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CHAPTER O

GENER AL INTROﬁUCTION AND SUMMARY

T™his. the51s consistd of two parts dealing with maximum likeli.
hood procedures in two different frameworks. In the first part
(Chapters 152 and 3) we con51der 1nfereuce about =2 parameter which
is.discrete or separated ih the sense thet no £(X;8) can be
obtained as a 'ﬂimit“’ of {f(XaGi)};!Qi £ Ql. (A precise defini-
tion of what is meant by 'ﬂimit"is given in Chapter 1). Ia the
second éart (Chapters 4 and 5) we consider the usual estimation
problem of what may be called in constrast to Part Iy-a continuous
parameter. We .assumes We have an exponential famiiy having'a

K i -
density  f(xy8) = c(©) exp{ P Bj(g) pj(x)} with respect to scme
- ':1 . - - ]

o-finite measure and whoee natural parameters depend on the para-
meter of interest © in a smooth way 5 such.familie;_heve heen
called curved exXponential families by Efron (Annals of States

1975). Our interest in this peart is to.establish the '"second nrder

efficiency' of the maximum likelihood estimate (melee).

A more detailed explanation of the above problems as well as

2 chapterwise summary of the results obtained is given below.

in Chapterrlg‘we define a separated parametric space where
we confine Qurrattention‘to the families which are homogeneous in
‘the sense that the samﬁie space does not depend upon the parameter.
This chapter is mainly devoted to the study of asymptntlc proper-

ties of the m.l.e.ln the case of one parameter separated familieses
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Assuming the loss function to be of the formy W(a,8) =

if a=6 and pesitive otherwises a theorem’regarding asymptotic
approxXination of risk of the melee ng\,g) is establlshed which

,assepts that under sulteble.condltlons Tim n 1og R(Q 18)
exists and equals log Q(G); - where ‘1 - p(G) is the_d;vergenee
function. intreduced bwahernoff.(Annals of Mathe State, 1952).
The m.l.e.tturns out te be asymptotically minimax under appreopriate
conditions the results to this effect are contained in two theoremns.
The minimaxity prov1des a new. proof for the meln result of Kraft
and Puri (Saukhya, A, 1974) n® general there are maximum weighted
likelihood estimates (m.w.l.e) which are asymptotlcally better
than the melee é%}’ so that G 'is not in general asymptotically
admissible. In-tﬁe case when . & 1is assumed to be an inteéer!end;
the loss te be squared?efrof} analojques ef Bhattacharya-BErankin i
and Cramer-Rao lower bounds forrthe‘vériaece‘of an estimate are
developed'and shown to be equivalent under’very_miid.cqnditions.
Also for any asymptotically unbiased estimate which attains the
Cramer-Rao 1OWef bound_asymptotiealiyvat scme: 6,r 1t is shown
that its risk tends te infinity at some other peint 91;‘ Thus
there is no estimate ettaining the Cramer-Rao lower bound asympte-
tically at all 6. This provides an answer to a question reised
by Hammersley (J«R.SeS.y Series B, 1950). This chapter is concluded

with two examples namely the normal and the Peisson families with
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integral means. Most of the results and the methods of this
chapter have appeared in Grosh and Subramanyam,(Saqkhyﬁ, Series A,

19754)

- The.case of two parameters - one discrete and the other
continuous has been taken into cbns&derat;ﬁn in Chapter 2. The
main result of Chapter 1 namely gettiﬂg the expression for the
asymptetic risk of the melee has been extended here to the more
general set up., The exteﬁtien is applied to an example of Cox
(1962) which, is about deciding between Pnisson and geometric

distributions.

Chapter 3 is devoted .to the case'qf ﬁon—homogenenus families
of densities. The asymptotic rTisk of the melee is given in this
case also. Iu the case of Binomialy B(N,ﬁ), p  known, it is
shown that the melee 15 neither minimax nor admissible even when
one restricts nﬁeself to the case of two point parameter spade
onlye |

We now turn to Part II. ' Iet us consider the problem of
distingui§hiﬁg between (asymptotically) efficient estimates. ILet

Tn be an estimate of & . and suppose we can expand Eg(Tn)
formally as © + Qé@l + o(nfl). Let Tﬁ = Tn - b(Tn)/n « Then

TE is(formally) unbiased up to o(n“l)° We call T* as the

(bias) corrected estimate of €. Let W{a48) = min {(3-9)2, d}

>
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be the squared error loss truncated at d > 0. Then fer any
(asymptotically) efficient corrected estimate Tﬁ, we have under
certain conditions

E.f: w(.T;;,g)} - 2—% * %e + o-(e-lé)-

i 9! n
where I 1s the (rlsher) 1nformnt10n contalned in a single
observation and n 1is the sample size. Among all corrected
estimates, QT) is mlnlmum for the melees This was first shown
by Rao (1963) for Flsher—con51stent (F-c) estlmates with conti-
nuous third order derivatives. Raa confined hlmself toe random
samples froam multinomialipopulati@néfwith proportiohs depending
on a simple parameter 6. He also COHSidered another measure of
second order efficiency based on 'the loss of 1nformat10n"1n
replacing the whole sample by ‘an estimate anu arrived at the
conclusion that the melee 1is second ordei‘efficiént ig(view of

this measure also. & desecription of it is given in Chapter 4.

We extend thre above quotéa rqsuigs tq curved expenential
families in Chapter 4. Further, thesé resﬁits are extended to
the multipar%meter case. Our proof dlfLePS from that of Rao even
when specialised to the multinomial chse. ' The resalt is then
applied to a bio—assgy preblem of Berkson. An intuitive Beyé%ién‘

argument for the second erder efficiency of the melee is given.
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Most of the results and metheds of this chapter have appeared in

Ghosh and Subramanysms (Sankhy3a, Series Ay, 1974

Finally we turn teo the Edgewerth exXpansions of the distribu-
tioms of locally stable estimates (the definition of local stabi-
lity in section 4.2) fnr curved exponential families which are
obtained using a recent result of Bhattacherya end Ghosh (1978)
in the case when the parent distribution is dominated by a measure
having an abselutely continuovs componente In Chapter 5, a direct
crmparison  of the first four cumulants of an arbitrary corrected
locally stable estimate with those of the corrected melec. is made.
This comparison yields a key probability ineqqality_Which“immedia—
tely implies the second order efficiency of the melecewith respect
to any bounded bowl-shaped loss function. A mathemqtgcal defini-
tion of such functions is given in section 5.1. If the above said
assumption regarding the dominsting measure is droppeds the formal
Edgeworth expansions are nc longer valide However; it turas out
that 1if the loss functicn satisfies certain additicnal conditions
the second order efficiency of the melse with respect to this loss
holdse The later result includes the case of the curved multinoe

misl familiese.
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CHAPTER 1

ESTIMATION IN SEPARATED FAATLIES - OWE PARAMETER CASE

lel Introdnction

Suppose the model consists of two separated families of
densities f(ey €y M)y 7 € 1—19’ 6 = 0,1 and we are required to
test the null hypothesis HO(Q = 0) against the alternative
Hl(G = 1)« Some such preblems were fir;t pointed out by Cox(1962).
These families are assumed to be‘separéted.in the sense that no
density f(«,0s7) can be obtained asré linit of-a sequence
{f(.,l,ni)} and vice Versae Cox has not explained tﬁe'éense in
which this limit is to be taken but the following Seems to be
adequate for mest purposés. Denote M = {f(.,@,n) + e jflg,9=0,1}.
Then M can be thought of a metric space with the following

-

metric

a(e@, 2@y o D] 2B 4y

where 4 1is a o-finite measure with respect to which the densities
are taken. If d(r'™,f) -> 0 then we say that £ 5 e, Thus
HO and gl are separated if and oniyifl

inf 4{f(+>09M)s F(a31ym')) > O

Ny N | ‘

One such example is thejfdiloﬁiﬁg given by Cox (1962).
Let Xy Xgau..,Xn.lbe independently and identically.distributed
randem variables. Let Ho -bhe the hypothesis that the distribution

is of the Poisson form and Hy be the hyprthesis that the
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distribution is of the gecmetric forme In this problem,

f(x,O,"?) = e—n T]X/ x & X 05132, TEE

it

and

fxy1sM') = 'n'x/ (1+~”f7')1+x X

1l

0’1’2, o‘ooa

More generally let us consider decision problems where we
have a countably many separated families £(+303M)y M & S‘Ig,
8 € @; (-ﬁ-) being a countable sete By separated we mean that

for each © ¢ (B)»

inf d(f(o ,9,77), f(o ,Q‘_,T?’)) >0 o
e Og-

T]le s !g‘ - ! . (]
8 # et ‘ '
We shall consider in this chaptér the case whare we have only one
parameter O « The general case which ¢an be treated in a similar
way 1s considered in Chapter 2. =
Suppose we have a countable famlly of separated densities

it (., 8)y © € C)j.w1th respect to a U—flnlte ‘measure 4 %

iece for each 6 & (H)

i"ll d(f(oyg)’ f(;’g!)) > 0o
8'#£6
Q'e(ﬁ)

We assume that the famlly of densities is homogeneous 1in the

§ S Al
sense that the set {x v f(xs08) > *O} is independent of © .
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Define
0(6'y0) = inf § {f(x,gt)/ f(x,g)}t f{xse) du (lelel)
t20
and
e(® = sup p(e',0).
o170
Note that

0 S_Q(Q'QQ) & Lo

Then 1 - p(®'y8) 1is a measure of divergence introduced by
Chernoff (1952). For different types of such divergence measures

and their interrelationships, one can refer Khan (19273 b).

It can be shown vide Proposition 1e 2425 that (ﬁ) is separated if
and only if 1 - (8) > 0 for all © . Whenever we say (B) is
separateds we mean the family of densities {f(.,@) « 6 ¢ (ﬁ)}

is separated. Note that (@) 1is separated if and ouly if the
family of densities {£(58) T o e (ﬁ)} 1s a discrete metric space
under the metric d(e*,; 8) = 4(f(.40'), £(.;0)) introduced earlier,
The statistical problem which we consider in this chapter is to
pick the correct value of @ given a random sample Xlgng...,Xh .

In what follows in this chapters we tacitly assume this set Upa

In Section 142, some properties of the divergence function

| introduced in (1.1.1'a&re givens Let ’é‘nbe the maximum likelihood
f

estimate- {Mmelse) of ©& based on the sample values x.,,x ,...,xn .

1°72
Let w(®'48) be the loss in estimating the true value 6 by o' ,
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P

We assume w(Gn,Q) = 0 if @6 =8 and positive otherwise. Let
N ‘

R(B, s 8) be the risk under © . Tn Sectiop ewed, Thaerem le3s.1

provides an estimate for the asymptetic risk of the melee 3 1%

- P .
is shown that under scome conditions. lim’ 1 log R(Gn,e) axists
1 —>00 .

and equals 1log p(8)s Theorem 1.3+2 shows Sn has an asymptotic

minimax property in the sense for any other estimate , Tn such

that lim % log R(T 38) exists .for all & ,
n->c0 -

Y-
?

sup lim = 1og R(T ,9) 2 sup! lim i log}R(an,G).
6 n—ooo’ B N> X

From thls we derlve a new proef of the main result of Kraft and
Puri (19?4).‘ It is shown that there are maximum welghted 1ikeli-
hood estimates (m.w.l.e) which ‘Are asymptotically better than
’@n, so that '@n is not_lqwgeneral asymptotically admissible.

@h, is 'said to be asymptotically admissible if there‘canhet exist

any estimate Tn such that

lim 4 log R(T y 8) < lim 4 log . B(Q y ©)
n->op 1 n->oo °

e o
e

with at least one strict iﬂequality..

In Section leé following Eémmerﬁkay(I@SO) we assume that ©

takes only 1ntegra1 values and the loss to be sguared error. We

develop analogues of Cramer-Rao and Bhattacharya-Barankin bounds
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and show that they are equivalent under very mild conditions.
We show (Theorem le4+1) any asymptotically unbiased estimate
Tn which attains Cramer-Rao bound asymptotically at seme 6 is

bad in the sense 1ts risk 2t some other print tends to infiﬁitya

In Seeticn 15 two examples are given. In the first example
we consider the normsl distribution ﬁith integral mean. Better
estimate than the melee 1s considereds. In the second example,
we consider Poisson distribution with an unknown integral mean
and show that the nearest infeger to the‘sample mean .in (say'Tg)
1s a better estimate thon melees This 1Is a rather surprising
result which may beleasier tn accept if one ﬁoﬁes thaf“-TE 45
maximum weighted 1likelihoed estimate (m.y-l-e)‘ if the weights

T are defined as follows e

e

Wl =T

1 A P x X -
and = log Tor1 " 7 log Ty = 1l - (8 + 2) lgg(l + g)’ for & > 1.

Tt appears that in gerieral if the asymptotle variance is
the sole criteriony meweles's rather'thanm mseleel!s are to be
preferred. This lends support to Hemmersley's (1950) belief that
for discrete parameters better estimales - than melee'’s may be

founde

For special case of the gopméi there: is a slight everlap

between our Tesults in this chapter and that of Ladarman (1965),
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A sequentisl approach to these probiems is considered by

Khan (1973 b). | - wu ¥

1.2 Some Propertiééfaf the Divergence Function

it

Let  0(t;0',0)

i

. P N

H]

0(t) supressing the dependence of

on ©' and © .

Proposition 1 2.1 (a) Q(G',Q)

[}

-@cto) ~ for énme 0 < to < 1o

cE

(@) . (64,0) = (8981 .
Egbof ¢ (a)  This follows from the convexity of & and the

fact that. pft) 5 1 for t =05l

- A s ' .t
(®)  o(610) = %2‘3 By {£{X1501)/1(X;50)%

. . e e 1
= inf B, §f(X790")/f(X;,0)
Qﬁtﬁl"Agﬁi 1 1 }

: #
inf E £(X,,8)/f(X;y0")
0t er 11t . N }

iy

J;'.étga 9‘)1. Rl 2

Proposition 1e2.2 2{1- pz(gr,é)}g.z d(e1y8) > {1— p(6'30)%

pProof ¢« Khan (1973 b, Lemma 1) has shown that -
1 ‘ '

201 - 0%} 2 ater ).
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For; observe that
a%(61,6) = [IMfE(x 161) - £(x,0)] du]?

) ,
< 5| SFEEN- /T P « [ /T80 JTme) |

A

i

41 - %)
Ceoe- 92602 > agetse)s

4

2 _>_ d(G' ,g)o

This implies 2(1 - 92(9',9))
For thé bther inéquality in Proposition 1+2.2 we preceed as follrws

et y20, 0L t<1l. Then

(1+ty) - (14-y)t =1+ ty - J1+ ty(l+ g)t"?} it e (Lo 2.1
| for some Q f { <1
£ P P
For 0Ly 1y 0<t<1ly by the concavity of _(1--y)t iﬁ y-,
we get B
(1 2 @@+ y0*

=1 ~-y21 -3 ~ty.

S0, 1 -ty -« (1 - y)t L7y , I , - N (1.2.2)
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(
J{ftmg')/ £(x, 837, « 1 if £{x0') 2 £{xs9)
Let Voo 4 , >
1 -{f(x(@')/ f(xy®d) otherwise
Then ‘
plt) > 1 + $ 6% fSKg@)@U = u ©ot.y flxs®)du
f(x{gl)zf(xfg) f(xi@‘)(f(x;@)

- J v f(x,g)du

== l 3 d(g|39) .
Hence d(6';8) > 1 - o(6'98) , completing the proof.

We shall occasionally need the Monotone Likelihood Ratin
(MLR) Assumptien :,(E) igs a set of real numbers and

f(x,8') / £(x:0) is an inereising function' cf X whenever !> 6

preposition 1.2.3 «  Suppese the MLR assumption holds.

Then

p(Gl,G) > p(6518) whenever 6 <8, <8, or 8, < 8, < 6.

proof o We prove astronger result, namelyy that for all t such

that 0 t <1

By  T(X s 85)/T(X ,9)}t g Eg {TX ,91)/f(x_,9)}t-

if e < Ql < 02 or 92 < 91 <9 (1e243)
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Let us ennsider 6 < 91 < 92 ¢ Let

E@{f(x 18,)/1(X ,6) }t
A = .
Boff(X 16,)/£(X 163}

Then
A=y {f(Xagg)/f(stl)}t fo(x) du

ghere J£(x,8,) /2 (x,0) }t £(x,8)

fg(X)= .
J {f(x;@l)/f(x,e)}t £(xy9) duw

Since 0 <t <1 and MLR assumption holds,

f(x,@l)/fg(x) 200K {T(x,gl)/f(x,G)}l't is %ﬁﬁ%ﬁcreasing function
of %. Also {f(xgag)/f(X191)}t is an increasing funetion of

X+ Henge

A</ {fgxigg)ff(XQQl)}t f(x,él) de ¥ 1

which 1s Just (1e2.3) by definition of A We ¢an deal with the

case 6, < 8; < 8 in a similer way. This completes the proof.
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1.3 Properties of MiLe ke

fe . . N ~
ety mpEe e (xlgxg,...,xn, and @n(x) be an Meleg oOf B o«

ie o %n is any element of the set {0' + Sup f(xse8'™) = f(x,G‘)}
e

if this set is non-empty and ﬁén is any element of (Z) otherwise«

i

Led 7,.01,8) = leg {7{Xg 01)/T(Kg &) and

S:G‘, G)z + 7 +.--+Zno

Zq * 49

Let w{8's0) be the loss in estimating the true © by ©'.

We assume that

w{g'ye) = 0 if =6t and >0 if ©!' £ 8.

Tn Thecrem 1ls3.1 ve find an asymptotic value of the risk
A ”~
h n 4 \ . 3 . ~
R(Gns &) = &y {W‘@n’ C)} and use it in Theorem le3+2 to prove
a weak minimax result. The idea behind the proof of Therrem 1-3-1
A
is to show that R(@» o) behaves asymptotically like
F
; = ¥ £ i ; : { so tkat
W(Gl?Q) [Pg i Qn Qlk] or a suitably chosen Dl £ 6 .
A
e

L 3 : i ¢ =
= log R(@n,G) behaves like log Py { 6, = Gl} .

Theorem 1.3.1 . Suppese

(i) £ p(8'40) <o 3nd X w(81,8) p(B's8) o
o146 Q'#e
Then

lin 2+ 102 R(_,0) = log p(8).
n>co O =
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Preef ¢ Let Bgy: Dbe the set { 5(6t,0) > O} + By Cherneff's(195g,

inequality

PQ(BQ,)

1A

o : !
Hence oy :
2 Py(Ba) X 8 0 (8%,8)1M < T 5(0'58) <o by (i)
orde 0001 S oy 11908 oo P :
So by the Borel-Cantelll lemma the probability that only finitely

many BQ,’s occur is one ;‘i.e;a with probability one

gﬂ

. Sl s

£ { et T sup f(x, em = f(x, 9')} .

Pg 1 °n = @T}.S Pg(Bgl) 2 {Q(@'sG)}n

and so
= t ' = 419
R(QnaG) “gtgg w{et,08) P{ n = gf}
_<_ 9%‘#9 W(@" Q) {p (@’,9)} ' ‘ (103¢1)

Because of (1), the supremum (8) of »(B'48)y B!, # 8 1is attained
lﬂt a filnite number of points 0! = @1,@2,...,9k. Since

‘T F .' L AT
9{5@ w(B7,8) ip(g ’9)/9(9)} ; gg;g w{(B'40) {b(g!,g)/P(g)}

is convergent uniformly in n, we get
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1im & woty€) r)(o',a)/p(cwn = 2 w(e!,8) lim {pw',e)/p(@)

n->co 87 21#0 1= 00
e b3 w{e'!ye)
O1=0,48-9¢s438
o k (Le3.2"
1t follows frem (le3.1) and (1le3.2) that
Tin 2 log R(O ,8) < log o(0). ' (10343) |
n->00
Let ngeggeoa,ak be as defined earlier,
Bh= {S(Q‘,G) 5= 0 for some &! = 91592’--0,9k}s
D= {A\ Bg, ’ (Bg, is the complement of BG‘)
gl}{g’,(}‘l?g2,.oo,gk
and
W = min {w{@lgﬂ), W(stﬁ}%”uw(@z:,g)} .
Then -
A .
H{en,a) 2 W Py (G 1 D)
>y fPa(C) - % P.(Ba:)
1o b e'¢@,el,@2,...,gk o)}
2 ulfp (@) - e} G BRI

9 ?tbjg:!-’ooo’g

using Chernoff's (1952 the~rem for any preassigned e > 0 and

n sufficiently large. Since by (1) Z {p(gv,g)/p(gj}n 1s
v . 9'#@:

B i

-
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uniformly convergent, we get as before

lin 5 PEHO /MO = E lim o (6'56)/
B2 et;é@,g' ,ono,g g‘;ég’g ’ooo,g =30
dy k . : 1} k 9(9)}

=0 | (143.5)

BY (1.304) and (l¢335)9

11

p— =

e

.
log R(@n,Q) > log {D(Q) - e}

whichy taken with (1+3.3) cempletes the preof as e 1s arbitrary.

Yote that the llmltlng value is 1ndependent of w(8'4y8).
If the loss is 0 1 then obv10usly assumptlons (1) and (ii) are

Same.

Theorem 1+3.2 « Suppose the conditicns of Theorem le3el hold 2172

T 15 an estimate such that - 1lim éwlog}R(T +8) exists for all
- n—>00
8. Then

sup lim % log R(TH,G) > sup 1lim
6 n->00 i . ... B8 n-»o

il (8

A
log R(On,g).

Proof s« We consider a fixed value of © say 6, and-define &,
as in the proof of Theorem 1.3. 1, 1.6., p(g ,e ) = (G Nis

Consider a prlor L2 whioh assigns positlve probablllty Ty 30

to Qi’ i= 0,1. Then the average rlsk is minlmised by the Bayes

estimate Bn‘ which equals‘ éd "if - .

8(91,90) < log {rn w{@ [+ )/Tr1 wi(o ,91)} and equals Ql,éthe:ﬁisea
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1 ; ' i .
Since < log Jm, w(6118.)/m) w(8,10.)} tends to zero 1t follows

from Chernoffts (1952) thecrem that

A | ' T T
lim 'r"‘l‘ 10g R(Bl’l’gi) = 10g p(gi’@j)’ i # J = Os1e
n=—>00

ilow using the definition of 2 and'Pro;gosition 1e 2.1(?:)), we get

1
lim = log R(B_y m) = log p(8.)
n-»00 I 0 2

where R(Bn,w) 1s the average risk R(ansb) + 7 R(Bn,gl)@

-Since Bh is Bayesy we get

max 1im = log R(T ,6,) > 1lim = log R(B_y» m)
i:"-031 n___.>m n. | n j. n=>00 n n
= log p{8y)»

Hencey

-

snp  lim = log R(T_») > sup log 5(8).
6 Hidde ME TR e

An appeal to Theorem le3e1l now completes the proof.

If sup ¢(8) = 1, the result is not useful. For then any
5 _

estimate ~with 1im R(T »8) < K ¥ 6 has this weak minimax
n->c00 ) ' P

property even though ”Tn need not even be consistent.
Theorem le3e3 gilves 2 more natﬁ?%l'asymptdtic'minimax'prnper
i 7 f\ ‘ e N - L 3 . A
of the Melee Qn if one assumes an additional conditicon given in

(14348) .
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Theorem 1.3,3 Under the sdditional conditien
sup § £ w(6'36) p(6',8)% <0 (1.3.7,
&l #e S :
we get
.l ‘ A 1 oA
1im sup log R(©_»8) = B8up 1im = log R(©_»8) (1.348}
= co e u 6 n-—»oo 1 & :

Further if (1le3+8) holds, one has a more meaningful asymptotic

minimaxity of the melee ’En namely

i & A
1im % sup log R(T ,68) » 1im = Suplog #(e , ®) (103.9)

=00 0 n-»oo T g

for any estimate P such that 1im 1 log R(T 4y8) exists for
. n . n I
n-%oo
all 6.

Proaf. Mote that

r— B A
Tim % sup log R(@ ;0) 28U lim = log R(6,, ©)

n->oco s} | 8 n->co

=]

To see the other Inequality we proceed as follows.

From {1«341) we have

A ! "
B 1 n
R(Gnv e) < 9{5@ w(8'!48) 1 p (e s@)}

{b(g)}n-lglgg w(8150) 5(31,8).

1A
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. e A
I lim i sup log R(@ns @) < sup log p(9)

a1 81
(in view of (1e3.6))

1 A
= sup lim $ log R{(6 , &)
& n-~>oco n

using M™ecren lo3ele VWhen (1e348) is truesy we get from Thecrem l..

1

1 o .
1im T sup log R(ln,@) > sup lim = log R(Tn,g)

= 0O 18 ] 8 n—ooo

!

