proof: Let m be the conditional distribution under ey
n~1
of (apr ty) given x,. i§o tis x¢ for each n 2 0. We

shall show that for any Borel measurable function w defined
on SX [0, )X 8X AX {0, ©)X & and any n 2 0,

n=-1

e, w(xo, i§ tl. Xgdp: tor Xpep) =

‘ . h=l '
eﬁ* w (%, 1§o bir X age T xn+l). The assertfon is
cleariy true for n = O since % = e Assume that we

have proved the assertion for all m < n. Using the letter
E to denote conditional expectation under .

Nl

Cg W (xo' % Tie Xpr apy Ty Xn+l) 0

n=-1
E[W(X ) 2 tl' Xn| a rtn] n+l)| X]

n-1 n-1
B {E[ w(x, E tyr X an' to xn+l)|xo. S‘ti.x ]|x

Qe

-l
E w'(xo, % tis xn)l X . where

H

o]

n-1 n-1 ' =
W‘(XO! % til Xn) B [W(X ® % o 'X !an'tn'xn"‘l)lx ' gt ,xn]

H

n

= ”ﬁ qa w by property of conditional

ne=1
distribution. &lso w'(xg: g tl, X, ) can be congidered as
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n-2
a function of (x» g tye Xpg0 890 by 90 X)) and then
n-1
using the!induction hypothesis E {w‘ (XO, % ti' xn)lko}-z

-1 ' : .
eﬁﬁ w'(XO| % ti' Xn) = S ﬂ% aw ?

n-1
= en Wiz, % tir X apg by Xn+l)' Thus the assertion

has been proved for all n 2 C,

|

- t_ \
Now, let uls, Xy as t) = 8> f &Y [ v(ysa)a(vex,a,dy)dv.
@]
co Nn=-1 i
Then I(‘if) (X) = nfof U.( % tia an al’l‘ tn)en(° IX)
o n-1 :
= niof u-( g ti' Xn: anltn) (e,mg('IX) = I(ﬂ*)(}().

From the definition # 1is semi-Markov. Note that the dig-
[ea]

tribution of & ti is same under bhoth e'Tr and oy So
='e : &

if % dis complete, m 1is alsoc complete. It is clear that
if tn P a.Se. under e thé same is true under e .
Conscguently = 1ig separated if 7 1is. This completes

the yrocf.

Iheorenxéé_ Given a separated plan =, p€& P(8) and € > O
there exists a separated Markov plan #®F such that

p(L I{#*) > I(n) - €]) = 1.
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Proof: Tet 9 2 0 be such that t 2 9 a.s. under _
ex('lid for all 'n 2 0. and x€ S. If #' is a plan which
agrees with = for k coordinates i;e. 1_35_ = W
0 i<k then (@ (x) - (=) ()| ¢ s5% M where M 1is
the supremum of |r|. Consequently we can assume that = is
already Markov from some point on, say n > N. 8o let

n= (Byreoer Tye Sy fyepr oo ) where £y [0,%) X § —
LOy =) X A are-Borel functions. We ghall now show Vt.hat for
any % » O . there is 'a Borel measurable function

£yt L0, ) X § =3 L0y =) X4 such £hat

o({ I(#") 2 I(%) - 5]) = 1 where .

” nl = ( ﬁo'..a! T;N.-l' fN' fN+l' ‘.oo_)c_ Using thiS faCt N

tines with = = % produces the: necessai'y Markov m*,

N-1
| e B %
We write I(mw) f'= ndq Tq eee Ty qq (Y +e maGi yd Us)

whers 'ul(xo. agr boreeay XN—l'aN-l'tN-l'XN) =

=1 Mn—l

=5 T t.y X ¢ a t)
. n.._r 1_ l' nl n! 1
N-1 tN i

g % £ Xpag. J‘EN' erz'-l)‘ﬁ _g s" [ r{yeag)qls 1Xyeagdy)ds+

!

