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central chi-square with p degrees
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CHAPTER 1

INTRODOCTIMN AND SUMMARY |
™ ‘

1. A brief review of the literature

Séquéntial analysis has made great strides in modern
statistical development: Starting with the pOimeering work
of the late Abraham Wald, there has been considerable deve-
lopmént in the area‘of sequential hypothesis testing over
the past three decades. A good deal of work is available
also in sequential estimation. Broadly speaking, there are
two basic reasons why sequential methods are suggested.
First to reduce the samPle size on an average as combared

to the corresponding fixed samPle size procedure which meets

the same error requirements. Second, to solve certain problems

which cannot be solved with a predetermined samPle size. QOur

work concentrates on certaln estimation and prediction Problems

which call for‘sequential methods in the absence of any fixed

samPle size procedures for their solutione.

We start with two basic estimation problems .

(I) TFor a N(u,_cz)

consider the problem of finding a confidence interval for u

of prescribed length 24 (> 0) and Preassigned’ confidence

coefficient 1-a (0 ¢ a < 1).

population, u real (unknown), o > 0,
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(II) Consider the same set up as of (I). The problem now
is the point estimation of u Ybased on a random sample
Suppose
Xyy+ 5 X, from the N(i; o 2y population thhe loss incurred

in estimating u Pointwise by 8(X) = 3(Xpy e x ) is

(1.1.1) L, = Ala(x) - ulS + ent

where A, s, ¢, t are’all known Positive constants. The
problem is to minimige the'Tisk EG(Ln) for all o.

-1

For (I), in estimating © by X i Xy, the

n=
coverage probability is givenﬁby

o LT - ul < al = 2§ (n1/2 ae) -

If o 18 known, the smallest sample size n* for whlch the
‘ above coverage probability'ie > 1= a for all H (and o)
‘15 given by n* = smallest integer 5 azczd 2, where
a = a, = the upper 100 g / point of the ¥(0,1) dlstribution'
If K 1s not known, butéls given that 0. <o <o o1 vhere
cb is—spe01f1ed, one can choose n* = smallest integer

2 a® Gi'd’z to meet the requirement.

For (II) in estimating u pointwise by X_, the risk
ETRET L
R (e, o) =25~ ko'n ° +c.n,

) a o . 2 SN e
where k = %\ AS=22 [“(%(54-1))/‘T'(%), and the loss 1s given
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by (1.1.1). If o is known, the obtimal sample size minimi-
zing Rn(c, o) is n* = (ko /ct)z/(s*gt), where in the above, and
and in the sequel we conveniently ignore the fact that n*
need not be an integer.

If o is not known, or it is not also known that
0 <o <o, , where o, 1is known, then there does not exist
‘any fixed sample size procedure for which the goal 1s achieved
in (I). To see this intuitively, note that the coverage pfo-
bability tends to zero as o -> o, i.e. as the scatter gets
wider making the distribution more flat, we cannot bound &
in a pPrescribed confidence interval around the sample mean
with Preassigned confidence. This non-existence result was
first proved by Dantzig (1940) in the dual problem of testing
~ of hypothesis. The non-existence‘result is more clearly pro-
pounded in Lehmann (1951) for distribution with pdf's of
the form o1 f({x=- u)/o), o > 0 and for a more general
loss including the ones considered in (I)Aand (II) as parti-
cular cases. A very pertinent question to ask now is whether
the objective can be achieved by using a sequential sampling
scheme

Stein (1945, 1949) gave an ingenltous technique of a
two-stage procedure which achieves the objective 1n (f).
His procedure consists in taking an initial sample Xlg"',xno

of size n (2 2) from the W(k, %) population, and then

define the stopping time N as
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_i*si d“ZJ + 1)

N = max (ng, [a2
: (&}

S,

| k - |
. 2 . & . "‘li: = - 2 : - . oon
where ' sy = (=177 2 (5 - %)%, k22 and ap -1 s the

upper 100 &°/. Point of Student's t-distribution with (n_-1)
degrees of freedom, [x] denoting the greatest integer <Xe

Unfortunately, the Stein's procedure usually results in a
large average:saﬁple number (ASN). This is because Stein

utilized only the first stage observations in estimating"the
variance. This hurts, eSpecidlly when 4 1is small.
We need the following definition for a critical

appraisal of the subsequent development.

Def. 1.1 If N is the rarmdom sample size, a procedure is

A

teonsistent' for (I) 4if
(1.1.2) : P[] & - ul cdal =1 -«

and is 'asymptotically efficient' for (I) if

(11.3) 1im B(N/C) =1,

where C = agdz/dz.
With this definiﬁion, Steints two-stage Procedure is not-
rasymptotically éfficientf, though it is tconsistent'. 8o,

the next question is the existence of an 'asymptotically

efficient!'and tconsistent! procedure for (I). The first
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attempt in this direction is due to Ray (1957) who suggested
a sequential procedure. However, inadequate computations led

Ray to the misleading‘conjecture that his procedure was not

‘asymptotically (as d -> 0) consistent', i.e.

1im PllXg - ul <al =1 - «a.
d -> 0 :
Chow-Robbins (1965) suggested the following sequential

procedure. Let XisX be iidrv's with d4f F, having

2’ LI I

mean # and variance 62 (0 <o < ©). The problem is the same

as in (I). Then,

(1.1.4) The stopping time N =Ny is the first integer
n (> n ) for which n > a® (si + n-l)/dg,rwhere

d— n e '
sg =_(n- 1) 1 % (Xi— Xn)g, no(g 2) 1is the starting sample

size.
Chow and Robbins groved that the procedure was tasymptotically

~consistent' and 'asymptotically efficient!. Starr (1966a)

carried out extensive mumerical computations in the normal case.

Simons (1968) proved an interesting result regarding the
consistency of the Chow-Robbins procedure in the normal case.
For mn, 2 3, he proved the existence of an integer k() 0)
such that

(1.1.5) PHXN+k - uf £dl > 1-a for all My ¢ and 4;
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(1 1. 6) Yed E(N——I—‘kS'S c + no‘+k.,

| Where N '1s givenm by (1.1.4). In actual préétice,.however,
k is not known, and there is very 11tt1e idea how large -it is
going to be.

Gleser (i965; 1966) extended the Chow-Robbins procedure
to get a cohfidence region for regression parametérs in a
‘simple linear regression model with given coverage probability,
such that the length of the interval cut off on each axis is
~fi¥ed . For estimétiné the multivariate normal mean vecﬁor
wlth unknown dispersion matrix, the Stein two-stage procedﬁre
was extended by Chatterjee (1959), while Chow-Robbins sequentlal

procedure was éxtended by Sr*rgstava (1967)

“For (II), %hen ¢ is unknown, the sequential procedure
suggested by Rabbins (1959) {in the case s =t =1) and
Starr (1966Db) is as follows:

" (1.1.7) The stopping.time N = N, 1is the first integer
n Qzlno) for which
n> (k'si/ct)g/(5+2t),
= l 2 L e L B = N2 \ .
where s _—(n-IJ Lo (X, - X )% (n 2 2) n (> 2) being the
Vn, L 1 n 0

starting sample sice.

When o 1is known, the minimgm risk is

R(c, o) = R u(c, o) =c(Z .t s V()b .
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Since the event [N =n] and in are independent for any fixed

n,

(1.1.8)  R(e, o) = B(yy) = £ 4 o° 2(™52) + c.2(vY).

The 'risk efficiency' and 'regret'! are defined respectively by

H

n (e, o) = R(c, &)/R(e, o),

(1s1.9)

H

| w (¢, o) = R(c, o) - R(e, o) .

%
Starr (1966b) proved that, for all fixed 0 <o < =,
1im  n(e, o) =1 if ho > 82/(s+-zt) + ]
e -> 0

214+ Y dif-: 82/(34-2t) +1

Q

I

= w 1f n < s2/(s+2t) +1

o

-~

where Y 1is a known positive constant depending on n_, s, t.
gtarr and Woodroofe (1969) proved (with t=1) that,
lim  w(c, ) =0 if and only if n_ > s+ 1,
n ->0 e

for all fixed 0 <o < = .

A basic difference between the point and confidence inter-
val estimation procedures is that, in deriving limi ting Pproper-
ties of Chow~Robblns procedure we really needed Anscombe's

(1952) result, while in the Procedures of Robbins (1959) and

Starr (.‘q6‘6b\ i "WdDTJDY}d ence of [N = 1"] and i,‘. p]a{[q a very
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important role. A very interesting example of minimum risk
point estimation Procedure is given in Starr and Woodroofe (1972)
where this independence is lost, Jleading thereby to a more
difficult analysis.

A sequential analogue‘of'Behrens-Fisher problem was dealt
by Robbins et al'(1967) and Srivastava (1970). Sequential point
estimation problems for multivariate normal mean vector were done
by Rohatgi and O'Neill (1973), when the dispersion and weight
matrices are diagonal Positive definite (p.d.). Sinha and
Mukhopadhyay (1974a, 1974b) have studied the above point estima-
tion problem in the bivariate case when (1) the dispersion |
matrix is arbitrary ped., bqt the weight matrix is diagonal
pd., and (ii) the weight matrix is arbitrary ped. gnd the
variaﬁces are equal e The loss structure involved ié squared

error plus coste.

1.2 Summary of the results in Chabters 2«8

In all the sequentlal estimation problems considered in
section 1.1, the eValuation of the exact distribution of the
stopping time is quite tedious and time-consuming. An aléorithm
developed by Moyal (see Robbiﬁs (1959)) has been used by
Robbins (1959) and Starr (1966a) to find the exact distribution
of N. The_?roblem getg quité fofmidable for small 4 'and Ce
Also there are C%Ses (e .g+ Chow-Robbins procedure in the non-

normal situations) where the distfibution of N cannot be

b,
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obtained anal%fically, and Monte-Carlo techniques need be
adoPted .

With the above considerations in background, we have
develoPed in chapter 2 ‘a theorem regarding asymptotic norﬁa-
1lity of stopping times. The main idea is to apply the theorem
to sequential estimation problems. But interestingly enough,
the theorem is quite general to include some examples of
sequential hypothesis testing as weil- The theorem is applied
almost in all the chapters in finding the asymptotic diétribu-
tion of . The major tool used is the asymptotic normality of
U-statlstlcs, and thus, in particular, of the sample sum, with
random indices.

-' In chapter 3, we have conéidered the sequential point
estimation problem for a bivariate normal mean vector, when
both the dispersion (unknown) and weight matrices are arbitfary;
P.d. The loss structure involved is weighted squared error
Plus cost. The sequential procedure suggested enjoys the
asymptotic (as cost per observation tends to zero) optimality
pProperties from the point of view of 'risk efficiency!' and '
'regret! as compared to the fixéd samPle size optimal procedure
when the dispersion matrix is kmown. The procedure also per-
forms very well for moderate §3Mple sizes, as studied by Monte-
Carlo methods. The asymptotic ‘nolrmality of the stopping time

is also proved.
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o of chaptef 4, a sequential proceduré is given to get a
point estimator of the Parameter 3 = {4y = Ho, when the underly-
ing populations are N(ul, cg) and N(uz, GS)' " The loss
structure is squared error Plus cost. All the four Parameters
are assumed to be unknown. It-is shown that our procedure is
lasymptotically risk efficient' and the 'regret! is bounded as
the cost Der observation tends to zero. The cost of not
knowing the variances is also studied; we have shown that excess
(if any) of the optional sample size dverrthe optimal sample
size had o,, o, been known is less than a fixed constant .

The asymptotic distribution of the stopping time is studied,
and, finally the querate samPle size behaviour of the propoéed
procedure is studied through Monte-Carlo methods using pseudo;'

ramdom normal deviates.

In chapter 5, the following Problems are dealt. Suppose
Hy c? are the mean and variance of the ith normal populatiop,
i =1,2,3. Assume that all the Parameters are unknown and the
variances are not necessarily equal. For given non-zero cons-
tants Xy, X5y Az the aim is to estimate the parameter
Bo= Ayt AgHy ¥ R3u3' with Prescribed accuracy using sample
sizes not necessarily equale. Sequential procedures have been
developed to arrive at a fixed-width confidence interval for u

with a given coverage probability. Also, we have given a
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sequential procedure to estimate & ©pointwise, the loss being
squared error and the cost of sampling proportional to sample
size. 'Asymptotic consistency'and tasymptotic efficiency' are
broved in the first situation, while 'prisk efficiency' and
'reg?et' have been studied in the latter case. The cost of
ignorance of the variances has-géen given proper attention in
both cases Lastly, we have shown by Monte-Carlo metholls that
the sequential fixed-width confidence interval procedures

behave guite satisfactorily for moderate sample sizes.

In chapter 6, the population of interest is

s exp (-

E:——“), x>, (@>0, - =<y <= both unknown) .
With a general loss structure, a sequential point astimator of
U is suggested. The same 1s shown to be 'asymptotically risk
efficient! under some conditions on the starting sample size
(kept fixed). In this connexion, we point out two serious '&
mistakes in Basu (1971). To arrive at a fixed width confidenc
ipterval for u with Preassigned coverage Probability, we
suggest a sequential procedure which is'asymptotically consise
tent and efficient'. Modérate samPle size Performances of our
Procedures in either problem are studied through Monte=Cario
methods . |

In chapter 7, we consider some more results on sequentia’

estimation. Firstly, in the Gauss-Markoff linear estimation

(_,AL an Ti
ARSI S TGN
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with quadratic loss structure, a sequentiai point estimator for
the regression .parameters is suggested. This procedure is shown
to have asymptotic 'risk efficiency! and 'bounded regret' The
asymptotic normality of the stopping time is also proved.
Second, a sequential procedure is proposed in p01nt estlmation
of 6 in R(0, ©) by the sample maximum, when the loss 1s abso-
1ute error Plus cost. The Procedure is shown to be asymptoti-
cally risk efficient. Moderate samPle size performance of this
procedure is studied in detail through Monte=Carlo methods and

is found quite satisfactory.

In chapter 8, we consider some results on sequential
prediction. As in the estimation set up, the problem is two-
fold in prediction set up also- First, to provide a point pre-
dictor of a future observatlon Y on the basis of a series of
observations X, Xg, e« which has minimum risk (considering
a suitable loss function) for all parameter p01nts and second,
to pProvide a flxed-wldth predictlon interval for Y which has
a specified coverage Probablllty for all Parameter points- The

results of this chapter are:

(1} Considering a location and scale parameter family of
symmetrical unimodal densities - £(| Eﬁg[ ), = < x < oo

-~ ¢ o <, 0<B <= (both unknown), it has been
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proved that there exists no fixed-width prediction
interval for Y which has a specified éoveragg.

probability (whetever o and B8), under any sampling

”Prodedure which terminates with probability one. It

is also pointed out'that‘the symmetry of f aroumd

o 1s not essential-

The problem of providing an gptimum point predictor

of Y with squared error as loss ard cost of sampling
Proportional to sample size has been tackled considering
truﬁoated exponential, exPonential and normal densities.
A'sequeﬁtial Procedure is given in each case, which is
éhown to be asymptoticallyrrisk efficient in the first

case,in the other two cases 'regret' is shown to bounded.

L I MR


http://www.cvisiontech.com

CEAPTER 2

ASYMPTOTIC NMORMALITY OF STOPPING TIMES
IN SEQUENTIAL ANALYSIS

2 41 Introduction

Theaneed for obtaining the asymptotic diétribution of
the stepping time in the absence of a sﬁitable analytic-methOd
to find its exact distribution has been revealed in 1.2. We
may add that the task is equally difficult even for most of &
the well=known seﬁuentiél Probability ratio tests (SPRT's). |
Mention may alsc be made of some of the more recently developed ‘

sequential testing procedures by Darling and Robbins (19674,

1967b, 1968) . g ! | J

Recently Siegmund (1968) and Phattacharyya and Mallik
(B- M} (1973) have succeeded obtailning asymptotic distributions
of stopping times in'éome important cases arising in sequential
analysis . Thelr procedures rely heavily on the asymptotic

normality of sample sums with random indices.

In this chapter we have first proved (in section 22) a
general result regarding asymptotic normality of stopving times.
Qur formuliation is slightly different, but the basic idea is |
essentially similar to that of B- M. The advantage of the
Present formulation is that unlike B- M we do not need

necessarily express our stopping rule in terms of a sample sum

-1d-
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type statistic, and thus @et more direct results in many appli-

catlons « Mention may be made of the much shorter proof of

theorem 2 of B-M given in gection 2.5.

The theorem is applied in Section 2.3 in deriving the
asymptotic normality of stopping times in some sequential point
estimation problems. Then, follows, in Section 2.4 its appli-
cationé in a particular modified SPRT Problem. ULater, in this
seqfion, we considef‘certain sequential procedure proposed by

Robbins (1970) to obtain tests with power one.

The asymptotic normallty of U=-st atlstlcs with random
indices is used extensively in Section 2.5. The major td@l is
available in the work of Sproule (1969). Using this, we have
been able to get more appiications of our main result ineluding
a proof of theorem 2 of -P~M under relaxed cornditions.

Section 2.6 1is devoted to the study of asymptotfc distri-
butions of stoppihg—times associated with fixed length interval
estimation of means of U-statistics. Some applications are
mentloned. |
| Flnally in Section 2 7 our results are applied to problems

connected with general linear regression modelsﬂ

2 The main result

Consider a sequence-{Nh, v> i% . of p051t1ve integer

valued. 1rvts defined as follows.
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(2.2.) N, 1is the smallest integer n(> nb) for which
n 2> qb T, where n, 1s the starting sample

size,{ ?ﬁl is a sequence of positive constants
L J

-> ® as’ v => e, and Tn(nz_no) are statistics
such that P(Tn £0) =0 for all n 2 n, . Then,

our main theorem can be stated as follows:

Theorem 2 ol « For the sequence of stopping times defined in

(22.4), if

(2.2.2) N%/Q‘(TNU - a)/b-é;-> N(Q, 1) as p -> o

and | | .

(2 2.3) N&/z (Ty -1~ a)/b &, N(0,1) as v > =
v

where a(> 0) and (> Q) are constants, then,

e " 1/2,
(2 2 .4) 2172y, - ag )/(v q/ y oy N(0,1) ag v >
Proof: Let § denote the distribution function (d.f.) of
the WN(0, 1) distribution. Use the basic inequalities,

Ny 2§, Ty, amd Ny=1 <ng=l +0 o Tg o
i o,

(2 42.5) T TNU LW, <ng + Y TNU_I <

Now, from (2&.1) N, i—>°°--aau~> ., Hence from (2 2.2) and
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” P P -
(2 2.3), TNU —> a, Tyy-1"">2 as U=> ~. Dividing now

both the sides of (2 &2.5) by a-TU and u81ng the fact that
fy => =, as V=> o ye get N, /(a Ty) 251 as g-> .

Thus (2 2 .2) and (2.2.3) can be alternatively exvpressed

as

( 7z PN o)
(242 .6) L (2 7,) (TNU a)/b ==> N(0,1)

(2 ‘fu)\l/z(TNU_l - a)/b &, N(0,1).

Using (2 &.5) and (22.6), orze gets now,

1/2
_@(x) = 1im Pi’(aw ) Z (T -a)/b < x}-

U~ oo
o 1/2, ,
< unine {7, »aqu)/(bty / < %]
. .L/g,r ;
(@2.n) 1&m_§u£ p$ (W, -ay, )/(blp ) < x }
1/2, .
< 3{2 P{(aq ) TN ~a)/b+ no.al/?./(bq /2) < x}

$ (.

Hence, the result.

Remark 1, It is immediate to check from the proof that $ can
be replaced by any nondegenerate d.f.

Remark 2. It might appear that (2.2.2) implies (2 2 3), but

that is not so. In general, the distribution of Ty and
‘ v
Ty, -1 May be quite different.
U
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Remark 3. The usual sufficient conditions to ensure (22.2)
and (2.2 .3) are the ones due to Anscombe (1952). These are (i)
for a sequence 511U} of positive integers (n,, -> w as p => ®),
Nt/ht)—g—>l as v => «, (ii) ml/2 (T -a)/v ———> M(0, 1) as
m -> e, and (iii) given € > 0 and m > O, there exists 3(> 0)
and a positive integer mn_, such that

pf

-1/2
i - T 2 £en <n
L [n?uggl | < an, II%J nU] v }

for n, 2 n,-

23 Some sequential point estimation Problems

We start with a sequential point estimation problem con-

sidered by Starr and Woodroofe (1972).

Bxample 1. Let \Yl,YB,Doe be iidrv's - with p.d.f.

(2.3.1) £,(y) = ¢t oexp (-y/m), ¥ > 0, u> 0.

With the erd of minimizing risk with sample mean estimators for

4, weighted squared error loss (weight A being kriown)and cost
¢ per unit, the sequential procedure adobted by Starr-Woodroofe

(1972) is as follows:
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(2.3.2) The stopping time N = N, 1s the first integer
n(> n,, initial sample size) for which
- 1/2 - . I
B = _—
n2 Y, Y, where T, = (Ac™) Y =n ? Y
(n > 1).

'Nogé that T, ->0 3§ Cw=> 0, P(?n <0) =0 for n> 1, and
using remark 3 of Section 2-2,(2.2.2) and (2}2.3)”are.sati§fied

with a =b=pu (> 0). Hence from theorem 2.1, we get

(243 43) (v, -F /,1/2 ‘f"> N (0, 1)

where :
E = = s1y1/2
T, = KT, u(a c*)

Example g# Consider the setup in (II) of Section 1 +l. iIhe

rule in (1.1.7) differs slightly from Starr's (1966b) rule, where
¢ =1l. In conformity with B- M, we have considered the asympto-
tic approach when c:;> 0, o fixed, ;gther than the one {adopted
by Starr) when o -> o, & fiéed ' =

Using the Helmert Transformatlon

= (X "Xg)/ /2, e0ey X = &y ree et X o= (n-1x Y VATe-T)

n .2 o

A 4 (n > 2), where Y7 /U are
iid X8 VarlableS- Note that . P(s £0) =0 for all n > 2
and qc = (kC ; ""l 2/(S+2t)

one can write (n— 1) 52

as C ""> Ol

Using Anscombe's (19%2) rosult, once again, one has
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(2.3.4) . N2 (sE - B)/(/BD) L 5o, 1)
. ] = ! - c -
as c => 0. Using now a theorem of Mamn and Wald (see e«ge

Rao (1965), P. 319), one gets

. 7“ | | " . -
i) w/ (T B e T
C
-ié‘-o N(0, 1) as ¢ => 0,
and ' L LB
2s/(s+2t) 28/(s+2t) w1
Ni/z(s.Nz-ls o S, s )/(/éo'ao S%-'E -5(0-2)8 )
e "

—> N(0, 1) as c => 0.

Thus (22.2) and (22 .3) are satisfled wlth g = 0-25/(5"‘315)
= /25(5 +2t)™1 a. Using theorem 2.1, we are thus 1ed to the

result
(2.37) (Nc- £.)/(a 52/2) —&o N(O, 1) as c -> 0,
where d = /2 s(s+ 26y, ¥_ =af,. B-M (1973) have consi-

dered the case s =2, t.=1, A =1. In that case k =1, and

(24347) reduces to

— | . 8 [T Tl
(2.38) (N - 82 /Ge ) &5 w0, 1)

as ¢ => 0, as result obtained by B~ M (1973). Also by putting
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§ =1, t =1, we can get the result in Robbins' (195%)case?