Fal
> sup 1lim o log R(@n,a)

2 nesoo

i Ji £N
=y Ml % sup logrR(Gn,G).
n->oo e

Corollary 1l.3.4 ¢+ In case w(e's0) e (8'38) 1s only a functicn of

let - 8| then £ uw(eryem (698"} < oo for any 6" dimplics
Gl£QY ‘

the stronger conditirn (1.3.7)5 aud hence one has {1e¢3.8).
To see this corollary let w(B6'y0) p(8!,8) = g(|8' -~ &]).

Theny for any © »

S w(e8) p(61,8) = ¥ g(let-6]) =2 2 g(i) + 2 g(1)< 3 2 3
8150 o'#£6 i=Y 1=1 fi=h

A

2§ w(8',0") 5(6',6M)
PYPTaLl

= a constant independent of ©

+his establishes the cecrellary.
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For example in the normal case this corollary applies.

4

Theorem Toiss Suppose conditions (1) and (ii) of Theorem l.3.1

hold. 1f moreover {(le3.8) holds and for each n there exists

TO{ such that
n
sup ~ R(T®, ©) = inf ‘sup R(T ;) N EP (1e3410)
a n T o n
n

then ' _

1im % sup log B(Tgs @) = sup log p(6). ‘ (le3.11)

Q=00 e e

Proof ¢ (1.3.11) follows from (1s3+10) and (1034 2)

if (ﬁ)is‘finite all the conditions of the Theorem ls3+5

hold snd so we get the main result of Kraft and puri (19?4).

o

If we make the additional assumptlon in Theorem 1.3 2 that
p(Go) = p(8y) for any two ‘points: €, and 8, belonging to )

then we,ecan make the stronger assertion that

11m -}1 log R(T;8,) < Llim ‘— log R(Q 4,6,)

Lk deel 11— 00

at any point e, “inplies the'reveréémEQequality

lim 2 1og R(T_,6;) > lim 1 145 R(Q ogte, BEE

n-»00 © n->o0 O

. A
at the corresponding point 91 y loeey Qh is asymptotically
admissible. - This stronger result follows from .the proof of

m Lo R 1
Thonrem 1.2, 0,
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iTheorem 153;2 shows fhat in some sense SH is asymptotically

minimax. Unfoftunately, Onf is not in general asymptotically
admissible; as the following simple example showss In factsy we
can in generai do better asymptotically by using some mewelsc.

ingtead of m¢lee.'3

n Suppose L(ﬁ) consistggog'just three points

142 and 3 and that

p(1) = p(291) 0 (By1)s

0(2) = 5(3:2) > o(1,2)s
and %=L ‘ I
9(3) ‘= 55(2,3) > p’(1,3.)‘o -
Let K] if 6 =1
e A0 if 6 = 2,3

where 0:¢ A< 1 15 to be chosen latdre

“;

maximises the weighted: ,

I, whi

likelihood w_ F(xs 0)e Iet
O P ;

Counsider an estimate

Y (8 1) = Inf Bl £(%),0') mg,/1(X;,0) w5l

i

Y (6) = sup'¥ (61, 0).
ole

and

Then it.c¢an be shown as in the proof of Theorem 1e3.1 that
— % 16¢ R(T 50) = logy (6)e =2 « "~ - o ot
n—>00 n
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Note that
Y (2+3)

9(2’3) and )f (392) = 0(31290 AlSO ’
,X(la@) > p(lye) for 6 =2
and  Y{(8y1) £ p(6y1) for 6 = 2/g;'

If we choose A sufficiently/gggée'%o one so that

Il

B Y@ =naxg Y G2, V@G2)Y = VG2
( sihce 9(3,2) > 0 (1y2))

(i1) Y (3) = mex { y(l,s), Y(2,3)} = Y (253)
| ( since p(253) > p (1 3)),

i

then Y (1) = max t 7(2,1), Y(3;1)% < p(l).

so  Y(1)
chnice of A Thus Tn ‘is asymptotlcally better than 9 .

Ias

p(l) and X(Q) = Q(Q) fog; 2,3, for a suitqble

Also note fhaf if GE) is finite and loss is 0-1; melee
is admissible for each n. Hence if any Welelee Tn is aSymptnw.
tically better than the melse 9 s then there. exists at least

A e
one @ such that Rn(Gn,Q) < Rn(Tn,G) which implies for each n
there‘exists' Gn € (ﬁ) suéh_ﬁhat s

R(S 5 6) < R(T»6,) ik : (1le3.12)

S0 there exists 96 énd-a;sub—sequencé 'ini} such that
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gﬂ —> gf.) * By (1:3. 12)

-

1 . ) R ¥ = 1 & V :
lim (@ 190) < lim £ log R(Tn’gb) (1.3 13}

n-->»00 n=>00 . . Y 20 mesy e

31—

assuning lim l

- N=soo
better than 8 then the 1nequallty in (1.3 13) must be an
n

log R(T » 8 ) ex1sts. It Ta is asymptotically

equalitye , 7 e

There is no contradiction in being admissible for gll- n
as well as being asymptotically inadmissible 5 for at least ope
6 the melee will do betteyithan E%s competitor even though the

asymptotic analysis .will not‘brihg-tbis out because for this &

1

lim 2 log R(@ . Bl = 1im 1 10g B&T 16) e

n—0o00 o -—>oo '

pl

If (§) is not finite but the MeLeR assumption holds,
then too usually one can construct an asymptotically better

Mo We lce.

®

l.4 Estimation of an IntegérVVélued Parémeter

In this seétibn we assumé CE),is the set of all integers
and allow an estimate to be'aﬁ§*reél number, not necessarily an

integer. The loss in estimating,«? by a is (a - 9)2.

!
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l.4.1. Some resulte on lower bound= of the Cramer-Rao type i

Con':ider =1 values Q’OQ a) goo-jg of e .

1 k
Let 390’9 (xl) = .f(xl,g)/f(xl,gc) for ©# @, «
= "aw ind arlisang
Sgpgose lgo’g (Xl), 6 =8, 92, 16, have finite varlsance
e
under © =0, « Then XNy g, = i[ A Lo (x)s
o] a=1 o]

6 = 91’99""’@k also have finite variance under 6 = @o o Bk

N . ] —_ :
%1 be the corrglatlpn matrix of Agoag,n s under 6 = GO . We
will as=ume that Al is nqnfsingular. Then 1t can be shown

that An i« non-singular for all n. TYote that

) = 1

Eqy (X .
GO 93191?’1
and
s ) . ] B
“g { }\9 18sn * °D ,@T,n} ta(goygag )}
. ) I} o .
where
Clearly .

a(8_,0,8') < fa(818:0). a(0,,61,011° and a(810:8) > 1.

proposition le4.1 + Suppose f(x,6) satisfies the MeLe R property-

{

If  a(ey) 'inf {2(8,16,8) >0 #jgof 6 =041 1 eee }

It

then a(e,) = min fa(6 ,6 +1s 6,+1)s a(810,-150,-1)}
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proof = ~“TLet © > go;- Then

a(QO’Q,Q)

Il

g {f(x ,éj)f(x 9OOI}. f(x_)G)AdAy(x )-

AV

N {f(x\,@)/f(x ,@O)}.‘f(x ,90+1) dp (x ) Dby MeI.R
3 - property

il

{f(x ,Q +])/f(x ,9 )} f(x+8)du (x)

A%

{f(x 39 +l) f(X e )} f(x 10 +1) du.(x )

= ale, 6 +1, 90+1).‘ s
Similarly if © < €., one can show that
a(@o,g,g) > a(go,@0~l, Qoﬂl)o

This completes the proof:

Let T be any estimte " with finite expectation under

6 = QO, gltjioyg Then

Covg [Ty Po_,00n ] 2 Eg(T) - B, (Ta) fo 6 = 0,50, 500018,
0

- Henece considering the regreqqlon of T _on .hg ,g, 's we obtaln

E(T) By (T)
0

o 1) 2 “ Bayn 1—31 ‘ C (Le4.1)
o=6 1,92,..,,91& v (2\% e NE :

O
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where Bgm'q are glven by

. {
AI} (Bg.lgn? B@E’n’ LI ng’n)

!
] ?,-Eg (T ) - By (T)) mgg(_in) - EQO(TH) Egk(T.ﬂ) - EGO(TH)\‘}

1
- 1/2 b T see Y 1/2
v, (A ) v, ( /2 . v, ( y1/e /
QGG 90:91111 90 Qosglsn) 90 jﬁoygk;n

The r.h.é of (1,4,1) mey be called a Bhattacharya-Barankin(3-3)
lower bound based on Xy 4 n‘s (Bhattacharya (1946) Barankin
(194¢3) and if k = 1 we may call these Cramer-Rao (C-R) lover
b(;unds (Cramer (1945),) Thus for any estinate T s the C-R
lower bound is given by
(8, () - By (T)3°
B (T Oz e — | (1.4.2)
2 a(e i 199 )}” =

2
(e, - eo) ~

{a(@ ] 1% ? T4

h Cloaf'ly the best bound of this type is obtalnoa by maximising

(1 4, 2) with T‘cspect to 8 4 When the l,L,R assumption holds,

the ma}mnum occurs 01+hov at 8] = GO 2 1 or eo-’} 1 (vide™

| Proposition 1,4,1) g answerlng partly a questibn raised by

Hammersley (1950),
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Let

a¥ (¢ = }iz = . = ;
a (eO) mln 4- u(eogege) p =] 919923‘,.99}{}0

Suppose this minimum is attained if and only if © = 919699---s8&

It is casy to see that & converges to the k' 'k identity

matrix, If lim EG(Tn) =© for ¥=8,, 68, ..., 8, then
pe>eo _
lim By = (a*(@o)) = g '
n""}OC 5
O if @7‘ e'/(_l_lyoctge.]_r .
and so
e

log Vy (1) 2 = log a*(8,),

I o

Hence it fellows that asymptotically‘ B ~B and € =~ R bounds

are the sume, The best asymp;otically lower bound of this type
may be obtained as follows, o |

Let a(@o) be as defined in'PfOposition 1,4,1, TUote that

a(@o) >1 since a(e+6,8) > 1 for.all &. Then -~log a(e.) §

is an asymptetic lower boﬁnd for | -

% log'VgO(Tn).

o1
T

]

The following result shows that 1if an asymptotically un-
s8timete attains  Cramer-Reo bound (1,4,2) asymptotically at

then its variance tends to infinity under 91. Thusythere does

&

B s e e o
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not exist an estimate attaining Cramer-Rao lower bound csmbo-

pr

tically at all @o. This solves a problem ralsed by Hammersley

(19507,
Theorem 1,.4.1  Suppose T is an estimate such that
lim B (T y=¢© for &=6 8 , Let a(e 9 &) <co,
nsoc o 1 o 1 c*1° 1
: L . = , o

If n%iﬁm = log R(T_ , ®) log a(8, 8 .8 )sthen

1im R(T_ . 8. )= o« |,

S 45

Without 1oss of generality, we can assume 91 >-eb .

We construct a test of H, (8= 8 ) versus H,(@= 91) using

Proof ¢

Tn as follows,

% o 60 > k accept Hl
< k accept Hj
where U <k <& -~ @b . Let « , B, Dbe the errors of first
and second kind of this test, Let «!' be the error of the Tirst

n
kind of the most powerful test of H, versus H, which has

NN

Lo

of the second kind equal to &, Note that

2 2 | .
s - PR
! « ¢ < B A (T eb) / k 4 (“,_,_}
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S50 by our assumption on T,

n-—><s

Now we will show that 1im B8 =1 ,
n--;-oc n

Suppose if possible,

1im B, <1 .

n—> 0o I
Then by Stein's lema - see Rao (19629 lamma 4,2) — we can choose

& subsequence n; such that .
lim == log o« = -1 = ' (1,4,8

where
I= Eei { Log( £(xy,8)/T(X 8,00},

But I < log al(e, ,® 8, } and so (1,4,5) contradicts (1,4,4).

oY 1°
Therefore
lim B
—>00
and hence x '
1im B = 1 (1,44
n =—> oo Q i

We now show that (1,4,6) implies 1im Egy (T, - 9])2 =00,

n ~> oo 1
Let
A= E_el(Tn| T, —‘eo < k)
and ‘ "
Ay = Eel(TnITn =g = 1)
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Pydqg t (1 - {in) &, = EJ&I(TH) = @1 i b{n)

vhere b{n) is the bias, Note that

X S ®  t+ k. oand b(n) -» G, Hence

I:
Lim (g -8 -bm)%>0, (1.4.7)
NOW',
E, (T -6)% > E. (T. -8 -bmn)2
81 n 1 - 8'1 n 1
z by D -8 = p@IF 4 (1-8,) Dhm 6 - b)E

by Jensents inequality,

=, D -8 =pmIZa -8

which tends to infinity by €1,4,6) and (1,4,7). This completes

. the proof.

Both the Theorems 1,3,1 and 1,3,2 arc still appllicable, DBIut

the proof of Theorem 1,3,2 needs some change since the form of the

El

I.Ba'yes estimate B, in the present set=-up wiil be guite difforent

from that in Scetion l.3.However, onec can still show that

lim i log R(Bng T) = log p("S-O) and so the proof goes through,
n o= GO
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We omit detailss Instead we give an alternative proof to Theore!
1l.3.2 using Theoreﬁ le4s1y in the present seﬁ—up, assuming that

lim E. (T ) = @1+ We think thet this conditicn can be relaxed.
n-—)ooen .

Proof . Consider a particular value of ©y say 8, - Let ©4

be as defined in Theorem le3s1 1ecs 0(91,90) = 9(90). Suppose

1 2 | .
1im = log B. (T_- 6.)¢ < log p(8,58,) = log o(8 ) (Lo %ed
n@m:n eorq o° 1”70 0

Then arguing as in Theorem 1:4e1 wWe can show

1im ;111og E

n—> 0o

1

, 2 "
(T = 8)° 2 lim ¢ log B,

91 n-—>00
where P is the error of second kind of the most powerful test

B 8(91590) > 0 accept =, (O

< 0 accept Hj (8 =6 e

S

it

1)

o

Then . ) >
l .

1im = log B_ = log p(g y0.) = log Q(Q y8 ) = log p(@- )

" n n o Tl 1’7o 0

(1o

by Proposition 1e2¢1(D) e
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', . sup 1lim % log Ee(Tn - 9)2

k- 6 n->oo

> max { lim ,%;1og N (Té - 90)2,

1 — o0 ) 0
; . 2
E - 1lim 1 log E. (T_ - ©.)
] n—>o0 - 1% R 1}

;b : : _- A G . . ‘1‘: .
_?_ log p_(go) 'LlSiTlg (1;408) and (104“9)

] 1 X 2

« . sup 1lim = log E.(T_ - 6)7 > Sup log p(8)
' Q‘ n"'>00'n . © n : Lty B °
m " ‘ /\ V
= sup 1im % log Egy (6, - 6)?
e 0o 7 ¢

by Theorem le3s1. This completes the proof.

1.5 Two Examples

1. Normal with integral mean .

Let XI’XZ""’XH be independent random véi‘iables having

normal distribution with known variance ° and uwknown mean ©
i 0 =0y £ 1y * 29'...- e The melec of © 15 ’ﬁn = nearest integer
' to the sample mean 'in' By Theorem l.3e¢1,

- A ;‘f\ g .':!— ol .

1im 1 log E.(3> - 0)2 =5 e - e This was shown in a different
n &' n 2 A =

. n=» 0o 3 _Fern 8a° | -

way by Hammergley (1950)e By one of the remmrks following

E Qe s

3
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Theorem 1-3« 29 ’@n is asymptotically admissible. Consider the

class of all translstion invariant estimates Trl satisfying
Tl(X. 4 1jeco x o+ i) = Tn(xl""’xn) + i
fo‘r 811 i - O‘) il? :t 2‘} ®e0 @

o} il g : L
Let Tn be the best estimate in this class with respect te

0 2 .
squared error loss. Then Tn is given by

; SE T
O:( 5 . k " b _l ey A
Ty ~+)(Xn ) + i if 1-5LK% <1+3
WSS : "wn(i+x)2/262 -n(i+x)?/2dg'
X} = - i "oa
(P == {2 1 e iz 3}
1 L 7
. @ i ‘ | gy L AN .
In particular Tn is better than the melse Qn so that Gn is

neither minimax nor admissible. Khan {19732) has shown this iu
a somewhat different way. Of course Ti is minimax and probanlj

admissible» It can be shown that

. 1 e} 2 i " 2
1im = log E(T> -0)° = 1lim % log By (&, - 8)" .
ne» oo O G‘n n%m)n e ''n £ .

One would not recommend Tﬁ if one wants integer valued
estimates. In the class of integer valued translation invarian

‘ P . : j
estimatess @q is the best and hence m;nimax as stated by Stel

in the discussion following Hammersley (1950). How it 1s known“E

/\ s . )A ) .
that @n is admissible among integer valued estimates. (See |

[T .

)
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Malay Ghosh end Glen Meeden (1978)and Khan {1978)).

meoren le3el 2nd le3s2 hold also for the zereo-one 1loss.
For this loss function “6ﬁ is the best among all translation
igvariant estimates 2nd hence minimaX. Xhan (1973 2) has proved

’a is admissibles

Also it is shown by K. Unni (1978) that minimum variance

unbilased estimate of © does not exist for any n.

2, Poisson with integral mean

4 X
Let £{xy8) = S G = 1423 »+. Here
X &
p(6',0) = inf exp 4-t(0'-8) - 6+ S(GE/G)t} (1.541)
£>0

= inf ((8%8,t) (say).
t>0 '

log [{6'-6)/6log (8'/9)]

This is attained for t©(6%,8) =
i ) log (8'/0)

By Proposition le2.3,
D(g) = max {p(g - Ly Q)y p(@+ 1, @)} .
Tt is shown below that

p{g'l'lyg) > p(@ -l:g)s 30 th?t p(@) = Q(G‘*‘].,G)-
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Let 0 <t <1l. Then from (1:5+1)
: =5 i o AT
log p(B+l; 8 t) = -t -+ &(1 + F)
. L skl o oot Todl
lf‘g pkg"lg £y t) =+ t -8 + 9(1 - @)
i ’ BT i Iyt I\t
o e l0OE o) ‘\Q"F-ljggt) - log Q‘*Q'Tl,’g’_t) = m2t+9[(1+5) - (1—' ""g") ]
But ' ’ : (_1050:
& r(1 4 Iyt 1yt ik
o5 [(1 + @/ - (1 = g) ] _ad
s L gt gt (t-1) (t-2) + see-1->71 since 0 < t < L. !
2t Lo 3 1 o3 , _ |
. : T :
Wow (1.5.2) gives us :
= ey , @ Tl%
0@+ 1, 0) > (-1 80 . A
Thus | e :
D(@) = p(9+1: e) .
Jhi! , ) J
, J;-»“; ¢ .,1 to %
= 8Xp {Trpou e + 9(11¢?—} } , E
5 B 5 ..
o 1 tqy i
£ exp{-tl/lOg(l+7§) + Qje = 1)}- (154

[ ol 4 .}1 - 3 . | ": 3 . 1 |
where t, = -logjo log(l+ 3)}/ log§}+-%j?and ty = tg log(l+ 3

Theozem 1:3-1 applies. Theorem l.3.2, thbugﬁ true ié not usefu]

since sup (9] i'in However one can preove a weaker minimax

B

= i—
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property that

ali 4 2 I
sup f lim = log E (7 - 8)% |log p(8) /
{n__>m n et n | p (&)} :

i—.—!

By Eupy Ll 1 el Eg(g - )%/ |1z o (&)} | (1.504)
8 ‘n-»o0 .

It is easy to check that t = -% as O -> oo

.« » log Q(G):10g9(9+ 1):-1: —~@+Q-(1+—)

which tends to zero as © —»co . Hence sup o (8) = 1s
e

Moreover {1og c(8)/1og p(%l)}tends to la Now argulng as in the

proof of Theoremn 1.3¢2, for any. estlmate TV1

Sl

max - 4 lim

log E@‘(Tn - e") }_2 log (@)
8!'=6,6+1 'n—=>co0 L |

e

1im % log Eg!(Tn - e1)?
. B s I ) o
9 —Q,Q—f-l . 110g p(g‘)‘
log p{8)
2 min

U7 1og p (84D

Put the reh.s. of above ilnequality tends to -1 85 6 ~>oc0.
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Hence )
Qﬂﬁ&)ﬁ log EQ(Tn - 6) £
sup -1 .
ol |log ¢ (8)]

This proves ‘the desired result (1l.5.4).

Using the technique explained in Section 1.3y ong can
construct 2 MmewWe.l.e Tn which is asymptotically better than

'@n as followse

let ,
1 if g =1 : g | Eh
= I

L A if ‘e >1

where 0 < A< 1 4is to be chosen later. Consider an estimsle

T, which maximises the weighted likelihood m, £(x ©).

For ©!' #£ @8, let

Lt
Y(8',8) = inf Eg = =

£20 Lf(x;e) w;/n
and v
y(8) = sup Y (6',8).

Qtzo

Then it can be shown as in the proof of Theorem les3e1 that

lim < log R(T_» ) = log ¥ (8). R

n->00 , F L
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Since  1im o log Y (156)'< 0 and 1im log p(8) = 0,
G —=>00 8 —> o0

Ol

thers exists ©; such that Y (1,8) < p(e) for all & > O4.
A1so since p(1:0) < p(6+ 1y 6) = p(6) for all © > 1 and
Y (1;0) tends to p(1,8) as A —> 1 it follows that by

choosing X sufficiently close to 1, we can ensure

Y (150) < p(8) for all 2 < © £ 6,. Thus for a pro'per choice

1
of As Y (1,8) < p(8) for all -6 > 1.

But Y (©1'48) = D(Q’,Q) for ‘G > 1y 6' > 1. Hence it
follows that Y (8) = p (&) if 6 > 1. On the other hard by
Proposition 1.2.3, Y(1) = Y (251)s Also Y (2,1) < p(251):

since A< 1. But p(21) = 5(1)s Hence Y (1) < o(1)s
Thus we have seen that one can construct a MoWslee which is

asymptotically better than @n . But it may be of Interest to
consider a natural competitor Tcr)l = nearest integer to '}"(.n and

show that it is asymptotically better than Qn'.
Let 6! > 6. Then using Chernoff‘s (1952) theoremsy

1

ij_l;oo 5 log P.{T?l > ey :n'l_iilo % log p{ '}'(n SpeM s _35}
_ H(x-0t4D) :
e el
= log inf LT)(t) = log po(gl,g) ( sa3)
§29 (1e5c5)


http://www.cvisiontech.com

~36~

where log(_r)(i:) e(e .—1) ~ (BT ~-) It is easily seen that = . |

log p0(81,0) = & J(8'= 2)/9_15. 5 (o~ %} log §(O1- 2)/9} (1.5_.;\,

Similarly for 6F <6 we get -
1im = log P{T%_g oty = e(e'+-)/9-11). - (67+%) 1og1|'(9’+4—)/95,

n—> 6o
(1~5 7F

= log p*(8136) (say).

Furthers for &' > B, 3 : ' 3= o4 f
B

NG 3 e : 2, ‘ n . X

P{T) = e'} SP{T 20 < fol(eh0)y . - ]

3 o _0 - e =i o - 3 - . F

YT, = @‘ = P{T 2 ety RIS Lyl | M 28

o o , 70‘ : . , 4 %
« o« = log P{Tn = @‘k tends to log p (@'a@)aSlnce E
pO(Q',G) }_Q?(Q'flg@)._hlso note that llm é, 1og p (G's@) < O,g

o' < e.ﬂ”Using these_facts.an@ ,é

Similar StatementsThold:forp
i

proceeding as in the proof of Theorem lo3s1 We get

-n

lim l log E (T -9) #max{
N> 00

sup 1og 0 (@‘,9), sup 1og p*(@',QJ
6'>6 ! _
bt . ? :

=max{10g 00 (8+1,8), 1og 5*(9;1,9)} (1.5&

.(usinngrOposition 1.243)
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From (1le5.6) and {1-.5.7) we have

log o0 + 1, 8) =% - (8 + ) log (1+ 35

2, 1 1 1
log p¥& -1, 8) = -5 - (6 - %) Iog (1 -%g

Expanding log pn(@ + 1,8) and log p*(e - 1 é) adﬂ“s{ﬁblifjing

we get : : : ’ ' o g B ¥

log p (@'i-ls@)— log ¢ (9 158) = 2

(1/20)" [T'l/zn - 1/271—1—1’1,] > 0.
=

1

Hences

max .{ log ¢ (Q-l-l, 9)1 10g ) (9-—13 9)}

= log ¢ (6+1, 6) | {1-549)

combining (1:5.8) and({.5.9) we have

lin + log Eg(T, - 0)% = log p”(6+ls ©)
Tl 0O i
= inf( Y2 () (using (le5.5))
t50 T

where QT)O(t) @(e -1) —t(Q + 2

But from (1.5.1) we get

log p (&) - log o (9+1, G) = log p (9) - éfg Oty

2 =ty {1o*g'(14:11/@)'}“ + e«ge -1) (1) (t
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( t is as defined in (ln5u3))

1

=t {(8+ 1/2) log(1+ 1/6) - i} J Top i@ + Wehae o - Helasws

Let f{x) = 105 (1 +1[xi; 1/ (x+ 1/2).' Tﬁen

Crrx) = -1/ xGel) (2w <0 ¥ x>0,

Also
K> OO

So f{x) >0 'fof'sll x >» 0. Hence

(x+2) log 1+ -1= (x+ Hrx >0¥x>0 (1e5e1l

From (1e5.10) and (1.5.11) it follows that T, is asymptotically
better than 'ah“under all @« Some'explanation of this pheno-

menon is provided below.
Note that TZ maximises the weighted 1likelihood

s fQE, 8)s where vg‘s are defined recursively as foilows.