* e L,l I‘('T'!-)‘(}\EN+1)_-- and ® = (,fN:l-l‘ Tyegts-+) after time

Hel .
“E ty. It is onough to find £y such that
0
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(*) P p Qf\;ofoou nN"l quw 2_ ‘ﬂoq * s ﬂ:N»quW— 'n}:l
\ - z B , i
where W = e G f 112(XN| aNt tNt XN+1)Q(tN| XNg aN'de+l)'

Congider the probability m = PR, 4 ees Ry ON
SB 4us .SB (2i+2 factors). For any fy,
2y = HQ ese Td Ty W (xo) is a version of the conditional

expectation
N=2 g N=1
E(W( g tit XNl fN( g til XN))IXO )

and 25 = W q ... Ty 4 ®y W (x,) 1s a version of

N1l o
Blw( = tiv Eyroag tN)[xo). If we choose fy so that
G
Nel N=1 N=~1
W ( % ti‘ X fN ( % tif XN)) 2 W( % ti‘ XN' any: tN)- Vi1

vith probability 1 then z; pd Zg with probebility 1 and conse-
quently fN satisfies the required condition (). To show
thal such an fy exists we use the Lemma of Blackwell [1l,sec.2]
by setting ¥ = L0, =) X 8, Y= AX L8, »), u=w, € =% and

q = the conditionsl joint distripbution of (ay, ty) given

H-1 ‘ ) Sy

( % tyr ¥ under m The degenerate fy that we obtain
from the lemma alsc satisfies g 2 9., This proves our result.
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In the case of complete plans, we can get slightly weaker
resul;(‘;s using similar methods but we shall not enter into them
here. The example in Blackwell il,Ebcami)ié 3 ] of a plan which
1¥an not be €-dominated by a Markov plan serves also as an
examole in continuous-time to show that, irl general, we can not
restrict ourseglves to policies = where LS depends only on

n~1
( g tir x).

Let I be ahy Borel-measurable function on [0, =) X §

into A.X-{ih ) where 8 » 0. Let g dencte the space of

all bhounded measurable functions on ” {0. ) X 8, We shall

define an operator L(f) on M into M.
'g(s'x)

(L(£)v)(syx) =85 f &by r(y.h(s.x))d(t,x.h(s,x). dy)dt +
0 .

+ 35°8(81%) § y(gag(s,x), yalels,x), x, h(sx), ay)
for any :in}:{ Whire § = (hyg), h: 'l'.O'lm) X g~ A and
el iO, o) >< & => {9, ©»). The following properties of L(f)
are imsediate: (1) L(£)vy 2 L(f)v, if vy 2 v,

(11) L{£)(v+ec) ¢ L()v + 3% ¢ for any constant c > 0j

{iii) for any Markov plan =% =-(fo' £11 Tg0 een T

(L(£Yv) (o, x) = I(f, m)(x) where v(t,y) = I(=)(y),
t 26 and (f, ®m is the plan (£, £, Dy i 5.8 B
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‘For any separated Markov (non~random) plan
T = (foa fl' f;i e+ ) -we shall say that a Borel function-
f on iQ, =) X 8 into A X [0, «). is a~generated if the set
L0, ») X 8§ can be partitioned into Borel sets By Eiv By wes

such that f = f on B/ (n 2 0). A separated Markov

n

HIREE ) 1is said to be m-generated if each £l is

"-geneMted. With each separated Markov =« &ssociate the

TC! = (fég f

operator T(®) : M ~——> M defined by T(m)v = sup L(f )v.
B - | n2o
Important properties of this operator gre contained in the

following

Theorem 2: (a) T(=) v; 2 T( x) Vg if vy vy € Mo vy 2 Vg

(v) There isa 8 >0 such that T(m)(v+ c) < T(®)v + 5°¢

for any v€ M. and constant ¢ 2 O,

(¢) For any w-generated £, L(f)v £ T(®m)v for all ve€ M.

(d) For any ve M and € > 0 there is a ®-generated f such
that L(f)v 2 T(=m)v- €,

(e) There igs a u*xe M such that T(m)uw* = u*,

(£f) For any m-generated Markov plan &', I(®')(x) < uw*(0,x)
and for every € » 0 there is a m-generated f such that

T(£T) 2 T(w) = e
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& |
Proé%: (a) is immediate.
(b) Since 7n is separated there is a 3 > O such that g 2 9
for éach n > O where % = (fo"flr"') and f = (hn, gn).
" ®nen it is easy to see that T(m)(v+c) ¢ T(m)v + éa.c for
c 2 0.
(¢) Let f = f, on E where' E;'s form a measurable parti-
tion of [0, =) X 8. Hence (L)) (sy x) = (L(fn)v)(s.x) if
(six)€ B . 8o (L(£)v)(s,x) 5 (T(R)v)(s,x) for all (s,x).