244. Application in Sequential hypothesis testing

We first aprly theorem 2.1 in a simple modified SPRT
problem. - g
Example 3. Let X,,X5, e+ Dbeiid N(8, 1), where 6 is
unknown, - « < 6 < «. Consider the modified SPRT problem for
testing H_: 6 =- % against Hy: @ =%~ wvith bourdaries
'Wh -;nd @h; Wﬁ being a sequence of positive constants.»>

ag n -> <. The stopping time for this problem is given by

¥ 1s the smallest integer n(> 1) for which

ol n | o 14
(2.2.1) !Exi'?-['n i.e., n;rfnlxnl &

To develon the asymptotic: theory here, we modify the stopping

time in (2444) as follows:

N is the smallest integer n (> 1) for which

(2ea2) -+ n2¢ x|

where ¢ = W dis a sequence of positive constants =) w
v nu
as  w=>e, and n, 1is a sequence of positive integers -> e

as  v=> »," Using strong law of large numbers (SLIN),
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5 - e
-2 ]Gl a.we for 8 Z0 as n => =. Then, using a

x|
theorem similar to theorem 2.1 (with obvious changes in the
proof), Anscombe's (1952) result and the Mann-Wald theorem,
we are led to 1 '

-1/2 o -
(2 44 .3) Iml/mv-mllﬂVHm2¢y%_&oMq1L

as u=> o, for © # 0. It is also easy to .sec how the result

can be modified if we want to test H, : © = - d against
Hy: © =d, 4> 0, but not necessarily equal to 1/2.

The above result can be generalized in a particular test
with Power 1 problem considered by Robbins (1970). This is

eviderced in the following example.

Fxample 4. Consider again a +N(§, 1) distribution, with

6 urknown, ~» < & <. We want to test H™: @ < O against

H+:

&> 0 (6 = 0 being excluded). To get a test with power
1 for this problem, Robbins (1970) defines the stopping time

- \ n

N as the first integer n (> 1) s.t. I% Xil 2 ¢, and accept

+ - n n
H H i . D -
or according as % X; 2 ¢, or % X; £ = c,, where

c, 1s a sequence of positive - Constants such that :cn/h >0
as n -> «. In many important particular cases as considered
by Robbins, ch -> ® as n => «, subject to the above condi-
tion. Then, similarly as in example 3, we can obtaln the

asymptotic distribution of the stopping time.
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2.5 Asymptoﬁié normality of U-statistics with random indices
ard a few more applications.

'weluse a‘fésult of Sproule (1969) on asymptotic normality
of U-statistics with random indices and get asymptotic normalit
proof for the sfoppihg:time in the Chow-Robbins (1965) proce-
dure discussed in (1.1}4). We shall see that the normality
assumption of the original observations is not required for
the abové. We shall also see that the normalit¥ assumption is

not required in example 2 to get (2.3.5) and (2.3.46).

The first thing is to define U-statistics and to state
the result we are going to use. With this end, we Proceed as

follows: -
Let X,,X5, ¢o. be iidrv's, and let £(xXqy ¢24%,) be a
symmetric function of r arguments. Then as in Hoeffding

(1948), we define U-statistics U, (n>1) by

=1
T — " .
(2.54) Un = (I‘) b3 f(Xa y sesy, X r), n>r

vhere the summation extends over all 1 < @ < ese <@ <m.
4 CIPITRN X,) is referred to as a 'kernel of the U-statistic

with degree 1r'.

Suppose O = B’ {f(Xi,.-}, X,)}+ Define

(2.5.2) flfx} = Bf (x, Lo, .;.,;{f) = E[f(xl, ""Xr” X, = x] .
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Let 3, = V[fl(Xl)]. Then the needed theorem (see Sproule
(1969), p. 58) can be stated as follows:

Theorem 2.2. Assume BLf(Xj,«ev, ¥ )1% ¢ and 95 > 0. Let

n, ‘be an increasing sequence of pogitive integers tending to

®° as U=> oo, and let N, be a sequence of proper rv's,

taking on positive integral values such that,

- P
N, /B, —>1 as U=> oo,
Then with o® =12,
1/2 £
N / (UN - 9) /o b2 N(O, 1) as yp-=> =.
v U L

The fundamental U-statistic is the samPle mean. The sample
variance si = (n-1)"% 5 (Xi - in)2= (g)“1 X (Xi-X.)2/2
1 1<i< jgn * 4
is also an U=-statistic.
Theorem 2+2 ensures that for iidrv's with finite fourth
moments and for which g, # ug (“r denoting the rth moment

about'mean'of the original rv's)

2 .2 /2 £ ~
N%{‘ (SNU' “21/(U4' b2 ) &, N(O, 1) +as v -> =,

In particular, for 1id normal variables with non-zero and

finite variance 62, one has

NIJJ'/Q (S§ - 0'2)/(/20.2) _é’_) N(O, 1)’ as v => oo,
v

a fact already used in example 2.
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Theorems 2.1 and 2.2 are now used in the following
problem of fixed length interval estimation for the Poprulrtion

means

Example 5. We consider the problem (I) of section 1.1, in the

Chow-Robbins' set up (1965) which led to the stopping rule in
(1-1;4). We introduce a slight change in notation by defining
"¢ as the upper 100 % . pt of the N(Q, 1) distribution.

The asymptotic {as d ~> 0) distribution of Ny 1n this case
céﬁ be obtained very easily. 'Také ¥y = 02/d2 ~>x as d => 0.

Put T, = éi + ﬁl so that P(Tn < 0) =0. With the assumption
that the pobulation fodrth‘moment is finite and y4,% 54,
theorem 2 2 ‘now leads to (2.2.2) and (2.2.3) with a = qg,
g - 2 L . "
b o= (u, - cé)l/ « Theorem 2-.1- now ylelds,.
g : - ]-/2 '.
olig = (® P/B)) /L, - oH 77 w0/a]

&i_> N(O, 1) as d -> 0, i.c.,

(2 .5.3) (Ng - £4)/((B5- 1) Ed)lfgw fi?> N(0,1) as d -> 0

.

where Ed = cgag/dz, 52‘= ué/U%-L’In the particular case of

- normal distribution, 62 3, and we get,

L

1/2
(245 .4) (Nq = z4)/(2xy) —> N(0, 1) as_d -> 0.
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Consider again examPle 2; in the case s = 2, Elin- u]zz
Gz/n, even when the X;*s are hot normal, so that in this case,
(1+41.7) can still be motivated even witﬁout“the normality assump+
tion. It is not clear whethe;“the thimalify properties claimed’
by Starr (1966b) of his procedure hold even without the norma- |
1ity assumption, but it is true that theorem 2 of B- M (our
example 2 with s l= 2, L =1, = 1) holds true even without
the normality assumption if the fourth moment is finite,
—1)

M, # ot and s, is changed to (s +n

5 in defining the

stopping time in (1+1.7). Theorem 2.2 and the Mann-Wald

theorem lead to (22 .2) and (2 & .5) where Tn = sn*-n—l (n 2 2),
‘ = 1/2 .

a=g¢,Db =~% o 1 (u4 - 64) + The change needed in the final

conclusion is that, instead of (2.3 8) we would then have,
: : _ ' imiv/2 2
(2 o5 5) dl/é(Nc -0 0'1/2)/[%02 (1, - ) cl/é] :£1>N(0,1) !

as ¢ «> 0, i.e.,

1/2 1/21/2. [,

RV
i, f e T )/ Re- 1) e T )T (o, 1)

R T e e e ——

as ¢ => 0, which particularizes to (2.3.8) for a N(u, 2)

population.

In all these exampPles, a basic difference between our
aPproach and the earlier approach by B~ M 1is that the latter
are expressing the‘samﬁle variance as a sample mean, whereas

we are viewing the same as a U-statistic+ The former

i
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representation is possible for samples from a normal Ppopula-
tion, but not in general, whereas the U-statistic proverty
is always true. Our result has thus wider applicability

than the earlier known resﬁlté in this direction.

Example 5 opens up another question. We have been able
to derive the asymptotic distribution of the stopping time in
fixed iength interval estimation of the population mean by
using the sample mean. (see (2:5.4)). The sample mean being
the basic U-statistic, a pertinent question to ask is whether
the given result can be genéfalized to similar problems asso=-
ciated with means of U-statistics. The key to success lies
in finding suitable estimates of variances of U-statigtics
whose asymptotic distributionsﬁwith random indices c¢an be
ohtained. This is the problem we are going to tackle in the
next section. Fortunately it turns out from the work of
Sproule (1969) that vafiance of U~-stdtistics can be consis-
“tently estimated by linear functions of U-statistics. This
fact will be exploited in getting the desired asymptotic dis-

tributions with random indices .

2%+ Asymptotic normality of stopping times in fixed

length interval estimation of means of U-statistics.

We first introduce a few notations in order to define an

estimate of the variance of a U-statigtic. We have a sequence
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XqyXgy +++, Of 1idrv's. The basic notations introduced in
Section 2.5 in connection with U-statistics remain the same.
Further as in Sproule (1969, p. 15) some more notations are

introduced.

For each 1 =.1,2, «¢., n, define a U-statistic based on

X 4 by

» X &iaqa ¥y

Xqy e

T ~(n-1, 1)
z

(2’)06 '1) . U(l)n = (n;].)- f(X 1 e X(x )

where the summation is over all combinations (al,,,., ar)

formed from (1, +ss, i~1, i+#l, +.., n). Define now the statistics.

(206'2) | Win : n Un = (n CJ I‘) U(i)n’ i :- 1,?, e n, n

- __'l n g
and W, =10 I W+ Now Sen (1960) has proposed the follow-

1
ing estimate 52 for r29 g
wn 1°

= 2 _ ik o s =2

(2-6.0) Sy T (n- 1) % (win wn) G

291 + 0(n" Y (see e g+ SProule

This estimate of nV(U ) =r
(1969) p. 6) has been used by Sproule (1969) in developing the
sequential procedﬁre. VHis stopping rulé for obtaining a fixed
length 2d (> 0) confidence interval for o = Ef (Xq5 0eeyX)

is given by:
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(2 & «2) Ng 1s the smallest integer n(> 2) such
that n > S (,sim +al)

where 2§ (u) -1 =1~ a, wvhich is the Ppreassigned coverage
Probability. 7
Sen (1960) has shown that if BIEZ(X, «os,X )] < o,
an ~EF> r291e Stronger results are available in

3

theorem 3.1 of Sproule (1969, p. 35). Writing now J, = ufd?,

then s

g => = as d => 0. It remains to verify (2.2 .2) and (2.2 .3)

for applying theorem 2.1. With this end, we need the following

representations:
2 . 2,(1) _ (0 T (e) ,(e)
(26.8) . sy =1 (U, Uy ')+ & e ,.Un

c=0

given by Sproule (1969, (3.18) of p.36); the constants aéc)
are O(ﬁl) for all ¢ = 0,1, ¢os, T« To define Ugc)

Ugf) (¢ = 0,1, +s+, T) we proceed as Sproule (1969 p.8).  For

- ¢ = O,l, se ey, 1’~, define

(266)  a'xy, ey tgny)

D peayThy pa (T o
= 4507 () B ,f(Xal, veny X ).f(XBl, ...,xBr)

. T
(e)

where the summation X is over all combinations (ai"°"ar)
and (Blg..-, Br), each formed from 1,2, e+, 2r=cC -’ éuch

that there are exactly ¢ dintegers in common. Now for each
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‘¢ = 0,1, ¢+4 1, we define

o ‘
(2.6 .7) Uéc) - (zrgc) z(n,2r-c) q(c)(xal,..., Xagr-c)

where the summation extends over all combimations ap, «ss+ ¥gn. o

formed from the first n positive integers. Sproule (1969,

(1) . =1

D. 30) has shown that - V(U Ugo)) = :aln + O(ﬁz) where a

simplified expression for al is given in Hi33. The exact

expression for @, 1is not important, but we shall give it

1ater for the sake of compPletenesss Of immediate impPortance

is a proof of asymptotic normality of s Note that U(C)

W *
d
being U-statistics with flnlte expectations, by Hoeffding's

(1961) (see also Berk (1966)) we get U(c) 2.8 o (C)

(Xqy oo X2r-c) as n->e for ¢ =0, 1, .0 To Further
aéé) = 0(51) for all ¢ = 0,1, +++ r+ Hence,

2
Swn ~ . .
PP .30-31) has shown that E(U(l) éO)) = 91. Using asymptotic

2(U(1)_ U(O)) 88+ 50 a5 n ~> «. Sproule ((1969),

normality of U-statlstlcs (see Hoeffding (1948)),
1/2 (1) g0y = Ry
{(U %) 91} > N(0p2,)

598 N => «, Hence

1/2 , 2 2oy the .
n (SWh." r79,) == N(0; 9q)
as n -=> «, Also, Proceeding as in theorem 4.5 of Sproule

(1969), it is easy to verify also Anocombe's (1952) uniform
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continuity in probability condition, getting thereby

2 L

2 , .
'E%/ T 91),—f7—> N(O{ 61) as 4d => 0.,

2
(s -
W5
Our theorem 2.1 will now lead to

('rgi/g «- ol zglqé/&r A 31‘12

2y

=> (0,1} as d -> 0.

To define _81, a few more notations need be introduced:

let

gy (xy) = 13(5) - 8 g(xy,%p) -

n

E[f(xl’ . .’Xr) IXl = Xl’Xz “:' Xz] =1 e [] |

*’g(z)(X

-Then define g(%)(xl) = gl(xl), l,Xé)aﬁ.gz(xl,xz) -
g (x7) - 85(x%5), and g (x,) = Egg(l) (X5) g(g)(xl, X5) ]

Now from pPps 51-33 of Sproule (1969),

d, =

3 = By R - 1)y * 4(r';1)?§5.

where

B, =v ( {g(l) (x)% ]
By = oov {5V, (%)), 8y = Vig, (k)]

As a simple aprlicajfion of thé'result, the case of estimation
of the population mean given in example 5 can be included.
Another application 1ies iﬂ obtaining the asymptotic distribu-

tion of the stopPing time associated with fixed length interval
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X

—52—

estimation of the Population variance as considered by
Sproule (1969). Here finiteness of eighth moment of the X;'S
is . required.

In this case (see Sproule, Pp. 49-51) r =2, ¢, =

%(u4 - ug) and al = Bl + 482 + 4B,, where =

By = 1/16 (ug + 8;%;14 - 4ugu, -m.uga . 4,%)
Bg = & US(U5 - 2“2”5)/8, BS = %'Ngﬂz,

th

where Mo denotes the k central moment. The variance

of the asymptotic distribution of the stopping time is
rather involved in general, but considerable simplification
can be effected in the normal- case where 82 = BS = Q. Other

U-statistics examPles may also be considered .

2 o7 Regression problems

The final application of our resuit lies in the Problem
of sequential confidence barid estimation of the regression
parameter in the general 1inear‘mode1- Consider a sequence
21’22"" of independent normal variables with urnknown
common variance ¢° and E(Z ) =x'(yy B, where B is mxl

vector of unknown parameters Z(1) is a mx1l vector of

" non-stochastic known constants. It is assumed that the matri-

ces. 5; = (31,---, zrg, have full ranks for all n > m, 1 .e:
m forall n 2 m.

rank g; | 2 m. )

il
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Under the above set up, Gleser (1965, 1966) finds a
confidence region I for B in R” such that the length of
the interval cut off on the B -axis by I is 24 (> 0) (1 i< n)

and  1im P(B € I) = l-a (0 <a < 1)«
d->0

It may be mentioned that Gleser does not require the
normality assumption of themzi's, but for us even this spe-
-clal case has some importance of its own. Let Yn =( Zl’ .--,Zn)‘

- -1
and B8 —;.(XI'an) X1Y, the least squares estimator of §

based on 1, wunder the given linear model. The error sum of

2 = -
squares are denoted by Ron = ¥ & ¥r X ﬁn(n > m) » One

=n=n -n “n
n—-m
can exPress (Rao (1965)) chm as Z:IL Ui (n > m) where

: 2 . -]
Ui/d'z's are iid Xl variables. We assume that n X, =%

a P.ds matrix as n -> o. Gleser's (1965) stopping time is
given by '

(2 .7.1) Nd the smallest integer n (> m+ 1) such

that n> @/A%)(F_ / (n-m)),

where u 1s the upper 100 o/2 4 point of the distribution
of the weighted sum of m indeperdent 7&2 variables, the
weights being the latent roots of . As in examvle 2, we

end up with

(2.7.2) (g - £4)/(/2 r3) 4"—c-’-> N(O, 1} as d => 0,

. = 2, 9
compres L;}d TUS AT
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CHAPTER 3
BIVARIATE SEQUENTIAL POINT ESTIMATION

S« Introduction

Multivariate extension of the seguential point estimation
procedures developed by Robbins (1959), Starr (1966b) and
Starr and Woodroofe (1969) are made by Khan (1968), Rohatgl and
0'Neill (1973) when the dispersion matrix is diagonél._ The
assumption of diagonality of the dispersion matrix, besideé
being of a very particular nature, makes the multivariate
problem essentially the same as the univariate problem:, and
does not call for any new analysis beyond the one required in
the univariate case. |

Recently Sinha and Mukhopadhyay (1974a, 1974b) have
studied the above Point estlmatlon Problem in the bxvarlate case
- when (i) the dlsper51on matrix is arbitrary positive deflnlte
(p«d), but the weight“matrix (also p.d. ) is diagonal, and (ii)
_ the weight matrlx 1s arbitrary p.d. but the varlances are equal.
Also Callahan (1969) has studied the Problem when the disper-
sion matrix is arbitrary but the weight matrix is diagonal with
both elements equal {see also Gleser (1969)). e loss struc—

ture involve® was weighted squared error pPlus cost.

-34-


http://www.cvisiontech.com

. -35-

In this chapter, we have considered the bivariate point

' estimation problem under similar loss structure as Sinha and
Mukhopadhyay, when both the dispersion and weight matrices are
arbitrary (p.d.). The sequential procedures suggested here
enjoys the asymptotic optimality properties from the point of
view of 'risk efficiency! and t'regret! (to be defined in section
3.2 in conformity with (1.1.9)) as compared to the fixed'sample
size optimal procedures when the dispersion matrix is knpwn.'

These procedures also Perform very well for moderate sample sizes.

The seguential procedure is introduced in section 3.2 and
some prelimi;ary results are proved in section 3.3, The asympto-
tic behaviouf of the !'regret' and 'risk efficiency' are studied
in section 3+ . We shall study the moderate sample size behavi-
our of the proposed procedure in section 3.5 by Monte-Carlo
techniques generating pseundo-random bivariate normal deviates.

The asymptotic normality of the stopping time is proved in

section 3 5.

3.2+ The sequential procedure

1 Yi)', i =1,2 ¢ bea seduenge of indepen-

dent bivariate normal variables with urknown mean vector

SLet Zy = (X

n =.(u1’n2)' and dispersion matrix

¢ 2
, i 2 | oy 961;2
95102 _ o5
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where - © < Hyy Hy < 0 <oy, Oy Coy =1 <8 <1

Having recorded n observations, suppose the loss- incurred in
' : s | . a0 4! .

estimating u Dby Z‘n = n iEIL Z’i is

(3.2.1) Ln-':(%’n M)A (Zn-&) +cmn,

where A 1s a known 2x2 p.d. matrix and c{> 0) is the

known cost per unit sample, with risk
(3.2.2) R (c) = B(L,) = ot tr (A ) +cn

where tr stands for trace. The risk (32.2) is minimized for

n- = n* where

5 1/2
(542 .3) w = [ tr (aE)]
with minimum risk
(342 44) R(c) = R 4(c) = 2cn* .

Thus if & were known, we could have taken a sample of
size [n*] +1 and estimated u by the samPle mean, where {p]
stands for the largest integer not exceeding P . But in the
absence of any knowledge of %, no fixed sample size procedure
will minimize (3.2 +2) simultaneously for all T - matrices. S5O
the possibility of utiiising 2 sample of random size W 1is

considered, which is shown to achieve the objective of attaining
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the minimum risk asymptotically (as ¢ -> 0).

The following stopbing rule, motivated from (3 &.3) is

therefore suggesteds

(3 & .5) The stopping time N = N, is the smallest integer

n (> n ) for which

1/2
ny L™ tr (a8 )],

k =4 = »
vhere (k-1)S, = 131 (Z;- _z_k) (z - z)', k22 and n (>2) is
the starting samPle size. When we stop, we estimate 4 by ZN'

Using the Helmert orthogonal transformation

‘ 1/2
U = DX+ e+ X - (k-l)Xk]/(k(k-— i)

k k-1
1/2
v = (¥ + e+ Y 0 - (1Y 3/(k(k- 1))

Kk
N - 1 -
one can write (k-1)8, =Z Y W wvhere W = (U4,V5),

k = 2, 3, L I 2 n .

Note that §(Ui, vy, i=2, 5, ... } is a sequence of 1id
N,(0, %) variables. WNow A and £ being p.d., there exist
non~singular matrices B and D such that BZ B' = I, and

2
A = D'D. Hence,

i

n n i -
(3246) (n-1) tr (aS)) = £ tr (AW W]) = £ tr (D'DB"IBwiwiBu(B')])\
2 2 e

n
_ T
_Str (QQ wi ;)
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pp~1

i

where @ = BY, (1 =2,3,.+.:) are iid No( 9, I,).

Wk
' =t
Q'Q belng p.d. there exists an orthogonal matrix P such that

P1(Q'Q)P = diag (kl, kz), A, and A belng the eigenrvalues of

2
Q'Q, each positive.

Hence from (3.2.6), -

it

’(3.2.7) (n-1) tr (Asn) g tr [Diag (%4, xz)iagg ]

2 4AT2.), n>2

(A T35 + 2T 2

A

]
NoMs

™ ‘ . - . 7
where I, =Puj = (Ty4, Tpy)', 1 =2,3,... are iid Ng (0, L).
Note that, .

(32 48) N ot Ay = tr (Q'Q) = tr (AX ).

With these reductions in mind, the rule in (3.2.5) can be
alternately étated-as:

fit

(3.2.9) The stopping number N = N, is the smallest integer

“n (> no) for which
n n

en®(n=1) > .- Tii +2, I TS,

' 1=0 i

where n (> 2) is the starting sample size. Analogous to

lemma 3 of Robbins (1959), we have the following lemma.

Lemma 3.1. For any fixed n(> 2), er is independent of

82, SS, .O., sn.
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Proof . The proof is an easy consequence of a result of Basu
(1985) when we observe that Z, is complete sufficient for

and Sgy Sgy eesy Sy have distributions independent of Mo

Lema 3 2. For any fixe@ n(> no), I[N=n] and L (defined in

3e.2el)are independent, I denoting the usual indicator function.