7

o gy W] i
; logm =1- (6 +3) leg (1+3) &2 1.
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By (le5¢31) T is a decreasing function of ©. So it is to
be expected that under ©, Tg takes the value © + 1 with
A i M i . ° 1 k .- A
smaller probability than G‘-n + Since the biggest contributilon
to the variance of T, and Gn come “fron Po { Tn = el }
A
and Py & =8+ 1y respectively, we have hers a simple

explanation of the better performance of Tg.


http://www.cvisiontech.com

CHAPTER =2
ESTIMATION TW SEPARATED FAMILIES - TWO PARAMETTER CPSE

2.1 Introductinn

In most practical cases one has several discrete and contin
neus parameters. For exanple, if our model invleves & truncated
discrete distribution with zn unknown point of truncation 91,
then Ql is a discrete parameter =nd the other parameters would
be diserate or continuouss; depending on the problem. The problem
of bianomial distribution with N = unknown number of trials and
p = probability of successs has been discussed by Feldman and
Fox (1968) when ¥ ->~ 1in 2 certsin way and p 1is knowne As

third example suppose we have te discriminate between normal

medels N{Sy1) where

(H) = { 6! |6 -1i] <& for some integer 1 = OstlsiZ2recs’

O<8_<'%o

Then we can think of 91 = nesrest integer to © as a discrete
parameter and © - Ql as continuous parameter. It is shown
in this chapter that a result similar to Theorem le3.1 holds

in these cases 31s0.

To get the asymptotic variance of the melee of the discrete
parameter, we need s result on large deviations which 1is given
in proposition 92.% L A similar but net quite the same result can
be found in Sethursaman (1964, 1270). Thecrem 2.3.1 gives an

expression for the asymptotic variance of the mslse of the discre

40~
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parameter. Two examples are discussed. - The first example 1s
that considered by Cox (1962), deciding between the two distri-
butions Poilsson or gecretric. Our asymptotic theory is different

from that of Coxs The second example 1s B{Nyp)sboth N and p unknow:

2.2 A Proposition

proposition 2e2el Lot XeXyr Xyrees be a sequence of 1.i.d

random variables with common density f(x, n) with respect to
some G-finite 'neasure Koo Tet g{xsy M be a f‘unctlon defined on
R XR where R is the real line (=00 300 o Let the following

conditions hold.
(1) g(xm) is =z -continuous function of x and 7.
(11) =, {g(x;,n)} <‘q and’ Pn{g(X.,n) >0} >0 for all 7.
(111) GCiven any bounded iluterval [asb]sy - <- a<b <o,
let

SuF g{xyn) = h(xyasb) = i’l(X)?
n e aeb

suppressing the dependence of h on a and b and

th(X )
En{e }(oo for all t-?'o“

(Iv) Let

.i‘

Sup 2(xyM) = Th(xsasb) = h(x) (say) and
7 £l ayb]
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1im inf B =) =0
a-& (as] { }
b—» +oo
Then

1im llog P{ sup 2 g(X 977)> 0]
n>co 7ER s=1 -

= log [ sup inf En, {etg(Xz n)}_'}.-
MeR 05t<oo |
il
We need the following Lemmas to prove the -proposition.
Lemma 2. 2e 2 Lat the agsuinptions (1) and (iii) of the prop~si-
tion holds Let oo <a<b <<oco and 0 ¢ 12 <‘00-,‘n For any
given & > 0s there exists a finite open cover {01702,...,om} of

[a,b] such that if n ¢ Oj‘ and 0 £ t < tys then

)

- Eple ) 28

uj(X) = sup g(xs7M).
Wsoj

Proof. Given any & > 0y we can choose a compaet set X and

a finlte open cover '{01’02""’0111} of [ayb] such that

tug(x)  tg(xm)
-8 [ < 8/2

for all xaK,ﬁer, 0_<_t_§t1 and
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I, 2 "R £y du(x) < 6/2  wmere KO ic the
X :
the complement of ¥ . Hence

: .-uj(‘i{) tg(X, )

E, |e - e

tuj (x)” tg("f:'-- s ")

= J |e - e I £(xsm) de (x)
tu, (x)  tg(xen). : ?
+d e 3 e | £{xym) du (x)
£ 6 1if me 0, and O<t<t1. 5
p tu, () £g(Xym)
o e IEU(Q k ) -E»,i (e" )[.56

if 7ne Oj and 0.< t g t; e

=i

Lenma 2e2e3  Let the assumptions, (1), (ii) and (111) of the.

te(Xsm) '

for a1l 7.

Proof ! By condition (111), §(tyn) is finite for all t 3 0 .

i

Hence @(ty7n). has a well defined right derivative at t =
By (i1)

proposition holds Lét §(tym) = Epge } » Then there
exists 0 < tl < oo such that
inff §(tsm) ¢ £ 2 0 P = oing{ 0t 20 <t < 1283

iz |
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(;“(O, 77) < 0 . \_20291)

Also (11) ensures that

1im 00t 2 14 (24242

t > 00 h
Note that
i PO T (2e243)

By (2.2.1) znd (2:2.3, there exists 0 < t <oo such thas
¢{tym) < 1. This a7 ‘2.2 2) implies Q{t,n) attains its
minimam at 2 f7ai%e 4(M) (which is unique by convexity of

®)s  Cleariy by (2:241)s t{(7) > 0.

-

Weo smg” . soe below that t{(7) 1is a continuous funecticn
of Mae Lebt us f£2x some N & (ayb)s It follows using Domineted
convergence-th-cram that, under the assumptions (1), (il) anc
(111)y the functions {<tyn) and d/dt O{t,N) are jointly
ceatinucus iIn L 221 7M. &> that, for any given compact subsel
S of (asb) with M, 2as an interior pointy there exists a
constant ¢ > G such that 474t ¢(tyn, > 0 for M e S and
t>c s uenee (N, g ¢ for ail 7 euéo Nowsy since the
function 0(t,n) is uniformly continucus on [Osc] X 85 we have

that  inf ${tyn) is continuous in 7 e S. But t(n) 1is
t e [’:},C]

a unique point that minimizes @(t,n) over t e [Oyc] for all

T e S% herce +£{(N) is continuous at 7 = Mo This argument
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can be modified easily to establish right continuity and left
continuity of t(7) at a and b respectively. Thus t(m)

is a continuous function of 7. Hence the.range of

t{n) s+ Mm e [asb] is bounded. Thé Lemma 20243 follows immediately
from this. | |

Remark 2.;.4 We need {(1i) and (i11) only to conclude (2.2.1)
and (2.2.2). Hence we may replace (0y o) by another interval
(0;d] and in place of (1i) and (111) assume (2¢2.1) and (2.2.2)
with 'd' replacing 'oo' in (Z2¢2.2).

Proof of the Proposition 2.2s1 Fix ~oc0 < a <b <oo and let
tl be as in Lomma 2¢23. Using Lemma 2« 22 for any given

& > Oy we con choose a finite open eovew 'Pl’°2"“’°m} of
[ay b] sueh that 1f 7 e O;j and 0 < t < 4y

t uj (X2 t g(Xsm) '
- E, (e ) < 8 (Se2e4)

|Ey e

wherea uj_(x) is as defined in Lemma 2¢2+42. Let

0 = R - [ayb] = the complement of [asb].

m-1

Define P
uml(x) = Sup g{xsN) = hix).

Tleoml
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NoOwWy
P{SUp Z‘g(x,n)>0}
neR s=1

n '
< P max z uj(xs) > 0%
1<jmkl s=1 ‘

m-1
< 2 P{E uj(xs):»o].

+

7

m+1 t uy (x) n ' :
' & [inf E,(e )] (using Chernoff's inequality)-
CJ=1 120 - |
!
L] . i ' t g(X ,T?) n
< 2 [inf En(e Y + 617 4 [mf En(e )] using
J=1 20

*

The Ssecond term can be made arbitraily small because of

assumption (iv)e Therefore

n
PJ§ sup I g(xsm) > 0%
7eR s=1
t g(X ym) n
£ (1) [ sup inf En(e S ) + 5]
Ner 20 _

e« TIm £ 10g Py sup 5 g(Xgam) > 0%
n-—> 0o NeR s=1

’ t g(XS,??)‘
£ log [ sup inf By, (e ) + &8}
Ner O0<t<eo

(2¢ 25


http://www.cvisiontech.com

-47 =

On the other hand,

= n &5 n \
P ,sup £ g(X 47 > 0%> Bf T g(X_»7) >0
Tner -s=1 s’ ¥2 is=1 s }

. n
.. 1im + log PJ sup T g(X_sM >0
n { n;{f? s=1 s }

: . \ . n
1im  + log pf
2 niﬁm = log P{s_‘:‘l g(X_sm) > 0}

. t g(Xsin)
= log [ inf En(e )]
- £30

using Chernoff's theorem. Hence

i .
lin 2 l0gpfsup I glXH M >0}

n neR s=1
i .~—_ i : tg(x n) = ’ T
> log [ sup inf E(e 5 )] (2.2 6)
neR £20 L
tg(xsm')

i

log [ sup-inf  E,(e )] (using Lemma 2+ 2:.3)e

NeR 0<t<xo

ts & .15 arbitrary) from (2a2+5) and (2.246) the proof of the
Proposition 2,241 1is completes

. .3, 2¢3 [Ine Main Result
Supprse X,'X“]‘_,Kzsu.,xﬁ"'are i.1,d random variables with

common- density f(x3637). where 7 e R and © = O +1y £ 296609

with respect to scme o-finite measure u4. Let Go and B
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be fixed values of 0 and 7 reépeétivélys ‘A}sq, letffh§’

6 #£ 6 ‘
0

G2 (0 0y M) = log £{x 0 n,) = log £(xs B»M)

and )( ) n )
Xy ? .
(6,0 yn = sUp i 1 38 e i- T LR T
i o £ MneR QO<t<m go" no -{ } | = ’:,
Define . : :
p B 9T ) = U 58y 6 57 ). .
°C ol Ik 2

Suppose w{Gy C_» 7.) is the loss in estimating the true value

o, T,
W(er 0s7y) =0 if @=0, and >0 if 0 # 6,

e :
Let @n denote the mdlse of the discrete parameter © based on

the sample valvas x- 2-».o,x ) and B(Gﬁ’“go’"nq) ﬁﬁe the 

risk unde> Qoo

Ay

) B *= = .1, - T e &G ; - ) i B u, s A F
Thecrem 2.3.1 gives the asymptotic risk of the melee O .
Y oo i B
Theorem 2-3al Supnose the follow1ng condltions hold.

(i) For each - ©& # O ’(ﬁ) (thyﬂ vl satlsfies ‘the condltions
of Pr0position 202&1 Wwith h(@,ﬁﬁ in place of h(x). Mso let '

h*(@,x) = suw (T)(X,G,n ) and assume that E {et h* (g,x)} < 00 .,
_ ‘MeR " . /; 1
for a1l *+ > O. &
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ikl z ¢*18,6 ) <o
EHAG ’
0

and

IRTRIE ’ R r
(1ii; 2 wiBsr8 17M.) p¥(6,6,) <~

9#@0
whereae ) ; th*f@aKl)
0 {390 = inf E e L
@ £>0 AN
Then
. 1 f/\ )
nggo 7 B8 18,7} = leg o (8 y ).

n
Proofe ILet B. =, 8¢ sup T ()(X.,8yM ) > 0L sn that
& { ner s=1 1 ° o s

n
(& < * * n
P{By) X P{Sgl h*(6,X) > 0% < ,[ 0 (9,90)}
by Chernoff's (1952} inequality. This leads to

T FBL) £ T Jo*ee )1 <o (by (ii).
o6 ° T oo 1 o'}
o 0
S0y by the Borel-Cantelli lemma, the probability that only finitely
many B@'s occur is one. This implies Jan is well defined with

probability oney The condition ¥ p*(Q:Qb) <ro 1implies that
e#£8
o

gﬁg p(©:8,57,) <oo. Hence the supremum p(6,17,) of 0 (858,97 )s

)
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& # 8, 1s attained at a finite number of poinisy say

Q = 91,92,...’91{ [

Let & b> any presssigned positive numbers Then by Proposition
2¢ %1y for any 8, . there exlsts n, = no(gk+1) such that
if ndn,

P < (p(8yom)) + 81Ty for 8 g & 19
we choose ‘h*l such that

p¥(818)) < o(97,)  Af 8] 2 Oy v
Then

s ‘
R{ Gn,%mo) = gﬁg w(s,t;o,no) p{en
8]

i

°}

£ 2 W(ngoﬂ’?o) P(Bg)
o]
< o6y ) + 817 % wi®yB,_17,)
W9 ST PRI A A

+ X {Q-Sg,go,no)+5]n w('g'sgoy'fl‘o) +
0501185120218y
and

l@[ ( gk+_1 . (

o = (838,51 ) { p*(oseo)}“ (2e 34
ln?>9k+l '
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* . 1
{1so OEG w(©s8,)m.){ o (G,QO)/p(GOsﬂO)} < o0 Dbecause of
o
assumption (iil)s Thus #2 w(@,@o,no)(p*(ﬁ,eo)/ p(@c’no))n
A gg .
)

is convergent uniformly in n and hence we get

lim — Z w(8y8 1M ) fo*(858.)/p (8,1 )Y = 0 9% 30 2
n>co [8[>8 1807707 10781862 /5 (8o Mo )y (20 % 2)

Sos from (23,1} an? [2.3.2) it follows that

lim

=

FaS
log R(@n,goyno) ._gllo,g [9(90,7?0) + 5] (253.3)

To get the other inecialityy let

n
c=Jo s sup = ()X +0,m ) >0 for some ©,36, 500096, % »
1 neR =1 T ¢ @ 1’%2 k¥

D= ft“\ .~ BZ (8BS = the complement of Bn),
G o =}
9#91,92'70 [ ) ’gk

W = min {W(Qlagoaﬂo}s W(GE,GOs”O), evey W(kagofno)}
Then it fnliows that

Ead
R(8» © 5 ) 2w p(C[\D)

2w [P - T PBY 1
G#erﬁgyppcggkh
Bob cofd be 28 hefara. By oRrepositien S0%dsthers axiote
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= that T
n n1(9k+1) such tha or n’>n

% il

~ \ ! n . Tl
R(gn,oo,no; > W{[p(@ogﬂo) - 6% % CICR ,no) + 8]
@#91)9 9.0.391{
and
lej< ©

[ " (ere )™

kvl

which yieldsy as in the proof of (26343} 5

- .
1in £ log R( 16,,7,) < log [p(817,) = o] (2.3.4

—— ,‘

Since 6 is srbitrary, the proof of the theorem is complate in

View of (2.3e3) and (2:3.\4_).

el Examples

le Consider =n example given by CoxX (1962) Let Xl,Xg,...,Xn
be 1.i.d random variables. Let Ha be the hypothe31s that

the distrmoution of X is Poisson with probability function
s,

e_d «x / XJ gy O,l’oto, « > 0 and Hg be the hypoth881s

that the distribution of Xi is geometric with probability

l+x’ = Oslseeesr B > Os Now we reformulate

function Bq7(1+a)
the problem as follows. Suppose the discrete parameter space

has only two points say 1 and 2.
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ool

He P 6 =1 .implies X; 1s Poisson
}Ig » & =g implies X, 1is geometric.

~ ' : -
Let Qn denote the melee of the parameter © based on the SamHyin

values Xl’Xz""’er We willl get the asymptotic risk of the m.l.=
A ' _ ‘
’\n vhen thre true value of the psrameter is 8 = 1 or 2. To

do this, we introduce the fellowing notation so that we can apply

Theorem 2 a1+ Dencting
™% of

F(X 1) = —

—— ond £(020) = B¥/ (1ep) IH¥
L

define 11) {2,120 2nd (D (x,29p) for = fixed value of o
I v

and BO as follows-.

(-f) (Xxs15e) = log f/x5248) - log f(x,l,occ)
and

{;.l_XXDQaB)

Then
\(X!].,O()
¢(t’°() = Eﬁoie% }

Rl

leog f(X,l,O() - log f(X,gyﬁo)-

b
Sl eﬂdﬁX/XI \( B, X 1 :
= e 1*'30) T+5, <o ¥ 0t <1,
1+BO 1+BO /-
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Also x 1t

B
(td)SZ[k L oo ¥ Q0 <t <1l
poed < 2L 1]

Therefores using Dominated convergence thecrem it follows that

@(t)"‘i > 0 85 & -3 00 (204‘1;

for all 0 <t < 1. Similarly one c¢an show that

Y {x52y8)
P(ts8) = E {e ; } <eo for all 0<%t g1

aund —» 0 as B -»o0 for 0 <t < 1. {2e4et
For any given bounded interval [a3b]y -c0 < a < b €00y let

Voo o up h (X:1f°03 El(x) =  Sup (Xfl’«)’
o ef ayb] «tf asb]

hz(X) =  Sup Q+)(X52,ﬁ) 'EQ(X) =  sup ](T)(X:Z:B),
D

Be[a,b] Bi[a!
h¥(x} = sup Th1yed) and hX(x) = sup ) (x92yB)e
1 (e {0 yo0) &% & 58(0900$+)
Then
£ nET eo e ® F/xt N\ 8
1- Q X =) ’
Efe R -TH ( ) < 0o )
e 1+8 1+8, .

( O}X 1
l+BO 1+B,
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arid -

& o il t 0
Srs e [T Io\b oo
Ele 2 = 5 I+ Jex [} &) A

x=0 o X, 3 *
e o /x}

¢ <t <1
<5 -l X, t
E(et hl(X)) . ; e o.(/x, (lig )X l}:ﬂ
X=0 ( ﬁn: X 1 o 0
1+BO “+Bo‘
-X _X t; .
o0 e x*/x! AN x '
B o 2 g ] (-—-ﬁL) _..,_l "

(=) %
\1+BO l+{30

(23:‘1-1‘

ds o -> ooy the first term goes to zero because of (2.4.;)'and

the second t=rm goes to zero because of (2e%43),

Hence -
']_hjafg inf E(e = 0
a—>0 t>0
b —>o0 .

Similarly one can show that this condition is trus for Ez(x)a

blso observe that

P (0y &) <0y ¢'(0,8) <O
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and

lim §(ty, =« > 1 .
t>1

lim §(t, B) 21
te>l

Hence conditions (2. 21) snd (2+¢2.3) of lLemma 2493 are satisfief
replacing the interval [0, oo) by another interval [0,1). BSo by f
Remark 2¢2+4 the conditions of Theorem 2.3.1 holde Let

() (x:258) ?
p(lyet) = sup inf E { e (T) & 1

B 0<t<l i
and
t{xy 1y e)
e(28,) = sap inf E fe (T)' ¥
« O<tel
Then
1 3 : N
nE;TO < log R( a1 db) = log p(ly )
l s
n:-L-:Ifo = log R(6,» 25 By) = log o(2y B))
where A )
Ry 1y =) = P YT =2/1=1Ls«}
A I
R(Qnagaﬁo) '-'-‘P{Tn-“-l/l:zsﬂ:ﬁo}o

2e Consider B{(W,p) when both W and p are unknown.

Unfortunately (T)(x¢3,pn) does not satisfy the condition (i)
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of Proprnsitirm 2.2.1.50 Theorem 2,3.1 does not apply. However
ons can check that one does not need this condition to show
that

il 2 .
niﬁém;)o sup £ BL(T,~1)%/1s p,] 2 log o{is p,)-
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CH APTER 3
ESTIMATION IV SEPARATEL FAMILIES -~ N HOMOGENMEOUS CAGE

3,1 Introduction

In Chapter 1 we have assumed that the family of densities
{T(x98) M - IS Cﬁ)} 18 homogeneouss In this chapter we conside:
the case When they are not homogenousse One such example is
B(Ny p)» p known. In what follows we give a theorem similar to
that of Thesrem ls3+1 in the nonhomogeneous ease and apply this
to B(W p)e Howsver, Theorem le3.2 does not seem to hold wiltheu
additiona) conditions. We show that the melee of N is inadmi-;
ssible and not minimax even when the parameter space has only tws
points say N = 132+ These results were taken from Ghosh and

Subramanysm {1971),

3,2 The Main Theoren

. The set up and the terminnlogy is as given in Sectinn
1133 execent that the family of densities {f(x,@) - (E)}
is non-homogeneous. Theorem 3.2 gives an expression for the
asymptotic risk of the mslees ’5n of ©s In deriving the upper
bound for the asymptotic risk of the mel.e; we need Chernoff's
(1952) theorem whereas to get the lower bound we need Chernoff's

theorem for an extended random variable s

Here we state a thenrem due to Herman Cheruoff (1952) in a
sdightly modified form and briefly indicate 1its extension to

include the case of extended real random variables.

N = e
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Theorem (3)s Let X;3X;9+.+ be independent and identically

distributed random variables such that E(Xl) < co and
8y = Xqg + Kyt vee + Xna Let fa! be a constant such that
3 > Ele). Let

L Sp . t X, -a) |
P, = pi = > a} and Q%) = E[e 1 Then 9{t) 1is defined

for all t even though it is allowed to take the value infinity

0<§ <o and 0(0) = 1.

Let ¢fla) = inf JO(t) o > 0%, so that o 1ies between 0 27
1, Then AL

.,
(1) P, X ¢{a)

(1) £ logp_ > logple) as n ->co if PlX > a] >0 .

S

We observe that if Pﬁ = P[j? > an] and an - a as m -»co %the

% log PA -» log p(a); provided the hypotheses of Cheraoff's

theorem are v,a-lic;i;

If X is an extended random varisble such that

il
P(Xl =eo0) = 0 but P(X.1 = ~00)} > 0y then also Theorem 'C) hclds.

However one then defines expl{-te o0) = 0 for all t > 0. To


http://www.cvisiontech.com

see this we write
P(S, 2 ne) = P(3, > na|§, > ~00) P [ (X > w00)]”

and apply Chernoff'!s theorem to the first quantity in the produc.
p

Thls extensilen of Chernoff'ls theoren also sppears in
Banadur (1969). By

"

¥ -
To #pply this gﬁsult, we need assumptioghﬁﬁii) given below

& %
in the statement of Theorem 3.2 . Since the proof of this thenrd
runs along the same lines as that of Theorem le3elsy we omit many

details and briefly indicate the proofs

Theorem 3.2 Suppose the following conditions hold.

{1) & p(g"y 8) <oo
0!5#0

(11) 2 W(gl 19)- p_(@' sg) < 00 and
61%6

(i11)  p(6',8) = (8) implies Pg{Z(B':B) > 0 } > O
where Z(RT 8} = log f(x,8') - f(Xy6)e Then

: 1 e
lim % log R(8,) ©) = log p (8)
n—2>00

Proaf ! Let By, = {5(8') ©) >0}
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- N\ 7 ) oyl wE =1
Then Py f 6, = '} £ Pa(Bg) < o™(®; 9) “and so

¢

N i
R(G +8) < 3  w(8',8) p (et ©) R (3e2:1
n Y7 '

Because of assumption (1) the supremum‘mpfe)~b§_rp(9‘yé), ot £ o
is attained 2t a finite number of points &' = 91’92""’Gk s
since R 'k
S w(81,8) 5 (8'58)/p(0)1 < T w(0',0)5 (8146)/p(0)1
6'#£6 1 LI IR N 1 ;

o |

is convergent uniformiy in n (because of (ii)), we get

Lin | Sw(6',0) jp(0',0)/p(e)} =7 T w(8t,8) - T (308, 2)

N~ 0O Q'[?{Q gt:gl’gg”"’gk.