(d) Let E, denote the set of all (syx) in [0,») X § such
that n is the smallest integer m 2 0 such that
(L(£)v) (s4x) 2 (T(#)v)(s4x) - €. Then E 's form a measure-
able partition of L0, ) X S, Define f = f, on E_.. Then
f is mgenerated with (L(£)v)(syx) = (L(£)Vv)(s,x) on E
and so L(f)v 2 T(xw)v - €.
(e) M 4ig a Banach space with the supremum norm
v il= sup |v(sux)].
. S5 X .
For any vi: Vg € M vy £ vy + {| vy - v2|| and so by.(a)
A -3 .
T(w)vy £ T(m) (v, + llvl,- voll ) £ T(m)v,+ e .l]vl- v2H
using (b) for the second inequality. Interchanging the roles of

& > 0, this shows that T(m) 4s a contraction mavvine on M.
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Hence by Banach's fixed point theorem, there is a unique u*€ M
such that T{(#)uw* = w* and, in fact, for any ve€ M,

TR g) v —=—> wk,

(£) Tet =" = (fly fiaeen Y and for each n > 0 1let un(s,x)
denote the expected income from the policy (fﬁ+l' f£+2. s T

starting from x at time s. Then

(=) (x) = (L(fé) e e L(fﬁjun)(otx)o gince %' 1s ®-generated
each L(fi) ig a contraction with modulus éat So

HLCeg)y oow LEDw, - L(EL) ouw LlEDwe || < 870 [l uy, - wr]

2% (e [T+ llwrih. Thus (L(£2)v..L(£wF)(0,x) =>

I(m){(x) as n—=> =, gince each fi is ﬁ—generated.
L(féj',., L(fi}@* < T(x) uw* and W being the fixed point of
T(®),T(n)u* = wf. 8o I(=')(x) ¢ ux(0,x).

Given € 2 0O chooge a m-generated f such that
L(f)u* > T(mu* - € = wk = €. Hence LZ{f)u* 2 uw¥= € for each
n>l, As L(f) = T(£f®) ang TH)ur converges to the unique
fixed point w% of T(fm), we have w* 2 u* « €, But
w(0,x) = I(f”j(x) and -ux(0,x) 2 I(m)(x). 8o
(") 2 I(%) - €. This completes the proof of the theorem. %

Bz we mentioned at the wery beginning our treatment


http://www.cvisiontech.com

-109~

imitates that &f Blackwell L 1] verbatim  But there are
several interesting‘side-problems which pertain to the fact
that the'states véry continuously over time and consequently
do not arise in discrete-time. We do not enter intc them
here. We are not also discussing the important special cases
of countsble or finite state and action spaces, 4&s we remar-
ked earlier, when the state and action spaces are finite and
the criterion is average expected cost, the problems have been

analysed gquite extensively by Chitgopekar L 2 1 and others.

%

%, Continuously Varying ictiens:

We now consider problems in which both states and actions

vary continuously over time. A& plan in such a case specifiés
an action st each instant of time depending on all previous
states and actions, ©Since the existence of a probability
measure e corresponding toc a plan 'ﬂ ig then difficult to
gestablish even for relative;y simple classes of plans, we shall
nake several assumptioné on the problem. The resulting problem
becomes cgsentially a stochastic control problem. However our

assumptions are weaker than those usually made in control

theory and our approach is also different.
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We assume that the state space § is the m-dimensiomal
Euclidean space R and the action space & is a Borel subset
of a complete separable metric space. Corresponding to the
transition function g in discrete-tinme, weragéume_that certain
diffusion coefficients ‘ai.j(x), 1¢1, j&n and bj(x,u),
1< j<m are given for x€ S, u€ & such that the following

conditions are satisfied:

i) The maps aij: S —> R are bounded continuous and the maps

bj : 8X L —> R are bounded Borel measurabls:

" ii) The matrix a(x) = ((ay; (x))) 1is symmetric and there is

5 K <o suchthat 0 ¢ < ©sa(x)e > < K|6|® for all ¢ R®

x€ & where < «, ¢« > denotes the inner product and |+| the norm
in R®. We arec also given a bounded Borel measurable reward
function r on 8 X 4. Thus the problem is specified by m,

e W o

We first consider Markov plans.‘ L Markov plan is a Borel
‘measurable function u on {0, ») X 8 into A. For each such
u define by ¢ L0, ®) X 8> R by b (t.x) = blx, ult, x)).
We wigh to find a probabilify measure Px for each x€ 8§ such
that, roughly speaking, the evolution of the states x(t), t20
under P starts from x(0) = x and at each instant t has

local covariance matrix % a{x(t)) and local drift vector
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bu(t, x(t)). We take the underlying measurable space on which
P should be defined to be (), £ ). is the space of all
continuous functions on {0, ) intc & vanishing outside
pounded intervals and T is the class of Borel subsets of )
when () is squipped with the topology of uniform convergence on
compacta. L&t =x({t,w) = Q(t). t 20, w € Sﬁl denote the coordi-
nate variasbles. ({)y £ ) 1isa stahdard Borel space and % 1is -
the smallest Borel structure for f:l mak;ng x(t), t 2 0 nea-
gurable. The condition on PX thét we stated'above_can now be

formulated as a stochastic\differential equatidn of the form:

ax = b (t, x(t))at + o(x(t))dp where o is the positive
 square-root of the matrix a and $ is a Brownlan motion on
mrdimensions. We find it more convenient to state it differently

following [ 7 1.

Dafinition: Let u be a Markov plan and X€ 8. We shall say
that a-probability measure P on ( (), =) corrssponds to
(x,u) if, for each © € R, the family'{Yg(t) st 2 O} is a
P-martingale where Y, .(t) is defined as followsz '

| e ' t i in
Y (t) = expi< 04 x(t)= x(0)2~ < 8, [ b (s4x (s))ds > -
I fo) : ’

.1 B - :
-5 [ <0, alx(s))e 2 as]
B Oi .

end further, P {x(0) = %] = 1,
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The martingale condition above is equivalenf to the
stochastic differential eQuation of the last paragraph in case
a is upiformly elliptic, i,e. iftthere exists K" 20 sﬁch
that < 6, a(x) @ > ,g'k'_lelg for all x€ 8, . 0€¢ R%, This

is a result of Stroock and Varadhan [ 7, Corollary 3.2].

If there is a unique P corresponding to (x,u) we may
deflnc the expected reward by using u and starting from x,
as the integral f 3% [ or(x(t), ult, x(t)))dP dt. We must
therefore check thct there ex1sts one and only one probability
mea suUre corresponding to any _xe S and any Markov plan u,

- Thig fact follows directly from the main resultlof Stroock and
Varadhan { 7, Theorem 6.2 1. The unigue probability i
corresponding to (x,u) is denoted By .P; and let
I(w(x) = & [ r(x(t), ult, x(+))) ap? at.
o : .

Ye shall show that for any fixed wu, I(u)(x) is a
measurable function of x, For this, it is enough to prove
that P; is a measurable map of X4 It suffices to show that
PgiEX(tl}G'Blg..,. X(tn)e'Bn] is a Borel measurable function
of x for every choice of Borel -subséts Biteeor By of . 8
and 0 £ % < ...e<.tﬁi ‘Bince f{x(t)= t i‘djﬁis a Markov -

‘process under P; £7 ] we shall beldone;if'we prove that
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P(s,y,t.B) is a measurable function of y for each O {g<t a
and Borel B (: S8s where P(s,v+t:B) denotes the:transition
probability: P: ix(t)e Blx(s)l(y). In fact Stroock and

Varadhan L 8, Theorem 7,1 ] have shown that P(s,y,t,B) ts

s continuous function of (s.y). Thus I(u)(x) 4is a Borel
measurable function of x. Let vk (x) = sup I(u)(x) where

supremum 1s taken over all Markov plans U.

Let u be any fixed Markov plan, Partition {0, o) X 8
into cubes of the type Ck.nl,.... n = [k, k+l) X [nl.n1t19><

.. X in, n +1) where Dnjs...y Ny, k are integers and

k 2 0, On each of these cubes we can finda Vi . ., o

which 1s a Borel function into A of Borel class 3 such that

u = a.e. relative to Lebesgue measure. This fact

Vk,nl,..,, n
can be proved along the same lines as Theorem 10 of chapter I.

thnlguuc |nm

ont C. .. Then v 1is of Borel class 4 and U = V ZeLw
K,nlgoog =l’lm. .

Define v on L0, ») X 8 into A by setting v =

We shall first show P> = P for all x€ S. Even though
thig c¢an be verified directly we find it easler to derive it
from the more gemeral results of Stroock and Varadhan

{ 8, Corollary 9,3 ] by setting: s =0 b =bp

v and b = bu
: n _ gV e ~ pH n
so thst POtx = ?x- for all n Po.x Px and Po;x converges
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: : u_ Vv
to Potx implies PX "_Px .