Proof: Proof is trivial if we note that the event {N=n] is

described solély through Sn y S
0

only on Z  and lemma 3.1 applies .

n +10 ** 0 8, while 1 depends

[ d

Lemma 33
(3.2 .10) N is well defiped, and if 0 < o° <= (1 = 1,2),
then PN ¢ =] =

(3.221)  N(c) 4is decreasing in c¢ and 1im (N/n*) ='1 a.s.

c=> 0
Proof: First past of (3.2.10) is obvious. Also,
PN =] = 1im PN > n)
—)oo :
< 1lim P(cn < tr (AS ))
n-> o

‘Using (3&2.7) and SLIN, tr (A5) => tr (A%) aws. as n -> =,
Also 0 < tr (AZ) <, since 0 <of < (1 =1,2). Hence
(3.2.10).

To prove (3.2.11), the first part is obvious from the defi-
nition of W. It follows immediately that N -2 % @+ as
¢ «> 0. Hence tr (ASN ) => tr (AZ) a.s. and tr (ASN 1

tr (AZ) a.s.e as ¢ —> 0.
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We now use the inequality

/2 /20

2 1 -
(3.2_.12) (™ tr (As)] " <W <n*ic 1tr (Asy, )17 aes.

' . L, Yo 1/2
Dividing both sides of (3&2.12)-by n* = (c™1 tr (AZ)) /2 oma
making c -> 0, we get (3.2.11).

Using lemma 3.2 and (3.2.10), we find that
(3.213) R(e) = B(ry) = clm»? B®™H + EW)].

Regarding the usefulness of the sequential procedure in

(32.5), we define the 'regret' as

(3.:2.12) . wle) = R (e) - B(e)
“and 'risk efficlency' as
(342 415) _ n(c) = Ele)/rle)

pr; our main results can be stated as follows.

Theorem 3.1 As ¢ -> O,
(3.2.16) N - w(e) = o(e),
(3.2 a7) . n(c) => 1.

The proof is deferred to section 3. In the meantime,

in section 3.3, we develop some desirable properties of the
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rule given in (32 .5) in the form of several lemmas and theorems
The property (3.2.17) is referred to as asymptotic risk effici-

ENCY »

3e3. Some properties of W

Lemmg 3«4 BE(N) < n* + 1, +1
Proof: By looking at the rule in (3.2.5), one gets,

@-1)2 < (n-1)% + 1 tr (asy_)

N
z @8/

"
1 Mg Z Toy

N
2 _1\2 -1 _oy~1
/ < (ngm1)% + 0™ (W-2)70 [Ny LTy

"

N
(no-1)8+-c"1(N—1)CN:2)’1 {’kl(N-l)-l z T§i+
N
-1 2
Thus {N-1){(N-2) < (no-l)g(N-z)(N—l)"l

e (w-1)"t E (A, ﬂii TR Tgi)]

so that we obtain

, . .
=l 2 2 -1 -1 2 2
(3.3.1) (N-2)° < (n~1)% + ™ {{w-1) g (M T35 + 2T ) 1

Thus using a theorem of Robbins (see.Starr-Woodroofe (1968));
we get
2 \ 2 -1. .
(B ) - 2)% < (n=1)% + c77(3] +1,) |

SRR )
= (n,1)% + 0%,
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which leads to

(33.2) CE(N). < 2 + (n,-1) +n* =n* +n, +1.
Corrolary 3«1 1im B(N/n*) =
c -> 0 ,

Proof is trivial, since 11m§nf B(N/n*) > E(llglnf N/h*)
¢ -2 0

(by Fatou's lemma)
=1 by (32.11)

and 1im sup. . B(N/n*) <1 by lemma 3.4

e =2 0 -1
= - = - o 5
Lemma 35 P(N = no) = 0, (c ) as ¢ => 0
Proof: Let Q(n 1) - E T2 (j . 1’23\- n 2 2);
. 1= gl ,
Then Q(n l), én-l) are independent Xﬁ_l ‘variables. With the

notation Ay, = min (A, A5), Agp = max (ll, Ay), so that

0 <Agp £ hgg < --we'_gét

0l

(3.3.3) PV =n)) <Py Xz(n o S o n3 (ng —1))

-~

2
c nO-(n0 1)

| = é‘ " 2l01 ;'X Xno-z/ I_(.ho"l)dx
< [(EXOI)'l ¢ ng (ng=1)1 / T (ng
-1 '
= O(cnO )
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(3.3.4) iP(N = 1) > P(lngxé( 5:< 0 n%(no-1)}

e 0§ (ny1) |
22 n.-2
= L8 e™ x ¢ /[ (ng1) 9%
I P
2 :
1y (ng-1) .
' 2x Na=-
e 2 e e By 0 S
ng-1
= 0(c ), - as c -> 0.

This completes the proof of lemma 3 5.

Lemma 3«6 . For’any'fixéd 0 <8 <1,
y nO/E
P(N < ® n*¥) = 0(c ) as ¢ -> 0.
Proof: with an's- same as in the proof of lemma 3.5,
note that F | )
. [ on*]
(3.3+5) P(N € 6n*) = P(W = pn ) + x PN =n)
- % n=nghl
Lon*] -
<P(N =ny + = P(xlq(n 1)+ xggén B¢ o & (n-1)
n=n0+1
{enx*] e 0 hcn%(no-l)]
b}

A P(Nz'no) + I inf ¢ Ele
1};;_1071—1 h> 0 |

'h(?\ Q(n l)+ ); (n l))
d

e
' {enx*] hene (n.~-1)
= P(N=ng) + £ inf e O 077
n—no+1 h>0
-E%l )t
(1+23;h) (14225h) 2 }
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C o fem] |
Jheriner P, ngnl 2}

< P(N = nﬁ) + =z inf
n=n0+1 h>0
a2 i §
[91‘1*] h en (n '.-l) -
=P(=n)+ = o2 O @7 l1(Mo)hel
n"'n0+1
I

-1) > 0 for n £ {en*]

were to = EGTG) o F

2 -2

since then (X +12)/cn > (kl*%z)/cg n* =8~ > 1.
ThuS, from (0 -0-5), )
' : 17%2—— n-1"
Len*] {*ha en® 1 2
(5336) P(NEen¥)<PN=nd+ = [le =]
| n“n0+1 1 2
n 2
0 : en
n -1 {enx*] & 1-T=2 n_/2
‘ =0g(e A=iaic 2t i e MM
n=n0+l 12
1- oy 1L Ay
e M2 ey T2

1 2
Now, for ng [en*], an/(k1+ma) < 6. Toting that xe™ * }in x
for 0 < x <1, we have from (3.3+63,

o N ‘-_Q
n0/2 [gn*jen Nyl { 2 X g } 5

—a— ©

(3.3.7) PN én*¥)<c P Y

n=n0+1

no/z n0/2 [en*] (n e 2)n0/2 n_ng-1

+ 0 {c

£
n*n0+1
n.=1
+ O;,(C 0 )9
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2
where € = (e2eln6l)1/2 < 1. Using the ratio rule of convergence,

ny/2

: no-l
P(N < 8n*) < o (c Y+ O(c ) = 0(e Y as ¢ => 0.

Lemma 3.7. If n > 8n* (8 > 1), then as ¢ ~> O,
P(N>n) = 0(n™?), o<n<a..

- n-1
Proof: PN > n) = P(*ngn 1), xzqé ) > cnz(n--l))
¢ -hen®(n-1) —-95; =Dgl
< inf {e (1~ 2xlh) (1—2x2h)
0<h<1/2 (A +r,)
o G
2 n-1
~hen®(n-1) -
< inf [e §1-2(x Mm% “
0O<h< 1/2(k1+A2) ‘
“ber(n-1) - T5
= e [l— 2()\1"”\2)1’10] .
2 YA 1
where ho = m) (1 = _C;lﬁ_";).i 0 < hO < m) for 1’12_ Qn*,
since then cn®/(A+25) > & > 1.
Hence, |
3 o sedsh n-1
= I Al+ l2 cn2 2
(3.3.8) P> n) < le | s f;irfg , and noting that
et ¥ x 4in x for x > 1, one gets

Bl

2
(3.3.9) PO > n) < [el™9 0%] 2 - -1

21
with 0 < m = (8° el‘”e)/2<1-
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In the following lemmas I stands for the usual indicator
function, and e(< 1) is some positive number.

Lemma 3.8 E[-(Nﬁ—n*)- c 1 =0(1), as ¢ => 0.
[w-n*|< e /n¥]

o ' 2 -
Proof: E[-(N%lﬂ"l ' ]
' , [IN-n*|< € /n¥]

. 2 ¢
_{ﬁﬁ‘;) P(|N- n*| <& /¥ )

IA

e2/11- e(n)" /2] = 0(1) as ¢ -> 0.

2
-k
Lemma 3 «9: E[—(%l—ll 1 =0(1) as e ->0.

(e /AF< N~ n* < € n*]

Proof: E[U\I{in—*) B )
[e /m* < N-n* < en*]

2
< n* E[(N-n*) I ]
(n*+e /n¥) n* [6<SN"—H*)5 e /o¥}
S Blx%I ], where X = N-nt |
{e<x<e /nF] he e /n¥
Suppose F(x) is the d.f. of X. Then,
(5.3.10) EIX°I l= = f d(1- F(x))
fe<x < e /n¥] e o

2 A € n
< e“(1-F(e)) =2 / x(1- F(x))dx.

Now, 1= F(x) =P{N > n* + x /'rF} = P(N > t)
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where. t = t(x) = {n*+x /n*]. Thus, we have,
P(N? t) < P(x lQ(t )4 X2Q2t"gl)> ctg(t 1)

= PEA Qgt D Qét'l}- (0 + 25 (8-1)> (t-1) (etPar -2,) 1.

Now c¢t®=r) }2 > c{n*+x /m¥- 1) M-

= o(n*® + 2xn*x5/24 22nx - opk - 2x /AF + 1) - on®

2cxn*3/2,, 2\@1‘1*. -3 2GX /n-*
> k x cl/4 for small ¢, where k 1is some positive

¥

|

constant. Hence |
> (5> t) <Pl § Q(t Do (4 -1} + g 0 (6-2)_ (- 1)}
> k x o1/4 (¢-1)].
Note that for small ¢ and positive x, kx (t-1)c™? ig
positive. Thus |
B, { ot 1)- (t-1)3F + 2, {Q(t e (¢-1)} *

PLN> t]<
k¥ x4 c(t-l) i

(kf*—k§)[12(tf1)2+-48(t-1)]+—24x2x2 (t-1)2

) k* % e(t - 1)¢

A

Ky (t - 1)2 4
Z 2 < kz/x i for small ¢,
x et - 1)
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noting the fact that t ='0(c-1Z2), where k's are positive
constants independent of Coe Thﬁs from (333110)f'one'gets,

e/ﬁ*

oY 2 -od
(x2 1[€<X<e/__]<s (1- F(e)) + K, J‘ X £

zi

€2(1~ F-‘(‘e)) + kg e2(1 - 1/n%)

=0 (1) - as .¢c-=> 0.

-n* : : ‘
Lemma 3410 E[mN—D—)- I | «.] = 0(1)
[-en* < N-n*<-€ /n]

QEC"OQ

Proof: [M i

(- en* < N-n* <-§/rF]

n* li‘[-(N“' 1"1"‘)2 I ]
(n*—e/ﬁﬂ"') n¥ [- e /oF < B8 ¢ | ¢]
| /o>
2
1 X .
.( +o(1))E[ [e/ﬁ’T(X(-e]J for
small c;':whEre (N— n*)/ /ﬁ?

But

(3.3.11) .-Ef¥®1 . ..~ .-}
: [-e /m* <x < 7teJ]

/7 2 aF(x), where F(x) = P(X < x)
=€ /n* ' :

9 - ~€
e“F(-€) -2 S  x F(x)ax
-€ /n¥

n

It
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£ /n¥
2

= €% F(-g) +2 { x F(-x)dx .

Now F(~x)

P(N < n* - x /o*)

n

VP[N < (1=€)n*] + PL(1- e)nx <1¢ <n* - x /5F ]

n_/2 :
£ 0(c® ) +P((1-€eln* < N< n*- x /0%),

for small ¢, by lemma 3 &.

Let my = ((1- e)p*], m, = [n*- x /mx}.

Thus,
) (n-1) (n-1)
(5.5.12) Plm +1 <N < m, ] < P[n_g - ile A0,
< cerf(n - 1)}] .
No
= pl. O {x (Q(n Y. (n-l) + A (Q(n Pl (n-1))
fi= mI_+1 :

< (n-1) (en®- A - A )}]

Noting that for n < n* -~ x /n*

cn® - A - ?\2 < c(n*-x ‘/TT’F)z - o n*2

= - 2¢x (n*)~3/2 + cx?n*

<=k 01/4 X, for small ¢, where k is some

Positive constant independent of c.

Thus (3.3.12) is less than or equal ‘to

(3.5343) Pl min {k (Q(n 1. (n-:L))+ A (Q(n 1. (n-—l))}
mlflj nS:mz

- (m.!—l)k 01/4& [ ¥
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Also {qug_n—l) + xzq(n 1. (A #25) (n-1) = Q(n-l); n > 2} is a

stationary martingale Sequence i U;éing Kolmogorovts inequality

for martingales (see p.399, Loeve (1968)), (5.3.13) cannot exceed

g .
E[Q(.mg )-, (m ) 4/[(m - %% x4

(m_-m,=1) 4 - —

S NS W RIS
<k (nymy3)° ¢ —2 ¢ L
B (m1~1)%<;xﬂ"' T (%)% xt T gt

where k's are all positifre constants.

Hence, from (3.3.11) we get,

B[x° 1
{-e /m* <X < - €]
fn w2 g /n* 8/?1*_-
<€ F( 8)+O(c ¥ 4 xdx + K. x” dx
e - . ¥ E
nb~1

<ePFl-e)+0lc 2 )+ 33/25“2

<0(1) as ¢ ~>0 simce n 2 2.

3¢4+. Proof of Theorem 3.1

Asymptotic Risk Efficiency

Risk efficiency, m(e) = gln* E(N"1)+ E(N/n*)J
To prové (3.2 .1’?), in view of Corr@lary 34, it is suffi=-

cient bto prove that
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(30401) n*E(N-l) -2 1 as c => 0

By Fatou's lemma and (3.2.11) we get

(5.4.2) lim inf n*B(N"Y) > 1 .
n=->20
Now, for € in (0, 1), 1let a = [(1- €)n*]

Then n*E(N™T) < (n*/ho)P(N < aj

+ (n*/(a+ 1)) P(W > o) and
thus by lemma 34 and (3.2.11),
: -1

1lim sup n*E(N =5 < 1im sup Ofc 2 ) + (1- €)™F since n 22,
e =0 c =>0 ek

Now, € being arbitrary, lim sup n*g (N1 L 1,land so the proce-

‘ c=> 0
dure given in (3.2.5) is asymptotically risk efficient.

Asymptotic behaviour of regret

We first note that the regret

w(c) = ¢ BL(N- n¥)2M].

So, to prove (3.2.16) it is sufficient to show

(5.44.3) EL(N- n¥)8M] = 0(1) as ¢ -> 0.

For € in (0, 1), let a = [(1- €)n*], b, = [n*- ¢ /Mm% ],

= [n*x +¢ /m*], 8 = [(1+€)n*] so that
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EIC-JRRPT| O8O L SN S
BL(N- n¥)*/AV} = Bl i[nga] e < < ty)

+ + +

I I il 1)1
fbpemgt,] Dby <N < 8] (w2 B) . .

n -2

) : N
=ofc 2y +o(1) =o(1). if n 2 2,
by using lemmas 36, 3.7, 38 39 amd 3.10 » This completes

the proof of ‘the main theorem gtated in section 3.2.

A remarks The results we have derived here can be extended
immediately to the p(> 3) - variate normal case. There- ~
tr (Asn) = welghted average of p-independent X%_l variables
where the sum of the weights = tr (A £ ). However, in view of
'inadmissibility of the sample mean for the popuiation mean {see
Stein (1956), Stein-James (1961)) with respect to squared error
loss we are rather reluctant “c Propose the samPle mean as the
point estimator of the population mean in the p (> 3)-variate

cases

3.5 Moderate sample behaviour of the stopping time

In this section, we present the results of a few Monte~Carl:
experiments with pseudo random bivariate normal devistes using

the stopping Tule given in (5.2.5) . We fix

a11_= 2, 890 =1y 89y =& Oy FOH T i
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with ¢ = +01(.02).09. wé compute ¢ from the relation

c = (a 8 +¢a22)/n*2 where n* takes the values

11

+ 2849

5(5)25, 40, 50(25)100, 150, 200 «

For each entry, we estimate E(N), B(1A) by repeating’thg expe=-
riment 100 times in H~- 400 electronic computer. Also we keep
n, =2 fixed. Computations are presented in tables I-V on

Pages ©O5H-57.

3. Asymptotic normality of the stopping time

In this section we prové'the asymptotic normality of the
"stopping time Nc as ¢ ~> 0 by using Theorem 2.1. With this
end obse;ye from (3.2.5) that the sequential Pprocedure adovted

by us can be written as follows:

{(3641) The stoppihg‘time Nc is the first integer
n(> n, 2 2) for yhlch n > ?é T, where 'mé,~ S

/2

1 ‘ - '
T, = (tr (A8,)) " . Note that [, => = as ¢ ~> 0, P(T,<0) =0

for all n > 2. 'Remembering from (3.2.7) the represeﬁfation;of
tr (ASn) as the mean of iidrv's with finite mean-and variahce,
and using Anscombe!s (1952) result, we immediately have as

c -2 0
(36 .2) /22 . (x Y ) 5 (12 9.1/2 _J;J_
3 - (TNC 1 2_)//'(11”\2) > N(o, 1)

and
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i
i(TN - (M +l))//‘(k +x) -9{‘-“'—>N(0, 1Y .

Using now a theorem of Mann and wald (Rao (1965), p. 519) one
gets as ¢ => 0O .

1 " ) ol
(3.6.4) N (T - /igﬁfig)//ttx§+-xg)v/é(xl+-m2)]? o5 w0, 1

and
1

(366 N (Ty - Ay /1021 /5 (g0 )]§ s w1

Tt is now easy to observe that the conditions (2.2.2) and (2.2.3)

. of theorem 2.1 are satisfied with a = /11+ Ag > O and

= [‘(%:zL Bt k@/“‘ﬁ"" 12)]1/25 0.

Applying the theorem 2.1, we then have

I

(36 46) (W, - Ec)/(dgg ) f(—i—> N(0, 1) as ¢ => O
é "k 't o, R 1

where d = (11 + K2)2/ /é (ll + :\2), r = a'[Fc - E g(xl_', kz)g ;
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Table I: ASN, Risk Bfficiency and Regret when ¢ = O.l.

n*  cx10° . E(N)  EQA) nle) wic)
5 2078000 4.93 2209 1.0454 09451
10 5.2000 9 63 ~1133 1..0483 .05024
15 2.3111  14.69 0731 1.0383 02656
20 1.3000 . 19.64 0544 1.0353  .01836
25 0.8320  25.49 .0397 10060 00249
20 0.3250  39.94 0255 1.0047 00122
50  0.2080 49 .92 .0201 1 .0033 .00069
75 0.0924 56 .19 .0100 0.7521 - .03437
100 0 .0520 99 .87 .0100  1.0013 .00014
150 0.0231 151 .39 0066 1.0010 00006
200 0.0130  150.59 0037 ®7506 - 01297

Tabtle IT: ASN, Risk Efficiency and Regret when 9 = 0.3.

n* cx 10° B(N) BLL/) n(c) w (c)
5 22 .4000 4.92 . .2205 < 1.0431 09667
10 5.6000 S 9.1 <1275 1.0929 10408
15 2.,4889 14 .79 7269 - 1.0381 02848
20 1 .4000 19 .64 0520 - 1.0112 00627
25 . 0.8960 . 25.02 0407 - 1.0098 00438
40 0.3500 . 40.12 0251 1.0041 00116
50 . 0.2240 . . 50.18 L0200 - 1°.0034 00077
75 0.0995 75.01  ..0133 il 50,025 00032
100 0.0560 99.99 ~ .0100 = 1.0019 .00022
150 0 .0248 149 .40 L0067 1.0010 00007

200 0.0140 149 97 . +0037 0.7507 - 01396
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Table III: ASN, Risk Efficiency and Regret when ¢ = .05.
nx  ex10° BN)  EQA) n(e)  wle)
5 24,0000 476 2353 1:0606 414545
10 6 +0000. 9«49 1207 1.0780 +09369
15 2 &657 15,06 ~ .0715 1.0383  .03068.
20 1.8000 19.89 0816 1.0130 00781
25 0.9600 25.41 .0400 1.0081  .00389
40 03750 39 .80 0204 1.0057 .00170
50 0.2400 50.27. 0200 1.0040 00096
75 0 01%7 75 026 10133 ' 10002? .00044
100 - 0.0600 74 .56. 0076 0.7515 - 02982
150 " 0.0267 149 .84 D067 1.0014 00011
200 0.0150 199 66 0050 1.0008 00005
Table IV: ASN, Risk Bfficiency and Regret when % = 0.7
n* cx 10 B(N)  BOIA) n(c) wle)
8 - i 25.61Q0 . 467 2392 1.0650 16657
10 - 6 .4000 9.49 «1209 1.0789, .101.04".
15 2.8444 1468 = 0735 1.0404  .03449
20 1.6000 19413 0543 1.0216 01381
25 1.0240 24.81 -0416 1.0157 -00802
40 0.4000 40 .53 «0249 1.0061 -00195
50 - 0.2560 50.00 .0202 1.0046  .00118
75 0.1138 - 55 .57 .0102 0.7521 ~.04230
100 0.0640 98 H4- 0101 1..0027 00034
150 0.0284 149.79 0067 1.0017 00014
200 0.0160 199 .14 0080 1.0010 00007
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Table V: ASN, Risk Efficiency ard Regret when ¢ = 0.9

n* cx 107 E(N) B(1/A) ij{e) wi@)
5 27 .2000 4 .56 2445 11,0673 »18310
10 6 .8000 9.29 126 1.0976 13269
15 3.0222 14 .38 0798 10779 07064
20 1.7000 19 .50 0554 1.071%7 04875
25 1.0880 25.45 «0422 1 .0367 »01999
40 04250 39 .50 0257 1.0089 L0306
50 0.2720 49,32 .0204 1 .0046 00125
7% 0.1209 736 0137 1 0046 00084
100 0 .0680 99 .53 0100 1.0024 00032
150 0 .0302 149 .92 L0067 1.0021 00019

200 0.0170 199 .50 »0050 1.0011 00007

Remarks: (1) Average sample size is quite near the valueS“of.*”

n* in the range of ¢ considered for computations.

(2) Negative regrets at places are, we believe, due

to sampling fluctuations.

-l

(3) The performancé of the rule R, on the whole,
is wvery satisfactory and it can be recommended

for use in practice.
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CHAPTER 4

SEQUENTIAL ESTIMATION OF THE DIFFERENCE
OF TwWO NORMAL MEANS

4,1 Introduction. A sequential fixed-width confidence

intérval procedure for estimating the difference of the means
of two normal populations (with unknown and unequal variances)
was studied by Robbins et al (1967) and Srivastava (1970). In
this chapter we shall investigate the Possibility of utiiising'
_sequentiallirocedures‘to get hold of a point—esfimatpr of the

Alfference of two normal means.