/

It folléWs-ffnm (anoi) andi(3,2.2) tha@

Tin < log R(8,)8) < log o (6) O (3.2.3)
n— 00 o : : " ¥ ' '

Let @1’92’?°"Gk he as above and

0

. = { S(G',@)->‘O: for some ©! = Qi;éé,...,gk}

St

B ("1 ‘ Bg, ,U(BQT\E the complement of 35f}i"? g

@'#@1$@250 LI ] )gk
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W= min g w(@l,@); 'w(gg,@),’..q‘,w(@k-,c;).z, s

Then . .
R\@n,@) 2 WPy {C M D}

N
£
-,
. DU
©
~
[
'
i

2 PglBg) b
G'¢gl’ 92,:.- [ ] ,gk

v

W[ )t - T p"(ets0) ]

using Theorem (C) (we need assumption (1i1) here) for any
preassigned ¢ > 0O ‘and-sufficienfly large n . As beforey we

get

liz < log R(e » 8) > log [o(8) - €] (3.2.48

Since e 1s arbitrary, (3.2.3) and (3.2.4) complete the proof.

3.3 An Example

Let us consider the example  B(W ﬁ}fwith unknown N
and p 1s known (0 < p < 1).

Let .. N
f{xy W) = {;\b h PX (1 vuIS)N—X 3 N = 14233y ses

X = O&l’l.no,N

If b{W) = -—l—-—- is the Cramer—Rao lower bound based 6n
a’ (N)-l

P
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B3 =

o}
. tha “*—2 e N o=
*1,N,qn’ chen it 1s easy to see that 2 a8 N =0
where i
f{x, N-1) ! -
0 = g = » oo X
WLhe T Ty BT ¥y
and
BW s Byl ) = 114 omyD
BN T Ay, wyn! B OM R DT e

Thue for large Ny the simple unbiased estimete
Tn = .. ~pvery nearly attains this bqund° ‘However Tn is no
=L (- ol
integer voouod. It would be interesting to study the behavicur

of the acoinstn T

. = nearest integer to T,

For any fixed W = Nb, it is easy to check that

1im f{xsyN, =0 for x = 0,1,«.3,Nbo 50 there exists a finite
V->00 :

Fa .
i1 2 V 5 [T Y = . 7
Nl depcicing on NO such that PN& i Nn > :1} 0 where Dn
is the m-lse ¢f N based on the sample Xl,xg,n.,4xn= For -

convenience we shall tske the smallest member of the set nf

N's _whers _the likelihood function attains its maximum. Now

T (g™

we can restrict our attention to W< Ny « Obviously

{ Z (N N&) > 0% 0 for W< N, . Choose the largest
I \ = - i
N2~N6 < Né < Ni) such that Pth Z(Né, Né) > O} > 0+ Then it

can be <hcwn that for all v such that N< N L
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5] w o
PN.0 1 Z(N,JO) > 0} > OA

(33 2%
Fors consider
. Ny—X
f(xs Hg) ( J2\)px(1 - p) :
= )‘ == ’ X.= 03198ysss ’NO »
Ky B N —xX g
( N )px (1 -p ° SR
We are glven that there oxists st least one value of X for
which the ratio given 1in (3.3.2) is greater than 1e Nnte th.v
Nzwﬁb
f(xy No) ) Ngk (1 -p) °
f(xy Nb) Nbl (szx) o0 (N6+}—x)l
which is an increasing function of x and for 0-5 x < N bar
the maximum value when X =

()
= No' Hence

F(N_ 4 N
e O 2 5 g5

f(NO, 7\}'0)

Now we show that

f(Nb, Nz—l)

> e
™
f(Nbg Lﬁﬂ

Note that
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1
—_—= 5 1 implies (1~p) > [
| | 1
£V 9 ) o
which in turr implies
all
f(w N --1) T]\I s “I—’ r—_! N \:—i NE“NO
Lo, 2 > 2 LOI r’ . 2 ]
! H 1
£(N s ) ‘ n, \}§”b j
. L)
i { Neo=N
b 2 0 \
‘( N, - N N \
- o 5 o
12 U,
e o /|
T No-H g
AR & £y Np-1)
= % N 2 and is an

increasing function of (1-p)s We can now complete the proof of

{3+.341) by induction.

Dafine D(NO) = max { p(Ng NC)} . T\I_;(. NQ}

Yow all the conditions of Theorem 3.2 are satisfied. Hence the

M\
asymptotic variance of the melee N = 1s pn(Nb).,

Since.
f ot p(xsN,-1)
— AT ot —_ J
EN -l‘fl Z(NO 1, L\O)} Z log Tz, 1) £{x, NO 1)
E: x=1 o
Nb—l
Jpetropii@Bation tisingfaiwsidindrad &

x=0 9]
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we have )
, . t Z(n -15N,)
s N =1+ vt E ‘a -
2 e 0gtgl o { '

Hence by Proposition 1¢2.3

max p(N,N) p(v -1y ‘\I).
<N,

Note that in general

p'{Nn-l-l, NO) ¥ max Q(N’N)
N > N

but equality holds only if 48 . 8

ENO .i Z(Nof-l, No_)_} >0 .
’“) e ¥ Gg - o E
Observe that the conditions of Theorem 1,3,2 do not hold.

Moreover p(N) - 1 as N >~ , For log p(N) > - log a(¥)

D .
where .a(N? = 1,+-ﬁa as defined earlier so that a(N)?«} 1

as N —> 00 . Moreover the conclusion of Theorem l¢3,2 does not
seem to hold without additional conditionss It.seems probable
that a weaker minimax property of the type considered iq"q;gmplei
2 of Section’ 1.5 holds. On.the other hand even for a
parametric space consistiﬁg of only tﬁo pointsr N =11,2, it is
not true that the correspowding mel.e - 6;(taking only two valued

1 and 2) is minimax if p 2,% ai'By taking resort to random_i_sedi
| \ | |

' -
U i
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estimatesy it is enough to show that p(251) < p(1y2)

To see thisy note that

o(152) = 17 ¢(t) (3.3.3,
£50 ,

where o
£{xy1)

1 I
Q(t) = XEO (m) * f(X,2) L}

.t

Since ¢'{0) = q8 log g = 2pg log(2q) > 0 for P2E

I\

(where g = 1 - p) the infimum in (3.3. 3) 1s attained at t = 0.*
On the other hand

(2,1) = inf 3 (f(x’g)>t (
2,1) = dnf ¥ £{xy1) (3.3.2)
i tx0 x=0 00D .
= inf tq)(t)
—co<t<l

where @(t) is as defined in {3.3.3). ..Since §'(0) > 0, the
Infimum in (3.34) for p(2,1) is attained at a t < 0. This |
means 9(2’1) < 0(1’2)0

A
In the present context we ¢an also show that the Melee Eq

is not adm1551ble. Fory, define an estimate T (h) as follows.

1y (x.)
2 ifr= T 7 X > h
. (' m 5 %
I (h) = } 1 ,
o 1 ir o 2 4 l(xS) &

s=1 2
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where h 1s a positive constant and

Then it 1s easy to see that

t
l f(x,2)
-th

0,.(291) = 1inf 4 Yy flxe1)

. £50- o TE&HD

1 f{x,1) ¢

>y = i th
ph(1;2) t:g e Z —IE?ET) P{xy2)

Let us consider when p = % Then we have

o e -th 841 17 o
Ohfzyl) ;;g e L) + 2] 0
e ot 20 3
b, (192) = dnf o' (24 2y = 0,78

120

A
But the corresponding values for the melse Nn are given by
p(gal) = 0.5 and p(1y2) = Qe 75 S0 ph(ggl) 4 p(231) and
a
ph(ljz) = p(1y2) which shows that N,. 1s not admissible.
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CHAPTER 4
'SECOND ORDER EFFICENCY OF MAXIMUM LIKELIHOOD ESTIMATES

4dal Introduction

How can one distinguish between (asymptotically) efficiant

estimates ? Fisrer (1925) prnposed the calculation of

El = 1lim {(nI - T

)
2 L.

where I 1is the (Fisher) information contained in s single
observation, IT is the (Fisher) information contained in an
estimate Tn ang n  1s the sample size and the 1imit is to

be taken in a suitable sense to be explained laters The quantity
Eé may be interpreted as.the_lhss of infqrmation in replacing

the sample by T . Smallér”the value of Eé,‘better'is the
estimate. Flsher stated without any proof that maximum likelihood
estimate minimises Eé ¢ ' (For’ some clar1f1Cﬂtlnn of Flsher’s
calculatlon of ES for special sstimates see Wendall (19%6) and
Nandi (1956})) .. Flsher’s assertion was proved'by Rao (1961) whe |
restricts attention go the so called Flsher - con515tent estlm’\tes°
The term "second;Z?figlency" was flrst 1ntr0duced by Rao (1961).
Yowever the result actuslly proved differs’ 1n two ways fromn whﬁt
?1sher stated.Flrstly Rao introduces .a more easily computed and

a more useful measdre Eg and. secondly he' restricts attentlhn

to Flsher con51stent eStlmateSwlth contlnuous second order
Ny
derivatlves. This result will be referredwto as the F;she:-Rao

!

G,
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[
theorem. We shall call Fisher consistent estimates with continuou
second order derivatives,; or rather, a slightly wider class, [
locally stable (II). The definitions of E, and local stability

(II, III and IV) are given in Section 4.2.

The Fisher-Rao theorem has ode unpleasant feature - its
decision theoretic implications are far from cleare In fact
this has been the main criticism against 1ts use to 3ust1fy the
use of maximum: llkellhood estlmateSt: Rao (1963) hasy therefore;
srught a direct comparision of the truncated mean sguares. Let
w(as; 8) = min {(a - 9) } be the squared error 1loss truncated
at d > 0. (Actually Rao's loss is slightly dlfferent Y see
the remark after Prop051tlpn 4.2o4qSuppose,Tn is an asymbfotj-“

e

cally efficient estimate with

oy TG

a'
ST TE o0y
n n

B { W(Ty®Y =
then Q+)may be ‘taken as anotﬁer measure of seécond order
-efflclency. - “Again. restricting to Flsher consistert eatlmates
(with third order continuous derivatives 1nstead of second order
and.épplying a bias‘correctionipp tﬁé'éétimafés considereds he .
shows Q+) is minimised by the‘(éorfécted)-maximumlikelihood
estimate. The effect of the bias éorfeétioh'ié to make the
estimates unbiased.up to terms of ;Q(%) 3 we shall eall this

Rao's theorem.
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Both these theorems pertain to the case of independent
random samples from a multinemial population with propdrtinns
depending on an unknown parameter ©. Data which appeérs to
contradict this sort of & result in a particular bio-assay problem,
has been presented by Berkson (1955). Berkson's data seems to
indicate that for moderate sample size his minimum logit-chisquare
estimate performs better than the maximum likelihood estimate
as regards mean square errore. In thls connection see also Berkson
and Hodges (i961). A sﬁmmary of the results of Berkson is
available in Ferguson(1967). Since the population which Berison
considers is not multinomialy, but belongs to the XKorpman-Darmois
exponential famlly it seemed to us worfth extending the results of
Rao (1961, 1963) to exponentisl families to see what is really

- happening in Berkson's problem.

The extension to exponéﬁtiai fami1ies is carried out in
Section 4e2-The:mafﬁuidea.iS siﬁple. it is shown that a1l locally
stable efficient estimates "Tﬁ ‘which are unbiased up to O(l/ﬁ)
have same covariaunce up to a(l/n) with Zn, Zg and ann
(which =2re defined in Section' 4.2 onrpp-85a88)- Moreover Qﬁ
even after bias correction is easily shown to be a linear function
of Z, Zg and ann up to " o(l/n). So up to of(l/n) we can
writewTn as a sum of two orthogonal components'the first of

which is the bias corrected maximum 1ikelihood estimste. Rao's
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theorem is an immediate consequence._ The.Fisher»Rao theorem
follows similarly. The expan51ons given 1n Theorem 4426 try
to make clear the relatien between the two types of results

* from the present polnt of viewe Mbreover it 1is shown thet it
Tn is an efflcient 1:s; (III) estlmete then one can find TR

another estimate h(aﬁ) = Gn i g(@n)/n such that =~ A

By {H(Tp2®)}-2 Ee {’”’“h(gn% 9)}-+-‘0(1/n2)' ¥ 67

i

It is p01nted out in Theorem 452.6 that the max1mum 11ke11hood

estimate is not unique in engoying this asymptotic optimum |

PTQPerFY°T-AnY estimate which differs from the maximum llkelihoq_
estimate up to o(l)n)ahas"ﬁhe same propertye Theorem 4+ 2.6 is
extended to thermultiperameter case in Theorem 4.2.11.,An asymph
tie Bhattacharya bound is developed and necessary and sufflcien;
conditions are given for the max1mum llkelihood estimate to atts
its T™e calculations in this- sectlon, though 51milar to Rao's
arey we believe, somewhat simpler and more illﬁmjoetiﬁf even wh

\

specizlized to the multinomlel cases Some remarks are given in

Section 4.3. e . Z
In Sectlon 4.4 these results are applled to Berkson’s J

problems It is shown that 1f a correctlon is made te the maxﬂﬁ
likelihood estimate SO thet its bias 1s same as that of RBerkson]

minimum logit-chi-square estimete up to terms 0{1/n)y then the

maximum likelihood estimate has a smaller variance up to the

i

terms of 0(1/02)- - l
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In the next section we approach the problem from a Bayesian
‘point of Fiew. It is p01nted out that Llndley's comments in the
~diseussion following Rac 61962) are not Justlfled, Using the
results ef Lindley (1961) a heuristic argumeut is given to show
that tHeSe'ﬁheoréms hoié"qﬁite geﬁefeiiy and no? merely in the
restricted set-up considered in Sectlon 4.2. Roughly speaking it
turns out that the second order optlmum propertles of the maximum
likelihood estimate are due to 1ts belng Bayes up to o(1/n) 5
this is a"surprising fact since tﬁe eXpansion.forrfhe posterior

upto o(1/x) is not a function of the maximum likelihoed estimate
onlys A rigorous proof along these 1inee is available in Ghoshy
Sinha and Wieand (1980)s (Similar results have been obtained by

Pfanzagl (1975} enﬁ Pfanzagl and Wefelmeyer (1978)).

In the next chapter we shall extend our Theorem

42,6 %o cover more gensral loss functions.

Cur results and methods in this chapter ave taken from
Ghosh and Subramanyamn (1974). They overlap substentlally with
those of Efron (19?5), Lekeuchi and Akahira (1978) and o
R+ Ponnapalli (1976)ﬂ

The readers should be warned that what we, following Rany
have called ' second order efficiencyf'iisltermed;i%hird order

efficiency" by Pfanzagl, Akahira and Takeuchles ‘What they call
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Rl

"second order efficigncy‘i is = aifferent propertys The reason

for this'differemf“nbmeﬂclature will be explained in the next’
chapter. - :
4s2 Second Order Efficiency: for Curved E&ponentlal Famllles .

Suppose } is a sequenée of 1.1.d. r.v's taking values
in some measurable Space (S,A); Let Bk be the k~dimensional
Euclidean spaces For each ﬁ = (Bl, ﬁg,-..,ﬁk) lying in. some-
fixed open set VlC:.R 'y let Xy 's have the probabllity density

¥ (xy8) with’ reSpect to some non-degenerate —flnite measure 4

on (5y4). We assume thls is a curved exponential,family,i,en,
£*{xy = c*(B) exp. LpL (X

£*(xy B) = c*(B) exp {351,5,31’:1( )}

,.whéfe pj's are real valued meéSdrable functions. TLet

Polx) =1 vx | S

 We assume that p_sPysPy sees Py 8TE linearly independent in the

Let | ¢ , SRR =
hy(8) = E‘Bcpi) = §py(®) £*(x98) dz(x)e (.4.2.2
TheR 3p, A% log 6*(§) . Ry 8 L
= = - = COV : . . 246
LA S T i O
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Thus ~ .
[\\-—;‘; ' i,J :'"-,1,2’.. o-o,k.
C, j :

Bl Myt

is tﬁe kf>€k:'dispersion matrix of DpsDoseee by and it is
positive definite since I pl""’@k are linearly |

independent. So for each BO £ Vl .] an open neighbnﬁfﬁbod

L

V' oof 8% such that it is contained in V. and restricted to

V  the map

h
8 —>  h(p)

1s one-to~one and onto an open set W in Rk. We fix such =

'V ! and such a W and denote the inverse of this map As
p
T > 8{7)

from W onto V. We now introduce an alternative parameteriza-.
tion J{f(xym) § 7 e Wy for the family T*(xs8)s B & Vi whers
for m & Wy f(Xym) = £*(x, B(W)). WIitiggu c(m) = ¢*(a(m)),

we getl |

%k ‘ ]{.ﬁ : o
f{xym) = c(w) exp { _21 Bj(w)pj(X)}‘-
‘ 55 JP. P

The statistical problem that we consider is-one where

'o-‘t ‘ i i g g { .....‘.
-Wi’WZ’ »7,  are known functions wl( ) s WQ{@), ,wk(@)

of ‘& single unknown real parameter ' © lying in the parametric

space (H) and © has to be estimated on the basis of observa- *
tions xl,xf}J..,xﬂ *

2
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Assumption (I) ¢ () is am open set. TFor each 6 = (E),
7{(8) ¢ wl and T (9) is thrice continuously differentiable or
(T—I), i = l 2,“:,1{. Therankof A_(?T:'L(G), 'rré(G) PN 'nflf;(@)) =
\:-Q'E(_H_)uﬁ 3 |
VLet 'L denote %he joiﬁt probability density for n

independent observations X9XreessX o S0y We have here

n
k
{c(ﬂ(ﬂ))} . exp J§l B.(m(@)) p pjn
where' ) '
sl ™ ma: v 1 | | y = . .-
ﬁjn = igl pj(Xi)/na and  7(8) = (w (8)sm (8)sveosm (6]

We shall henceforth write c¢(8) for c(m(®)) and 8(8) for
" B(m(€)), so that ‘T - becomes

. 5~
e § iC(Q)} . exp {n 2 B. FQ) in }

since p, = ( p. pzn’°"’pk ) is jointly sufficlent for, ©, we
in

consider only estimates Of the form T = Tn( pn) which depend
on xl,xz,ao.rxh’Only‘through phw - By an estimate‘-Th we .

shalI;éctuallyﬂmean/é?sequeﬁée of estimates‘V{Tn}“i.‘,l,”‘j“

Note tﬁat'théwpartiaifdérivativeS”Of all orders of by

Bi;ﬂﬁé’?;?ﬁﬁk “with feSpécf”fO“:vl,wé;;;.;wﬁffexiSt'at ail’

peints of 1. Hencey by Assumption (I)y ,ﬁi§ﬁ§;::{;ék .ére
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thrice continuously differentisble functirns of 6.

Since (i) rank of (7' (8)» wé(@)a..., w&(@)) is one and
(i1) B(ﬁ(é)) is an interior point of V, 1t is easy to see

that the Fishér Informatinn

d leg L o ‘,k ?Blog'L‘ ' o
nI® =B { g5y = B {Z w1 it

is finite and positive, where wi(@) =

tso  11(e) = 2L exists.

Let us consider the following conditionss$

(1) or each 6 ¢ Cﬁ) there is an open neighbourhood Vg of
T () with compact closure Vg such that Vg C W and the domain
nf definition of Tﬁ includes ”vg. Moreovery there exists a

function T {(depending on VG) such that

Tn(lexgyo--an) = T(pln)ign?o..gikn) = T(p) ¥n if D € VQ ¢

gt e
and ?)T y == i\ i9d = 192seessk exist and are continuous
- DPy  OP; Py
Qrl TV‘G .

(@19 I () =0 ¥vo ¢ (H

Definition 42 1. IT Tn satisfies conditions (i) and (i1),

we shall say Tn' is locally stable of order two which will
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be abbreviated as lese(II). If T, ‘satisfies conditions (1) :
and (ii) and has/ third orderbggntingpus ﬁerivativee,;we shall
say T, 1s locally stable of order three; which wil;_be_ebbrejr
viated as les. (III)s If T satisfies conditiens (1) and (1i)
and has third and fourth ofder continuous derivatives, we shall
say T is 1.s.(IJj' (We need this in the next chapter.) If
Tn has only contlnuous first order derlvatlves but otherwise
satisfies conditions (i) and (ii)s we shall say Tn is 1.5.(1\

L

isee locally stable of order onee.

Hereafter we will denote byu-Tg(Q), lete), TIJK(G) etce
the appropriate partisl derivatives of T of order ones two,

‘three etcs respectively evaluated at ﬁn ;"ﬁ(gj,

Condition (i) is a.stationarity and smoothness requirsmens

which is likely to stablilize the 1arge sample prpperties of Tn'

For example convergence te an asymptotlc dlstrlbutlon mqy be
expected to besy in generalsmore rapid w1th condltlon (1) than

without ite If Tn- satisfies, (i) then Tn is 09951stent iff it}

satisfies (ii)e Note that the nelghbourhood V

o ey be differenl

for different estimates.

Consider the likelihood equation

o . e Glog L == %
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is Ce s
z ﬁ (9) (p - “1(9)) =0+ . (4e2.4) -
1_‘1 . _ Vo 2 .
If Py, = wi_(go) for all 1 then F(Q 3 Ty (e ),..a,wk(@ )) = 0a

Thighimplieﬁ 6 = N is a solutioms = Sinéégpmoreover

PIE

J_dzlog L &glog c(6) ok
7 O ( )= - ) 1T + Z B"(G).w (9) ,=__¥(90)<0
de Pin wl-%) L ae” - 9 i=1 QO. %

it follows.by the imﬁlicifufunction theorem that there'éiistg a

suitable neighbourhood Vg_ of w(G 5 and anotherESuitéblé
¢ .
nelghbourhood Vér,of B and a unique functlon 9 (pln""’pkﬂ)
o - 13 .
(depending on @) defined on Vg . vy (see the foot note below‘
) O

such that [
A 5

F(e (p)s Pln""’pkn) = 0 for all p in V@o

and ‘ ‘ ' |
Oq (M(8,)) =8, » L .

N
A1s0 Qn(pn) is thrice continuously dlfferentlable under

Assumption (I) deedy é%l is lese (III) under ASSumptlon (I).

L

_ N »

Usually one uses Vg end vy in place nf their cioSures?
S
we need this sllght modlflcatlon fnr a .global constructlnn.
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A -
We have defined e, only locally but if (H) has a compact

G, .

closure, m{&on (H) has a contlnuous exten51on on the closure,

and {'E(@) 5 8¢ (H)} (— Wy then it is mnot hard to combine the
local definiticns to get a global deflnlflnn-on a sultable
neighbourhcod of the curve i m(8) : e ¢ Qﬁ)}

v and V} as above for all 9 e (1) and note that a flnlte

% ®

union‘of vis sa? Vlgvz,...,vkgmfoygré {h(@)} O € Cﬁ)} . ,Let

Wp—

To see this define |

t
: ke

_ : e _ .
the solution in V. be denoted - by Gni' Consider a w(@) belon*lmf

to V, and ¥, 3 then by t tinuity of © a % £
j ar 3 s hen _y‘ he continuity of i anc n3 a

T(6) one can choose a neighbourhood Vi C Vg of m{e) such

= Pl A ,
g 1 3 ot ] . 9 2 .t 2
that for..pn £ Vg.s gni and an lie in .Vg,¢ ‘gence.by_the
‘ A a
uniqueness part of the implicit function theoremy‘gni':.gnj if

—

P, € Vg} Vg can be defined in a similar fashion for w{8)'s

belonging to intersections of more than two - V,'s. - Suppose we

choose Vg such that in addition to the previous conditions it

also satisfies

(1) V§CV; 1T w(e) e v, and

(11) VI TS if m(e) £7

for'all © ¢ (E)e Let V_ =lJV§. Iet 5 eV . Hence

= 1t o 17 B T IS i
Py, & Vg for some & . Suppose-,pn £ Vi' and . Vj sy this

implies w(8) ¢ ?i as well as vj which iy;turn implies
y£

1

g T ———
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{ o A

—)1‘“ L s .""i‘ - . P
nd = an Qn.:v9 « Thus e ; (p.) igéthe same «far all

that 8
V4 containiag ﬁn 5 let this common value be denoted by f(ﬁn).
If we set b |

o, = £(5) if B, eV

¢ iy :

- arbi%réry"if"ﬁn £V
our tagk is aceomplished,?-

Following Rao (1961) T, 1is said to be efficient up to
flTSt order or asymptotically efficient or simply efficient if

for some & and B > 0y which may depend on 8,

[n1/2 Z, - X =8 nl/z(Tn -8)| — 0 (46 2.5)
i L ; dlogL - | f
in probability under ©, where 2, =% dG? « Hajek (1972) :

has proved under quite general conditlons that T has a certain
locally asymptotlcally minimax property iff & iS'efficient

up to first order and B = I where I 15 Fisher information.