Next we prove that I(u) = I(v). Observe that if

r{x, u)l did not depend on u€ A then we have already esta-
blished this equality since P. = PJ. Since u=v a.e.
rclative tc Lebesgue measure there 'is a Lebesgue null set N
such that wuls.x) = v(s,x) if (s,x)ﬁ'N. If P(b, x4 b, *)
denctes the transition probability under P;; then it is
shown in Ssction 8 of Stroock.and Varadhan [ 8 ] that
P(o, %, ty, *) Hhas a density for almost all t. I.e. there
is a one~dimensional Lebesgue null set Ny such that for all
t £ Nyr Plo.x,t, B) = é ployx,tyy) N (dy)y B (C 8, for a
suitable Borel function plo,x,t,*)i A denotes the m~dimen-
sionai Lebesgue measure.

o

Now I{u)(x) = f gt S r(x(t) yu(t,x(t))) dE;’dt
(0] "

and [ r(x(t)), u(t.X(t)))dPg = é r(y, ult,y)) Plo,x,t,dy)
= [ r(y, u(t.y)) plowxetay)r (dy) for all B W o

Hence I(uw)(x) = [ Et,f r(yt-u(t,y)j'p(o.xlt,y)l (ay)dt

. - c 5 J

N3
f 8% 2y, u(tay)) plosxetey)h (dy)dt

XS j
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= f 58 2(y,ult,y)) plosx,t.y)n (ay)dt
(N%XSMlW

= S 8% r(y,v(t,y)) plowx,t,y)r (dy)dt
(vg X §) ow°

oo

S8R ex(e) v(Ex(9)) @Y at = I(v) ().

o

Thus we have proved the following:

Theorem 3:  Given a Markoﬁ plan u there exists a Markov
plan - v such that (1) v is of Borel class 4 and

(1) I(u)(x) = I(v)(x) for all x6& &.

Uging the above theorem we shall show that the optimal
reward over Markov plans is a universally measurable function,
Theorem 43 vF{x) = sup I(u)(x) is a universally measurable

= o
function on 8.

Proof: From theorem 3 it follows that v*(x)_:.s%%:I(u)(x)
u

where C denotes the class of all Borel functions on

L0, =) X 8 intoc A which are:of Borel class 4, Choose and
fix a Borelimeasurable function U defined on ‘I X[0, «) X §
into A, where I = [0, 1], such that each u€ C -is a sectlon

U(z, *) for some z€ I and conversely each U(z, +)e C.


http://www.cvisiontech.com

i

§ Then v{x) = sup I(U(zi +))(x).
i z€1

Consequently it is enough for us to show that I(U(z. 1 (x)
s

is a measurable funetion of 2z and x.

Let P; dencote the measure Rg(z' *) on . We shall

first show that the map (x, z) =2 P; ig Borel measurable.
"Let t 20 and B be a set in X which is in the o~algebra
Zy “generated‘by {X(s), 0 s <t } . It suffices to show
that P;(B) is measurable in x and z. For this, we make
use of a result of Stroock and Varadhan {7, Theorem 6,2,] in
which the density of P; with respect to Q. on I is
given, where Q is the measure on X% whigh corresponds to
the diffusion coefficients ta, 0}e According to the expres-

sion given therein, PZ(B) = é f(zyw) Q(d ©) where

t
flzew) = exp LS < b, (sew)y 5 (x(ss 0) ax (s) > =
0 :

pol=

t
S b (sew), BHxls, 0)) b(ssw) > ds ]
0]

and bz(s.ua) . b(x(sy w), Ulzy sy X(S.(U)));

Now bz(s.cu) is a measurable function of s,z and w and
so f(z, w) 1is measurable in z and w Moreover x =—> Qe
is continucus and this implies that 'P§ (B) is measurable

3 A
Al 2R 2 A
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'lNow‘ (W z, ))(x) =-f‘g(z'-w) P; (dw) where

g(zaw) = lfm gt r{x(t,w), U(Z|t|X(t| w)) dt. As g 1is = -
o 5

measurable function of =z and @ and P; is measurable in
x and z wec may conclude that I(U(z, ¢))(x) 1is a measurable
function of x and z. This completes the proof of the -

theorem.

The following result is of intérestvin many cases.