Let X, Xz,..; and Y,, Y be two independent

10 o0ttt _
sequences of rvts, the X's iid. N(ul, di), the Y's 1id
2 .
N(ug, 05) with = o <up, pg <=y 0 <0y, 05 <o 4y, U being
unknown. We wish to find an estimator for the parameter
M=ty = Mg Taking samples of sizes r and s from X's

and Y's respectively, supPose the loss incurred in estimae’ -

ting & by W= Xr - YS is

(4.a.1) L, = A(W- )2 +c(r +8),
] ¢ . .

Xr and Ys being the respecﬁive sample means, A and ¢ are

known Positive constants, ¢ being the cost per observation.

<ER
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The risk is

(4;1.2) Ur,g (¢) = A(Gi/f +c§/s) +clres).

Throughout we assume 05, 0y to Dbe fixed, while c¢ tends to
zero. For known 04, Oy and fired ¢, the pair (r*, s*) for
which the risk (2.1.2) is a minimum, is given by )
(4.41.3) r* = boy s* = boy

with b2 = AS% .

For this pair

(4.4) /st =0/

and the total sample size 1s
(4.1.5) n* = p* 4 g* = bloy *05),
the corresponding minimum risk being

(441.6) | Cv(e) =V (c) = 2cn* .
r*, S*

But when we are lgnorant about o4, Oy, which is the case
in most applications, 1no fixed sampPle size ﬁrocedure will
minimize (4.1.2) siruitaneously for all O <oy, o5 < oy
However, we shall Dropose 2 sequential procedure determining

r and s as ©v's a3 follows. Define for 1, J 2 2
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2 . -1 1 =2 2 . -1 = \2
u? = (1i-1) 7 = (X -X,) v o= (j=1) " 2 (Y -Y)
+ k=1 i S g=1 & 477

these being the-usual estimators of &% and cg' for which

uy - O @sSe \f ~-> Gy, 2. as i and J ~> . We take
n_ (> 3) observations on X arnd Y each to start with.

Then if at any stage we have taken 1 observations on X and
j observations on ¥ with n =143 (> 215), we take the next

observation on X or Y according as
(4.1.7) i/i < ui/vj or i/i > ui/’vj 2 o

The motivation seems to be cirar when one looks at (4.1.4).
We now propose a stopping rule which is motivated from (2.1.3)

and is as follows:

(4.1.8) The stopping tims ¥ =¥ _ is the first integer
n(> 2no) such that if R = r observations on X and g =g

observations on Y have been taken, with r+ s = n,

> bu and s > .busg

—— ——

N=R+S'

In section 4.2, the cost of ignoramce of o.,, o, I1s

1 "2
studied, and we are able to show that E(N) - n* is less

than some finite constant for all 0 < e, o,. o. < .

—~ =
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We use the notation L, instead of Ly g* Using indee
‘ e us : _ re’
A e A -  hee ‘ e 2 .
pepdence of Axg, ¥y5 0121, Jj2 1) and (ui, viit2e
§ X 2?, one may observe that ) is independent of .. I

) , n. [fn= n]
for all n > 2n oy where I stands for the usual indicator

function. Hence_

(4.9) .« T(c) =B(Ly)

AE(cr 1. +0' g4y +cE(N) p

As Possible measures of usefulness of our p{ocedure in (4ol-8)

we define for ‘edch e, the frisk efflciency'

v(c)/ v(e)

- G - L et
o =giBleg o) BT Bl ols )+ BN /n%)]

(4.1.10) n(c)

N

and the 'regret!

(a4.11) w(c)‘ B(Q) -vule) -

cEf (R~ r*)2/R + (S - s*)a/Sj.

Regarding m(c) and w(c), we prove the fellowing theorems.‘

Theoreg 4.1. Eornfi;ed 01390, c%imo-ﬂ(é)'? lf
Théorem 4.2« For fixed cl,a lim  w(e) = ofe).

c=> 0
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Tﬁé'proofs of these theorems ére deferred to sectlion 4.4.
in‘séCtionh4.5 ‘we describe a few ‘properties of the rule given
in {4+.1.8). These results being aéymptotic in nature; in
section 4.5 we have prgsenFed results of a Monte-Carlo investi-
gation for moderate.saﬁple‘éize behavidur of the sequential

procedure using pseudo~-random normal deviatess

Finally, asymptotic distribution of the stbpping time N
has been studied in sectioﬁ‘4.6;' With this end, we prove the
following theorem.

_ _ o
Theorem 4.3 (N - h*)f(_2/n*)§ —= N(0,1). as ¢ -> 0.

4.2. The cost of ignorance of ’dl and oy

in this section we prOvé-the’following result .

Lemma 4.1 E(N) < n* +2n, forall O<e, 1y O < .

Proof: Suppose that R > nj and  that just before the Rth
observation on X there were (R-1 observations on X and) j

observatiéns on Y. - Then .

(a2a) ' R=1 < buy ,
j 2 Py
the (R-1, j)th stage. -It follows from (4.2 &) aﬁd the defini-

because otherwise since j > bv we wotld have stopped at

tion of up 4 that for R > N
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(24.2,2) (R-1)2(R-2) < b2 % (Xi—}'{R_l)2
<P :1% (X, - Xp)®
< b2 le (x, - ul)z .
Now,-

(r-1)2(R-2) - (R-n_)2.R

]

RI(B-1)% - (R-n)®] - 2(r-1)%

1]

(n,-1) R (2R~ n_-1) - 2(R-1)°

> (n,-1)(R-1)% - 2(R-1)% > © if n >3
Thus for R > n,, from (4.2.2) we obtain
(2.2.3) PR (X, - )2 > R(R - n )2
[ ] ] 1 i 1 g O

which trivially holds even if R = n .

Using Wiener's dominated ergodic theorem, from (4.291)~w§
conclude that E(R) < w. Using convexity of the function

(R- nb)zgR‘(since R>n_ a.s.), Jensen's inequality and Wald's

0
lemma, we gét

2

(4.2 ) b°o% B(R) 2 B(R)(E(R) - n )2

which gives

(4.2 +5) B(R) <r* +n_ .
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We can similarly obtain

(4.26) B(s) < s* +n, -

Combining (4.2.5) and (4.2.6) we get the lemma 4.1 .

4.3. Some properties of the rule (4.1.8)

Lemma 4.2 . 1Lim B(N/n¥) =1
c->0
Proof: From lemma 4:1, we have

E(N/n*) <1 + (2n, /n*)

which leads to

(4.3.1) 1im sup E(N/n*) L =
¢ -2 0 .

Clearly, from (4:1.8), 1im>igf {(N/n*) > 1 -a.s+ using-the
C o=

aes. convergence of wu_  and ¥ to Gl and;rcz respectively

as I => o, § => @, Also R.-> « aes;, § «> > ag., as c~> 0.

EL

Thus, by Fatou's lermna,

(4.3.2) 1im inf PB/a*) > B(1lim inf N/n*) 5 1
c->0 c=> 0

Combining (4.3.1) and \4o002) we get the 1émma 4.2,
It may be noted that from (4.1 87, (4-2 1) (and a. :ﬁ*elntmon
similar to (4.2. 1) with s) we can conclude
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(2.3.3) 1im (R/r*) llm B(S/s*) = 1im EB(MN/n*) =1 =a.s.
] c-> 0 -> 0 c->0

no-l

' T
Lemma 4.3. For fized © in (0,1), P(R < © r*) = 0(c )

@E CV"‘> Oc

2
¢ -1) \ ]
Proof. Let o = [er<], »p (r, 0,4 ¢) = —E;ifg—ll y 1 =1,2
' i
r > no B
o
(4.3 44) P(R < or*) =P(R = n )+ 5 P(R = r)
r:no+1

. - o
< P(u, < (Ac 1)1/2 no) + T P(R=1)
- Iy r=n_ +]

: a
SROE ) $Bng, o5 )+ T RO, < plroyie)),
o

Now, the 2nd term in (4.3.4) cannot exceed

a ' 2. _
% 4inf Efexp {E‘E—%—ll - h)(i_l}']
Acl

r=no+1 h:>0

——— 2
= g inf [(1+ 21‘1) exp S\ncr (r- ]

r=n°+1 h>0
ranl . n crg(r-l)
[0 4 *—2-— { g
= z (1+ 2h0) expi St }
r=n,+l ) L Aoy
Ao
N W L T
where gl (c;§— 1).

For r < a,
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or” Slcaz S-Cezr*2=)Aﬂ§ 9? < Ac%; so that h> 0.
Thus, ' ‘
' ‘ ' rg r=1 -
Png+1 <R<oert) < = [fexp (3- %) }-—_Crg]T ,
r=no+l Acl Aal A

We note that-for 0 < x <1, fX@}f% # in x, so that

2 ]
et o
? 2 1-6™ ,
e A E£§ <e 92 = g(say) <1,
Ac ; ,
PO . 1 g
using the fact that ex_l-g x for real x, equality if and only
if x =1 |
Hence,
| oy r-n -1 : no \1 - EI; )
5o O 0 2. —= 5
P(n_+1 < RS Or*) < 2"z 7' () e A1) @
' r=n -+ - . Ac
(o} - 1
n n r=-n r1*547: n
_O_ SO b et R Q
2 S ) -
<ec e I o (“g‘)
r=n_-+l Aai'
LBy Tt =

Oé(é 2), a8 € => 0, P
. "

using the ratio test of Convergence of géries of vositive terms.

Getting back to (4.3.4),

n -1 n
. o~ i} |
P(R < Or*) < Oe(c 2 ) + oe(q 3)__aSA c => 0
nb-l -
= Oe(C 2 } as ¢ => 0

which 1eeds to lems 4.3,
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Lemma 4.4. 1im b(c + o ) -1 E(Gz R+ 028-1) =1.
c=-> 0 2 :

Lemma 4.4 has an equivalent variant form in

Lemma 4.5 Un (o + o)t [ogB(x/R) + 0B(s%/8)] =
e => 0 -

To prove lemma 4.5, it suffices to prove the following:

Lemma 446 . 1im B(r*/R) =1 and 1im E(s*/) =
c =->0 ¢ -> 0

Proof: To prove the first part, using Fatou's lemma and (4.3.3),

(4.3 .5) 11m inf EBE(r*/R) > E(lim)lgf r¥/R) =
-> 0

Wow, for arbitrary € in (0, 1), let @ =1~ €. Hence with

= [o r*],

| -1, _ % -1 -1
(4,36) B(RF*) =2 r *P(R=r) + £ r -P(R.=r)
‘r:no _ r> a

< nit P(Rg or*) + (a+1)7IP(R> a).

Thus, using lemma 4.3,
~r* B(R™) <o (e® )+ (1-6)T PR > a)

so that

Lin syp E(R™Y) <1 + 9, 0< 3= 23(e) <1,
c=-> 0
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since n_2 3. € being arbltrary, cgmbinlng (4.3.5) and (4.o 7Y,
the first part of the lemma follows. The other part follows in

the same waye.

44. Proofs:of Theorem 4.1 and Theorem 4.2 A

Asymptotic Risk Bfficiency. The proof of theorem 4.1 1s

trivial in view of lemmas 4.2 and 46

Asymptotic Behaviour of Regret .

In view of (£4.1.11), for proving theorem 4.2, 1t is

sufficient to prove the following lemma.

Lemma 4,7 For the rule in (441.8),

k1 . o T at
(404.1) E[(R-r¥)2/R] = 6(1) a8 ¢ ->’0. “if and orly if
Do 2 3 : . ~

(4.4.2) El(s-s%)2/5] = 0(1) as ¢ -> O if and omly if

n,2 3.

Proof: We shall prove only (4.4.1) 2(4.4.2) will follow in a

similar way. First note that
2
(D -r*)

L Dy

A4

El &~ r*)%/R] . P(R = n).
' n -1

o (e 0 (e 2 )

n -3

as ¢ => 0
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which proves the only if part. 1

For the if part, let us write o = L(1- €)r*), & = [r¥-e(r)?],

by = e e(r*)l/zl, 8 = [(1+¢€)r*], where [u] denotes the
largest integer < u, € being arbitrary with 0<€ <1.
Then,

. 2
(4.4.3) E[@®- r¥)2/R] = E[—T———(B'r*) I +7 '
i | { (n <R<a] [e<R<t,]

$I +1I 1 371,
[ty <R ) [R>'t2]}

In view of lemma 4.3, the proof of if part of (4.4.1) will be

complete if we prove the following lemmas .

Lempa 48 E(R (R-r*)%1 1 =001) as c->0
Tl (t;< RL &,
=] 2 g 1w -
Propf: EBIR (R-r*)° I i< - P(t, < R< t,)
[tl_SR_g t,] rrg(rx) /2.y 15 TE 2

& I i P ‘
< 82(1*- e{r*) l/2—(1~'=) l) =0(1) as e =-> 0.

i £.9. EIRY(R- r*)2 I = 0(1) .. -> 0.
emma [RT(R- r*) (5> tz]] Y..as c 0
il B> t,17 T (B> t,]
¥ELX2 L 1, where X = (R- r*)/(r*)l/2
(x > e]

1

-‘Ej; xzd_(l-m‘F(x).), where F(x) = P(X< x)

I~

e2(1- F(e)) + 2 fx(l- F(x))dx.
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Now, 1= F(x) = P(R > r* + x(r*)“)< P(R > t), where
t = t(x) = [r*+ x(r*)l/aj. Use now the inequality,
P(R> ) < P(u? > ca™l ¢2) = {x%,,l— (t-1)> (t-—l)(tg(r*)"z-l)} A
But £2(r%)"2 - 1 ) (@) 2(r*+ x(r¥)/22 132 _
. 1 - | } 3
> 2x(r*) 2_ 2 (r*) 1. 2x(r*) 2
2 Kxcl/4 for smll e,

?
where K 1s a generic. symbol for a positive éonstant independent
of c¢. The, Markov's inequality gives
2 v Ly g, 4 4 3 .
P(R> t) < KE (X5-q - (=10} {{t-,l) X c} s
< K(t=1)"2 3% 51 < K/x*%, for small .

Hence,
%24 F(x)
e

iA

e2(1-F(e)) + X [ 7° dx as ¢ -> 0
e
=

e%(1- #(e)) + K.

This completes the proof of lemma 4.9.

Lemma 4+10. E{R"1(R- r*)2 T 1 =0(1) .as c-> 0.
: La < R< t]_] : -

Proof: EB{R (R~ r*)2 I 1< (1-e)1 gixPr z I
© la<R< t13 [-e(r*)“¢x <-cl”
1

where X = (R—r*)/(r*)g. Now, writing F(x) = P{X< x), we get,
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(4.4.4)

. 1 1 = dF()<eF(e)
F[XZI[-e(r*)ﬁ& X < -€] E{(1.,,‘)]./2}{ 8

i
=2 i xF(x)dx

--El(r’")]'/2 ]
5 € -2 I"“’)]‘/2 |
= gp(e)-2 [ (=x) F(-x%)(- dx) F(e)+ f xF(-x)dx- I
t’:‘,(r)l/2 o :

Also, i e -

F(-x) = P(RS r*- x(r+)®) = Pln < RS @) + Po ¢ R rr- -x(r+)?)

B ,
-1
= 0e (c:g(lrlo )) + P{a <R { r* =~ x(r*)g).
Now,  7. 1

(2.2.5) Pl < R < r%- x(r¥)2) = P(a <R <), u = [r*e x(r%)]

£ P(ui ¢ cA”) 1 for at least ome n such that a<ngu)

]

P(Xﬁ_ < en (n—l)/AG for at least one n such that

g <n <u).

Bnt for a <n £y, (cng/Adz) -1Z (cr?/&cz) -1

=1
< olr*- x(r*)g)z/Ad -1= —2cx(r*)§(A0'?_) "+ ox® re(acd)

£ -kKx cl/é for small c¢; where X 1is a generic possitive constant.

T _ n-1 _

Let us write u2 = El U. where U,'s are iid Xz variables.
nooq % i 1

Then, from (4.4.5) we get
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1 il

(4446) Pla< RS T* - x(r*)g)_gP{ inf "3 (U -1) < -K x.e“.cx}
a<n{ul

Using Kolmogorov's ineauality,right hand side of (4. .6) cannot

exceed
| n-a-1 Bl g
(4.2.7) KEeE[ = (Ui-l)]/x oC o0
1

4

< Kelu=-a- 1)2/x% ¢ o+* < K/x%, for small c.

Hence, from (4.2.4) and (4.4.7),

Bx® 1 ]

(e (r)Y2 ¢ X < - €]

G(T*)l/z 1en -
e%r(e) + 2 f xlo, (c 2(ne)
n_- 2\/2

1.

Jax

wt

) +K

e®F(e) + K [ J + £7%] :

IA

which proves the lemma 24.10.

This completes the proof of theorem 4.2.

4.5. Moderate sample size behaviour of the rule in (4%1ﬂ8\.

Here we present the results of an experiment using pseudo-
random normal deviates carried out in H-400 electroniémcomputer.
We write (4.1.5) as

(44541) n* = al(l *3,)
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where ‘3, = Ac "0, , A = dlﬁcgo We have considered the cases
for
82 = 1, 1/2 ’,-L 1/4’ 1/8: 1/16
with ' '

n* =10, 15, 20, 25, 40, 50, 60, 70, 100

n, =5 the starting sample size.

Te estimate E(N), E(R-l), E(8™™) we repeated the experimen£
200 times for each each entry using the stopping rule |
'(4.148) aﬁd inturh Qe estimated the 'risk efficiensy' n and
tregret' w (look at (4.1.10) and (4:1.11)). The tables

4.1 - 4.5 show the results. Computations are presented in
tables 4.1 - 4.5 on pages 79-81,

4.6 . Asymptotic normality of the stopping time NW.

Here we follow a similar technique as the one discussed
in chapter 2, tolget the asymptotic normality of the stopping
time N for the rule in {4.1.8)

2

and variance a1

Suppose W,'s are 1id with mean M9
Zj's are'_iid' wi;h mean - Hoo and varianqe-‘cgé,‘wffs are
independent of Zj'é’ (1 = ;s‘f°v Lt s d T Ly eee n,ju 2 1) tétsing

m, =m, m, =n, T =T, =m +n 4 assume T => o as uv->e
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m/T -> \ as v->w

where A is in (0, 1), and we have

1 =
5 = - . .
../ N 0
where z=( 11
0 2/(1-:\)
Lemma 4+7. Suppose R = RU and 8§ = S, are proPer rv's
such that R/m ->1 a.s. S/n-=>1 a..amd N/T => a.s+

as y => ® (yhere N = R + S)« Then
i | e
g - A
(Wg= 1yq5 Zg- Hoo) > Wy(9, %)
_8_._§ v => oo, N
Proof: Since ‘N/T =>1 a.s. as v => > it suffices
to prove the following:

N

L

(446 2) T (T:IR-- K19 E’S'-— u22) — N2 (_O_, z ) as U => e,

Fix €11 €oy two arbit_rary”positive, numbers .

(446 +3) Pl /T (\T!R-un) < ;c, /T (2 - Hoo) <yl

< P[/T (wR M) 3 /T (Zgm wy5)< y, /le R, < ey,

/_IZS- Zn! < 82]
+ PU/Tug- v [> 61}-1- PE/T]ZS- Z. > €,
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terms
R/m => 1 ass. 8/n->1 a.s. the last two
in view of m =~ :

D Lt )

i i i O .bi itl
ple means fOllOw the uniform contlnulty in »r e \ y
Since sam

condition of Awscombe (19%52)., Tous,

(46.4)  PUAG- M) &%, ST \-ZS- AR

< P[/T(wm- b11) < x+ €5 /T(zn- Moo )< v+ 82]+n1+ n
26z, y) +n,  ror large y |

wiere mn, n

1 ﬂg are positive quantities,

and  G(x,y) is the
dof s orF No{C, £), after utilising (4.6.1),
show that

Similarly ONe can

(246 +5) PK/T(I:IR- H9) < x,

>

/(2 1) < 3]
2 G&x, y) - p |

b
for 1afge v , N> 0,

This comPletes the Proof of lemma 4
Now, with Xy Ty

u, vj, R, S the Salle as in sections

¢+1~4.4, we have the following corollarieg.
2

Coroliary 4.1 Ng(ug- o

R W )

1 vg- 02) — N2 (0, =)
26%/1
88 ¢ =2 0, yhere z =
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g
Proof:

The proof follows ffom lemma 4.7 if we express

2, 2 2, 2 L S .
up/ o] and VS/ o5 as means of iid )(i variables

' 5] B0 LG L

Corollary 4.2 Nl/ (uR- Gy Vg 62) ff——>N2(9_, Z‘.O)
c%/zx Sl o

as ¢ =-> 0, where I, =

0 0 o2/2(1-2) ) -

Lts proof is trivial, once we use Corollary 4« and invoke
Mann-wWald!s theorem (Rac (1965} -p. 319). Since W/n* -->1L a.s %
thé above corollary can be rephrased as

1

(4.6 .6) n* (uR-~c'l, Vg= 0g) ——> Ny(0, £g)
~s ¢ =30, I

0 being same as in corollary 4.2. Note

Note that A = crl/(crl + 0'2).,“ so that

5 15/n + o5 /(1- 1} = Fnr/0)?
1
where b = (Ac 1)2 ,

Proof of Theorem 4.3 . We have

(46 .7)

i R_)_biR aeSe and 5 2 bvg aes.
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S0, 1

1

P {n*g (ug + Vg- o, - 0'2)/2 2 {o* /1) < x}
1

P {b(n*/‘a)-z (uR**vS-' oy - 0'2) < x}
B )

P {b(n*/z) (i (228 .

v

o) =05} < x} , by (4.6.7)

P {(n*/Q)-% (N = n*) < x}'

NWow using corollary 4,2,

i\DH--'

(4.6.8) 1im sup R éL(n"‘/E)
C -2

(N-n¥) < x } < %(x)

where § stands for d.f. of N(O, 1) a

We recall (4.2.1) as

I a - -
(4.6.9) R=-n, < bup_; a.s. and g - n, £ bvg {1 a.s.

so that

iy L
¥ in*g (Upq *¥gq -0y - "2)/2 ® (e/m) < X}

P & 2)5"}

< x§ by (4.6.9)

!

= B SLb(n*/?J @ logy * vy
s

<P YW - -on) (me/e) B
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 E W=

and hence

Y

[

| §4:6}10) lim inf P (n*)éi-

e (,N - n*) < x} 2 § (x) .

Combining (4.6.8) and (4.6.10), we have

b e
(2/0%)2 (N - n*) —i(L> N(o, 1)

as ¢ -> 0, which is the Theorem 4.3, as stated in section 4.1.