Suppo se TTI is e S (I) . Therl

- .

/A (T -0) = /3 (2 (5) - Tn(vfg)))

o

= /1 z (p - 7 (9)) T'?‘+ o (1) (44 2.6)
i :Jn | ” . .

where op(l) is a term which tends to zero in probability.
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Substituting the value of  n'/ ?mn - ©) in (442:5) we get

k : P
mvga—«wﬁVQSWp O P —> o
i.e.,
k ' k -
2 - A : - iP
[0 2 B} By - @)= - gk JZ Py Ty ONT >
ioets k

\ P
[n1/2 2 B i@ by -8 M) - >0, |

Se 1t follows that for-a lese (I} estimate 2 %o -he éffinien
' |

up to first order it 1s necessary and sufficient that _ |

o«=0 and {35 =B 'I"'j N e (4:..2.7)

To evaluate - B we proceed as in Rao (1961)e Since

T (w(@)) = T{r(8)) =

we get on- dlfferentlatlng with reSpect to 6, e o 1
' k- y ' = '
S | . (4.2.8)
j= J i - '
where
ar, (8)
Tr'(Q) —""'—é'—g'—- ..

From(4f2.?) and  (4e4248)y -

t = ¥ Bl mle LU T (46'2e9)
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But 5 4 log £1x,0) e
O = E@ Eg k dg 7 \“) ro f-.':i‘ . u
{2 Sa'RE Ty N T
Rt T oarml e
L iy 10 (= ) P i Y %ﬁm,\ i o > -
ghlogi o) & =l 00 o el ) ( i T e 37 -
(??;(‘—E‘}.qﬁcja’-”-;-) :giz]jég (g) w e tir ! 7
O . e ) =
(.':‘rj'fl Pl 1S + 2 ..+ ! Y R TP |
d@-z ? BJ TZJE‘. - 5{« B.::i. Tr_] e s mIECBSC
S0y %{\ 3 - ot =% *'5;_
2 B' t - o8 C(g) Emﬁll
7l = - ~ s
3 ] dg2 i Jd o J
REC R
dzlog £(x6) i
= Ey(——s = I{8)s (44 24 10)

" de

From (4+2+92) and (4+2.10) we get B = I. Hence it follows
from (4.2.10) that a necessary and sufficien’ condition for a

los. (I) estimate to be efficient up to first order is
.2 vo e @, (4e2¢11)

Before defining second order-efficiency let us state a simple

lemmaes < ° ;
4 ; ' .
. R N . . i TR R Co '
Le5 us fix 6 & (H)s Let U =f B0 |py (0,1 < 0 1=Ly20.uk)
where &5 > 0 1s chosen so that U¢ W. Let ‘IU and T c‘denote

v . U
the indicator functions of U and its complement U®% We shall
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= ’f
F
also use IU and I c ‘o denote IU(ﬁn) and I'c(ﬁn) respeétifag
U ‘ U
Lemma 4.242, Fansl e & N
- C o Y B
- T - B - s.* e e ‘ n/"2 2 ;
Bol{l Byn=mi (O} {t By, 5my()["y It.lc] < Bip (4.2, 13

-

‘Tot some 0 <p <€ Xy >-0, l > 0, provlded T35 2 Oy Also p depen&‘

on © and B depends on '1sJar and s' in addltlon to 9 o

Proof + ILet
Pq1 %“g Eefexp{t(p 1*W (8) - 6)}]

1]

I's
(

: bi2‘ ‘iggﬂEelexpitfPil‘W1(9)+5)}3\-

ey = maxleygr 049)

o) = max pi .
" iikk &

Note that” 0 < < 1. Clearly

Po { By U045 2 By fl Fypm ‘9) 2 6}

- ” =

g
= M

<2 z 01(8) (by Chernoffls (1952,p.495)'
=3 inequality)

£ gk on_a
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By {IB1n = Ty 1By - @17 T}

£1s0y

4r.11/4 45,144 . 411/2
< Ul Fyry ) [*F/8 of By 2P BT 12
by two applications of Cauchy-Schwarz inequalitye The first twe ~
terms on the right hand side are bounded in .n(in fact, gb to zerp).

50 {(4+2¢13) now follows from (4.2.12). This completes the. proof,

We shall nowadescribé Raols first measure of second order'
efficiency for a lese{II) estlmate T o which is efficieﬁtiup to
first orders Fix 8, ¢ ('ﬁ). We shall think of 6, as the true
value of the pa;ameter. Let_yvg_ be the open neighbourhood of
1%@0) which we may associate witg T in accordance wlth the ﬂefinatlon

of local stability of order two and choose & > 0 such that

9o Byt (Byg = @] < Gp Vg L= LiZeresk s

For any random variable Z, let EQ(Z) denote E9 (z IU) where

I = IU(pn). Let

(4. 20 14)

i

Recall that Ego(zn) =0 and nEy () = I(6) = I. |

e cx . G d 5
[T \ Y
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Herey we state two auxiliary propesitions the proofs of
Which are given in the Appendix. These pr0p081t10n8 are needed
to define E, .and (T) We ‘use {T b to 1ndlcate the sequence‘

of estimates T N 7

PrOposition’4.2.3 . Lét Tﬁ ‘be les.(II) and first order.

-

efficient. Then .

6 BT 0 0 D <18 0 P, - ()

\
1

- MT,-8) ?_\-'ax(go)/n}z] existse
Yol

(113)  By({Tgp O MU = By({T s 8o MU

S
W

‘.

where U, and U2 are any two neighbourhoods of 'E(Go)"contained
in v . )
e,
In view of (iii) we shall write
o 3 R gy
Ez(,{Tn}, 90,,&) for Ez({Tn}, 6,2 MU).

L)

,E2({Tn}’ 90) - iif E‘g('{Tn}’ 90:. X:)o,_ .,

Let

Ny

This E2 is Rao's first measure of second order efficiency for

2 Lese {II) estimate T y which is efflclent up to flrst order.
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e can think of E2 as a measure of how well a quadratic in Tn

gpproximates Zn' If (for'eaghlfixed 190) Zn were a function
of Tn’ Tn would be a sufficient statistic for gof S0y E2
measuresy in a sensey how 'mearly" sufficient T, ise The
reason for taking a quadratic in VTn is mainly one of expediencye

In Rao {1961) Eg is used instead of EU but the calculations
0

can be justified only with E'. See in this cbnnection Rac (1963)
where essentially the ﬁresent approach is followed. The intuitive
justification fof uéiné EU is that we do not wish our measure

to be unduly affected by thé tail of the distribution of the
estimate. If we are comparing two l.s. (II) efficient estimates

(1) and T(z)’ we may take ch_Vl

5 A ng for the calculation

0
af E2 for bnth the estlmates, to remove the apparent arbitrariness

»f U and hence‘of ‘the method of comparing Tél) and Té ).

Proposition 4¢2.4 o ‘Let* Tn“be lese (II) and first order efficient.

hen

(i) b(6) = 1im EU(T ) - o xistse
3 . n{ } exists

If moreover T = 1is lsse(III) then the following results hold.

(i1) .b(6) is a continuously differehntiable function on &),

(111) If Tx=7T - b(T )/n  then - ' ;.‘
A | Wi

U{T*) % + ofl/n)e
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(fv) If T¢ = T, %‘mﬁ@nf/n “where m- is a continuously
differentiable function in a neighbourhood of 90, then. i

o

-

) . 5 HEEE (JT %y . T
EU'(T‘ -0 ) = _lf _ﬁj}__ + o(—iz.)
> _ n
where ch({ }, G ) does not depend on .

(V) Let W(a,g) minx{(a‘—,g),,_d} bg_the,squared error loss
truncated at d > 0 and - let :Tg be as defined . in (iv)s Then

{w(T', %}~ B BT - 6% "= otk

. g / na L B =
W :'4 n T L %
%

Rao (1963). takes E"’(T' ) as the risk function of
Tl but Proposition 4e2+4 shows that it does not matter up to

oélh) whether we take E (T' 8 )2 or E {W(T', ot )} as our
n L

risk function. Following Ra0) we take (f)(i }, 99) as our

second measure of second order efficiency of {Té} .

Before stating our main result, we shall now ‘introduce a

few more notations. Let

_.; d2 lOg IJ t ) 7 i L R o l ] i . #
Wn * % agﬁ o * Ife,) L, e (4. 2,15)
O .
l) 2 log c(€) | o T o . " : |
== ot st Z B (8) Bin + 1) (4024186) |
"o RN L o S
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Clearly  E, (Wn) =SQw . Let 4, .
oW o } . 0 . N

o
¢/

=] . N
“rs Ebo(zlawli‘ i | (442417)
T wdey 3OS adRceel g LY (4.2,14). Tote that
8g) (= tgpiw s stated before we shall often write I for
I(Q‘O)o {_,et b

"3

5 & log T(%0) . A
FIe B ‘
901 ~ d93 S
) . o
d3 log c(@) \ : '
= + T8 ) 7m.(8) (4. 2.18)
dB Bi(g} , r - . i - i
where B?'(@o) = el -Gl T Let '8, denote the random
ae e
0
variable
(Z. W =t /1) ~— + (22 = 1/n). /21 (4 2‘19)
n n 11 72 n ol

which will play an Important role in what follows.

Definition 4e¢2.5 ¢ If b is' a sequence of random variables

such that EU{YE} = o{ai) “or O(a ), we shall write Y isx

w1
oE(an) or OE(an) accordingly. -

A random variable X will be called E - orthegonal to

another random variable Y if the covariance under 6,y of

i
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are said to be EU—orthOgonal up to o(l/ng) if the covariance

g@d Y is zero. %oe., COVGO{X IU7 Y},: 0 ; X énd Y

nf XTI

. and Y is o(l/nz) i TR

cov,. JX I.s Y = (l/ng).
Veo{ S RS

e

#1so note that if T 1is efficient and l.s. (II), then

Eq (T)) =8, + b(8 )/n+ o(1l/n) ﬁSing“Propnsition 4o 2o de
OF it =l

A
Under Assumption (I), Qn is efficient and ls¢se (III) and
hence we may write

)
A

EQO(GH) = 90 + bo(go)/n + o(1l/n) R {44 2420)
- | ¥ el i L.
. U )
where bo(GO) = 1im n { E (Qn) - Go} v
We can now state our main result.
Theorem 4¢2.6 & Under Aésumption ki) we have'theifollowing .
. 7 .‘ ‘ ~ |
(1) Gn - 90 - Z_H/I = bo(Qo)/n + Sn + Rn : (4.:2.21)i

A | . T L , N |
where Rg is oE(l/n)_ and E -orthegonal to Zy gnd‘mznwh r

up to o(n-g) and Sy bo(Qo) are as defined above.

BN Y s ) 1
If o' =6 - b(Gn)/n then gl ‘ : f
Bk 7 /T = — g Tl b G A SRR |
$-8,-2, /1 = r: q24o1 T + Tigaty + 8, + R} (La 24 22)]
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> -1 o 2
where RY* 1is o_(n"") and E.-orthogonal to %3 Z° and
n E 1 n
-2 — £
zM, up to o(n™%),
(11) Let T be efficient and les. (II). Then
Tn-— @O-— Zn/I = b(GO)/n + Sn + Rn (4. 2.23)

where R is OE(n—l) and EU—orthogonal to Zg and Z W

up to o(n_z) and EU(Rn) = o(n"l). Also

/\ g -
By(fTr 8,) 2 B(fB Y 0 ¥ o ¢ @). (442.24)
Let Tn be efficient and lese(III)e Then

VAN
* ~ (BF% _ *
In - 90 = (Gn 90) + Ry (2e2625)

~1 U o .
% : :
where Rn is OE(n Yy E ~orthogonal to Zn’ Zn and ann
&
&)

* =2y ¢ ok
and hence to‘ (e} 8,) up to o(n™") 3 sy

up to of{n”

N
and @; are as defined in Proposition 4+2.4 and (4.2.22)

respectively. Also

\
Ao
b ]

L’)({Tg}, 6,) _>,(_1_) (o) 8) veo @) . B (4.2.26)

¥nreover

i

By (fT 4 ©) = 129_) (T ©)) - -Iz-é 3/ .;ul-l}z. (4e 2.27)

Eo]
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(iii) Lei:‘. Tn' be efficient ,:e.m,d- lese (III) and ‘m(8)- be a
cnntinunusiy differentiable funetion on (EI) Let

T' = T + m(T )/n « Then there exists a continuously differentlable
f‘unction g on (8) such that 1

N A I
Figtss w200 6l = e, * g(@n)/n o

A - .
then On is hetter than" TI;. up to.. o_(n..,?) in. the sense that

o o A . ;
1im n“[E (Thy 8)% - EJw(e¥s 6 )11 "> 0
e Qo’mn oj Goiwn 0}
where .W(2,6) = min-{e-.—('a‘- = Q)25~d}‘» . 1s tH& squared er¥or loss
truncated at 4 > 0.

Here Op? OE and EU-orthogonal are as given in Definitinn
4208, +, g Ry Sy &
We shall need a. f‘ew lemmas to prove. this theorem.

Lemma 4e2,7. If Assumptlon (I) holds and T, 1s efficdent .
and leSe (II) then

2

Z = - —
T (5,)-8, = =B + -% 22 (Bymy(8,)) (Bypomy (5)T e (-l>.

£ L S ib: “‘..;‘,- N o g (4.. 2o 28)
Lt PR o .
Ify moreover, T is lase {III} then ' i
T (p) -0 ~En+-l X (p (e))( (@)) TiJ
n'Pn o I 2 3 pin i p;Jn 3 :

‘3

.
mlco
e —

+ é E?f (Pj_n-’ﬂ'i(G ))(pjn-'rr (G ) by, - ¢ (8, )]T J/(_,_ o (n:

= a1t Thgt That c’E(H—B/z) (say) (4e 20 25}
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Proof ¢ TFor ﬁn e Uy consider the Taylor expansion

T, -6, = T, (B) - T{m(e,))
- | 3 B P Tij '“
- ? (pjnﬁwj(go))T +§ ? (pindﬁi(go)(pjndwj(go))-ETTR(pn)
(44 2430)

where Tts and’ Tij's are the first and second order derivatives

of T evaluated at w(6 ) and R 1is the remainder term.

Note that from (4.2:11) T = 8! .2 v o e (§). Hence (4+2.30)

j I

becomes

= _ 1 .l o P g - ij
Tn(pn) -6, =7 ? (pjn-wj(go))a5+ % §(pin~vi(go))(pjn~nj(go))T /2

+ R(ﬁn).
Alsos ’ |
; ¢ loz L N L= : ‘ ‘
Zn = -I-'l T 4 = jz (pjn----'rrj (@O))Bj,(fETOHI (4-2014)).
- ,

To prove (4,2.28) it remains to be shown that R(ﬁn)‘is *oE(l/n)
. Bl = e o o2

leGSe s B 13 (pn)} = 0(1/]11 ).

liote tﬁat

RG) = e(By) 23 (Bypmy(00)) By e NTH (ar2081)

where €(p) - 0 as p — w(@o) and je(p)| <M on U- for

some suitable Me Fix 7 > 0 and choose 61 > 0 such that
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Ul i { pn g ij_n - -n-i(go)l < 8].-, 1= 172_3-.-31(}—;»:: U

and |e(5 ) <m if p eU; . Therefore

iy

7 EU(R (p )) = B {B IU } + BV {R I c}

e E { Ra 3,+ E { R® I } + o(n )
PRSIV oo 5o £ 7703 09 14/ 21 11

R R N T

& | : (4& 032)
by (4.2.31).' The second term in {4.2.32) is M O(pn/z by
Lemma 4e2e2 whlch is obviously valid w1th U, in"place of U,
The first term in (4.2.32) 157?0(1/n Ye Slncer 7N 1is arbitrary,
it follows that E(R2) = o(1/n2),

Similerly, one can prove (442+29), . e
This completes the proof of Lemma 4¢2.7.

In follow1ng pages when we.assert that a: random variable is
0 (n l), 0 (n~ ) eto., we shall not usually give a’ proof. :But 1n
each case Justification is, easy and invalves an appllcation of

Lemma 4°2¢ 2 1ided perhaps by the Cauchy—Schwarz 1nequality.
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Suppose Tn is efficient and les.(II)e Then
o e T _ . L g
be) =5 TE TV By (pyy- 1, (6)) (pyq-7,(8,)) + 0 (a7,

S

(442433)
follows immediately from Lemma 4e2+7» If T, is also l.s.(III)
then by Propositien 4y2.1; b{R) is continucusly differengiable.

By considering the Taylor expsnsion areund 90 1t follows

that )
b(T.) b{e) bt(e.)
e == (T e —_E_g_ * OE(H—B/Z)
b(6) Z. b'(e) -~ A
= —2" 4+ B, —2 4 o (nF (442434)

i)
applying (4.2.28) to Tn'- o, + When T_ is efficient and

lese {ITIT) we define

- ] m

Tn = Tn b(Tn)/n . (40 2035)
Then by (iii) of Proposition 4.8.4y

U /o

We shall now célculatéﬂ%he covariance of (Tﬁ," QQ) IU
with Z9 annand 72 show that these covariances are the same
up to, o(l/ng) inﬂtp?gsensemthéﬁ they don't depend on Tn up to
0(1/2%). | -
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Lemma 4e2¢8 o is efficient

If Assumpticn (I) holds and Tn

and lese (III) then

EU {(TE @y -8) Zp =2+ o_(i/nz), (442.37)
Progf ¢ Since T 15 Tese (IIT) we hove from (£.2.34);‘
b(Tn) b(@o) b'(@o)
2. e -3/2
n o ¢ (Tn . 96)' ot foE(n 4 )
where ¢
b(@- ) . & ’ y
R, = & ij P TR R
o =B EI T By {(Fyr ice mp EENCRNS
a,.(e.)
. ijt e
= % 5 5 s G (say)
where © )
a..(@ .
M —o" .y TlJEe {(pin_még,))(pJn NCRI® (44 2.38)
Thus
P i i 1. ijk | '
b1(e ) = , | = J
bt (6,) Zn § ? T ay5(80)+ 25 ? ? a;5(8,) E T wh(e,),
{(4.2.39)
Also, .
" R TY U T I -é/25

* - — ' — . —

In =8, = (T, <8) [Lrs—— I === + ogln™
so that ‘

'U % . _ .

Ego {(Tn— eo)zn} =[1 -

br(go)] . : '
o {(T “g )2 &-+ o (n )

(using Lemma 4.2,2)
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b8 ). ST I SRR . ,
o = ——Eh——][EQO(Zn/I) + 3 § ?- EGO{(pin - Ti(go))(pjn‘”j(eo))zn}

L 5 2 T , -2
2 ?—? §ﬂ~EGOi(pin"wi(gol)(pjn-bwj(go))(plrldwl(go))zn}'+ o (n )f

(4, 2440)
Differentiating (4.2¢38) with respect to 8, We have
1 p i
2138 Jimme o - . -
= =n Ego,i(p in-—vi(go)) (qu-’n'j (GO)) Zn}. . ‘ (4. 2;41)‘

Denoting Egoifﬁin—wi(go)) (ﬁjn~wj(@0)) (ﬁkn- ”x(gb))} as

aij/((@o)
n
rearranging the terms gives us

and differentirting it with respect to 90 and

E@O{(ﬁiﬂ - Tri(go)) (ﬁJn - TT'j (90)) (ﬁj(n = /((90)) ZU}

al. (e )
1jA "o 1 y ; I
TR BT 3500+ i) 2y 60+ mh(0)ay (e )]

n
(4e2442)
Yow Lomma 4.2,8 follows from (4e2.40), (4e2441) and (4.2.42).

ote that we can get (4.2.37) formally by differentiating
(44 2.36) with respect to 6. The trouble in Justifying this is
that one has to show that on differentisting the o(1/n) term
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in (4e2.36) one would get 2 term of order o(1/n). The calcula-~
tions needed for this are no less cumbrous than the direct proof

of Lemma 4.2¢8 given aAboves

I

&

To calculate the covariange of (T* -6 1y w1th Zy and 0 I

Z w ’ e shall need the f0110w1ng results which are well known
and easy 'to derive. The same formulas were given in Rao (1961)
but we shall use them in a different way. Let (Y i’ Y o

28 sl

Yéi) be i.ied Tandom vectors with zera.expectations.. Leb

~ 1 B : g -k.ﬂz‘ NS e c-
s = Y..+ Then up to otn ™)
*3 ni§1 1 S ) S
BEY) = 3[var(y,)1%/n°, (442443)
cov (YI’Y2 ¥5) =2 cov(Yll,Yzl). COV(Yll’Y31)/ n, . (4e2444)

cov (Yl o 8Y4) icov(Yll, 81) cov(Ygl,Yél),

2
+ cov(Yll,Yél). cov(YzlaYBI)}/n . (4.2.45)

il

E(T2 T) = 3 var(y ). cov(¥y)r¥y)/n%, .- (44 2446)

I

w2 T4 {var(Y.hl). var(Yo) + 2eov (¥1177)) % / ng,‘ | (4.2047)

Lemma 4e2e9 s Suppbsé Assumption (I)-nelds and . T~ ~18 efficient

and les. (II). Let
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ok ot = = 2
= Tn(pn) e, Zn/I ¥ . (4e2448)
Then
: n ,I .
and N ’ i O L ( ; I
Py [ ¥ ,U B J‘ + M A
1] K _ § o B8 ' 3 11 2y,
BY o TR (2 Wy, = #yy/0) Y = =5 . - NCRE + o (1/2%)
: n 1 n-1s 4
‘. h L. (4e 245C)
proof o o {J‘I'** (Z - I/n)} L s

- 2 ) 2 % 2D (z - I/n)} y

[!'-

W s 1 13 X ‘ e R
P { 2,2 T (pin i(B )) (pJn j(9 ))(z b I/n)} + on(ﬁ 5%‘

by (4.2.28))

i

EQO{% z 2 M5y, mi(%, ))(a AT ) (Bo-T/m) Y+ 0 (0T
(by Lenma 4.2.22

-% 2y i
. (2§ eEp T

i

izzoH covg.{zgy (Byom3 @ )) (5 am THONY + 0 (n'

TET 1] covg .{ Z ’ pm} ,féé““'“““‘;{“z ’ p;}n} _-F 0 (ri-’ ) byl(4;12:-<1»2)

13 '

:% e .co .[ Z y pirx} . 'n"(O ) +.0’ (n )M ) : ,
(sif-lce c‘OV . (.Z p ) : E (5 " Z .—: -rrIfG )/n ) " T
% ; jn yives B n ' :
E%' {éov (2, G, )' ? bl ‘(ab)k N Q g &R
=1 g - 1".‘ A /
=2 i: 06 (Z ’ 'pin) d/dé ‘B /I‘)Ig + O (I‘l ) 7 (40 2¢51)
i & U Ay S ai*_ixril- § i o Sl (
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y ( ﬁ\(;-@jf'ﬂ‘ = (* L3) = (‘,:!-7{ e‘,;S)V,,_)voo conta)

A re I L O-g o q
: ~-100- [ - SR \ P
(C"'J) Mk i( ’J) 1 r‘ ;:—r} z "(j’;;jjﬁ) ‘:;:-gf") é"mﬁ;‘f -3 ,:ré,q.'
: 20 A F5E
(717.040) (i) ol @ 5"”“*3 LAV AV et i) } o5 %ndyf A
D?iferentlatlng both sides of (4.2.11) with reSpect to 6 and
5 i Ea - } ’ &
putting b we get ) ( e Tt ) | a')* ﬁﬁf' g ' 5
7, i i
¥ty R pit (8)) pi(e ) I'(e))
A Tla,wa(o ) =g B/D]g s S - 0 r L aunis)
J i ? i J AR )‘0:,‘1-‘«')..%.;’3“.‘».;; } 3 .q"&’}u = ] g LE e Gy
' g = © 5 ‘o

s noted! dartier zi(é“§ and B‘{@ ) exists by Assumptlon (I) Hence

S T

the  righit hnd si@éggi)(&.%.Sl)’éaﬁ)bewwrltt@n.ag -é*:
] b B"(G ) pi(e ) I'(6)) oy
__,,_:'_. . : = s .;L_..ﬂ vce o "',2, T R
=1 — “g ‘C)QV@ ‘("Zn{pin} . % -#— f : f i L":’,_ i B 3 '2 . } + 0 (IE:’ a’\_
i o) Gl deit L o -
) | l B, - Bree
I/l } SR R + & 2 ? . 3
B (G ik 5 p Bl(e )I'(G ) -
& {e@vg (z, G- p“W*—A#“*Qﬂ%“ +COV, “(Zﬁj? 1;§ 12J LY+ {n" 2
Lo QY I o gl ,
- b =14 J 4 . g s vt
4 L. cov(Z oW ) —‘*l" v ar(Z ) + o0 (n ) A{using (4.2.1/) and ( Sul5"
nil n o n n I J M o ~l‘ £ wdn o Hap ) nitage M il
= el -—li—‘+'o:(n”2) si | (2. sW )i~ fh o aBd QGZ =1 a & |
AL oer o e 1T R PO G SRR ¢ Dot R ey
e -t Sl "G iy ; i
SlUae+ I o it ot . ?
= lé + 0.(n™%, T - (4 2453)
n"I
substitutiﬁg“-l1 = .J)+ #17 «. This is so because
dglog c(@) k '
-1z b B BY Le) s (8)
50 that ‘ ' ‘ ‘
10g c(e.) W) N = ° G
i ! A = g g2 T ng bl i b
I (e;) = +H 2B Ee) my (8 + E Bt (e ) wi(6))
de
0 _ | | |
o+ 2 B]E_I(Q‘o) W:%.(QO) by (/%‘o 2-18) o E i (
= J 4+l ~  ' 5 (2o 24 51)

This completes the pvoéf of‘{4.2.49§. ”
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To prove (4+2450), proceeding the same way as before but
using (4+2.45) in place of (442.44); we get o

EU{T;*(znwn— #q1/1)%

-

P 2 THoovg {20y (Bipmy (00) (Bypmy )y + o (a5,

fne] [

J

+

..-..l ijr g ) kg
=3 212 T {CoVy (Zn’pin)' covgo(wn,pjn) +

- - B 1
COVQO(Zn’pjn)' Cngo(wn,pin)k + 0o (n™) using (4.2:49

=ZzZ TiJ{COVGO(Zn,ﬁjn)- COVGO(WnéﬁinP} + o.(n"g)

= i z ? p1d wj(@o)-covg(wnyﬁin)+o (n’z)ﬁ
i
! BI(C ) BL(8)TT(E)
= 4 o Sal DS ol 9 -2 )
= ? covgo(wnapin).{ T 2 b+ oE(n } using
(4.2.82)
1 var(w.) . It covy (wn,zn); '
= HIQ— - g + 0 (n—zJ) \
nl ey g e e
“ fog - (T+ £29-)
02 11 11 -2 =
- 4 + O (n ) i ¥
nl nEIE +x 3 2
(since var(W ) = ﬁgg cov, (W 42 ) = f—l and - -I' = J # )
w5 S D B e g L

This proves {(4.2.50) and completes the proof of the lemma.
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Lemma 4.2:10 ¢« Suppose Assumption {I) holds and Tn is efficient
and leSe (III) . Let

¥E¥- PR o - . ‘ e 2055},
TH*s % - B - Z,/1 | (442055).