Theorem 5:  Suppose b _and . T are continuous functions.on

— TS

X A, Let ={u :n >()} be a sequence of Markov plans such

€3

thet uy, ~—>u, in measure (i,e. Lebesgue measure on

L0y @) X 8). Then I{u Mx) —> I(no)(x) for all x.

Proof: 8ince b is continuous. b —_— b in measure as

Uy Yo
n —=> oo, Thcn, using the result of Stroock and Varadhan is,
T
orollarf 9.0]. Px —_— P in the sense of variation on

cach Et-

Lect x€8 and € > 0 be given., Choose T such that

ri <%. Choose W31 _such that for any n > N the

~T
€

total variation e of (P O ) on Zp 1s at most

I' .
Lo

é?ﬁ%:ﬂ‘ Thenﬁfor‘any n 2 Ny
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T

u
TGg) () = T )| < | [ 8 ne, x(ea n” at -

T u X
-t b 0 £
s £ e ro(tg x(t))dPx dt | * 5

(where rm = ru )
. m
T

T u ' u
<l fretrarlat- et ap°at| +
o o

pojcm

T s U,
£ [ e |rn- rOI apP " at +

g

| un YUy I -~ éuo '
S N N R TS ENLIAR RS

o
T u

£ ~t 0 £

< 3 +'£ S & |z, - rol d P dt+ 3.

uO
il P
i rOId P° dt

Hence it is enough to show that fo gt | r
: )

converges to 0 as n => ., This is easy since
rplyy v) —> r (v, v) converges in measure and the trangition
probability PIO(0, x, t, ) corresponding to on has a
density for almost all t., This completes the proof of the
theorcme

As a digression we shall prove the following result

which corrc¢sponds to Lemma 7.2 of Strauch {6].

Thecorem 6: Let M ={ix, M) 2 XE 8y, u= Pg for some Markov
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plan u } o« Then M is an analytic subsget of S X P((:l)
where P(I:l) denotbs the set of all probablllty measures on

(L1 ).

Procf: By the proof of theorem 3 it is clear that

M= {(X, L)t xX€ Sy M = P; for some u€ C }-. where' 5,
denotes the class Markov plans of Berel class 4, As in the
proof of theorem 4 chocse a Borel measurable function U on
IX i0, ») X § into A such that ¢ = {U(z. )i z€ I}.
Then clearly M = Proi '£(X. Ky Z): XE Sy M = PE(Z") . 2€ I}

-~ where Proj denotes projection to the first two coordinate

aXxXeSe

PU(Z; ')
x

saying that ~{Y§ (t)y ¢ 2,0‘}-is.a g= martingale for all

Now the condition N = is equivalent to

8¢ B?. and uix(0) = x} = 1. Here Yg(t) refers to the

defining martingale for the plan U(z, *). Observe that
YS (t) is contimuous in t and ©. Hence it is enough to
reguire that {?S (Brie on} is a W~martingale for all

ec Ql where @, and Qp are countable dense subsets of
L0y =) and R™ respectively.
ons M = i - & N : £
Consequently M = Proj —{kx,.u, z) {?Q (t) te Qo}

is a w-martingale for all @€ Qp and. x Ix(0) = x] = l}'.
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&

Now the set within brackets on the right hand side 1s easlily
seen to be a Borel subset of 8§ X P([fL)JK I, using the measu~-
rability of Yg (t) in ©, z and t, This shows that M 1s

analytic and completes the proof of the theorem.

As we menticned earlier the prcobilem we have been consi-

dering is a problém of optimal control. It should therefore

wa menticned that in control theory,the usual sssunmplbions made
o a, b, I ar¢ much mere stringent than the ongs imposed
here., We refer fhe readef in this connection to the excellent
review article of Fleming L3] and the papers cited there. The
results we have proved here cover very little grgund and much
deeper studies are needed to bring the theory tc the level
obtainitey in discrete time d.p. theofy. For instance here we
work orly with Markov plans. More general plans, i.e. those
which depend on the entire past can, of course, be defined.
Existence and uniquensss of measures corresponding to such
plans can be proved, using the results of . Stroock and
Varadhan {7, 8]. But in the ebsence of further conditions on
a, by » 1like the existence of. twc continuous derivatives; we
are unable tc show that the supremum over general plans is the
same as that over Markov ‘plans. The existence of (p; €)

cptimal Markeov plans etc.y are even more remote,
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