-— -
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Table 4 .1: = 1

**al n* 6 n W

5«0 10 11.195 1.0162 0 .3248

7 5 15 14 .560 1.0346 1.0380
10.0 20 18 625 1 .0548 2.,1945
12 .5 25 & 23.775 1.0420 2 ,1030
2040 40 58 035 1.0344 2 7521
25.0 50 48 740 1+0180 1.8091
30 .0 60 58 +540 1.0168 2 .0225
35 .0 70 67 875 1.0171 2 .4075
50 .0 100 98 710 1.0068 1.3635

Table 4.2t 3, = 1/2
o o E(W) m w

6 66 10 11 825 1 .0480 0 +96 06
10 .00 15 15.245 1.0401 12036
1333 20 19 .575 1.0391 1.5644
16 66 25 23,925 1.0417 2 .0870
26 66 40 38 .340 1.0360 248813
53«33 50 47 950 1.0281 2 8105
40 .00 60 58 .085 1.01853 2 1980
46 b6 70 HB 090 1 .017) 2 LA0D4A
66 66 100 98 .255 1.0077 15495
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Table 4 .3: 9 = 1/4

'al ¥ B(N) n W
8.0 10 12 635 1.1181 2.3628
12 .0 15 16 655 1.0612 1 8361
16 0 20 20,030 140650 2 6008
20 +0 25 24 675 1.0247 1.2373
32 W0 40 38 825 1.0148 11186
20.0 B0 48 .590 1 .0169 1.6960
48 .0 60 58 670 1.0153 1.8415
56 0 70 68 885 1 -0139 1 .9485
80 .0 $00- 7 ! 97 .995 1.0119 2 .3918

Table 4.4: 9y = 1/8
al n¥* E(N) n W

8 .88 10 13 4465 1.1935 3 8708
13435 16 17,970 1.1224 36721
17 77 20 22 .005 1.0675 2 7024
22 22 25 26 .040 1.0591 2 9580
35 .54 40 40,005 1.0105 0 .8425
44 44 50 50 .025 1 0096 0.,9523
53 .33 60 58 5105 1 .0093 1.1218
62 22 70 69 .490 1.0079 1.1086
88 .88 100 98 .550 1.0074 1 44963
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Table 445 8y = 1/16 . § Apm
& Tk E() - n | W
9 41 10 . 13.835 1.2428 4 BEY3
1411 15 18 685 1.1536 4.6095 -
18 .82 20 23,140 1.1034 4.1370
23,52 25 on 370 1 .0820 41004
37 .64 40 41,740 1..0507 L 2.4631
47 .05 50 . B1.405 1.0469 4 690655
56 146 60 60.800 1.0102 1.2249
 65.88 70 69 .595 "'1.0075 1.0582
9410 . 100 . 99.275  1.0044 - 0.8807
Remarks ‘“

ey .
.1} 1In the range of o,, ¢, considered, the average
sample size is generally very ncar the optimal

sample size '

2) The regret is always positive, as expected, meaping'
thereby -that the risk cf *the procedure (4.1.8) is
larger than the minimvem risk; however, the bounded-
ness of the regret 1s substantiated.

3)  The risk efficiencies are quite near unity in all
the cases. | '
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CHAPTER ©

SEQUENTIAL ESTIMATION OF A LINEAR FUNCTION OF
MEANS OF THRFE NORMAL POPUTLATIONS i 5

5.1  Introduction. In chapter 4 we investigated a sequential

procedure to get hold of a point estimator of the difference of
twe means, the underlying populations being normal wlth unequal
variances, It is easy to extend those results and -the results
of Robbins et a1l (1967) for estimating a linear function of two
norméljmeans. In this.Chabter, we have consildered sequential
estimation problems for a linear function of means of three
normal populations (having vnequal fariancés), sample sizes

being not necessarily equal; Here the sampling scheme is qulte

complicated having though. some inherrent symmetry.

5.2 TNotations ard preliminaries

Let Xy, 3 =1,2,... bea sequence of independent and
normally distributed rvts having mean iy and warlance G?,
i =1, 2, 3, all the parameters being unknown. Also we
assume that the three populaticns are irdependent. For given
non-gero constants kl,
linear éompound of the means,' o=

kz and ké we wish to estimate the
1M, + xg“g -+ ksus. Now,

_82'_
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there 1s no loss of generality if we assume N = Ay = Ay = y

Having r observations on Xij’ 8 Observations on ,ng and
t observations on XSj’ let
t
o SN /7 -1 ,
(5.2.1) N )
= (r- 1) 1J§ (Xl.j— Xlr)z’ Vz N (SLl)-lj§ (X?. X25)2’
-Ill e e 2
w% = (t-1) zl (X,.= Xxi)
Jj= .

and we propose the estimator

(5,2.2) W= Rt Xy Xy

for wu.
First, we want to find a confidence interval I of width
2d having coverage probability 211 - & for u; where 0 <d (=,

0 <a <1 are preassigned. We propose the interval

(5.2.3) "I=lw-a, w+d]

°f width 24, centered at W. In sections 5.3 and 5.4, sampling
scheme and sequential procedures have been suggested to attain
the objective approximately. The Procedures are shown to have

'asymptotic consistencytand tasymptotic efficiency"in‘the sense
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of (1.1.2) ard (1.1.3). The cost of not knowing the oy's 1is

~also stydied.

In section 5.5, our attention is confined to estimate M
pointwise with a view to minimizing the risk (loss being squared
error plus cost). Suppose the doss incurred in estimating u

~

by W is

- N . B e
(5.2.4) L s, b ~ Alw - p)* *+cflr + 8 +1),

rél ¢ are known positive constants, o ‘being the 00;¥ oan

single ynit , Here agaln, we have studied a sequential proce—
dure to,achiéve the objective apprqxlmately.‘ The procedure ﬁs
shown.té be 'asymptotically risk efficient! (as ¢ -> 0). The

'regret! is aiso shown to be boundel (as c¢ -> 0). The cost of
not knowing the oy's (i =1, &, 3)-is also investigated.
Moderate samPle size behaviour of sequentialihbnfidencex

interval procedures (given in sectidn 5.4) is studied by Monte-
Carlo methods, and is found to be quite satisfactory.

573. Fixed-width confidence interval estimation for u
(5.2.3) yields, '

A

| 2 L2 -1/
T 1 i 2 " Mte -

]
NS o
¥

x

\
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where 'é denotes the- N(O 1) distribution function Tet a

ard 'b  be constants given by . . | Eie A 4
:éﬁik? Y- ES ey ( /’d)2 PTG AT RV e s e

- =] -, a - }

a For l fl £ ridad ad e le powe Y ol

In oniﬁrjﬁhat; P(ue I} > 1 -a, rpsyt ‘heed satisfy the

inequality
) 2 2

(5.3.2) ot D a3y WO -
- rs Y g

Regarding r,s,t as continuous variables, the idea is to fird
the triplet (r*, s*, t*) which satisfies (5.3.2) and- £dr which

n=r+g*t is z minimgm, ard it is quite easy to obtain

:-blgi (Ui + 0, +-03) ‘ ’
(5.3.3) =1 o'g (c‘ Tog * o) :
=D oy (d + o, * 63)
For this triplet
(513:&)7"a_;*/3* = oi/bg, */t* = 62/ b r*/% rwa'/&
B e a Rl ‘5 S

arnd the total sample size is

- = - . - 2 =
(5.5.5) W ST gk o+ =D (o) +05 +0)% .

Wnen oyts (i =1,2,3) are unkiown, we cannot find with fixed
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sample gsize procedure any interval 1 of preassigned length 24
for u with preassigned coverage probability 1= a;l However,

wve shall pPropose sequential procedures determinihg r,s, amd t
P where the goal can b2 achleved asymptotically. The
usuéllestimate; of o;'s given in'(5:2:1) have the desirable

property that

=> 0y 8.8., V4 =2 05 a.85., W =2 Ty a.s.

as i, j, k => =

Now we give the scheme for sampling at any stage arnd the stopping
) ‘

rules.

5.4 Sampling scheme and stopping rules.

We take n, (Z 2) observations on the three populations
to start with. Then if at any stage we have taken r observas
tions on Xpy, S observations .on Xy, ard t observations on

XSJ’ we take the next observation.

(4) on X,

(B) on %o Af /s > u v,

-

if r/s B, 31 /t < u /v

n
™~
ct
FaY
~:
s
=
ct

(C) on Xz _if 8/t > v /vy, r/t>'ur/w

The motivations‘séém‘ ~to be cléar when one looks at (5«3?4).
Also one may refer to Robbins et a1 (1967) or chapter 4 of our

work. we now propose four more or less egquivalent stopping
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rules, easily motivated from (5.3.2) - (5.3.5).

Ri': The stopping time N = N(d)‘ is the smallest ppsitiﬁe
integer n‘g'ﬁﬁném such that if- R = r observations on
Xxj', S = s observations on Xa; ard. T = t observations

on X have been taken with r+ s+t =n

3}
,{' i ' 2

(5.4f1) n2b (u, e wt)

Ry The same, with (5;4;i) fepléced by

- 2 2 2 L ur L P
(5.4.2) u, Vg o Wi

r "3 T L%

e

G Y

Ry : The same, with (5,4:i)lréplac§d by

T2 buplay wvgdw), B2 brglun kv of wy

(5;4:3) R B E G omal e _ . j A
. o \
b 2w, + vy )

Ry ¢+ The same, with (5.4.1) replaced by

(5.4.4) -'rzjz bnu§ L 52

> b, t2 > v

e By ST t

In each case the confidence interval for # 4is taken to be I
as in (5.2.3), the random samble sizes being R,S,T, the ‘
total sample size N =,R_¥\S + T, Suppose N = N(d) is the

general notation for the stopping time. Main results regarding
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N in relation to (5.4.1)-{5.4.4), are stated in the following
theorem., Note that if Ni denotes the samvle size required .

under rule Ry (i = 1pses,4)then Ny <N, < NzS W, a.s.

Theorem 5.1. Assume O < o; <= (1 =1,2,3) are fized. ' Then

for any of the stoppiné rules Bl - Ry  wdth n* = b(cl4-02ﬁ-63)2
(See (5-305)), |

%

(5.4.5) © 1dm N/n* =1 a.g.

d <> 0 - A '
(5.4.6) lim E(N)/n* = 1 _ | .
(5.4.7) 1im P(pue I) = 1-a -

d -> 0 5 b

Properties (5.4.6) and (5:4.7) are referred'totas the tasymptotic
consistency! ard ‘asympltotic efficiency' of the provosed proce~
dure, To prove the theoren, wé needtsbﬁe Tesults which we prove

in the following lemma.
.

‘Lemma 5,1. For all d > 0 under the assumptlon 0, < oy o

fixed (1 =1,2,3), for any of the stopping rules 31- Ry,

b

(5.4.8) E(N) <n* + 6nb;

Proof. First note that it suffices to prOVe the Qemma for the
rule R,. Suppose that > ng and that just beforé the rth
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observation on - X, 4, there were (r~ 1 observations on le)

S observations on ng ard t observations on ij. Then

according to (A) of our sampling scheﬁé}

(5.4.9) (r—l)/s Sup /vy and (r-1)/t Su,_ /v, o
.Then i

(5.4,10)  (r~1)% < bi(n- 1)u§_1,

for otherwise, if (r-1)% > b(n- L)u?_; , then, from (57419),

52 > b(n- l}vi and  t° > b(n- 1)w27,

and sampling would have stopped at (r-1, s, t)th stage for ,341
Also, then, from (5.4.10), : .

Lo . g e TR, .
(5.4.11) (r- 1)%(r- 2) < bn i (Xqy
, J=1

N 2 -
< bn jEl le- Xlr) s

This leads to the inequality,

2

(5.4.12) WUy > (R-1)2(r-2).871 1 + (R~ noyzia i

- IR>n ) {R=n,]
« > (R~ no)2 Ry s , where U? = (rel)ui.(rz 2).

If we assume B(R) < », using convexity of (R~ n0)2 R/N amd
Jensen's inequality, we get from (5.4.12),
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(2R - n,)Z B(R)/B(N) < boZ B(R)

ard hence

(5.4.13) - (BR - n)? < bo® B(N) .

Similarly, :
(8 - n )? < bol B(N) if B(S) < ,
(ET - no)2 < boZ B() if B(T) <% o

Hence, since N - 3n = (R - n,) + (s - nb) + (T - no), we have’
- 2 2 2 .
(BN - 3n)° < blo) + o, + o) B(N)

vhich implies -

(EN)2 - 6n_ B(N) < n* B(N)

leading thereby to

(B.4714)  ° \E(N) < n* *6n_.

Also then, for the rule R,,
E(R) r* +n_ + POy
(5.4.15) E(8) < s* +'ny + o,

E(T) < t* +n + po,
vith I© = 6bn_ , using the fact that (a+Db)® < a® +b° where

- a and b are nonnegative,' If we ao-notlassume B(R) < =,
E(8) <=, B(T) <=, define R_ = min (B, X), § = mn (8,k),
T, =min (T, ) and get'bounds for E(R.), B(S,), E(Tk') and
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E(N), N =R +5 +T. Using Monotone Convergence theorem,
we then get the result. _
This completes the proof of lemma 5.1

Proof of theorem 6.1, For proving theorem 5.1, we need one

more lemma, which is an immediate extension of the lemma in

Robbins et a1 (1967).

Lemma 5.2. Given constants ey 50 &y 5 1,3,k = 1,2,3,...)

1,77 C6>0 0<d,  =>D >0 as i,j,k->w

? ?

sﬁch that O < ¢

and any integer no > 1, define 'i(5no) = j(3n0) = k(3no) = n,

ard for n > 3no 1et

(A1) 1(n#1) N i(n) + 1, -j(n+1) = j(n), k(n#) = k(n) 1if
A3 Sepiy yehy o+ MDD <oy yiny
. = 3tm, - x(my?
(B) i(n¥) =i(n), j(n+1) = j(n)+1, k(n+l) = x(n) 4if

H/30) > eyny, gy » IR 4500 ()

(1) il(n#) e i(n), j(n#l) = j(n‘), k(n#) = k(n) +1 1if

3 /R > Ay iy » 2 /kn) ey (n), 3(m)

L3tn), wln)d
Then 1i(n)/j(n) -> C and j(n)/k(n) -=> D as n -> .
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Proof of lemma 5.2.

Clearly i(n),'j(n) anrd k(n) => e as n => e« . Call
an integer n 2 3n, of class I, class IT or class 1II accor-
ding as the conditions of (4), (Bl) or (Cl) are satisfied
for ‘n. Then for all sufficiently large n, there exist largest
integers ni, Ny, N; respectively of class I, IL and IIT with
Sn, £ 10y, hz, Dy < n. Also 1, Ny, N > oas n o> e .

Now, i(ng)/3(m) < °i(n)), i(n))
ard 1i(n; +1) =1(n +2) = = i(n)
M) 2 3(n)
so that 1(n)/j(n) <'i(n)/j(ny) Ln) )
= 1 D) = gy )
<e

which implies 1im sup i(n)/J(“ < e,
n-> o

Also i) = jlng + 1) =jlny) +1, 1(n) 2 i(n,)
so that 1(n)/j(n) > i(ny)/i(ay) +1

1(n2) , 1
(] - — L&
i(ng) 5 j(nz) + 1]

n

Z~‘3J'.(nn-2), a(n) (1~ '(n215 71

which implies 1lim inf i(n)/j(n) > ¢, so that 1lim i(n)/j(n) =
n-> o  nedee

= -
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Similarly the other part follows.. Thus, Proof of lemma 5.2 is

complete.
vy vy
In our case we put °q :VVE ; dj,k = wk , 'and obtain
z o . o v
the results 1(NW)/j() -> =2 a.s. and J(M)/&(N) -> 22 als:
2 3
O .
and J(N)/x(®) -> == a.s. as N ->e,
%]

For any of our stopring rules, since N ->. = a.s, as d => O,
it follows that

(5.4.25) g -> == a.s, ard % -> == a,s., as d ->0.

2 3
If Ni denotes the total samples slzes required by the
rule R, (i =1, ++,4), note the fact that N KN

o 2
2.3. S0 1t is sufficient to prove the theorem 5.1 for the

SN SN,

Tule BA‘

the fact that R -> a;s., S ->ew a.w. and T -> » a.s.

(5.4.8) follows easily from (5.4.4) together with

as 4 «> 0.
By Fatou's lemma ard (5.4.5) it follows that _

’

—

lim inf B(N/n*) > 1. From (5.4.8), one gets 1lim sup E(N/n*)<1
0 ) d-> 0

which gives (5.4.6). To vrove (5.4.7), note that for any inte=
ger n,the two events [w€ I] and [N = n} are stochastically
indeperdent, since (Xlr’ X2s’ XSt) is indeperdent of

(ur, Vo wt); so,
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2 2 2 ;
[s) g g
itz Y ¥ ok

ooi-

‘(5.4226) Plue 11 = 2E§ [d(

Again, from the definition of the stopPing rule R, it folliows
that

Ll AV
|eato

1im b(

+§--+ ')::j_ 8.5,
da-> 0

S
o= |

Using now the dominated convergence theorem

&iﬁhz;;££#£;144=:2gﬁ£&$:=ﬁ#===§?-u
d ->0 7 i : :

and the fact that b = (a/d)%, we get

1im P(uBI)=2§(a)-1=1-a.
a -> 0 ,

This completes the proof theorem 5.l.-

/

5.5 Paint estimation of u  with minimum risk

In this section weé shall investigate the possibllity of
utllising a sedueﬁtial procedure to get hold of a point estimator
of u ( = Ky + g * @3) as in (5.512), with thé,loss structure
(5.2.4), having obtained samvles of sizes r, s ard. t from
the three populaticns, objective being to minimize the risk.

KIﬁ what follows, we consider cl; 62 and o5 to be kept fixed .
Hisk is "

(5:5.1) v gy () =Ale/r+ 05/ 5 + 05/ 1) +clrtstt).
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In case o, oy, T3 were known, the triplet (r*, s*, t*) for

waich the risk (5.5.1) is a minimum 1s obfained as

(5.5.2) ¥ =vo, , sx = bo, , t* = bo

3

with b2 = pae~1

For this triplet, as in (5.3.4),

(5.2.3)  p*/s* = cl/bg, s*¥/t* = 02/33 , TH/t¥ = o /0q
and the total sample size is

r‘..? = ¥ = + + :

= N n* r¥ + gk + ¢ b(O'1 02 03),

she minimum risk being

But in ignorance of os's (1 =1,2,3), no fixed sample size"

procedure will minimize (5;5f1)maimultane0usly for all

0< 91> 99 95 <= . However, we shall Prorese a sequential

Procedure determining ry, s and t as rv's gas follows.

Define wu, v_ and w, as in (5.2.1). We begin with n (> 3)

observations on Xij’ 1 =1, 2,3. Then at any stage, the

sampling scheme is same as given in the section 5:4. We now glve

a stopping rule motivated from (5.5, 2)
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R*¥ : The stopring time N = N, is the first integer n(> Sno)
such that if R = T observations on le, S = s observa-
tions on- Xy, armd T =t observations on ‘Xéj‘ have been
taken with r+s+t =n, |

(5.5.6) r2bu,, s2bv, t2bw ;

N = R+8+T

For notational convenience we shall write Ln instead of
L as in (5.2.4). Otgérving that L_ and I are
T8t ) i {¥=n]

irdependent for all n (> 3n,), one finds that

. _ . i 2 . 2 2
(5.5.7) O{e) = B(Ly) = AE eI/ R + 62/8 + o'5/T] + CE(N) .
The'risk efficiency!

(5.5.8) n{e) T(c)/ v(ec)

oo, + o % o) - B(o2/R+ o5/ + o3 /1)
S G e B 2 3
" -+ B(N/n*)],

and the 'regret!

)

(5.5.9) w(e) = Tle) - v(e)

| = {E(r*g/R - r% + R- r*) + E(S*Z/S-S*"’S- s*)
+ B(t*2/T- tre T - t*) }

cE{ (R~ r*)a/R*{S— s*)z/s+ (T- t*)2/1] .
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By using the same téchniqges as in proving lemma 4,2§1, we shall
get ‘
{ B(N) <n* +3n, BE(R) 5'r*'+jﬁ0

_-(5;5:10) 2

[ #) <o+ my B0 o0

W

which‘studf'the cost of ignorance of the variances. Regarding
‘ the stopping time N in (5.5.6), mn(c) and wic), we have
the following result. '

Theorém 5.2. For all fixed 0 <o < o, |

17 92 93

(6.5.11) ~ 1lim ¥W/m* =1 a.s., lim E(N/n¥) =
cw> G . c=> 0
\ it .

(5.5.12) | 1lim "n(c)f

= 1’
->\0 .
(5,5.1%) lim  w(e) = O(e). =
— c--> O . T .

We omit tﬁe'nr&of aé;all the results follow similariy as in

‘theorem 4.1 and theorem 4.2.

5.6+ Moderate sample size behaviour of the stopping rules R, 7R,

A}
We conalder here numerlcal results regarding fixed width
confidence interval estimation procedures for a 1inear function

of mesns of X normal populations dealt w1th in sections 5. 3
and 5.4 (k =2, 3). _ |
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Case It . k=2
. 13 and ng to
start with: Then if at any stage we have taken r observations:

Scheme: We take n_(> 3) observations on X

on le, s oObservations on ij, we take the next observation
on le or ng accordingrés (with positive a's)
(5.6.1) r/s < llur/\gvs or r/s > llur/kgvs'.

’ }
Analogous to those in (5.4.1) - (5.4.3), we have here three
stopping rules, Ry (i =1,2,3).

(5.6 -2) n¥ = b(llo-l + kgdg)g == {a al( 62 +1)}2 ’

where 3, = N\y0p/d, 8 = X053/ N\on.
4

, . 1.e. R
We fix the coverage probability at Ou95,[ a = 1,9%. We take

n*

!

10(5)25, 40, 50, 70, 100(50)200,

1 1 _1 ‘
2 =L 3 D T5 2 4

and

@
!

= Ul/&é = 0.5 (kept fixed).

This covers the values of ki through:

*111, -333, *500, *667, “800C, *889

and kz = e kl. :
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Ei . and P stand for the eﬁpecteﬁ sample size and‘coverage

probabillty respectlvely'for the rule R (1 =1,2,3), and for
each entry these are estimated through 200 repetitions of an
experiment u51ng pseudo-random normal deviatesﬂin H - 400

0
Computations are presented in tables 5.1 - 5. 6 on pages

101 - 103
C_ase II- kK =3

electronic computer. We take n = 5 1n 811 the cases.

- We..consider the scheme and stopping rules Ry~ Ry of
section‘5;4 - replacing u m Vg wt respectively. by kluf,
lgvs and k-wt for positlve k's.

We take
Bl = cl/b2'= 0.5, 627= cgﬁbs = 1.5,

where 3 '= A, “2/3 a2 =2 cr1/-2 21 95 = Mg/ N0,
We fix the coverage probabillty at O, 95, i.e. a =1.96.
' We take

n*

f

10(56)25, 40, 50, 70, 100(50)200, 2

ii) 81 = 200, 8y = 1.00 |
that is, we consider A-values as '
i) A o= L6818, A, = .2727, Ay = '0455.
ii) A = 27059, A, = ,1765, Az = 21176,
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We then proceed as in Case I, vith n, = 5, the notations
By Pi having, the same interpretations. We present the
results in the tables 5.7 and 5.8 on p@ge-lOé.