U — U o* o _ ’
T™en E { ?n (Zn ‘I/n) and E { g ‘(ann Hoyof n)} are

given by the right hand sides of (4.2.49) and (4.2.50) respectively.

Proof o Lemma 4.2.10 follows from Lemma 4.2.9 1f we note that

i 1T** oy b(go) : , 5 n
SR S oR(n 7)>
(i) 22 - T/a= Oya™),

(111) Ey (22 - I/n) =0 (™), °
(o]

) RS RP |

and

(v) Ego(znwn

Hqyy/M) = o.(n‘z){ - ) '-‘T;J}f:

Using the definition of Tﬁ*, T;**, (4. 2+34) and (4.2.35) we;get

b(e) bt (e '
THR¥ = TERF _E_Ql g Eb (6y) f3A2)
n n n I n E

{]

since
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For, - e
bt{(e ) 2 b!'(e )

B g Q~9>———-Q—-} 5% (z2) + 0 (0™ (by Lenma 4.2.2)

b1(e.)?

= —g—— + 0 ‘(n"-g) =0 (n'"z)-

n I

This proves (i)s To prove {ii1)y by using Lemma 4i2.2 we.conclude -

i

2(7 - /wP =5, (22 - 2+ 6 (D)
o Cn

Eg (Z2) =2 I/n. I/n+ 12m% + 0 (09
‘ O ‘

§

2 & :
= -‘2’.% = -2.2L + -]:5 + OE(n_g) p.s;ing‘;-- (40 204-3)
n n n
2
21 . o
===+ 0 (n 2y = ¢ (n~2
n ;

S50,
2 PR R
2ohis I/n  1s OE(n P

Thus using Lemma 4.2.2 it follows that
R, 2B 2,3
(2 - 1m) = B, (22 - 1/n) 4 0 (07D
n 8, n

9 -1 & - N . e
K e ,. . ; @ = 3
- 5 A&7 ) 2 O

= o (n"%)

This proves (iii).’ To prove (iv), let uws note that
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U 2 ~2 N
B (ann - Mll/n) = B (Z W = Mll/n)z + © (n ) (by Lemma 4:- _202;

eo nn
2
" 2R adl -2y
=By (W) - =55 "+ 0 (n™)
0 ~n
2 2
Tets Y7 y2;
- 202 £ 9 “l%vzf‘%; + 0 (n_z) using (4.2.47)
n n n
= 0 (nfg,)-

Now Lemma 4e2.2 implies that

_2)

U L
E (ann_— Mll/n) = 'EQ

o(;an “}“11/9) i ¢ (P

{

]

) (n"g).
This proves (v)s '

Lemnas 442+9 and 442.1Q are special cases BT a more general

result which expresses the covariance of Tz* I; and T;**IU a

with Zn { B o (ﬁin - wi(Go))} ase the %oVariance of

T o (By, - m4(8,)) with ;%5 MT = % I'y 5 where «'s are
constantse Thsat is F

" b3 3 =
covg 4 Tn Iy Zn - T (pin - wi(QO))}

o

B
!

= ok ok K -~
= conO{ Tn Lye Zpy o 3 o (pin - ?1‘90))}

= cnvgo{ 2 oy (B - 750805 ;ié (W,T - 2. I9)% + o (n™9).
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The proof of this more general result is similar
proofs of Lemma 4.2.9 and 4.2.10. For; completeness, we
outline the proof‘oelow. Another “formal" proof is given

third remark of Section 4.3, Using Lemma 44242, We can

T Ty 2 2 by = 73 (8% 4
{ T 2, z.fi'(ﬁin"- T3 (8N} + o (17

covgo{'% 2z Tijcﬁin " (g ))(p .7 ™5 (g )),

2 % (5 - 5§<GO>>} ‘o (using (4.2.28))

I e am s

s ZZT covgo{(pinuwi(go))(pjn wj(go))s ann} .

(where Q =3 qi,(ﬁin - wi(@é)j)

=35 T%j [covg (Qn s ﬁin). covg"(Zni ﬁjﬁ)]
o &

i

1

o]
R R covg (GrByn) T8, )'lh;.ffwjm k<
I B1(8,) - ﬂi(g ) Iv(go) 2
L (Qn’pin T 207 = 3 } (u81ng (4e2452))

n Bi¥8.) Py, BI(G) I'<o )
covy f Qp 5 f (= - 12 )E
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covgo{gn;:%(wnI

il

1]

covgo{'z di(pin

-106-

ﬂ“_z;;_."(go))__/.l_g} using (4e2.14) and (4e2.15)

-‘Tri(go)’), Lo -z 100015 .

This completes the proofe

We are now in

a position to prove the theorems

Proof of Theorem 4¢2.6 ¢ We first prove (4.2.21).

4 & log L Ao 38%10g L
A= s S e Sy B e
n o)
; A g & log L =
2n B @ e AR
0
=\ T & (3 ~o YW =T) + & (3\‘ ~032 740 a1y,
= “n n o’ *'n- 2 ‘°n o E *
Hence (\ ; 0 e
)‘\ Z g =) g ll,} /\ o ‘
_.n n o 'm, 1 - 2 =1
(0,-8,) =% + T + 55 (6,-6)° T + op(n™)
Z Z. W
=0, 0, Lo 2 -1 :
= + + + o_ {n ) (4¢ 2456)
1 2 o n* °p
7 .
since On - eo = 39 + OE(n'l) by Lemma 4.2.7: It follows now
from (4e2.56) that
i -u‘. o i
‘ _ 11 o :
L4 O(QO) = S + 212 (4- P 5?)
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SigRs Jre bo(8,)  Z, (A, - #y/0)  I(ZE - I/ ey
6. ~06) - ‘ = == L + + 0 (n
n 0 n I I2 213
2 -1
=3+ 5, + oE(n )
Z A .
= 7?’* S° + R (4e 2e53)
n n

vhich 1s (4.2.21) where 5, 1s defined in (4+2+19). From (4.2.59)

3 A ”

it is clear that R, ‘is (n ). Alsc using Lemma 4e2.10 and

(442.43) to (4+2447) 1t can be seen that R is B orthogonal to
2

Z, and unwn up to o(n ). This proves (4.2.21).

We next prove (4.2.23). This is the crucial steps = Suppose
Tn is efficient and 1luss.{(II). - Then by Lemma 4.2,9, the covariance

| b(go) A g 2
} IU .?1th Zn and ann

wE T *E
of Tn‘ IU and hence of { Tn

- dees not depend on, I, » (In fact to prove this one needs only

(1¢2.51) and (4.2.54) rather than the more explicit. fbrmulas
(4.2.49) and (4.2.50) given in lemms 4.2.2)s Hence we may write
the regression“equition .

b(g = i b-(@) “
{ T;* } IU EQOE{ ?;fﬂl*ﬁgg-} IU] + X (zﬁ - I/mn) =

¥
i g

+ B (Z W, - 4qy/n).+ 7 {442.59)

.'n

where d and ﬁ do nat, depend on T ) nm has zero covariaﬁcé
2 _ !

' with Z, and Z W  up to o(n~ 2). b B
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b(e )
n ¢ Tl

is ‘o (a™Y). We may therefore lump this term and n, and

By .Lemma_ 4.2.2 ér;d Propc\zﬂsﬂ;ion 4.2.3 ;i_); 'E-G'o[{ i

rewrite (4.2.59) as ‘_‘3

) ™ .
o - =22y I = & (22 1/m) + Bu(WyZy = 77/n) + M%  (442460)

. * 1 ; : 2 ' 1"'2
wh?_r‘e. e is orthogonal to Zn and ann up to 0(%‘ e
We may write (4.2.60) as

yA b{e ) y7: , |

- - =5 . ——9- = g LTe *K T :
Tn 90 T : c(n(zn I/n) +. :3 (Z W, = ) + (bR (4.2.61)‘1{
::,“,‘(,?"'.' U )

b - * K . L 3
where ﬂn = T}n IU and so T)n 1§ B -t:‘)rt:hog.onal‘to |
(Zﬁ - I/n) and (an - -g)-up ‘to ‘o(n"z'). ~We can calculate

& and B- directly but it may be 1lluminating to get it in an

AN
1ndirect bat some what easier aethod. omce Qn is efficient and

lese (II) (:m fact l.s.(III))y we 'get on comparing (4.2.58) and .
(4:- Ze 61) that

1 v

T« =3/21°  amd p=ds . 4 (402,61
n n I L]

From. (4.2.61) and (4.2. 62;)', we get

T -6 - i?_ b)) _ Iz - L) (B, fgfll/n)-+ Uhid
n

{1

u o n 213 + 12

. - %-Rn‘ (4. 2.63

L L el pite ofn-d)
where Rn is E -orthogon2l ;to .-Zn and ann up to O(r;l.._. Ve,
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Rn - Tn - 90 = n - —.i' . Sn ‘._- .- (4:.2&64:)

it follows from Lemma 4.2.7, applied to T, s that R 1s Op(n™h).
Tyat - EO(R)) 15 of order d(3™1) follows from (4.2.64) and the
definition of b(0;) and s+ Thus R, s$atisfies all the

crmdltlons stated in Theorem de 2.6, completlng the proof of

[

(2e2. 23) 2
o prove (4.2. 24), let,us recall thr-at

{
I

Ez({Tn},Q,}\)—limn E{Zn(T—Q)IA(T—G)-a(G)/n}

n->00
]

where aA(GO) is defined 'in PrOposition 4‘;""2.3 as

i

ah(Go) 1im EV n.{Z—(T—O)I-MT -9)}

n-—>00

= b(go)f I - NI ,si‘nce T - Q = ZH/I + 0 (n ).
3

S0 . ’

ER | b(g‘o) A2 .2

E2(1. Tn} ’ 901 AN = lim 1’1 E .{ Z (Tn- .QOI-,}_TI_) I- ‘:'{"é(zn—l/n)‘l,-

2

{1

.Lz (Zg .. I/n)}g_ using (4.2.63))

lim n
5 O T

U k I
B I 8, + IR ¥

2 Py We o 2
lim n E .[I 8L 18 (Zn - I/n)}+ lim n E.[ I_ R}

il

S 9

(since R_ is- E -orthogonal toi'ﬂSnﬂ a-nd'*'zn up to o(n~2)).

Fa =1
— Cf : Upr = g8 a2 :
= E2(’{gn}, Qoa A + 1lim n B (I R ) r
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Now since /\ ' . b (8 ) o
Eg(,{ Qn},gosin) lim n b

i

- H 5
i {zn_(gn'go}" n . )I"'j%(zn—I/n)u

|

lin n%B0{T 5, + B (Z2-1/n) }P(using(4.2.59))
v n I2 0!

1t follows that k

1nf B (ST 196 s8) = inf E.(F 6 %658 + 1im nZEV(I B.)Z

X 24Ty %8, et | ¥ € n

and

A
Eol{ Talp o) 2 Ex({ &y} &)
with equality iff
; = Y g . I {EECI R;)g = 0 (n_z)i e G

This completes the proof of (4.2.24).

- We now derive gété.af).

A A by S
@n - 90 -~ %n/I = Qn T Thm T 90 - Zn/¥ (from (2+2.35))

<

’ b {e) 2z oe) B
_ " g0 ¢! 0" 0 n -3/2
_ Qn {‘ = + G e } -8, -1+ oE(n )

m . ; ¥ . —(usj:pg (4.2.34))

A b6y =z b1(6.)
i 0" "0 n 00 -3/2
; = (On-— 6, - il ) R et Zn/I + oE(n )

1

1
Gl é? - Eklgilz Zn
n 1 n i -

i TaEn

t

~3/2y  (using (4.2.21))

' g
(Z = Hpy/m)  T(ZP=T/n)  bICO) By C A 3/2,

= - + R_+ o_(n
12 : 213. n I ’ n B

‘ z 7 B % A
L SR T RSN I s I
5 { % % R R e e v L

it

(4.2.65)
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where
™ ”\ Z -b (@ ) J J7-
o N, =50 30 -3/2
=Ry 71 _.‘.21' —?‘l}+o(n/3
2\
=R, + bE(nhl)

snd so RE is EU-orthoéonal to Zg and zﬁwn up to o(n”z), By
Lemna 4.2.8 the left hand side of (4.2.65) is E°-orthogonal to
2, up %o o(n"?). By easy direct computation the sane result is
true of the first two terms on the right handvside of (4+2.65),
Hence gﬁ is alsq Eggorthdgonal to .anp tof'o(g'g). SO
gﬁ Kas the-prépérties asse?ted in Theg}em 4.2.6.,‘Alsd observe
that (4.2.65) can be’reﬁritfen as ”

% z - Z = - =

ox - 6, —--Iﬁ_ ;—I;-— { 2u211+ Tebtgol + 5, + RY
which 1is nothing but (4.2;?2). This completes the proof of
(Ao 24 22)

To prove. (4.2.25) we proceed as follows.

By Lemmas 4.2.8 and 4.2.10, (T} - G )I has the same

covariance up to o(n-z) with 2,9 Z.W, - and 22 as (9* - QO)IU

So (4 2+ 25) can be deduced from (4. 2.22) 1n the same way as
(4.2.23) was deduted from (4. 2.21) i It is easy to check that

~1
- * = . -
Rn Rn oE(n ) But from (4 2 25) we have
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AN T gase Ly ;
2 2 2 -2
* = * ‘ *
E(T%- ©,) E(eX-0)% + E(R¥)" + o (n™")
Hence o . : ; ]
2r (kg )2 ¥n 127 = o2 minsl o
CnLE(TE-8)° - B(6f-8.)7] = n .E(Bn ) + o0 _(%) > 0s

since' ° j o .2‘L

. dP B, ®P) =0 (D)
y & . o} T ) N |
Lo@h {85 Wi o e A Lol A SR
* = 11 ' : 5 (R* CNxe die
T 0) = By &) + Lim n® B (RES) (442.66)

which implies u g WO T

(-P({ X o ) > C.l)({@n}’ ) [ proving (4.2+26).

We next prove (452.27). From! {4.2,66) We have

i 2 U /p2 . 7
QT &) = QUERY 90?_ +1m o® BE@RD (4. 2, 67)
since - : .
: e A O By P
‘ By -BL= og(n™) ‘and R = Op(n Ll
Clearly, _ 4 o
L’)({g b &) = 1t n” 2 (82) 5 {I“oz""n}* 4{J'+zo ?r

; , (e 24 68}
Also from the proof of (4.%.24)*one has

Eo({T 110,) = lim n2I2EU(Rz)+11m nE’ {2, W -+ 1 /0) 7 -y (z -—I/n)y

where Y 1s the limiting regreséion coefficient of

1/2 2
T (znwn -Mll/n) on (Zn - I/n} and is found to be u,ll/I3

applying (4+2.43) and (4.2.47)e So
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. QORRR -, i S 2. , .
Eg(iTn}, 90) = 1im n~IE (B ) +, 2 { Tetsys u115 (de 2469
uSiTlg (40204?)0 50 by ‘(4.2067)3(4&2&68) aﬁd (402069) it
follows that = ¢
B (T % 6 = T2 (DT 4 8) -5 3/2 + iy}
2Tk € QT)‘{ n¥ o 12 1 11}
proving (4e2.27)e This completes the proofs of (i) mad (il).

proof of (114) Let T be efPicient and loSo(III)o Let m and

Té be as in the statement of Theorem 4e 2.6(111). Let

VAN /\ :
e! {b (@ ) - b(G ) - m(G )g/n '

o3

where b(g ) is defined in PPOpOSitlon 4.2.4.

Then as 1in the proof of Lemma 4e2e8 it can be shown thet ﬂg? and

it

Tg have the same covariance with Z up to o(n ), Since

N 4
[Qn - { bO(G) ~-.b(8) -'m(Q)}/nma é;] and (Tnf-m(e)/n.-.TAJ

i ‘}_‘ 'J. ' ' i y
are oE(n—l), we can apply Lemma 4.2.2 to conclude that éé and

T% have the same covariance with Zawn and Zi ub to b(n'2).

It follows as in;the proof of (4.2.26).thet ;

(+)({T"s 9’) >(+)({P‘}s 9 )
which leads to the d651red conclusien by PTO?OSlthH LeBede

This completes the proof of Theorem 4«Z2.6.
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Note that the main difference between (4+2.21) and {(4.2.23)

. o -1 -1 .

is that R, is oﬁ(n ) where as R, is only _OE(n Je This

is at the root of a result like (4.2.24)s The main differeunce

A VAT _' ¥ 8 17 ]

between R/ and R; is that R* is E -orthogonal to 2 up to
o(n‘g) but Rn is ﬂot. A similar remar¥k applies te En and
R:. The significance of (4.2.25) for proving (4.2.26) should be

self evident.

We conclude this section by considering the case when we
have two or more paramcéters to be %%iimated. In what follqws
we indicate briefly that Theorem , can be generalised to include
the case of two or1more parameters. For Simplicity; we state
the result for two parametsrs. \

Suppose © € (E) is a vector with twd real eoordinat§s
e = (@(1)3 9(2)) and T = (Tcl) (2)) is an efficient estimates
We can define the local stability of orders IT and III and
efficiency of an estimate 8 exact}yrln the same way as we have

done in (4¢2.5). Ve make the following assumption.

Assumption (A). #&ssume that X 2 2, wl(g(l) 9(2)) (9(1) 9(2))

(1), 9(2))

cony wk(G are thrice continuously differentiable and

that the rank of
Dme®, o pr 0,6l
S i ygm
1(9(1) (2 Bwk(‘g.(‘l)’ o(2)y

:_} Q(E) TLLE] -?) 9(2)
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is 2 for all O 3 (;1_). Suppose &, = (-@él), Q(() )) is the true

- ' end Y = : "
value of the parameter. Fgr some A (J\ij).2><2 el 7 ‘(yij)gxz?
let ' y 'E

. . 3
1 GAdoE By (1) Ay o
q)l("k -{T '(r! x ) = -ﬂ{ ‘1','1 a gzl) ,Q - (T = 90 ) Ill

O

0,0 Vs {4 6) = 3" Dol l(T-(lt) - ety 1
¢2 ’{n}’ o ”n{n bg(‘g) g" n-'- "o 11
W ! : : o

=

0

LI A 1, N ¢S N R S )
~ (T, oo = T Yyy (T,77= 6, ) (T 97-06,°)%

where [Iij] is the g X 2 information-matrix defined by

\ljg L BlogL | B
Iij(go) = Eg.{ \ (1) ‘b g(_) } ’ ls.] = 1s2. )

=

) __ PR

Let A . . e
a,(6,) = lim B B2 .[Tn}“, e,) -
and’ | | | )
ay (89 = 1im B by (Vs T} 9)
Define. . 4 - o e e Ra A N |
B (4T %0 s 200) = 11m[n EU (T 9 ) o e, %
5 {Tpp Oy » {¢1 'f, nk’ y A0 ¥
and R P S

1

BSD (4T 156,5%50) = 1in[n ﬁ”{ﬁé,(i,{Tn},eo) Q'ay () /03
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Then 1t can be shown that (as in Sectionéganél) and Eég) are
independent of U, where U is a neighbourhood of w(Gn). Now
consider the limiting dispersion matrix of @1(A, {Tn}’ 90) and
@2cy, {T [N ) where the values of Ai and )Ej are chosen
such that E(l) and E(g) are minimume This limiting dispersirm
matrix- can be defined as second order efficlency of Tn (Rao's

first measurel.

To define Rao's second measufe we proceed as follows.
| b(T ) - s
Define T; T —L, TNow consider the expansion for the

n
dispersion matrix of T* and look at the coefflclent matrix of

1/n « Suppose we denote this coefflclent matrix by(ﬁ)({T*&, 8, Yo

/\
Suppose = (Q(l), 9(2)) is the Melee of Q ¢ Then we ‘have

the follow1ng theorpm‘whlch~can be proved exaetly on the same

lines as that of the one parameter case.

Theorem 4, 2, 11{NIT Assumption (A) holds and Tn 15 lese (II) and
first order efficient then the““aifferenéeiﬂetwéen the limiting
dispersion matrix of 0, (2 {Tn}’ 9 )s 05(Ys {Tn}’ 8,) and that
of §1(n {‘2;}, 81y o0 s Qn}-,e is’ pnsxtive semidefinite.
(11) If Assumption (4) holds and Tn is -1;5 {ITD)
and flrst order efficient then
P YIp 0 - (X o

is a positive sgmidefinite matrixe. -
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443 Scae Remarks

e =
P

Remark 4e3.1. The expansions nbtained above are not affected by

the singularity of the dispersion matrix of 2y ann’ Zﬁ up to
o(n—z) but it is worth peinting out that singularity up to o(n"g)
nbtains if and only if there is“aflinear relation between -ann

and ZE up to o(n—l), which can be true if-and only if there is

A

a linear relstion between Z1 and wl. If such a relation holds

for a1l 6 1in some open set then 'f(x,é) is essentially a one
dimensional exponential family. For, the fact that Zq and Wl
are linearly related taken with the linear independence of

pll""’pkl gives us P T

3140)/81(0) = g(e)

the solution of which can be written in the form' Bi(G) = aiBl(G)fbi,

where a; and bi are constant.e Hence log .. {(x,8) =

k

+ Z b Of course if f(x,®) 1is one

c{0) + Bl(O) F ay Dls iy

i

dimensional exponentlal density then there is a linear relation

between Zl and wl.

\

Y = ]
= 12 (I Moo = Mll) 0 ;f agd only

if there is a linear relationbetween.zi and"wl.Wé'héve seen in

Remark 421 that if this result holds for all =9° in some open

LY o
Remark 4.3- 2. Eg({ gn}j go)

sety then f(xy8) is essentially a one dimensional exponential
densitye Moreover if there is a linear relationship between 2

~
=~ P #* =
and Wl and J + 2&511 = Qs then < )(‘t gn}} GO) = Qe

it
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Remark 443.3. It may be illuminating to give a “formal"proof of

the following result

o -.l
) T.E’ (Tn ZnMn) B (F M )
where M, = bX di(pin- wi(eo)) and H = (wn - ;nI')/I .