Remarks on computations: .

(1) The objective was to get a confidenée coefficient as 0.95
and in most of the cases w:§§;ry near that target. Also we note
that generally, the expected sample sizes are less than the -
optimal sample sizes. It is interesting to note that the cove-
rage térget cannot be attained unless E(N) exceeds n*, which
follows as a consequence of Jensen's inequality apnlied to the
formula in (5.4.26), To estimate the coverage probabilities,
instead of taking possibly a stronger approach based on (5:4:26),
we take the frequency approach since thié really seams to be
the situation in applications. fThe rule R, 1s performing
best among R;'s (i =1,2,3) with regard ﬁo'achieved coverage
Probability, the feason being that Ré is using more sgmples
to stop than others. However, R4 is expected to perform in a

still better way.

(2) The numerical results presented in tables 4.1 - 4.5
can be looked upon as moderate sampPle size behaviours of the mle

{4 .1.8) in the two populatibn case with xl = Thes =1 A,
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Table 5.1: 3, = 1/16, N o= % 113k,

. Y " £ Ty E5 3
10 1.518  11.420 .905  13.505 .940  13.760 .940
15 1.860  13.765 ~ 825  16.695  .890 17.420 .905
20. 2,147 17.385  .885 , 20.720 .950  21.310 .955
25 2,401  21.280 .835 . 24.870 .900  25.975, .905
40 - 3.307  33.020 .885 37,015 .885  38.310 .895
50  3.395  45.390 .940  48.400  .935  49.765  .940

70 45018, 66.080 L9156 67.660 .930-  69.065  .925

100 4.802  97.765 .925  98.900  .925  99.475. .935

150  5.881 147.280 .955  147.435 .955. 148.075. .950

200  6.791 197.605 - .940. 198.555- .945 198.990 . .945
Table 5.2: 3, = 1/4 Ay € .333

o T, B - B B o By s
10 1.291  11.380. .935- 12.300 .945 13,015 .950
15 1.580  13.660 .920  14.880 .945 15.685 .965
20 1.826  17.515 .895  18.335 .905  19.350 -920
25 . 2,041  21.865 ,890  22.665 .890  23.640 .915
40  2.581  36.750 .910 37.010.. .910 . 37.655 .905
50  2.886 44,495 .910 44.790 . .910. 45.535 .915

. 70 3.415  63.340 .885  63.380  .885  64.295 - .910
100 4,081 93.440 ~ .950 = 93.455 . .980 94.170. .955
150 4.999 148.000 .955  148.040 | .955 . 148.640 = .950
200  5.772  196.285 .940 ° 196.285  .940 196.9556  .930

1
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Table 5.3: 8, = 1/2, Ree 55 @500

g ) iy E, P E, Ve

10 1.076 11.300  .945 11.525  .950 11.895  .955
15 1.317 14.365  .915 14.650. .940  15.170  .935
20 1.521 17.310  .945 17.430  .945 17.970 .935
25 1.700  20.585 .8%75  20.760 .880  21.595 .900
49 2.1B1 36.945  .910 36.990  .910 37.775  .925
50 2,405  44.430 ,915  44.900 .910  45.260  .900
70 2.846 65.690 .925 65.760 .930  66.700  .930
100 3.401 94.585° .920 94,586  .920  95.155 .915
150  4.166 146.555 .965 - 146.555 .965 147.130  .965
200 4.810 198.700 .940 198.705 .940 1997550 . 935/

. ——

Table 5.4t 3, = 1, Ny = 667
G 8 By P; By Po E. Fs
10 807 11.215  .960 11.285  .960 11.550  .960
15 988 14.365  .945  14.505  .945 14.950 935

20 1.141  17.305 .920  17.405 .920  18.000  .930
25  1.276. 21.350 .920  21.465 .920  22.170 .930
40 1.613 34,230 . .910  34.270 .910  32.950 = . 910
50  1.804 - 24.380 .900 ' 44.410 . .895  45.365 .905
70 2.134  63.415 - .910 = 63.435 .910 . 64.405 .905
100 2,551  94.450  .950  94.450 .950.  95.100  .950
160 3,124 147.195 - .940  147.195  .940 .147.945  .935
200  3.608 196,345 -.955 '196.345 .955. 196.990 .955
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Table 5.5: 0, =2 A, = .800
5 B R Py L5 ‘3
10 .538 11.470 . .970 11.956  .970 12.155  .965
15 4689 15.790  .920  14.000 .925  14.680 .90
20 - .761  16.710  .920 - 16.905 .925  17.565 915
25 850 21.765  .910 22.000 ,920 22.535  .915
40 1.075  32.320  .925  34.495 .920  35.310 . 920
50 1.202 45.865  .900 46.010  .905 46.640  .910
70 1.423 62.270  .900 62.420 ..905 63.245  .915
100 1.701  95.925  .940  95.930 .935-  96.625  .935
180 2.085 144.715 .930  144.725 930  145.315  ,930
200 2.406  197.480  .935 197.480 .935 197.995 935
Table 5.6: 4, = 4, A, = .389

el B 1 Ey fo Bs s
10 - o X3ms | Tanhes Seis 11.895  .920 12.375  .925
15 395 13.530 ..870 14.615 - .885 15.440 7915
20 456 11.570  .910 = 18.690 .930 19.640 940
25 .510 21.175  .895 21.770  .900  22.825 .910
4G 645 36.710  .930 36,905 .930  37.690  .945
50 721 46,030  .935  46.220 1935  47.185  .925
70 854 ' 65.135 .935 65.185  .935 65,845 .935
100 1,020 95.550  .910 95.640  .915 96.100  .915
160 1.249 147.865 .935 147.875 .935 148 415 . 930
200 1.443  197.375 ,920  197.390 .920 198.020 990
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Table 5.7: A, = .6818, A, = 2727, Mg = «0455,
: 8, = 1.25, 35 = 0.25. . |
¥ .‘_al “EL - L . Bo ) Bz P
10 .0.6453 °15.206 ..975  15.815 .980  16.320  .975
15 0.7904 16.260 .935  17.340  .930 ° 18.295  .935
20 0.9127  18.545 .930  20.010° .F40  21.155 .95
25 © 1.0204  21.655 .915  23.185 -.915  24.780  .935
40 1.2907 33.180 .885  34.425 - .885 35.870  .885
50 1.4431  42.715 .885  43.515 .885  45.580  .920
70 1.7075. 62.945 - .905  63.465 .905  65.095 .920
100 2.0408  94.365 .935 94,460 .935  96:010  .945
150 ' 2.4995 146.350 .965 146.350 .965 148.040  .965
200 2.8861 194.620 .920 194.670 .920 196.240 925
Table 5.8t A; = .7059, X\, = .1765, Ay = 1176,
8y =2.00, 9, = 1.00 ’
oy R wm & T
10 0.4033  15.180 .975  15.395 .925  15.835 .975
15 . 0.4940 16,635 .930 ° 17.065 .935  18.065  .050
20  0.5704 18.805 ~ .895  19.360 . .9185  20.320 .930
25  0.6377 22.085 | .915 22.655  .920 23.955  .965
40 0.8067  .33.530. .905 - 33.930. .910  35.550 .930
50 0.9019 . 40.530 .885 40.895 .880  42.195. .895
70 1.0672 61.065 .910 '61.170. .910  63.220 .915
100 1.2755  93.135  .925 93.170 . .025  94.735  .920
+ 150  1.5622 ° 145.425 . .955 145.435  .955 147.065  .965
200 1.8038 196,145 .

194.635 .915°  194.650 - .915

- 925
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- CHAPTER 6

SEQUENTIAL ESTIMATION OF LOCATION PARAMETER IN
EXPONENTIAL DISTRIBUTIONS

©6.1. Introduction. - Life testing model is usually taken

to be gowerned by the distribution

o™ exp (- X28), y >y

H

(6.1.1) f(x; u, o)
=0 ' ’ x L u

where = e < py < o, 0 <0 = gre twb”uﬁknown Parameters,
Consider a sequence 'Xl’ Xg,... of, iidrv's with'the'density
in (6.1.1). Here our object is to estimate g, the minimum
life. 1In section 6.2 we derive a séquential vrocedure to
estimate « vpoimtwise with mirnimum risk, which is shown to

be 'asymptotically risk efficient!. Basu (1971) considered the
same problem with é ioss structure which ig a Particular case

of ours. Also, we point out £wo mistakes in his paper;

1} . the proof of his theorem 3 is incorrect:

ii) applicability of his sequential procedure in
bractice is not substantiated by‘his,COmputatiqns,
since ke used an algorithm of J.E.Moyal (givenin ,
Robbins (1959)) to comtute the distribution of the
stopping time, which is not applicable in this context.

[
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In section 6.3 we give some proofs of some properﬁies of the
stepring time. Since there is no algorithm available to compute
the exact distribution of the random samPle size, we study the
moderate samvle slze behavicur of our procedure in section 6.4
by Monte~Carlo methods using pseudo ~-rardom exponentlal dev1ates
(i.e. density is f(x; 0, 1)). In section 6.5, a sequential
fixed width confidence interval procedure is developed for
estimating u. The same 1s shown to be 'asymptotliecally con-
51stent' and 'asymptotlcally‘efflclent' in the analogous sense
of (1.1.2) and (1.1.3). For this problem also, moderate sample
size behaviour of our. procedure is studied and_presented in

section 6.6.

6.2. Point estimation of u

: . s L ‘
Supnose Xn(l) = min:(Xl,..., Xn). Suppose A,s,t, and

¢ are all known positive constants. Suppose the loss incurred

in estimating £ by Xn(l) from a sample of size n 1s

— o 2 £
(6.2.1) E, = A(Xn(l) - 4)° +c.n
with risk

(6.2.2) un(-c) =‘"E‘(Ln5 =K o%/sn® + ent

vhere K = Asgrg} s > 0.

Basu (1971) considered the loss structure L, with ¢ =1t =1.
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The risk (6.2.2) is minimum for n = n* where

(6.2.3) n* = (KoS/ o)t/ (E+s)

and the minimum risk

1}

(6'2:4)‘ U(C} = UD*(C) = c:(l-l- t/S)(n*)t.

Then, as in Robbins (1959), Starr (1966b), Basu (1971), we

consider A Sehuenpial sampling scheme:

p L

= | :
- sy =3 '
Let o = (n="1) i§1 (Xi - Xn(i))? my 2 2

(6.2.5) The stopping number N = Nc 1s the first integer
n (> n,) such that

n> (K Ug /ct)l/(t+S)

n (2 2, being the starting sample size. When we stop, we
estimate & by XN(l);_,Basu's (1971) stopping rule GR 1is
same as (6.2.5) with ¢ =t =1, s = p, Some simple properfiés

of N are expressed in the following.lemma.

Lemma 6;1 The stopring time N has the following properties:

(6.2.6) N is well defined, nsnincreaéing as a function
of ¢ and B(N) <= for-all c¢ > 0.
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(6.2.7) 1im N = a.s., Um E(N) = o
c=> 0 J ) c-> 0 _
(6.2.8) 1im  (M/n*) = 1. a.s.
' c=> 0 ;

The proof is immediate from lemma 1 of Chow-Robbins (1965), .

noting the fact that ¢, -> ¢ a.s. as n ->« ard

2(n* e /o ng(nwl) :

 Using Basut's (1955) theorem, we can prove that I
ard the I - are stochastically independent for any

[¥=n] | '
n(2 n)). _ Using this and lemma 6.1, one finds that

= (Ko%/s) B(N7B) + cE(Nt)..

(6.2.9)  Tv(e) = E(Ly) :

The 'risk efficiency' n{c) and tregret’ w(c) for the rule

in (6.2.5) turns out to be

(14 t/8) T (t/9(n*) SB(NTSY + B(N/n%) b,

(6.2.10) ) mled

w(@) = ble) - wle).

]

_ o
. ¥ ;
We shall give a cordition on n, so that n{c) =>1 as

c ~> 0. In this reﬁpect wa have_thé'following result.

1 ~

lowever, there is no mathematical result proved for  wle).
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Theorem 6.1. .1im - n(ec)

e-> 0 T
SEETT I n > 1+ s3/(t+s)
= 1 +)/ i \ E :»no =1+ 52/(t+8)
£ 5 A on <1+ sB/(te s

where Y is a known positive constant.
‘ For its proof, we need gome, properties of N, which can
be pProved .in the same lines as Starr's (1966b}: However, our

broofs in sectlon 6.3. are new and seem to Dbe simbler than the

.eXlstlnﬂ ones. ' -

6.3. Soms properties of the rule in (6.2.5)

Lemma 6.2. ‘For 0 < 0 <o fixed, for all fizxed v > 0,
l w
lim B(N/n*) =
. ¢e=2 0 F o 4
Froof. Using Fatou's lemma and (6.2.8), we gét
(6.3.1) 11m 1nf E(N/0¥)Y > B[ 1im inf (N/n*)¥] =
| 0

Q= ol

Also, gL , :

(6.5.2)  BON/¥)Y = 3 (n/m)¥ P(N=n)+ (a%)~Vo(g)
Y ‘ n_<ngp oy

here ' T(g) = % B P(N=n), B = [a#e)¥ D nkl+ 1,

n> g+L _ ;

O'=C g & 1 o
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PDefine ='2(n- 1o /&
/ - tis
S
o(r, o1 o) = (ct/K) —ﬁ“jﬂn
N5, -
,,nu = Cl/s.p(n’ O'), say’
Then
(6.5.3) T(B) = T (n+1)¥ B(N =n+1) ”
| 03 B
= /
< = (n+1Y¥ F(vn > p(n, o5 ¢))
N .
V W
< - ' ‘ -h. )
o n?_B(n+1) 0<h<1/2[exp{ p(n’d’c}
E{exp(hzv ' ] '
=% (n+1)¥ inf {exp i-h p‘tn,a,c)}
L L TR oL I LT o<n1<
~ : : (1_ 2h):‘(n"'1)]

Writing T (t+ s)/sw, for .n > B, p(n,o; ¢c) ‘_>_ a{n)
where a(n) =2(n-1)(1+e)7, e |
Thus, from (6.3.3) we get
(6.3.4)  T(B) < = (n+1)¥ dinr lexp§ -nia(n)} .
- m2 B oc<n<i/e

| ” (1= zn)*(0- 1))
= o (1 - op y-(n= 1) .
,_ n§ 6(n-* 1)V exp{ ho-a(n)} {1 2ho) n

B

where' h0 is given by the relation
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~ 1-2n, =2(n-1)/aln) = Q+e)”";
1
so 0 < hD <5 -

Hence, for c < c(g), (6.314) reduces to

(n-1)

M < 3 D s e -1 (14 )]

.n2§

n2p
T Ty . h
where 9 = (1+8) e,xp{l- (1+¢) }( 1. Hence, using the ratio
~rule of conv\erger'lce T(B) < L, a constant indeperdent of c.

The lemma now follows from (6.3.2).T ~-

~ . k = i £} R oW Pyl -

A

Lerma 6,3. ) ' no-l

s ‘ _ _ a - '_ L.
| P(N-no) —Oe(c ) as ¢ >.O z

i

Proof. MN =n) = P(vnos'p(no, o5 ¢))
, ')_ n -1
D Splng, i) ‘ip(m-,cr; c)}
[} ¢ ¥ Q
- s
n -1
_ o
& Lol > ch : as ¢ => 0, for some positive

co‘ns.tant Kl; Also,
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. .- ' : ‘ /
P(W =n,) = vano <pln, oj c))
1 - : . nofl
B s |
| s 2 (no 1)t _
{ s ol 1
J Do |
,__<K20 = asrc-l>0,'

for some positive constant Kgl

This completes the proof of lemma 6.3.

Lemma 6.4. For fixed € in (0, 1), P(NS @ n*) = 0.(c )

9-_5. C-> 0-

L]

Proof. Tet a = [en*] .

(6.3.6) P(n < N < en¥)

04
= £ P(N=n)
n:k‘p -
. Y :
S EZ PV <p(n, oj c))
n=n. '
7 - (n-1)
a ' ~{rn=1
<% inf ,-E[exp{hp(n, o c)} (1+2h) -]
“n:nO n>0 ‘_ ) i
a ' -(n-1)
S exp {ho.p(n, o; c)} (1+2n)
nzno !

‘2 n-i‘

_1lr¢ 17"
where ho. =5 [p n, o} ¢) " 1].
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ll_ ] t+s
: 2(n- : 8 : -
For n < «, p(n( F ET - > 1, so ho > 0.
From (6.3.6) we get
(6.3.7) P(n, < ¥ < 6n¥)
L4y
a * Egg ~(ct)% n s .(n-1)
¢ = Lexp{l-(%)s.g } X &
T n=n
O .

Note that for 0 <x <1, xet X fin X, so that for nga,

+l t;s- ’ 1 t;s
S L

b+s t4s
< exp (1- 6 5 3. 8% =g (say) < 1,

using ex—l‘z x for real x} equality iff x = 1.

Hence, (6.3.7) reduces to

(6.3.8) P(no <N < 8n¥)
<o 7 % e (et At
n=n
v 1 s g
= S 4 70
U S
- t n -1
(n,-1) n -1 « n-n N lr B 9
£c F e > & © {(-)S, n }
n=n_ | K g
e
n -1 B
s
= 0 (e ks
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by the ratio test of convergence, for small c: Also, from
lemma 6;3, P(x < Len*]) > P(w = no) = Oe(e(no-l)/sj as c=> 0.
Thus, using lemma 6.3,

g ¢ no-l
P(¥ < on*) = 0 (c 3 ) as ¢ «> 0

which oroves lemma 6.4€ It follows also/from the lemma that
I s
P(n +1 Ngon*) =0 (c @ ).

The following lerma states conditions on the starting

sample sige Ny under which

- - .
EN /v (n*) as ¢ => 0,

for fixed w > 0. o
We write b(w) = (Kcs/t)W/(t+ S), d(n,, w) ='n;W/2_no-1(no-l)! y
| _ | n_ -1
ooy W ) = dlng, Wb {p(n, )}
ard note that a(no,-w, o) 1is indevendent of o when

n =1+ sw/At+s). Let & be this value.

O
Lemma 6.5. For fixed w > 0 «w°
lim (n*)¥E(N7Y) =1 if n > 1 + gu/{t+s)
c=>0 . . O
=1 + 3 if no =1 + sw/(t+s)

1 + sw/(t+e)

i

8
}_l-
(Y
o
N
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Proof. we shall proceed in the same lines as Starr'sl(l%éb').
== ' ~1 -
rix & in (0, 1); let ‘o =-(1- Y. n*, B = {1+)Y L ¥ .

f -
wri td B, = 5= P(N = 1),

ot

By = - % n"¥P(N=n),
n +l<na

B =V PN > o)
Observe that ’ - - 2
=
(6.3.9) (n*')W{p(no, K4 c)} P b(w) {p( o’)}

'\

—

s t+s’
c

so that, lemma 615 follows if we prove that

i ' | - '
(6.3:10)  1im (n®)Y B(N. ) = 1 +d(n, w) 1im
: c==>0 c—> 0

i(n"‘)w P o” (n o; c)}

By usirg same -types of. computations as in 1emma 6. 3, we have
(n*)YB(XY) > Aln_,w)- {(n*)w (n 575 c)}
exp {—p(nq, o3 c)/2} + (1+ e)"l P(n <NZ B).

”bu‘p 1im pln, o5 ¢) = O for a.ny fixed n. Therefore,
c=-> 0

NS
. - e
- k= L s

J.Jm>1gf (n*)WE(N'w) > d(n, w) 1im {(n*)w f‘- (1'10:"'»; c)}

L
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where 0 <0 =g6(e) < 1. Thus,

hY

(6.3.12) 1im inf (n*)V¥ E(N'W) >1-6 if n > 1+ su/ft+g)

c-> 0
21+ 3-890 if n, = 1+ sw/(t+s)
= oo if n <1+ sw/{ t+g).
Now, ’ Sl : ¥
(6.3.13)  BON™Y) = = uVP(N =an)
1 n=n
E O .
<B, *BR¥B, :
(6.3.14) B, = A} P(vn <pln,, o3 ¢))

o e

il

_ no—l e |
d(no, W) {p(no, o.';’c)} y from lemma (6.3).

Also,

o

—— Y

(6.3.15) By < ngt 0,(c® ), hy fie remark following lemma 6.4
From (6.3.13) -’(6:3:15), we have

(6.5.16)  1im sup (n*)w B(NTY) < d(n y w) lim
e-> | c=> 0
5 :
{(n*)w p ° no, o; c)} + 1im sup {(n*)w 2} +1-¢,

ot ) o PR
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We note a fact that from (6.3.9),
n -
lim (n*¥)¥ p © (Nbg o; ©) <~ implies
c=> 0 : I'IO/S ,
V lim (n¥)¥ ¢ = 0.
g=> @
Now utilieing (6.3.12), (6.3.14) ard (6.3.15), we get from

(6.3.16)

N —W
(6.3.17)  lim sup (p*)Y B(N') ==  4f n_ <1 + sw/(t+s)
¢c~-> 0 ‘ :

1+ sw/(t+g)

I

<1*8-€ if n
<1-¢€ if n >.1+ sw/(t+s).
€ being atbitrary, the 1 emma follows from (6.3.12) and (6.3.17).

Basu's (1971) theorem 3 is same as the lemma 6.5 with ¢ = 1.

His proof is not correct. The mistake‘OCCurs in his (25).

Proof of Theorem 6.1. In view of lemma 6.2 and lemma 6.5, the

proof of theorem 6.1 is straightforward, where
I -1 =]
Y = (.45 o =t (g4 b,

Remarks. Though the results of our theorem 6.1 (and corollary
in Basu (1971))are purely asymptotic in nature, Basu (1971)
used an algorithm (availéble_in Robbins (1959)) to evaluate
the exact distribution of random sample size (given in (6.2.5)),

risk efficiency etc. amd studied the behaviour of the procedure
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for moderate sammle sizes. But we want to stress the point that
the basic algorithm used by Basu (1971) is not at all applicable
to this case, so that his computations do not really show any
importance or usefulness of this sequential samvling rule in
practice. The reason is that
1

n
r X

20’n = (n=1) e n,i

where o T Y i's are lid Xg ~variables and the rv's 1in the
?

sum goes on changing with n. For that reason, to study the
behaviour of the rule in case of moderate sample sizes, we take
resort to Monte-Carlo methods using Pseudo-random exponential
deviates (i.e. density'is f(x; 0, 1)). Though we have no
theoretical results regafding bounds for the regret w(c),

even for.smail é; our computatidn§ really show that the regrets
are very small evép*forymbderate sample-siées: We presépt our

results in the following sé&ction.

6.4. Moderate sample behaviour of the rule in (6.2.5)

We consider two cases

(1) s=2, (4i) s =1
while A =2, o =1, t =1 in either case.

In either case, n* wruns through

5(5)25, 40, 50, 70, 100(50)200.
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We take no = 3 1n ail the cases. The values of ¢ are

obtained from (6.3.3), viz

¢ = K/(n*¥)°1 |

=S . .
To estimate E(N), E(N") we repeat the experiment using the
rule given in (6.2,5), for 100 times in H~- 400 electronic
computer using vpseundo-random exponential deviates (1.e.

density is f(x; 0, 1) as in (6.1.1)). We present our results

in the tables 6.1 - 6.2 on pages 126-127 .

"-’

6.5. Tixed-width confidence interval for H

In this section our objective is to find a confidence
interval of vprescribed width d(> 0) ard prescribed coverage
probability 1 - a {0 < a < 1) for . If o were known,

this could he zchieved as follows. Given a samvle X X

P X
of size n, we take the estimator of u as £n(1) (as in
section 6.2). We propose the confidence interval I =

g = [Xn(l) - d, Xh(l)] for u. In order that the confidence

coefficient 1s 1- a, we require

- o < POy = & S0 S X))

tl

1 - exp (-nd/c)

s0 that tae sample size n 1is the smallest posltive integer
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exceeding a1l o log (1/a) = C, say. VWaen o is unknown, the
goal cannot be achieved wilth a fixed samvle size procedure. .

To meet the end, the following sequential procedure is proposed:

Y

(6.5.1) The gstopplng time N = Nd; is the first integer

n(> no)? for which n z'd-I o log (1/a) where
: & .=l ' ' '

S = (n—l}_iil Ky = X1y)s n (2 2) 1s the

‘starting sample size. The confidence interval

for w 1is then taken tobe I = {XN(l)“dv XN(l)]:

The following theorem is then proved.
Tr.eorem 6.2. The stopping time N defined by (6.5.1) satisfies

the following properties:

(6.5.2) ¥ is well defined, non-increasing as a function

of d, and E(N) <w for all d > 0.

(6.5.3) 1lim N = a.s.

S.,  1lim B(N) = =.
a -> 0 = d=> 0
(6.5.4) 1im (N/C) = a.s.
d=> 0 ey
(6.5.5) 1im P(ue I) =1 - a
d ->0
(6.5.6) CB(N) < Gt 41

(6.5.7) 11m0 B(N/C) = 1.
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el 5.5lv) and (6:5,5) are referred to as
‘ mptotic consigtency! ,
‘asympto Qfgf the proposed sequential procedure .

Proof oi
The first proof of (5.5.2) is obvious from the definition
of N in (6.5.1). To prove the second vart, use the inequality
M N\

(6.5.8) E(N)'=2 = % P(N > n)
n=2 .
< = Pln<a™t o 10z (1/)].
n= 2 2

Noting that 2(n- l)cn4ﬁ~/cxeé(ﬁ:l) , one gets from_(6:5:%),

0 . y . 2hd(n- 1)n =(n-1)
EN) -2 ¢ & inf exp [- 1¢1- 2n) }
~ n=2 0<h<1/2 o log (1/a)
> oh=l _ - dn(n-13 I |
< nig 2 exp [ 3¢ 1oz (174 1, (taking h = Z)
-< w-

(6.5.3) is immediate from the definition of N and the mono~
tone convergence theorem.

To provs (6.5.4), first note that

o =>c 4.5, ~as8 1n <> oo,

Then we use the inequality (follows from the definition of W

given in (6.5.1),
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© (6.5.9) a™F oy log(1/ay <N < n, +al o1 10g(1/a)

Multiplying both sldes of (6 5,9) by d/1og(1/a) ard using
“previous remarks the result is proved.

It follovs from (6.5.4) that,

-~

,'(6}5g1Q) _ .‘gk?:(- N/os) => ¢ a.s, as-d -> 0.

Using (6.5.2) and notihg that the I, amd X_,. are irde-
Perdent for any fixed n(> 2),iﬁé have

Bue I) = 1- BlSfp (- W/e)]

=>1-& as d4d->0
- ;ffrom (6.5, .10) and the domlnated _gconvergence theorem which
gives (675. .5) . ‘

To prove (6.5.6) use the ineqﬁality

lN-—lédla(N‘ 2)1N>:1(x-x\ )+ (n -1)I
1
1 1 (1 ) . (N=n_]

-where "4 ='log(l/a). That is,

N-1 e . &
(N-1)(N-2) < d-la :K(xii'xf___ )+ (a-1) (Neg)T
By B Sl | N-1(1) © - IN=n]]
’ N , : ’ -
$8a 0 Xy(py)e Nn-2)

=
I

- L .
€4 a 3 (xi- L)+ N(n - 2). -
1 0
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Hence, taking exvectation and using Wald's first equation

(since B(N) <« by (6.5.2)),
(6.5.11) E {(@- 1) (% 2)} < (C+n -2) B(N).

But B (M- 1)(m-2)}> B(¥®- 3) > (BW2 - 3E(N).
One gets now from (6.5.11), B(N) < ¢ + ng + 1, which is (6 5 6),
(6.5.7) now follows from (6.5.6), (6.5.4) ard Fafou's lemma.

In the following section 6.6, we Present the results of
Morte-Carlo experiments using pseudo-random exponential devia-
tes about the behaviour of the rule given in (6.5.1) for mode-

rate nptimal sammle sizes @ .

6.6. Moderate sample size behav1our of the seguential vroce-
dure in (6.5.1).

In what follows we fix a = 0;05, ¢ = 1. We consider

the following values for d:

1, /2, 1/5, 1/5, 1/8, 1/10, 1/14, 1/20, 1/25, 1/50,
1/40, 1/45, 1/55, 1/70, 1/85 .

To estimate B(N) and coverage frequency for ecach C, we repeat
the experiment 100 times using pseudo-random exponential devis-
tes in H- 400 electronic computer. Wwe present the results

of our experiment in the following table. ® and -P denote

the estimated average sample size and coverage probability.
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For each entry¥, we take s 5 3 observations to start with.

Results: Table 6.3: Average Sample Size ard Coverage

\ Probability : a = 0.05 ' ks
W s e B P
1.0000 '2,9957 3.77 .97
0.5000 5.99156 5.60 .92
0.3333 8.9872 8.47 .88
0.2500 ©11.9829 11.00 .93
« 0.2000 14.978% . 13.68 .90
0.1250 23.9659 22 .64 .93
0.1000 29,9573 28.98 .90
0.071¢ 41.9403 41.75 .96
0.0400 .  74.3933 74,17 .94
0.0333 89.8720 90.34 = .94
0.0250 119.8293 119.90 .97
0.0222 134.8080 134.01 .02
0.0182 164.7653 164.46 .95
0.0143 209.7013 210.79 . 96

0.0117 254.6372 256 .18 .94

Remarks: (1

l. We ndte that the achieved coverage probability is
quite near the target. Also the average sample sizes
are very near the optimal sample sizes C. Generally,
the performances of the rule ir (6.5.1) for moderate
C-values are very encouraging;
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y s¥ | g ' . .. : - L

Remarks.=‘(00ntdj)'

‘(é)f One may wonder about the ‘use of n (> 2) in
- the stopping fule in (6 S 1) Following remarks'
in Starr (1966b) 'we zan show that

1im. E(dN/éc) =1 CAf n > wh
d=> 0. — o 7
=1+0% if n =wa
= oo j _if no < wtl

. for fixed  w.> O;{fdr séme known positive a*.
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Table 6.1: Average Sample Size,

Risk T**Jf‘f‘ic:u—tmcj)r

1.00073 .

Regret For Moderate Sample Slzes. Case (1).
n* e BN B2 u(e) wle)z10®  m(e) wle)xio®
5  .064000 5.28 .04816 .48000 53056.0  1:10533 5055:77
10 .008000 . 9.48 .01866 .12000 15049.0 1:23405 304858
15 002370 14.77 .00797 .05333  6890.0 . 1323452 1357:43
20  .001000 . 19.76 .00393 .03000 3548.0 - 1.1:5269 548:07
25  .000512 24.95 .00170 .01920 1959.0 1.0£022 . 39:40
40 .000125 39.99 .00065 .00750  759.0 1.01215 9:12
50 .000064 49.59 .00042 .00480 486.0 1.01033 5.73
70  .000083 69.72 .00021 .00245 246.0 1.00555 1.63
100 000008 100126 .00010 .00120  120.6 1.00456  0:56
150  .000002 150.35 .00005 .00053 . 53.5 = 1.00274  0:15
200  .000001 201.55 .00002 .00029  30.0 1200256 0.07
Table: Average Sample Size, Bisk Efflclency Regret For
Moderate Sample Slzes Case (ii)
n* c B(N) E(N"l) u(c) 6(c)y105 “n(c) wie)x19°
5  .080000 = 5.21 .2059% .80000 8£87£.9  1.03591 2872:85
10  .020000 9.77 .11089 .40000 41719.8  1.04299 1719.78
15  .008889 15.05 .07057 . .26667 274¢2.6 1.03097 825.97
20 .005000 20.26 .050Q7 .20000 .201:4.2 1.00721 144.23
25 -.003200 25.15 .04026 .16000 16093.8 1:00624  99:83
40 .001250 40.17 .02508 10000 10036.7  1:00357 36.73
50 .000800 49.93 .02013 .08000 8019.5 1.00244 19: 50
70 . .000408 70.03  .01433 L05714 - 5724.D  1:00187 10:71
100 .000200 100.16 .01000 .04000 4004.7 1:00118 4.73
150 .000089 150.42 .00666 .02667 2669.0  1.00089 2.37
200 .000050 201.34 .0Q0497 .02000 2001s5 1.47
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Remarks:

1) In both the -cases, B(N) is very close to n* for

- 2)

stopping ruie.inNApfaétiCe¢@

moderate n* -also The starting sample size n,

being. 3, n(c) is close to unlty ih case (1) amnd

case:(ii).for.moderate n* as  well.

we hﬁte 'fza%b‘w(c) is“very near to zero fér m*
greater than or eqnal to 20. It would be nice 1if
it could be shown that w(c) -> 0 as ¢ -> 0, which

is really not too much to exvect. i

-

These numerical results suggest the use of the
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CHAPTER 7

SOME MORE RESULTS ON SEQUENTIAL POINT
ESTIMATION

7.1 Introduction. In this chapter we consider two sequen-

tial Point estimation problems, viz. (1) estimation of regres-
sion parameters in Gauss-Markoff set up, and (2) estlmatlon of |
® in R(0, ©) ponulatlon (1.e., uniform dlstribution on_ (0,6)).
We consider problem (1) in sections 7-2-7~o- Sectlons 7. 47 .6
are devoted to oroblem (2). It may be remarked that Gleser

(1965, 1966) investigatedrthe problem of fixed size bourds for

regression parameters with,Géuss—Markoff set up.

7.2. Sequential Estimation Of Regression Parameters In
Gauss~Markoff Set Up

Consider a sequende Zi, Z?,;.‘ of indeperdent and nor-

mally distributed 1rv's such that

(7-2;1) Zi = _)E'(i) g + ei . (1 = 1,2, :)

where [ 1s a mxl vector of unknown parameters, X(1)
is g mx1l wvector of non-stochastlc known constants with e

distributed as N(0, o ), cov (€, Sj) =0 for all

-128-
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1, 3 (1 #J), o(.> 0) belng unknown. Aas a convention, for

any' rxX s matrix A, AY and R(A) mean'regpectively the

transpose and rank of ‘A;' We start with‘g samtle of size

n,(2 m+2) making sure that R(Xno‘ =m vhere

X} = Qﬁ(l)a E(2)r7 s §(n))‘ Let Y! = (21: Z§s5¥:,f2n) for
, any n(> n). | ' ‘

It is well known (see e.g. Rao (1965)) that a least
Square estimator of B with model (7.2.1) on the bésis of a

sample of sigze n is

: I =t |
= 1
(7.2.2) En = KX)o xpx
‘wiﬁh‘dispersion matrix
(7.2.3) V(B ) = 3(X! X )-'l s
'] -n \ | : 7 n d— n n [}

Suppoée the loss incurred in estimating B by En from a

sample of fixed size .n 1is

(7.2.4) 1y =nME - B) (XL X )(E -8) +en -
ﬁith’risk _
=725  up(e) = E (1)

By 1070 tr (- )10 X)) (8,-p) } + on

n'lca‘tr (Im) +cn

i

= mda/n + non


http://www.cvisiontech.com

-

where tr A means trace of ‘the matrix A and T stands for
the identity matrix of order mxm. If o were known, the
problem of firmding the value of n, say n*, for which the

risk (7.2.5) is minimum is given by

. A
(7&?:6) Cn* o= n° 52 o
and the minimum risk -
(7.2.7) v{e) = uele) = 2cn*

4

But, in ignorance of o, no fixed sample size procedure

will minimize (7.2.5) simultaneously for all 0 < o < =. So
the possibility of utilising asample of ramdom size N deter-

mined by the following sequential rule is considered:

(7.2.8) The stopring time N = Nc is the first‘iﬁteger
. n 2 n, such that

- 1
n > {m Rgn_(n'P m)’lfb]g

3 ' 2 _ . 7 .
where ROn,f !;:Xn - X X, B; -1s tpe error sum of squares,

starting sample size is n (> m+2). when we stop, § 1is
estimated by By- '

-

The rule (7.2.8) can be rephrased as:

(7.2.9) The stopping time N =N, 1is the first

integer n (ano)‘ such that

~
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v, <_(.p(n, o; ¢)

where V = Rgn/’cz ,”p(n, o; ¢c) = e {n- m)/hcz .

We now state the following lemma.

Lemma 7.1. For any fixed n(> nb), En is independent of the

veetor (W, , Vg 49, +e-y V) -
(o] O 't

Proof. For any integer p 4in [no, nl,
(7.2.10) RS =Y [T - X (X! x.) T xt ]y
- op ~ =p "p ~ “p'fp Ay P =p ?
I, belng the identity matrix of order p.
Thus,

) t P-m ~ P-m ' 2

= z FI) Y = F, Y
Rop = Ip i=1 sl‘i) =P 121 2y L)

where Eis are orthonormal eigen vectors of the idempotent

-1
= - 1 t i d
matrix A Ip Xp(Xp Xp) Xp, associated eigen values belng

thereby all unity (i = 1,:~;, p-m). Using the symbol 0 for
the null vector, irrespective of dimension, we can write from

(7.2.1.0)

e

. | N - 2 p—m 2
(v.a.iggfﬁf Ry = Z (81 X))

o " T
where gi = (£4§ 0) is 1xn vector. Let (... PV be the

Un_p
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corresponding partition of X, . From (7.2.2), 8, =BL,
o= y _
i N o ,
where B = (Xﬁ X = Xy A prflp;gntrgondltion for B,

and gi i, to bs dﬁstributei independently is B3, = 0 (see

Rao (1965), . 170} ch} for verifylng this suff101entfuonﬁ¢&ion
note that E, 1is a vector in the column space of A ‘and

Xé = 0, the null matr¢t This giées Xér. 0 which implies

Xy i?_i = 0. Hence BY. O ahd. it ccmpletes the pre#l of

lemma 7.1.

Using this lemma 6né can'%ay that I and L, are
iN=n]

independent for all n > n , and one gets

i

E (Ln

o E(N 1) + oB(N) .

(7 2712) v(e)

ar_x:} : alc) =5 (c)/ .U(c-) = %—[h*ﬁ:(l\]ﬂ) + %‘(N/n*’)] .
(2.2.18) ' |

wle) = %e) = (o) = cBLN-m)Z/N]

Regarding efficiercies of 5ur‘proceduréJihh(7féi85,.we have
the following theorem. : o 8

Theorem 7.1, 1im  m(e) =1 and 1im w(C) ofe)n
) : c -> 0O ¢c->0 B

?roof of'tngaﬁém 7,1. The first,ﬁarﬁﬁban bg;proved in the._same

lines @s the pr@of of* tﬁaorem 6.1. The other part can be

3 a‘, A,
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pro&ed:in the same lines as the proof*pf (4;4.1):‘ We omit the
detéils; the main point to note is that Hgn can be written

as

(. ) ¢ ngm U

7.2.14 R = ;
on T 47y i

' for n > m, where Ui/cr2 are 1iid X? variables which follows
from (7.2.11). '

7.5 Asymptotic distribution of N defined in (7.2.8)

The problem of finding the asymptotic distribution of N
in this case is the same as of examble 2 in chapter 2 with
s =2 t=1 and Y, = (m/b)l/z; T, = R%ATn-m), n> m.,’ We are

thus led to . !
v ] ;

(7.3.1) (N-nfk)(;%) ﬂ> N(o, 1) f o

as. ¢ -» O-‘

7.4, Sequential Point RBetimation Of The‘Parame-_te;- ?i 5
' A__BectahgularkDistribution.

Let Xl, Xg,.., be a .sequence »f. iid rv's with vdf
. - L% & \
(7.24.1) folx) = e'-l, 0 <x <8,

8€ (0, =) ard is urnknown. Given a rardom sample Xqy-+oyX, OF

n
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‘%ixed sizé_ n; suppose the loss incurred in estimating & by
T, = max (Xq,-- , Xn) is
(7.4.2) L, =AlT - B oty

where A(> O) is the known weight and c¢(> 0) 1is the known

cost per unit sample. The risk
(7.4.3) un(c)': Eg L, = A8/(n+l) + cn : -

is minimized for = = p*. where

i

. 2
» k 3

e . 1
(7.4.4) - n* 1is the smallest positive integer 2 (Aéy%)g— 1,

$he corresponding minimum risk being
(7.4.5)  wvle) = uxle) =-A8/(n¥+1) +cn* .,

It may be noted that

o

(7.4.6) | U(C)melg(dC) ~as ¢ => 0,

‘where & ='Ae . However, ‘e is unknown, and so no fixed sample
size will minimize (7.4.3) simultaneously for all © . We consi=
Hde:;the pogsibility of ﬁ%iliging'a samPle of rardom size, and

propose the following stopping rule in accordance with (7;4;4).
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(7.4.7)  'The stopping time N = N, is the first integer
n> n (2 1) for' which .

. il "
n > (AT, /e)% < 1

Now estimate © by Ty . The correspording risk is thén‘given-
by ' . s 4 / J
i

Vy(c)-%.EIN_=.AE_[9 a.mﬂ] + cE(N).

Following Starr (1966b) and gtarr-Woodroofe (1969) we define
the'fisk-efficiency'-and'regreﬁ of our procedure resvectively
as '

(7.418)  mle) = B(e)/vle); wle) =V(e) - v(e).

The main result towards these is

THEOREM 7.2  lim ., =nlc) =1 ,
c=> 0

- -~

The interpreiatioﬁ of the result is that asymptotically
(as the cost component tends to zero), the sequential procedure
is as much risk efficient as'%heuqorrespondiqg procedure where
" @ 1is pretended to be known, and a fixed sample size is used.

We postpohe thé rodf of theorem 7;2 to the next section
7.5. Certain lemmas ,pertaining to the béhaviour bf the |

stopring time are also proved there. These lemmas seem to
. E /

=

be of independent interest.
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" We have not been able to say mich regarding the asymvtotic
(as ¢ => O) behaviour of the regret except that in view of
our main theorem and (7 6) w(c) = 0(01/2) We conjecture
_'fhet,this order can be improved but do not have any aﬂalytic
\ results at the moment to supvort this

Moderate sample behaviour of thefriSkjefficiency'and

'regret‘ are studied in sectioﬁ 7;6,Apy;using,Monte-Carlo-
techniques, and f’the performance of the procedure seems to be

-'euite satisfactory even for moderate ¢ (i.e. moderate n*).

7.5. The mein results. The following lemma gives some of the,

basic pronertles of the stopping time ¥ (deflnei_in (7oalm)) .

Lemma 7.2. For the stopnlpg:rule defined in (7:4(7),

1) ¥ 1is well defined, N is & in c ;

ii) N < n* +n_  with probability (wp) 1j

111) N/m* > 1. a.s. as ¢ -> 0
1v) B(N/n*) => 1 as ¢ -> 0;

v) For_any g€ (0, 1), B(¥ < [Arl-1) = 0, (¢ ©) ag c-> O

- where - [ul] denotes the intbtger part of u.

Proof of lemma 7.2.. 1) is obviocus from the definition of N.

To‘prové 1i) observe the inequality (with I as usual indicator

function)
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il I
- ! z 2
(7.5.1) N < (AT, /) I +n I <(d/e)* 1 +
) =Tl fn>n ]l ©(N=n] fvon ]
o o o
B d (wo 1)
°{n= oW
< (n*+1) I +n <n* +n_.

I
O - -
N> n,J iNu-no]

'To vrove this inequality, we have used the definitions of n*

; and N in (7.4.4) and (7-4;7)‘respective1yu

1
8ince n* -> « as ¢ -> 0 {in fact 'n*ﬂ\;(d/b)ﬁ a8

¢ =>0), it follows from (ii) that lim sup (W/n*) <1 als.,
c-> 0

2
Also, from the definition of N, N 2. (ATN/b )1/ i
Now, T, > ¢ a.s. as m=>w go Iy =2 &, a.s. as ¢ -> 0,
since N => = a.s. as ¢ -> 0 (from (i)). Thus,
_ L s
MHm inf (N/n*) > 1lim inf (ATN/C) (p*) "+ liminf (-n*"1) =1,
c=> C c=>0 c~> 0
This proves (1ii).
Using (iii) ard Patou's lerma, 1im inf E(N/n*) > 1.
c-> 0 -

Also, from {(1i) 1im>sup B(N/n*) < 1. This proves (iv).
¢c-> 0 '

To wvrove (v), first note that
1 2
(7.5.8) P(n = ny) = P(ng+1 > (ATnO/C)z) = P(Tno_g c(n +1) /A)

I

(e(ng* 1)B/A)™ = o_(o™0).
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‘ ' / ’ - n .
Also, for small c, P(N < [g n*]J-1) > P(x = n,) = 0 (e °).

Furﬁher, T
, gk | (Fn*-1 °
P(N. < [ﬁ n*]-1) = ;zfn i P(N=n) < g.f:l . P(T < c(n+1)2/)
n—no , n=n, ' :
{@nx]-1 ' [ Bn* |
= ﬁnz ‘ (c(n+ 1) /d)n o z] i (c(n+ 1-)2/d)nf’
n=no. n*rb '

(c(n+ 1)2/3)" "o

But Eor ng (@n*)-1, gc(néi) /a < c(ﬂn*)g/d < (c/d)ﬂa(d/b)

= (0 <1y .
, g Egn*]-1 | 2(n- n)
So, P{NZ {#n*]-1) < (c/cnno ' ;zfgj (n+1)2fb g ¥= 0
- . nF.D.O 3
o1 a3 o
S T (T @) g (o)
| oy ‘

'“usinglxhe'ratidfrule'6f'coﬁvergehce. This proves (y). It

Completes the proof of lemma 7.2.

Proof of the theorem ?;2-7 A 7
With the aid of the 1emma 7. 2 we are now able to prove .

the theorem 7.2. Flrst note that in view of (7.4.6) am

n*PV'(d/c)1/2 as Ve -> 0, it suffices to show that

1

(7. 5.3) B(I/A%) 2> 1 as e <> 0; ok B(1- o7) TH) >
as ¢ =-» 0.