5

Wote that ,
it c B, o (a2
n E t(Io Tn) Mn} —- (o) .(n )o

Hence differentiating this werete & :we get formally

i

1 ‘ :
= E { d@ (1 T*) M } ST VL o

o EL{CTOED a My

+%EU(T*) Zaalw'a- o (n )
- “"r'l] 5o {Ti% (1 _;E;_) M + °.-.,("_1-2) o

I Ry
=% E (Hn Mn)

$ ‘ t *; ""1/2
51n?e H + I'T} = OE(n 7 Y.

Remark 4.3.4. From .the view point of second order efficlency, we

have seen that smaller the measures E, and (T)fthe\betté} 1S the

estimate. 1In fact they are really measures of 4aficiencv as

defined ina more general gontext by Hodges and Lehmann (1370).

e
Daficiengy of i n relative to { (4] } is

PG, (o1

s
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Remark 4e3.5. To facilitate comparison with Rao's (1961, 1963)

results for the multinomlal distribution, let us denote by m, 13

what Rao (1963) denotes as “i ¢ We shall show how to express

1] in terms of 4. 13 and vice versa. Let the multlnomlal popula—
tion counsists of k+l classes w1th probabllltles Wl’w2""’wk+l(g)

m

Let

l if ‘first observatlon falls in the i-th class

; .
Us
\\* otherwise.

Then WwWe have

n

k1wl o k+1--d%1og ™,
z,= I (=) U, ‘and.w, = 2 Ug+ I.
1 457 ™y J.i SR T 1=1 dae® 1
T i) ) i
Define 4,, = (z 13 Mso denote Y = F(—=)U.. Theny
13 = % (A 0. The
_ Aoy Jak S e
following Rao (1963), myy = ?9 (zlly,a. Clearly W, =¥ (zl)+ Te

Using thils we can eXpress mij in terms of “ia “and vice versa.

-

For egample, Hqq = Mqp ~ HMgge

Remark 4.3.6. Let us try to unﬁerstand tBe‘calculations of second
order efficlency. given'b§ Fisher (1925).“ As Rao (1961, equaticn

5.14) has pointed out that Fisher‘s measure Eg = lim (nl- I )
T n _

can be shown to be equal to the llmit of the eXpectatlon of the

conditional variance of nZ, given T . Con51der the expansion
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1 d log L
Y, =27 (Tnﬁ go) T 4o 3
. =L o
where 1 d log L
. Y we. ¥ »
n n de T
. k n

~Suppose T 1s efficient and l.es. (II). Note that this expansicn
n .
1.
)

is a function of Tn and bynot including that term does not cause

is not correct up to OE(n"l) but the missing term of OE(n-

any error In the calculation of conditional variance. Thuss a

correct expansion 1s

dzlcg L (Tn- 90)2 1 dsldg L
52 2] o ?1 2 +OE(‘..
de o T ey o de o

— _ Ji
Yn I Zn i (Tn g0) n

which can be rewritten as
2. W

: - * n n ..
Zn_" Yn -— + (Tn—go)i f

2 | 25 '

Fisher now takes the conditiibnal expectation using the jeoint
asymptotic normal distribution of the ﬁiﬁ’s and replaces the
condition Tn - GO = constant ' by " Z, = constant '". Let us
note that these calculations lead to Rao's measure Eggf Fors

: ‘ oz W
the " conditional expectation "of Y, - nﬁ 3 is ecasily seenrto,

A
n

L ) ZU can bemwritten'ln the form ? ? ﬁij(pin-wi) (pjn—wj)‘

be of the form Ab Z -+ c/n since by (4e3.1) and Lemma 4.2.7,

=1
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A1s0 by (4.3.1)

T ~©e_ =

Z.}
n o} I

ek - +
so that by Theorem 4.2.64

X L R

e ; 107 S -1

I R, + og(n™)
phers Rn is defined in (4. 2a 23)-

Bvalusting A and c one, finds, the ' conditional variance ¥

of anl given Tﬁ‘ is the ‘*expectation " of

Z W '
Ty Wy 2 9
{Y% -~ 1 - % % -c/n}

which equals

H 4

. -t R , :
SRR e R S AL e

Thus tHé measure that Fisher calculates is exactly the measure -

E2 of Rao.

Fisher seems to believe, wrongly as'it turns outs that Y,

is indepen&eﬁt?of'(Tn“; QO) or 7, up to second order terms.

But it is true that Y_ is i) .- orthogonal to zg and  ZW_

/\

up to o(n-g)- Thud = "3 wi - YA Ty

i
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Fisher's measure = E2 lim E° (Y ) + E ({ G a G )

Fisher gets wrong result fdr the minimum chi=square meéthod because

he substitutes the varisnce of

(B - m1(8,))°

ol
Yé =3 = 2(@\) wi(@o)
LE R
for the v=rinnsce of
Py - T, (T )2
y =d g0 i n w(T.)
B 2(T ) i*'n’*
Remark 4.3.7e Suppose that instead of the criterion E, one
considers N
. N . _ 2.7 o 2
Eé = inf 1im n E {Zn 7 90)31 (Tn 90) AQ D (Go)/n}
Moy 5 Sl SXES -
where

Alkz(g)_ll'nnE { 2y (T00) 2 - (T, - 83% Ao

Then for Eg we have theﬂfollowing result.

| Suppose Assumptlon (I) holds and T is efficient and
l-s.(II). Let 9' be deflned a8 in Theorem 4.2.6(iii) with
Bz 0. Then |

E"({ Tn}’ © ) > E” ({ 9 }, G ).

The proof is similar to that of Theorem 4.2.6(iii).
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Bemark 4.3.8. Suppese the likelihood equation 1s not linear in
. Then to get the,m;lce‘one éppliesstﬂe method ‘of scoring
proposed by Fisher (See Ran {1973), p.366)s The main criticism
against the melee is that it is difficult to compute. We show
now that two iterations in the méthod of scoring 1s good enough
up to o (n™1). ILet SRO) £>(O) denote the 1n1t1a1 value
sugh that JQEO),— Q = 0 ( 1/8)._ Let (0[1) and 9(2) be the

values at the first and secondﬁlteratlons. Dencte

1 d” log L
il P =T . .
(1) n et ’@(o)
FAY
Then we define 6(1) by
A\ AN
= Tyt QIS 2 O Boer
such that
N :
/9\(1) - 9(0) = - L(l)/L(Q) 4 0 (n /2 o (4.302)
Similarly, = le
d log Lj : e Yo S dglég”L'
0 =23 + (8(2) - e(1)) 2 |
i 3(1) nwe? | s
A N , (Qfl) - s(0))~
Ly + {(6(1) - e(0)) Lioy * 5 L(S)
+ (8(2) - e(1)) {L(g) + (8(1) - a(0)) L(S)} + oE(n“ )
L
—';-—i—l T +(€}2);gkl)) Lo b + 0O (n"l
- — )
232, @ M2 T,y Mt * o

using (4¢3.2).
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™us we arrive at

ey TAN L L
= — W) B G| =51
8@ -e) = 2 2 . L(B)'[L(2) Ef;%] + op(n ™)
()
S
L
_ 1 1
= -3 L3 L(S) + OE(YI )o
(2)
Hence
5 )
AN L L L
_ E (2)
Further note that :
3 R ~: ARY.
log L i, KA (e - 8(on?
o AlLRS RO e - 1
0=+ —35 gn“ Legy* (e, - 6(0)) Lioy* e = (3)+o (n”
Which gives,
1
AA ok B BT Swon, & e &g
5 - s(0y = 2 1 By By, gsﬂ;-oE.(n-l)
D
3Y.2
Ty * by - "A‘L'L"}
= ‘ “(2) + 0 (n—l)
~ 1 o B
=B < e
" " Ly 1 L?l) Leay 1
= =i 3 + oE(n Yo

From (4.3.3) and (4.3.4) we have

SR ‘,_ .
e, ~-e(2) = op (n~ ).

. P Al
),.,.. 4
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The other root of the quadratic in (4s3.4) is not consistent

AN P4 -1/2
with the assumption (@n -~ 8(0) = Op(n )e

Remark 4.3¢2 We conclude this section by de&eloping an asympto-

tic Bhattacharya bound for efficient estimatess

Suppose T 1is an estimate such that

EU(TE) = 6+ 0 (n"l) | (4.3.5)
and d2
U 11 T o -2
E (T W === =0 (n ) (443.6)
# n2 L d92 ,

e

({2.3.6) follows from (4.3.5) differentiating it formally).

LT Tn is efficient we may expect

i@

o [(T, =8y - Z/De W /ny = o(n™%) , (4.3, 7)

An estimate Tn is regulsr if Tn is efficient and

(4e3¢5)y (4¢346) and (4+3+7) hold.

If T, 1is efficient and lese (III)y then it can be shown

easily that Tn 1s regular, since

2
o 1 2w 2 - ;
5 T E T W/nt (g - w). (4.3.8)

If Tn is regular then by (44346)y (4e3.7) and (4.3.8%),

we have
20 + J - '
U - 2 _ S i X -2
E {(Tn - 90 Zn/I) (Zn I/n)} = —;5;—*- + 0 {n .
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2
“and L 4L we get

Using the regression of T I.. on 2 : J
ﬁU (1. -6)% s L 4+ 1 %+ u + 0 (n;éjgt-
GQ n @ = nl n214{ B ll} =

, ”~ 3
It is easy to show that 9* attains this bound if and only
Sl there is a linear relaticon between Zl and wl The implica-

i‘tion of this last relation has been discussed in Remark 4.3.1e

444 A Problem of Berkson

Suppose a dose 'di of some drug i§ given to thre j—thﬁadimal;
1= 192sev03Ks J = 1323eeesn s Let Ty denote the probability
of death at dose di and pi(xj)_: 1 if the J-th animal receiv~
ing +dose di ‘diés; =0 otherwise. Supﬁose that an eXperiment
with dnses dl?dz""’dk is sepeated. n ti.es with a total of

n-k animals. Then the likelihood, function is given hy .

k n P o ndl-p )
i=1 |
where
= il u - (
: o= = % pL(x)e
r BiS & e p; ()
Then | . y k
" “ 3 ,‘_ " B - X l -
L= C(W? exp {hizi Lors in *

Berkson new assumes & logistic model for the’ mi's iée.;
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0] 27 =

-(q+@di)

probability of death = vi(d, B = 1/e y 1= 1y2yeee3k

where o« and P are ususlly unknown. ILet us assume B to be

known and o« = @ to be unknowne Then

‘iTi(Q) _ eG + ﬁdi
1 - wi(@) B

This implies

_ n
L = c(8) eXp{n izl (6 + Bdi) pin}
which is the likelinhood fﬁnctioh for one parametef exponential
family. Hence this is a spécial case of the problem considered

dn Section 4.2.

The likelihood équafion is
d log L

xi —
= '—-'d—g-—=I’12 (p

i-—-l 7 in = W,i(g)) . (404:. 1)

N\
Let ‘Gn be the maximum likelihood estimate of 6

iog {fﬂi/l - Wi} = B + Bdis

Li =
and
3 = 208 { Byof/L - By}
K - - n 2 :
Minimising 2 n pin(l - pin) ( Ki - Li) with respect to ©
1 = " ¥ i £ .

one gets the minimum logit chi-sduare estimate .Tn' Tn is to
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<& found from

- d -1 n T . ' ,
pin (l - pin) (/(i = LE) = 0 (4.%02)

3
Hag s

=i * = F——
raere Li Tn + Bdl

‘ ~
Note that here Assumption (I) holds and both - T, and On

<2 efficient and lese (III)e The expansions for these estimates

become, after some simplications

k
p L SO
Q‘n = go I = 213 Zn + OE(l/n) - (4e4e3)
and :
- Z k |
i s ~ =l 5
Tn go I 151 (2Tri 1) (pin .”-i) Zn/I
k¥ (2r,-1)
2
; 2T 4y (A -wy) AnT Ty = i)
where | | |
- k 5 3 .
I= izi T (1 - 7,) »ud Zy = g .
Also note that
b(e )

4 = —_—C =1

and =
e slop @ B L

ol E U - = 8,4 '—l |

EQO(QO) =6, + =2=2"+ o (0™
where 0 T o

b(68) = Ewy(lemy)(ar;-1)/1% - s(2r;-1)/21
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and

bo(8) = Zwi(1 -m) '(Qw,i-})/EIQ .

(44446)

, N
If we consider the corresponding estimates Qﬁ and T;

which are corrected for bias up to o (n"l), we get

, =, pE
EU (2*_9 )2 _1 . [T Tri(ldrri-i(a‘rri 1) ]
@O -n. O nl 2n21"

(2 7y (1-m,) (2r,-1)]°
2.4
n I

(- 2L A
EGO(Tn"Qo) T nl .

s(er,-1)% ¥ vi(l-—vi)(%rri—l)z
+ =

2n2I2 n213

ot

+ 0 (079 (402.7)

o (n-—z) .
(4.448)

It follows from the theorem of Section {(4+2) or can be checked

directly using(4«4+5) and {(4.4.6) that

' ey
U ove g 9% Ui 0 8 = @, o B 5 -2
EQO(Tn go) - By (gn go) = Ig (Tn gn) + o (0%,
o 0
| Define P\ ZaN ¥
wA {pee,) - 0,8}
6 =6 + .
n n n

a I o e P R S S s

where b{(8) and bOIG) are as defined in (4.4.5) and (4.4.6).

Then the corrected milee may be taken to be the truncated version

N\

¥y
of 6n‘ To truncate @% choose some d > 0 such that the true

PN

6 may be assumed to lie in (-d,d) and then replace ‘6% by d or

-d according as it exceeds d or falls below 4.

{The asymptotic
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e
theory is insensitive to the choice of d)e Iet the essimate

T, De truncated 12\3 similar ways Then the mean square error
of the truncated /@ is strictly smaller than that of the
truncated T =~ if terms of order o(n"z) are neglecteds This
result remains true for quite general 1oss functions v1de Ghosh

Sinha and Wieand (1980).

Here one has a complete suff;cient statistic, ﬁamely z 5.
but T; is not a functien of‘its If one cons1ders the so-called
Rsqulaekwellizeq Tﬁ = (T*[E pin) then it is 1ndlst10gulshab1e
from ’3 1Up 4o 0 z(1/n).

Qur second order expan51nns seemed to" agree quite well with

the Monte-Carlo values in a few examples of Berkson that we studied.

In the eXamples T had lower bias as. well as lower variance than:

~ )
@n but b'(@b) for T was also smaller than the correspondlng
= /\

quantity b'(Go) for ’8;. This last fact explains why G;

performs better than} Qé;_ since
SR g 2p1(6,) .
Uprog m 12 _ 0 e, N B -2
%‘(Tnfgo) = E (2 -8, b[QQ)/n) ———Eg?— + o (n] ).

®

e

gilverstone (1957) and Rao (1960) have'defeﬁaed-tﬁe use

of the maximum likelihood estimates from certain other points .

of view. : " E N P
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“ 4.5 Bayesian ApﬁfoaCh to /Second Order Efficiency

In an importént pioneering paper on Bayesian anaiysis,
Lindley (1961) has considered an expansion for the‘ aposteriori
risk and obtalned from 1t ah eXpansion for a Bayes estimate in
powers of 1/ne In the discussion following Rao (1262) he seeks
.a Baye31an justlficatlon of Rao's (1962) results. Lindley
considers a loss function, depend;ng on obServatlons, whieh is
~proportional to

1 d leog L o :

A(3)8) = (7 -+ —5 |y ‘ (4.541)
and a unifbrm prior measures Actuali&fhis terminglogy is slightly
different. ‘He considers the product of prior and doss function
l and calls 1%t a weight functlon. Lindley: shows that g\ is
Bayes up to of{n" ) for thls prior and. loss. tunctione He also
claims that;thg loss functlon given in (4e5.1) is equlvalent to

2
explains its second order éfficiency. It seems to us that both

N\
the measurg; & of Rac and that the Bayes property of Qn
; .

these claims are ﬁnjuétified.

For example, consider, the special case of ieied. N{(©,1)
random variables and note that here(4.5.1) reduces to (d - 0)%.

Then, presumablys one would evaluate an efficient estimate e

by calculating Ey (Tn - GO)E‘if'the loss function (4.5.1) were
= P,
useds This seems to have ro relation with
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Eg {fﬁ -8 i;;m(& -6.) - %(TanO)?E- a}ﬂgo)/gyz

(wheTe a (9 Jradis defined as in Prop081t10n 44.2.3 and Xﬁ is
the sampleimean) which one to con51der for Rao's measure.
Moreover for the loss functiont&.5.1)the Bayes property of @n

does not. tmply that for every efficient~estimate T
ol
S Y - L2 , '
Eg (Tn -8.07 2 Eg (e, - Q )7+ op {n” ) for all 9 .
o R ; o e (4.5.2)
In fact it is easy to see that (4,5.2) is false. Note that
N\ = = -
Qn-z X the sample mean and so if we take 'Tﬁ = X b(x Y/n
where‘ b(G ) and b'(g Y% Oy then (4.5.2) is violated., If

{
the prlor is the Lebesgue measure;- ‘then -the approx1mate Bayes

property for Qn becomes an exact one in the ‘sense

J [(d_g) ffxlsg)---. (X 10)] de 1s ‘minimised at 4 "lé; ;
This result is known to be at the’ root of minimax1ty and adm1sa
sibility of G with respect to the 1oss‘(4.5¢1) but it cannot

1mp1y any unlformly best property like (4.5.2).

The remarks regarding Lindley's 1oss for the special case

considered above are true for the general-prdolem with slight

modification but we shall not pursue this matter further.,‘Let

w.

w 5
us now proceed to show that a Bayesian proof of results cn. second

order efflciency is indeed possible though net on the lines of

k
N

=
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Lindley outlined aboves Our arguments will be hepristic but for
a'rigerous treatments refer to Ghoeh; Sinha and Wieand {1980) .

We firsp appfoach Rao's result. Let {Xi} be a sequence of
i;i.d. random variables with density f(xs ©) and the loss
function be (d- 9)2. Let the prior?have a density q(e) with
respect to the Lebesgue measure and suppose q(B8) 1is twice
continuously differentiable and p051tive everywhere. Then ther.

Bayes solution is, using Lindley (1961),

A
L q!(-gt)ll T % ‘
P . . Gy .
B =0 =+ % ~2 -%— —_n oE(n",B/g) © (44543)
: BB g2 Ty e ) e
n
where L
di log L
L = o A )
1 sl 1o
Let f = ‘ A
' e 6 ,I:s_ 1 4 )
B-n = Qn + 3 R T N . {(4+5.4)
22 tmaky 3

We can consider Bé as an approximate Bayes estimate. Then

we note that . . 1 Al - . 1
i . ,l ) ! TR
'V _ eyl iy a8 -2
B (B! - 8)° = E;(B) - 9)% + o (n™%).

Also from (4s5.4) we have .y

b

\ . a =y d | bo (g)
Eg(Br'l) = el cr(le) o (@D
where
E é?) = 6 + %0 (®) + o (n-l)
(4} n n L
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and

o ho(mt
EG(Bn 4

AL o o
n n

Let us assume tﬁét c(98) is cdhtinuously differentiableﬁapd

consider another estimate

: /\ : z. ‘ . .A‘ L
c{6 )
Bt = 6 4= .
non .

n
Then l |
AN Q . "'l"
I = = cfe) .. &

Eg(Bn Gn) o+ {(n"" ) e

Clesrly B!'= BnQ%oEfnfl).f'Nﬁﬁ“wé;will show that this property
| i , .

implies that Bg is Bayes up to o(n"z) in the sense of (4+5.8)
given below. Note that t

o ;;;;f';
PO} ey - A

o A\ 5
Eg(By-0)" = Eg(0,8)" + —5— + —— g (8- ©)
i WO 5 o
+ 2Ey(6,8)(B] - 0 - c(e)/m)%} + o (077, :(4.5f5?
similarly sianil : '
T e (o } 2¢(0) A~ :
E,(BY -8) (9 0% 2 T E (9 - @)
+ 2E (g\“ o) (BM - g\ - C(Gj)nj Y+ o‘tggé (445.6)
G{ n ‘ n Kn }, .q )c eDe

£z

Joame T EL
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But
A
Eg(8,-8){B! - @ - c(G)/nL 2By (@ 2O B~ e, - c(e)/ny
= (/\ 8Y(B!'-B" )Y { -2
o EG{ gn_ n o n )3‘+ o {n ")
= Bgf(Z,/1) (B]-BN} + o(n™)
(since /ah-Q-ZH/I = OE(H'l))
S 0{0_2). ‘ ) ' (4e50 7)

The last step above is obtained by dlfferentlatlng the relation
B (Bl - B") = 0o (n“l).
8 ' n n '

It follows now from (4e5¢5)s (445.6) and (4e5.7) that

B!~ 0% = B,(B1- 9% +0(™®) = B (B~ %+ o (D),

(4:548)

We have now arrived at a remarable Tact.Fpom(2.18) of
Lindley (1961) we notice thaf up to "O(n"l) the posterior depends
on ;8;, Lg, 13 and L4 Y in s séﬁée, therefore, they are sufficient
to O(n_l)L ' Nevertheless (4454 8). show that for the loss functlon
(d-—G)2 and all smooth pricrs Bg is a Bayes solutlon to the
degree of accuracy specified in (4.5.8). Thus g; alone is not
sufficient to © (n“l) but this Bayes solution B“ is a funetion
of 6; alone. In01dentally, the Bayes property (445+8) would

I OmbREsIBRIDCH web oBimizatie (1’ﬂ\
" ¥ i
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Counsider now any efficlent egtimgte . T ,.Such that

_ o b
EG(Tn) [ —i%l,{ j
Let

T! = T, - f BT - bo(T) - el(T)Y /s

Then some easy calculations lead to,

*

B (11 0)2 - (37~ )2 = B (T*0)2 - B &k )2 + 0 (n°D)
8 ™n v EQ n e ' n e n. o _
oy | P (44542°
b(T ) N b (8) N
o - n x® . Q- n = .
where Tn = Tn - and Gn = Gn = ¢« Thus using
(4.5.8)5 (4.5.9) and the definition of B! , we get.
, SN o ) P
i EG(T;-G)z q(@)as > J ‘59(9379)2 q(8)de + o (n™%). (4.5.10;

Since (4.5.10) is true for all s Rao's result follcows.
We now turn to Rao-FiShSr result. Consider .a fixed A and
a fixed efficlent estimate T o ILet 2,() be such that

By f 2,- (T,-0)T - A(Tn_g)E}lz a}xg)/n + o (5“1).':| (4.5.11)

- VAN : , . ) - j.“
Let aozﬁg) be defined similarly for .8 .e« 7 '

Consider the loss function

L(r0) = £ 2 = (a5 0T - aZ2 /12 - aye)/my? . @saz
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and a prior q{@) satisfying the same réstrictions as above.
One can show as before that an estimate of the form

1 7eN N\
" {5 fie
Bn Gn + c(en)/n satisfies

Eg{ A B, 80} = Eyf /(U(Bn},Q)}-f- o (0% . (4.5413)

where Bn is the Bayes solution for the loss function given in

(2¢5412). . Now.it isleasy te show that

]

B J 2 -(6-0)T - a6 ~0)2 (8)/n32 = 5.4 £ (BN , © (n™
a8 { n on n n ~ Dy S Y n » 8)p+ o o)

(445.14)

Also

-

L3 o ey L e
By { Zn (ang); A(Tﬁn_%)- 3 ak(G)/n&

{!

Bof A (T58)% + o (n™).
(4:.5.15)

Since q 1is arbitraryy we get from (4.5.13), (4.5.14) and
(4¢5415) that

Eg({ Tn}, By A) > E2 ({’g;}’ Gyx) for all &

'
H

which gives: the Rao—Fishef résuit.

To justify these heuristic arguments one would of-eourse
need various restrictions on f(xs6) and Tn but one would
exXpect that the restrietions would be nuch milder than those

considered iny Section - 4e2.
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APPENDIX

Proof of Propositicn 4.2.3

t

(i) By Lemma 4¢2.7,

g
. 7 . ) ) 2 1
) g : — | -— r'?'— € " P
a}'( O) fl:—L-;i . n{ Zn (Tn—@o)I ;\'(Ln GO‘) 3?
=lin n 84223 G (6 WE. 1. (6))
nseo L 2 L e B

o
- A ZY/T% |
=limn B, -2 2 ¥ TNE, ar. (6 )) (5. _-r.(e )
3 =S 00 = 901 2 in "iYo in-"jY o

g R 2 2 .
| ' - A L1 ¥ (by Lemma 4.2.2)
= o 1j T
which 1s seen ﬁo‘eiist.