But, B(1- "L Ty ) 3‘?(1-”9“1 Tyxsp )y using (11) of the
1 H . 7 0
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lemmsa 7.2, and the fact that T, 1s Tin m. 5 el
So, ‘
np* +n
Lim inf n* B(1- 8% ) 2 lim inf m*(1- n*-;ﬁj__)‘
c=> 0 c=> 0 o
=1 - .
(7.5.4) = lim {1 + (n +1)/n*] .
€=> 0

Fix # in (0, 1). Then,

R o
E(I- 67 Ty) ”n*.Ei(l e mr g 1 ol ﬂ “tstgme1s)

I denoting the ususl indicator function.

]
Thus,
-1 -1 ‘ !
n*B(1- 6 ) < n*P(NS [Pn*]-1)+ m*(1-98 T )
. = L ]
2no-l ' ; ( j
iy . e g nx
(7.5.5) =0, (c ) + n¥(1 AT 3 1)
: 2n0-1 )
=| Oe (e i . ) + ﬁf e
Heﬁce,
- 1 U E % -
(7.5.6) 1im sup n*E(1 -8 T) < £
c=> 0

for n, 2 1. @ being arbitrary, we get,

L~

]
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bt " ' -1
(7.5.7) 1im sup n*E(1 - & Ty) <1
c~2 O '
7,2

"y

The theorem/follows now from (".5.4),-(7;5:7) ard (iv) of

lemma 7.2.

’ - Ve -
Remarks: Onec essential-distinctlve feature of our Pproblem as
compared to the usual sequential point estimation problem 1is

the lack of indeperdence of L, ard I{ ] for all n 2 n,-
) N=ni

Thus, unlike the usual cases (see e.g. Robbins (1959), Starr
(1966b)) the risk v(c) corresponding to the seauential rule
camnot be expressed in term of moments of the stopping time.

But the analysis in our case becomes.simple in view of the boun-
dedness of Tm_ by e(wPil) for m > 1 and the fact that T

is : in m.

7.6. Behavicur of the_procedu}e,(7;4:7) for moderate c.

For mo@erate samvle behaxiour of the rule, in (7-4:7), we

consider the¢ following values of n¥

5, 7, 9, 10, 25, 40, 50, 75, 90, 100

1.50, 195, 200, 225, 250
We take n_ = 3, 5, 7, 9. For estimating E(N),Q(YN(N)) for
sach entry, we repeat the experiment 200 times in H-400 elec-
tronic comtuter using pseudo-rardom numbers: We present the
results of our Monte-Carlo experiments in tables 7%1-7;4. We
provide standard errors (SFE') of our estimates of YN(N); n(c)

and m(\ r-) 3
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Table 7.1rASY, Risk Efficiency ard Regret when “n'o= 3.
\ _ . a

% g(p) o L L r_ﬁ’réy -

Mean 3.B. Mean £.E. Heah S.B.
5 4.755  .807 ,.170 1.064  .526 0.706 5,790
(7 6.680  .848  .156 1093  .624  .30407 ©  Qi366
9 8.760 .89 .119 1.004 .598 0.084  11.359
10 9.720  .895 .106 1.067  .583  1.413 . 12.250
25 24.820 .959 .040 1.025 .B525 .. 1.276 26 .757
40  39.810 .975 .025 1.001  .519 0.096  42.012
50 249.840 4979 ,020 1.030 .526 3.118 . 53.167
75 74.880 .987 .01l 0.969 .415 - 4.738 62.731
90  89.845 .989 .010 1.013  .482 2.370  87.681
100 99.830 .990 .009 0.998 .469 - 3.706 94.239
150  149.810 .993%  .007 1.027  .549 8.087 165.274
195 194.895 .995 .004 0.946 .475 -21.829 185.812
200 199.905 .995 .004 - 0.924 .407 -30.272  163.189
225 224.845 .996 .005 0.959 .548 -18.688 '247.09
250 249.825  .996 .004 1020 .530 10.309  265.753
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[

Tablev7w2: ASK; . Risk Efficiency and Regret when nOﬁE 5.

R I

prc }(]\\ - XI:(IY) ol P --ﬂ(c)ﬁ = saw{ed iy

Mean™  §5.3.  Mean = S5.E. Neqr};_l -8 .E
§. . 6w000-. .863 . .13E-.0.995 . .444 - - 0.057  4.883
R 6865 .880 . .1157. 0.969 . .475 - - 00451 7 7.126
-9 . 87300 .878:. .128 .. 1.099. . 6804 TRBTYT 12.346
10 9.770 .89  .104  1.065  .578_. . 1.370 ..12.129
25 22.765  .956  .044  1.060 @ .571 3.087  29.7.44
4C  39.855 .976 . .023 0.995 - .477 - 0.388  38.6456
50  49.890  .981 016  0.988  .422 - - 1.154  22.688
75 74.865  .987  .011  0.97Q . .444 - 4.477 67.091
90  89.84C  .988  .010  1.015  .500 2,730 90.613
100 99.805  .989  .010 ,1.032 ..512 6.452  102.949
150  149.875  .994  ,006  0.959 ..496 . -12.171  149.409
195  194.855  .99% ..005 .1.031 - .479 12.406  137.461
200 199.835 .995 . .006 .1.023. -.559° - 9.248 " 224.371
225 224.825 .995 ..005 1.018 -.5B6 8.294  250.712
250 249.850  .99%  .004 0.959  .523 --20.052  262.244
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Table 7.3: ASN, Risk Efficiency and Regret when T, =
4 ' '

o _%m) N nle) wie)

Mean  S.H. Mean S.E. Mean S.BE.
5 ,é%ooo .893  .099 1.077 .325  0.845 3.585
(4 glow  .883 .112 1.033  .480 0.504 7.207
9 8.820 .889 .097 1.049  .492 0.943 9.359
'10 9.770  .907  .088  0.999 .489 - 0.016  10.288
25  24.8056 © .958 .042 1.033  .544 1.729  27.748
40  39.830 .974 .02 1.021 .539 1.741  43.708
50 49.845 .981 .017 0.970  .434 . - 2.957 43.874
ds 74.825  .985 .014 1.046  .543 7. 056 81.934
90  89.840 .988 .010 . 1.019 .457 .  3.460  82.791
100 . 99.835 .990 . .010 0.991 .519 - 1.828  104.348
150 149.880 - .994 .005  0.941  .407 -17.645 127.685
196 194.860 ©.995 .005 0.960  ,486  -15.471  190.179
200  199.835 .995 .005. 0.995. .505 - 1.971 202.446
225 224.845  .996  .005  0.961 .435 -17.502  196.271
250 249.840°°°.996  .003  1.Q16 8.168  234.343

- 467
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Table 7-4! ASN, Risk Bffic.ency and Regret When n_ = 10

n* B() MeanYN(g.)E.‘ '*Mesmq-](C)s.E. ~—Wean wle) 5.E.
5 11.000 .917 .080 1.272  .262 2:991  2.889
7 11.000 .908  .O85 1.126 .362 = 1.889 5.433
9 11.000 .910 .084 1.051 - .440 0.977 8.370
10 11.000- .921  .069 0.976  .402 - 0.493 8.455
25  24.800 .99 .039 1.025 .505 1.276  25.745
40  39.855 .978  .021 0.939  .431 - 4.917 34,972
50  49.820 .980 .018 0.999  .466  -.0.023 47.116
78 74.870 .987 .01l  0.994  .434 - 0.877 ©5.558
90° 89.815 .988 .01l 1.031 .539 5.687  97.705
100 99.780. .989 .011 1.031 .557 @ 6.327 111.901
150 149.875 .994 .006  0.952  .464 . -14.418 139.764
195 194.845 .995 .005 0.997 4490 - 1.279  191.650

~

250 249.850 .995 .004 1.007  .522  ,3.842 - 261.387

200 199.845 .995 .004 1.026 .462 | 10.083 . 185.461

Remalrks v

The moderate sample behaviour of the rule in (7.4.7) is
quite satisfactory, and we recommend its use in practice.

g W - -
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CHAPTER 8
SOME RESULTS ON' SEQUENTIAL PREDICTION

ﬁ&g}.‘ Tatpoduction. So far we have conceatrated on sequeﬁtial
es£i ation - éither point estimation or f.xed-width interval
estimation. In‘this chapter we consider the probiem of pre-
dicting a future observation X from a‘series of obsérvations
le,.m, X - We assume, as FSual, that Kqyeens Xy Y are
iidryts following a cértain distribution which depends on the
parameter . As in estimafion,setfup, the problem is two-
fold in the prediction set up also. First, to provide a point
predictor of ¥ onAthgfbasis‘of' Xi,;.., X, which haslminimum
risk (comsidering a sultable Iaséhfunction) for all parameter

“points @  and seéond, to provide a fixed-width prediétiOn
interval for Y which has a specified-coﬁefage probability

for zll parameter ppimbs 8. . -

“The resﬁl¢§‘0f‘thi5'éhapter'are as follows.
1) In section £.2, consldering a locatdon and scale para-
meter family of symmetrical uﬁimodél‘densifizs"f(zég), -
5.1'"'_.’-.,1‘ E B

“w <x Cw -w < glo O<B <» (B unknown), it has been

proved that there exists no fixed-width prediction interval

for Y which has a specified coverage probability, under

i | T le1es-
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any sampling procedure which terminates with probability one.

This is an example of a very simple nature on the non-existence
of a sequential procedure for some statistical problem.:  So far,
in the literature, only two results of this kind, althoﬁgh in
different‘contéxfs, are_known to us [Bahadur-savage (1956),

Blum-Rosenblatt (1967)1].

2) In section 8.3, the problem of providing an 6ptimum .
predictor of Y. has been tackled, considering three families
of densities, viz., truncated exponential, exponential ard
normal, A sequential procedure is given in each case to get a
point predictor of ¥, the loss being squared error and cost of
sampling. proportional to sample size. 1In the first case, the
seqﬁential procedure 1s shown to have asymptotic risk efficiency.
Wnile in the other-twé cases 1t is shown by referring to rele-
vant papers LStarr (1966b), Starr-wWoodroofe (1969, 1972)]

that the procedures are such that the 'regrets! are bounded.

-

8.2. Non- ex1stence of fixed-width prediction interval with

prescrlbed coverage probablllty

To le 1deas we first consider the simple case of a
N(u, P) dlstrlbutlon, where the parameters may or may'no;=gg=

known. If X X, denote a random sample from the above

1,...,
population and we want to predict Y by [in' d, in'l'd]’
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vhere X, = nl Z Xyy (n2 1), then,

1 . .
Pl |x,- YI<dl = 2@'7{'(n/n+1)§; 21-1¢ 2§ (dfe) - 1
<Y '("pre'assigrféd)

if d/fs < the upper 100 (14'Y)/2‘/l point of the N(O 1)

dlstrlbution The simple reason is that if Y has a non-dege-
nerate distribution and the scatter is wide enough, it is not
possible to put f in a prediction interval of preassigned
length and prescribed coverége probability. This simple idea is
the basis of subséquent development in this section. The basic
difference with the problem of estimation of © by a confidence
interval [in- d, £n+d] with prescribed coverage probability 1«
is that in the second case # can be viewed as a rv degenerate
at a point.
Let Xy, X5,..- be a sequence of 1 1 d r v, each with

the unimodal density (with respect to Lebesgue measure)

(—B——) -® <a <w, B>O0 - <x <® B unknown, which is

symnetric about the model value x = a, Let Y be independent
of the X-sequence, having the same distribution as that of the

X's. We prove the folldWwing theorem.

Theorem 8.1. Under the above assumptions, there does not exist

A saumpling procedure that terminates with probability one for

all a, B, under which a predlctlon interval of 1ength 2d for

Y' is attainable which has coverage probability .Y when
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d >0 and O < Y <1 are preassigr&ed.

Proof: The proof is by negation.  Suppose there exists a sampling
plan which terminates with probability one and under which the

interval predictor
(8:2.1) id(_zN) = [h(éN) -4, n(gz) +d]

is a prediction interval for Y with coverage probability Y
for all == <a <, B> 0 vhere Z = (Xq5 - XN), n(-) is a
measurable function and N is the sample size required by the
sampling plan. Then the foliowing holds

(8.2.2) P_a’B[YeId(zN)]" >Y forall -e<a <w, B> 0.

We shall show that (8.2.2).cannot'hold for all B > 0. This is

,'because (8.2.2) can be rewritten as -

(8.2.3) © Y <P, o n(z) -4 <Y <n(g) +4d]

1]
=
£
v
o
=
ol
2
]
]
1
o3
I~
]
*
in
121
2
=]
+
ger 108
=
w
[ SN |

for all = o <a <o, B> o,

where Y* = (Y=~ a)/B, the inner probability has to be evaluated
regarding Y* as random (=l U, as fixed) and the outer
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expectation is with respect to ZN' Since Y is indepeﬂﬂent
of gﬁ , S0 ig Y* whlch.has a completely known distribution,

S

symmetric about the model value of the distributdon, the origin.

Now, the.inﬂerqaprobability

N Eor ilY*l -5% i ZN}z P0,1{,'3”4 £ %}' .

Lt £ (>0). be such that )f/a =Pl [yx[ <€l . choose B >F,
SO that rhs of (8. 2.0) < 772 a contradictionl This proves
" that an interval predictor for Y satisfying (8.2 2) does not
exist. - This completes the proof of Theorem 8.1. WNow we add a
. few remarks.
Rgggggg g 3% o
1. The" normal the double exponential and the cauchy family
of densities, among others,'satisfy the assumptions in the theo-
rem 8+1L = and hence in neither cise-does there exist a fixed-
width prediction interval for a future obeervation which has.a.
 Specified coverage probability. - |

2. The above theorem remains valld even if a is known.
Also, the restriction to- symmetrical denSities im not at all
necessary. If common density is unimodal 1t follows that Y*
has a COmbletely known distribution having a-unique mode at
some point- Yor 8a¥s Tet a (may be - =) be the'Towest end poiht
of the range of Y, Let €19 eg > 0 be such that the interval
{max (y,- €oy- a)y Y+ €5 ] 1s the Toptimum' modal interval of
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probability content )72 i.e,, the interval around e of smallest
length and probability content Y/2. It then follows that if 24/8
is less ﬁhan € i.e., 8> 2&)81, then the inner probability in
(8.2.3) is always less than Y/2, indeperdent of the quantity
(h(Z) - «)/B - | Bt

8.3. Minimum risk point predictor

The pfoblem of providing an 'optimum!' point predictor of
Y has been tackled in this section. We consider a sequence
Xy Xgye-- oOf independent r v 's distributed i1dentically with
'finite second moment. While we wish to predict a-future obser-
vation Y (distributed identicall& as X's and iﬁdependent_of
X~-sequence) through in having recorded-(Xi, Xos e+ Xp),

suppose the loss incurred is given by
e e e - 2
(8.3.1) Bia ~_A(an-;Y) + cn

wheré A 1is g known'positive constant and the‘cost of sampling
is proportional. Our object is to predict Y such that the
Tisk; Vié. E(Ln)' ié minimized for all parameter points. Though -
fixed width predictioﬁ'interval procedure does not exist, we
shall show that minimum risk point predictor for Y can be
obtained in some cases with desirable properties of asymptotic
nature. We consider three populationsﬂviz. truncated exporen-

tial, exponential and normal in three sections.
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8.4. Truncated exponential family

The X's have the density

f{x; w, o) ¥ “

oL explE=HY, x> u

=0 otherwise

- <y <« o >0, both the parameters unknown. With (8.3.1),
the risk '

(8.4.1) unC):AJ%V+%)+cn

which is minimunm for

-

n= n*=/Ag E§ .
the corresponding minimum risk being v (c) = v ,(c) = cn*(n*+2).
Thus, in igﬁoranoe of o, no fixed sample size procedure will
minimize (8.4.1) simultaneously for all u, o. 8o the possibi-
11ty »f utilising a sample of random size W is comsidered which
is shown to achieve the objective asymptotically. We propose

the following stopping zrule:

(8.4.2) The stopping time N = N, is the 1lst integer
n {> n.) such that

— O . 1

n2 /Ko, g8

vheye Xn(l) < .o <X are the ordered X;,..-,X

n?


http://www.cvisiontech.com

-1!}.;92-. o

n

o, :l(n—l) 121 (Xi- Xn(l)); no(g 3) is the starting sample

size. When we stop, we predict Y by iN‘

This rule can be réphrased -as: -
(8.4.3) The stopping time N is the first

intéger n(> no) such that

% S n/n*

-1 n ' .
where Ug = (n-1) izl(xi - Xn(lj) 'and Xi's follow the law

of disfribution f(x; O, 1). Thus we get
8000 B(ry) = ol B3 + ¥ 2] (- %)(c*:l)}z + BW) + n).

‘Define the risk efficiency .-

(8.4.5)  m(e) = B(Ey)/vle) g o .

Now, about-the Usefulness of the sequential procedure in (8.4.2),

we have the following theorem.

- Theorem 8.3. -
(8.4.6) N is well defined, ggn—increasiﬁg as a function
of ¢ apd N -> B as ¢ -> 0.

c-> 0
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(8.4.8) B(N) < n* + n,* 1 for all ‘u; o
(8.4.9) E(Ng)*_{ (n* + n, + 1)2 for all wu, o.

Proof: Proof of (8.4.6) is routine. To préve (8.4.7) observe

the basic inequality _

(8.4.10) n*oy/o <N <nI = +np¥c  Jo #1
. | {N=n ] N-1 '

o
Now o,=>0¢ a.s. as m -> . Also, N => © a.s. as c-> O
from (8.4.6). Hence, Ty => o a.s., -1 ~> o a.s. as ¢ => 0.
Pividing all sides of,(8.ﬁé’=.1_LO) by n* and making ¢ -> 0, we
get the result. To prove (8.4.9) and (8.4.10), first note that .
from (8.4.10).
» o

N~-1

(8.4.11) N(N-2) < n (N- &)1 +nXE (X~ Xy gy /ot N2

{N=n0] A P

~

N
< (n, - 2)N+n* x (X = W) /o + N
%

Assume for the moment E(N) < <. Then using Schware's inequa-

1lity and waldrs kequation, one gets from (8.4.11) that
(8.2.12) (310)% - 2EN < (n_- 2)B(N) + (n*+1) B(N)

fence EB(N) < (n*+n +1) watch proves (8.4.8). Also, from
(8.4.11),

(8.4‘.13) E(Ng) < (nx+ n,+ 1)E(N) < (n*+ n, + 152,
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If we do not assume BN < o, define N, = min(N, m) and get
as before ENm <. n**'n + 1, EN < (n*+n +1; . But N tu
a.8. as m => o, Uslng Monotone convergence theorem, we get.
the result.

We state the following theorem about 'risk efficiency!.
- Theorem 8.3. 1im n(c) =

Proof. First note that
L .2 -
ﬂ(c? g'cn*,/xcn*(n*4-2)) = (14l£;) .
Hénce
(8.4.14) 1im inf ﬂ(c) 21 . , —
= _ c-> 0 e

K150, n(e) <1+ 57 + (100)7F Bn) + B(oF~ 1) BR))

Now, E(N-g) => 0 as c -> 0. Hence, it suffices to prove

the following lemma:
Lemma 8.1.

(8.4.15) lim E(N/h*) 1im E(N/h*)

C" O . C-v) 0
e ‘ 2
(8.4:16) 1lim E(c*) 1im  E(oy¥) =
c=> 0 .. . c=> 0 X

roof. Using Fatou's lemma, (8.4.8) and (8.4.9) we get (8.4.15).
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Using (8.4.18), the inequality R o¢.(N/n*), and the fact
i)

(8.4.16).

Remarks:

1) Suppose w(c) = E(LN) - v(c), which is called the'regret!.

Tj.<2 ¢ .a.s. as ¢ => 0, along with Fatou's lemma, we get'

It is not known yet whether 1im w(e) < O(1l), which we strongly
u>0

SN

feel to be true.

2) Though for any fized p051t1ve integer n, the events (N=n]
and ]‘..,f1 are tiependent the proof of asymptotlc risk effic:1ency
is not at all tedlous that is mainly because in this particu-

lar context we did not require the rate of convergence of
. |

5 _
E(aﬁ- 1) => 0 as n* => oo,

8.5. Exponential famiiy : 2
The X's have the density

f(x =% exp (-x/\), x>0
where A 2 0 1is unknown.
With (8.3.1), the risk
vg(e) =ar® (@ + 1) wen

which is minimum. for

3
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As in section 8.4, we propose the following sequential sampling

scheme which has some desirable asymptotic properties.

(8.5.1) The stopping time W is the 1st integer

n(> n,) such that

/A
nz_/cxnl
c -1 0 . | : ' .
where X _ = n ¥ X;, n (> 2) is the starting sample size.
ni i:]_l O"‘" . ]
When we stop, we predict Y by iN;

We write L, ina different but equivalent form as follows.-

Sl = A(in- x)g_ + A(Y- 1)2‘-»_2A‘;()Er;fll.)(?€- X))+ en.

n
Thys, | .

(8.5.2) B(Ly) = A (X;- 0% + % + cB ().

Also,lthe minimum risk | |

(8:5:3)  v(e) = vl = (3% +ann) o -

- Thus the regret is

I

w(e)

E(LN) - u(o) - =

i

(4B (X~ N2 - nx + B) - n*]

which 1s bounded for small ¢ by the theorem of Starr-Woodroofe

{(1972). Also the asymptotic risk;efficiency'follows from their

results.
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Remarks:

1) Here also, for any fixed n, the two events [N = n] ama
Ln are depentlent, But for the regret part, the rates of con~
vergences which we need are done in Starr-Woodroofe (1972) with

reference to a sequential point estimation problem.

2) However, the asymptotic risk efficiency of the rule in
(8-5-1) can be very'easily proved in the same way as that of

(8.4.2)., )
8.6. Normal family

The X's have the density
z _% ‘
£(x) = (250%)° exp {-(x- 1%/262 ], - w < x <o
where - o <y <ew >0 >0 are both unknown.-

With (8.3.1), the risk
y,(e) = po® (1+-lﬁ) +on

which is minimum for

75 \
- = ® = —_ T E .

As 1n sections 8.4 and 8;5, we propose the following sequen-

tial sampling Echeme:

(8.6.1) The stopping time N is the 1st integer

n (> no) such that p


http://www.cvisiontech.com

=158~

szfé (n-l) = g (er X, | Xh" e Xy5 n (> 3),
i=1 —1 il

where

1s the starting sample size.” when we stop, we ppgdict Y Tty

XN' ' o
: LR

Now, L can be written as

n
e an ?-A(iné w2+ a(y- u)gy- 2A1£n‘H)(Y" “)*’én
so that

»

B(L,) = cln® BFY) +n*2 + BO)],

since for any fixed integer n, the‘evehxéa {N=n] and T

hafe independentl

Also, the minimum riék'

0

K C ufe) = Un*(c) = (n*® + 2n*)c.
From Starr (1966b) it follows that 11m E(N/h*) which
c ~> 0 . :

gives asymptotic risk eff101ency at a.stroke.ﬁ For the regret
viz.,

w(e) = LN) - u(c) =T, E[(N n*)‘/N]
we apply Sﬁarr-WOOdroofe's (1969) results to get that wl(e) .

is bounded for small ¢ if and only if =n_ 2 3-
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