(i1) By Lemma 4.2.7, ,
" L o U
Eo(S T % 8 30UL = 1im n° E
2(f T 0oy MU} = 1in

{Pn = (T =80T -
Nz e F - 8,00 )/my?
, |

. Ui i3, = -
= 1lim n°E° J- 2 % T9(p.. (8 ))(p. “r. (&) -
B 2 g e LI A taey

2,2 L.y Rg
?\ ZH/I = ah(go)/n} . @
Y L N | 13 = g L L
= 11 5. f -=. = = .=, (& -
nérgo o Go-i' 2 2ZT (plnﬁltgo))(pg,ndwl]( 0)) .

A zﬁ[lz - zaA(Q«O)/n}g (by Lemma 4e2.2)
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which is easily seen to exist.
(11i) The required result follows since the limit obtalned 1n
the prnoP of (ii) does not depend on U,
Proof of Proposition 4.2.4
(1) By Lemma 4.2.7 and Lemma 4.2.2,

1 sigpdd . it
0(8) =F T T By (b1 8,)) (py3- m5(8,)).

(ii) b(e) is continucusly differentiable if' Tij's are, since
Ee(piluwi(go))(pjl~vj(90)) is differentiables

(iii) Since b(B) is continuously differentiable, we have

b1(o,)
b(E,) = b(8) + (T,-8) —=2= + o (n™V/?),

Now {iii) follows immediately from Lemma 4e 2.7

(iv) Proceeding on the same lines as in the proof of Proposition

4+ 23{(ii) we can show that

QO ({7} »6,) = lim n.{ E7(T! - 8,7 - 1/0T1}

1=

existse However one needs an analrgue of Temma 1.2.8

in addition to Lemmas 4.2.2 2and 4.26. Details are omitted.
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{v) We can choose Uy so small that

2 -
L i
(T! - @o) < d 1f‘.4pn € Ul .

Then
¢

TP .
(E. J W(T!,8 )% - E 1(T'-¢ )2 5 = Ca = -2
* 90{ n’ 0)} ‘n o) | £ é PGO{ B, ® Ul} o (n™9)

by Lemma 4.2+2., But

U o
B (T - e )% - ENTL -8)% = o (0 by (iv).

i . W } :; % L4
‘This completes the proof. :
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CHAPTER 5

EDGEWORTHI DXPANSIONS FOR LOGALLY STABLE ESTIMATES
b & . -AND SECOVD ORDER EFFICIENCY R

S5e X introduc%ion

j As in the previecus chapters suppose we have a curved eXpOﬂ;
| entisl family and?as§tmé*it is:dominated by the Lebesgue ﬁeéSure
| lor slightly more generally, by = measure with an absolutely
i‘conbinudus qmmpcﬁént). é&nsidér'e%tiﬂatés T, which are 14 8LIV)

. and e?ficient, described in Section 4«2 « Then using a result of
Bhattacharya end Ghosh (19(8) one can ootaln under suitable
regularity condltlnns an FEdgeworth expansicn for the normallsed

$E3513b1§$ */E (ﬁn?— g)y/fﬁﬁi ‘Wh;qhﬁﬁs,vélid”up to o(n—l),
uniformly on compact ©- sets. Here I(@) stands for Fisher
Information in a gingle dbservation: IE“%&S shown in Bhattascharya
and Ghosh (19?8), (R%mark 1. 4) that the moments of \/Q(T -0) VI{E)
ootalned by the so called delta methodlag}ee with the moments of

the Edgeworth expansion up to o(n~ 5 We " shall refer to these
two results as Prnp051t10n 5.1 and assume below sufflclent

: e e E}
crnditions for it to hold with s = 4.

Let T, be l.s.(TV) and efficient, 8, ¢ the parameter

Q

"

space (2) and C:) a compact nelghoourhood o¢ ”55, Then for

e e (H) sy the Edgeworth eXpan51on up to cof(n 1) for

W’

ﬂy/ﬁ (fn eﬁ@) YI(E) may he eXpressed in the f0110w1ng form
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: = . L 8) (®) i
Pg{\/ﬁ CTn—G)\/ (e) < X} = g(x) + ¢i}f + @2;X + o{n l)
n )
(5¢1s1)
where
X --t2/2 : t
Jxy = § e dt/ V2r 5 0(x) = § (x),
-0
p'e K_.(8) K, (8)
P1,x(8) = f R By(2) + B— 5 (a) + il Ha(2)} 0(2)dz
. (5410 2)
X , Koo (@) Kon(8)
02,x(8) = & [K1p00) Hy(2) + Bl iy (2) + 28L g _(2) 4
K, (8) KZ: (0)
+_—£%Zw~ Hé(z) -+ %‘{K%l(G) Hg(z) + —3%——~H4(z) +
Kgl( ) ' |
£ e Hﬁ(z) + Kll(e) Kgl(e) H3(z) +
+ 5K11(8)Ky; (@), (1) Ko ()5 (L (2)3] 0(z)dz,

(5.1e3)

il

Hy () ) = (- 2P o(x)

and the terms o{n“l) in (5¢1.1) is uniform in © ¢ (E)o and X,

the Kij‘s are as defined in Remark 5.1.1 below.

Remark S+1el. The various Kij(G)*s appearing in the Edgeworth

expansion given above can be obtained by the delta method as
follows. The estimate Tn 1s expanded in a Taylor’s series as
given in Lemma 4.2, 7, yiélding an expansion of Vi ITnag)H/I(O)Pz

this expansion is then ralsed to a positive integral power say
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' r 'y expectations are taken term by term and terms of order

O(H_l) are neglected. By this we gét the rth{formal)moments MP(G,Tn)
l:Eg{E{;¢(Tn = 9)\/TT§7}T of /n (T, - 6) VI(®) up to o(n™Y).

(Tt is easy to see thét .u?(@, TV g0 iw/ﬁ L= = 9)\/TT§S}P

+ 0 (n”l) 3 vide Remark 5¢1e4). Finally cumulants K {G, T,)

are calculated from these (formal) moments by standard formulae

(Kendall (1952)s pe 63) neglectlng the terms of order o(n Yo

For example,

il

KB(G" Tn) e JUB(Q', Tn)

Ky (6 T)) = a,(0r T) - 3u(e; T) (up to o(n™)).

Let Kri(g)’ i=0,1,2 ‘denote the coefficient of n*l/z in

Kr(@, Tn). Then the following relation is valid.

K. [6y T ) = == + ’ r = 1,3
r n ﬁ -
K .(8) XK _.(0)

e e r=2

E ‘/1'-1 | n
(8)
2 —
= o r = 4

= 0 ) T 2 S e (5.104:)
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- fuppose b() . is twice comtinuously differentiable in -
(B)_» Define "M =T PAT,) o : - e f
i e‘lne‘,Tn § LTS e + Thens as provéd in Section 5.2
= bk i e - . o T S - T
3 e -1 . s 5l . :
expansiqn?gpfte% o(n™3) which 1s similar to (5.1.1) except that

Kll(g); ?ndaing(Q) in (541e2) and (5+1.3) are to be replaced by

B (g) KTi(O) = Kll(gj - b(é) \./'It@)
and g = R '

(®)  KE,(8) = K,0(8) - 20°(6), (50145)

respectively. Moreovers cne can use the-de1¥é”metth to;célculate

the formal r—th moments Ly S

Y

wg(é) (sayy

IH

whSy T = By /R (TX - OYWIEHT

and hence the formal cumulants KT(Q,TQ)*z K;(@) {say) of”f

vﬁ.(T; - 8) JVi(®), and K;j‘s from-a rélation analogohs to

(5e1e4).
A =t I PN
Suppose 8 1is the melee Of O+ Them 6, “is 1as{IV)

(vide Section 4.2). Hence Edgeworth expsnsion and the remark
oo o /MBSl
Selel apply if we speclalize Tﬁ**%o -Qn. “In-this case b will

~
VAYEPAN b, (6,)
be denoted by b and we will write Gg = 8. =" MAlso

n

I wb T
the {formal) moments (cumulants) of /n (6, -8 V/I(8) will be

L /\ -‘}:_.
denoted by MP(Q) (Er(g))a those of /n (9; @) Jite) by
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w*(@) (K*(G)) and the quantities analngous to X r ts. (K:j te) “by ¢
"‘ s's ﬁf* s, From}(S;l.S) (a) it follows that one can always .
qhoose bi and b as .- |

S L3

 b£ ) = 11(9) /\/TZVS and b (0) ;- Kllcex/q/ffgs

2 &
&

which will imply , B e
* (@) = Kx % BB ey ' PR 5 1.
KX €8) = K (0)=0 % 0 ¢ (H),» U i5i10)

The corresponding TX and 1;; will thus be Munbiasedt® up to
o(n'l). In what follows we assume that b and b, are chosen
so that {5.1.6) is satisfied. This definition is 1deﬁt1551 to
that giveﬁ in Chapter 4, ;vide Remark 5.1e4, Our main result can
then be stated as follows.

oy , . ’ ~\ (.3 ;
Theorem S¢.1.2 3 Let T, be L.s (IV) and efficlent, ¢, be the

melee and b and bé‘ be chosen so that (5.1.6) holds, Then

K£(8) > ﬁ;(G) ; = B (561:8)
K2(8) = Rx(e) " (5414 9)
K5(8) = Tx(®) 7 ‘ (541.10)

for all © e (§), »
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In this connection 1t 1s worth remarking that (5.1¢7)
fnllOWS immedlately from the definition of b and bo’ and
(541 8) 1is essentially a reformulation of the main result (Theoren
4s2¢8 (iii) of Chapter 4). This will be clear from the proofs
Hence the really new facts are {(5¢149) 2nd (5.1410)s From Thecrem
S5¢1e 2 we derive the following

Corcllary 5.1.3 o

A
Pg - % < Vv (e; - ©) JI(8) < X}
2 Py f-x <V/n (1% - 8) J/1Ile) Xk + o(n™hy

for all ¢ ¢ Cﬁ)o and all X9 X5, 20 (at least one of X1 Xy

being positive)’ the term o(n'l) is of smaller order than n "t

unifermly in Xys Ko
This I1mmediately Implies the Second order efficiency of
the melse with respect to any bounded_loss function Lnia, 8) =
h(Vn {2 - 8)) which is bowlshaped {isces Wwhose minimum value
1s zero at 2 - @ = 0 and which increases as |a - 8| increases)
ises.y the following inequality holds «
e -1
Eg { Lﬁ(T;, Q)}. 2 Eg { Ld(g;’ G)} + oln 7)., {541 11)

for all 6 e -(ﬁ)o.
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demsrk Selede  Note that

VR (1,00 VITE)) = 4005 "T,) + ofn™

F".I“gr by’ (40 2!29 ) ¥

B VAT, + T+ T ) VB §T+ ota™)

i

2 (VAlT -6.) VI, )T

o= . L 3
(by Lemma 4.2s1)

o =%
¢ = £, (8T ) + o(n™)

Ly definition of Ko s Hence in particular the b(@o) and bo(Qo)
of Theorem Selesel satisfy ‘ ‘ i

b(8 ) = Kll(go)/\/lzgoi
and ' ‘ '

bO(GO)'c KiIIQO)/,/IEGb)

1n 6oy b8 ) and b () would be alternatively defined as in

Chapter 4, namely

A

U O U .
(T, -8,) and by(8,) = lim n E"( &,-8,) «

b(GO) = lim n E

in indirect proof of Corollary (5+1.3) {(but not of the
theorem)} or rather a different version of 1t appears in Ghoshy

Sinha and Wieand (1980) (vide Remarks 3.1 and 3.2)s Similar
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results are availsble in Pfanzagl (1975)s Pfanzsgl knd Wefelmeyen
(1978) and Takeuchi and Akahira (1978), (Qur results appear in
Ghoshy Sinha and Subramanyam (1979)} they were nbtained independently
by the first two authors in the first half of 1977 and by the third
author s little later).

So far we have the set up of a curved exponential family
and the assumption that the dominating measure has an absolutely
continuous components If in the above set up we drop this
assumptions the formal Edgeworth expansions are no lomger valide
This does not affect the theorem but does affect Corollary Sele3
and hence the inequality {5e1e11} is no longer true. However it
turns out (vide Corollary 5.4+2) that if the loss function
satisfies certain additional conditions (vide {(5.442) and (5.4.5))
the inequality (5¢l.11) remains valid even whaen the dominating
measure does not have an ahsolutely continuous components This
modification takes care of the curved multinomial for which

Corollary 5e¢le3 failse

The discerning author may have guessed by now why second
order efficiency has also been called third order efficiency.
™e EdgewoTth expansions of Vn (T; - 90) is a series in powers
of n~1/2 whereas o n(T; - 90)2 is a series in power of nul-
To get the latter up to o(n"l) from the Edgeworth expansions

one needs three terms. Thus if one thinks of {5:1s1) it is
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natural ta follow Takeuchl and Pfanzagl and call it the third order
efficiency of the melees On the other hand whan onets priméry

. ) S 2 B 2 -1

interest is in B n(Tz - 90) . 2E (e ~ 8,0 *+ a{n ) it 1is equally

natural to refer to it as seannd order efficiencys

Note that Corollary S.l.3 evidently remains true if we replace
o(n™1) by o(n—l/g)& Results of this type have be;n called second
order eff101ency by JAkehire dhi Tekeuehwi(15762y1976h)amd Pfanzogl{1273).

/%g;‘EKZCéle for eff'iciency, one should call it the efficiency of
order 3/24¢ ). In the present context of les, (IV) efficient

~-1/2

cstimates Corollsry 5e 1u3 with ofn™ 2) in place of oln™+) turns~ut

be be uninteresting, as pointed out by Ghosh and Subramanyam
(19?4).ﬁ"For,the‘pro$f of Theorem 5s1s1 shows that the inequality
in Cornllary 5413 1s an equality up to o(n_l/g) and hence up td
o(n_l/g) it effers no discrimination among lese (IV) efficient
estimates,

In Section 52y we adopt the ﬁotation%, terminelogy and
assumptions of Chapter 4. In Chapter 4 it sufflces to assume
that T 1is thrice contlnuously dlfferentlable. We need one
more derivative in order to get Proposition 5.2.1. In this section,
the proof of the theorem and Corollary 5,1;3 ‘are also givens The
statement and the proof of Corollary 5e3e4 apear in Section 5.3.

We consider a numerical example in the final sectinme
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582 Proof of thg theorem
Our set up in this sectirn is the same as in Chapter 4.

Qur assumptions are the following .
The dominating measure & has an absolutely
continuous components {54241)

With po(X) = 1, po(x)a pl(x)’-at’pk(x) are |
linearly independent a.e(u). (54 2. 2)

fssumption {I)} of Seation 42 (54 243)
Trl is 1es(IV) {See definition 442,1) (50 244)

The following proposition is an immediate consequence of

Theorem 2 of Bhattacharya and Ghosh (1978).

Propositica 5« 2e1. Suppose conditions (5+2..) to (5.2.4) hold.

Then (50 1&1) holdse.

Remark 562s2 +  The following result extends Remark 5ele4 o

{(r+s+t)/2

U r s ..t

EgO{(Tn—GO) Z, Wy

_ r s .t (I‘f'S"Ft)/z _/1

= Ego{(Tnl+Tn2+Tn3) Zn Wn}n + o(n

This follows immediately from Lemma 4,2i1 and Lemma 427 noting
that
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(Tn-96)r - (T , + T

- OE(n"aI‘/B)

ne +'Tn3)

) ‘ -1/2
Z, and W, are each oE(n Ve

Pl
As in Lemma 44247 the quantities ©, 'gy Tgi's and
i .
O*i's relating to the expansion of 9 ) T; - 8, and

, -3/2
* ! = =
Qn OO respectively (similar to Tn QO TnI+Tn2+Tn3+°E(n ))

can be dafined analogously.
We state below a set of properties whose applications

provide a direct prodf of the theorems Proofs are given whenever

necassary.

Let
Pl(pln""’pkn) and Pg(pln""’pkn)

be two homogeneous pélynomials in 51n""’§hn of degree r and

S respectively.

Property 5.2.3. The bivariate moments oy ’kz of
- ' 1

(V)T P, and (v/n)5 P, have expansions in powers of n"L,

Property 5.2.4. - The leading term of ukl can be
2
obtained ‘by assuming pl ""’pkn to have a multinormal

™

distribution with means 1""’”k and dispersion matrix Z/n

where ¥ 1s as defined in (4.2.3).
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k ; -
Property 5. 2.5, z = ig& ﬁi(ﬁ)(pin - Witg)) and
. /\ . = .
=21 (r') - oYy (B, - @)y, = (o)

are independent when Eln""’ﬁkn have a multinormal distributions

Proof. By a standard theorem [ Searle {1971), page 59], it 1is

enough to show
(0 5 g1 = (50245)

. A s
wnere A = 119 _’6lJana gt = (a1 (6)0nerpile))t o

From {4.2.11)y upon differentiating both sides with respect to

© and neting that At 2 Aji we get

Tl e |
2 A7 mi(®) =0  for all 1= 1;25e.e5k . (5024 6)
i=1

Ctn the other handy direct calculations show

MY BN 81 (0)
P =1 dey J
and
RERC) B
T = cov[pi(x), pj(x)]’ 193 = 19y24eaesks

giving (Wi(g)g-lug W&(g))' = 3 B' which tcgether With {5¢206)

proves (542.5).
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Property 5¢2.6. Any odd order multivariate central moment

of @ln""’ﬁkn is 2ero whehever ﬁln""’bkn have a multincrmal
distribution.

L L S B -.
Property 5:2.7. Let Tn = Tn b(Tn)/n where. Tn is

1.5. (IV) and efficient and b(«) is a twice differentiasble function.

For © e (ﬁ)-o, P /n(TE-8) VTI(6) < x} is given by (5.1.1) with

$1’x(9)y ¢2,X(9) as given in (5+1s42) and (5e1s3) exeept that K__(6)

11

and K22(G) are to be replaced by Kil(g) =$K11(Q) - b(8) JI(B)

* 1 o oRt :
and Kgg(@) = Kzz(e) ob'(6) respectivelys

Proofs The proof appears in Ghosh, Sinha and Wieand 61980).

Howevers for the sake of completeness, we give .it here.

p—r

Py {Va (TF - 8) JI(®) < x)

b(e) (T -&)b'(®) (T ﬂg)g b *1(B) |
= Pg {V (T, 0= o - == e )mﬁ-g'x}

2%

i

where © € (Tn,Q)

(Tn-G)b 1(8)
2n :

b(8) V/I®)
7 3
| 1

b(0) VI (T -8)b'™(8) ~
1~ D08 Ly

)VI(e) g x +

Hi

- b'{(®)
Pg{ﬁl(Tn-@)(l— =

= Py V0 (T,-8) VI(O) < (x+

n
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[f

OO ) (1)-0)b®) -2

on ’

Pg 4V (T -8) VI(8) £ (x +

n

c logn ol
‘Tl‘l - 9‘{ 4 ""“"‘-"""--}+ o{n )
1

Pg {ﬁ (T, -8) VI{®) < x + &;@ +

]

b(@)\;n 1(e) + o(n'l)} + o(n"l)

i

- b(8) /I(e)
P { VA (7,0) VI(®) < x + = (U LAy 4 o(n Y
b(s) /I(&) X b'{0) b1, %eb(8) /TGy, e o B ®)/n(®)
= E(x + — £ )
vn Vv
2,505 (8) T/ V& * %" (@)/n'®) .
)

3 + o{n”
n

4.

{‘

{ "o ‘:‘ 3 'J.‘.‘. ¥l * ; . \‘ ':_}7 “- *
After stralghtforward simplicatirrm this can be written as

B - %
= 7 +\—/—_1— I {1 (®)-0(e) VIEY) Bz + =2 1 (8)

n

Ko, (6) X .
+ =— 1 ()} playaz + 3 I [Xp(®) K (2) +

Ku(8) -2b ! (8) Kao(B) K, (8)
22
¥ > Hglz) + —3%— Hyz) + _4%74— H,(2)
2

i 5 R (8) vt
+ 5 Ky (8)-0(8) VTGN ? Hy(2) + 24— 1, (2) +
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¥51(0)
s H6(z) + (Kll(O) - bB(8) /I(E]) Kgl(@) H3(z) +

4

# 50€1100) = b(8) VITOY) Ky (8) 1,(2) + £ K, (0) Ky, () Hg (2)7)

< 0(z) dz + o(n™D),

vhich proves the property.

Proof of the theorem ¢« We now calculste K;5's and the analogous
uantities appearing in the Theorem 5.1.2, using Remarks Ss1lel and

5122 and Properties 5.2¢3 to 5.2.7.

Let © ¢ Cﬁ)o be arbitrarily chosen and fixed. Using
i
{4.2.29) and (4.2.25)s it is easy to show that

Klz(so) = K 5(8)) =0 - (54 2. 7)

ihich along with (5.1.6) establishes (5.1.7) for © = Go.

fgainy from (4e225), it follows immediately that

u3(8) = (8 ) + Ego(n R*%) 1(s.) . (542.8)

vhich is (5¢1.8) for ® = B_ because KX = u* and ¥

¥ — Tk
o B iy 5= 4o

To prove {5.1.9) for B = B y note from (4.2.25) that

(e,)= Tx (e )+34T(0, )y Eg [{\/E(9n1+9 +e D THVA RY)]

”\ /\.

+ 3B, [{V (9n1+g; 5+073)} (Vi B9 {I(go)}?/z- (502.9)
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Now
AN~ N

- I fa* * R N
B [{V/RO7 00500y (v )]

AAA A

= EQOE{\/E(G;;1+@;2+@;3)}2 (VA o(T5-0%)Y]  using (4.2.25)
Jiz, 2 Vmzoo 1/

1l

)p o

r‘r | § !I &
Ego[i\ I QO) ) + 2 I(go) . OEH’I

Juz, pl(8)-b1(e,) Db (8,)-b(8,)
{ 1(8,) ° . n ) %= n +

N
t 3/t AR (T -0 ) + 0 (a7l by (4e2e29)
Vizoo

2
1 . Rl o -1
5 Ego {( I(go) y Vv QY+ OE(n ) Dby Property 5¢2.6 s

1l

T13/‘2

i

—0 " _ 5 (z% g) + o.(n"
21%(8,) 8, 1 % ™

~ . R -2 .

- a (n"7) since EQ‘O(Z.‘.1 R¥) = op(n"7) by (4.2:85)s which

implies By (th1 Qn) = OE(n"z), yielding Eg (Zrzl Q) = 0.=(n"3)
o o

by Property 5.2.3.

Rgain,

. A N N 5
_ | *
E90[ Va8 + 8, + B%3) (Va BN

7N A f;. A A 1
= Bl VR (83 +81#605) [VA(TIED Y] + o(n™)
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n)ﬁy/ﬁ z, P8 )!(8) (b (8 )-b(6 )
ey {1 T o
g g - Va

13
5

U

Ey [€

O

S PRy %]
+3VR 0 T (T -8 )1 + e (a7

{

vn g
¥y, (A ey ~1
EQO[( 673 )) Gn QN1 + o (2™)

o (n1

I

) Dby Properties 5¢2.4 and-5.2.5, establishing (5s1e9)

et

for © = * o Tk ok
or QO because #oy KB and ua K3

To prove (5.1.10) for © = 6, note again from .(4.2.25) that

-

43(s,) = ;,;(g ) + a1%(e,) By [i\/nm;lmﬁgm*g)fc Vi B

/
+ 617 ©,) B [{~/E RARPAN +9*3)y (vi R9)Z + o (0L,

nl "n2
(5.2.10)
" Nows /by (4.2¢25) and Property 5¢2.3, ’
J Rg* Zn(Q) L(x, ©) dx = ﬁ% + 0, (n / ) (5¢2411)
and n , o B
« o2 e _ Ad{o -5/2 '
FRE 2.(0) W, (8) LGxr ©) ax =48y o (7Y D b (53 12)

‘n

where L(x, 8) is the jeint density fUnctlhn of ‘X -(xl,xg,...,Xﬁ)and

1 42 log L
wn(g) e . + I(Go)s
el
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Differentiating both sides of {542s11) with respeot to 0, we get
[ *
2 JRE 2,(0) W (6) L(x» ©) dx
+ JR* 22(0) n 2 L(x0)dz = 0_(n"%?)
n n : i
implying

S REZO(8) Lz 0) = 0 (n"7/2), using (542012). (542, 13)

[ As in the proof of Lemma 4.28y {5:2¢13) can be justified by
direct calculations.] {5.2.13) gives

A
2
Eq [.{\/ﬁ(cnlw; +5) Y, (VR RN = (L_(rl-l)Q

On the other hands by using Properties 5,2;4 and 5+2. 54

AT A VA"
2 2
£y [{ VR (040002017 (Vi 79?)

va Z 2  Vn g '
= Ego[{(—mj) . _1'(5“? . 0 (n )'5. (/a R;;)gj (5.2, 14)
vn z o 1 = (b_(8 )-b(e ))2 -1
> Eso[{ 1;905} - {an g 22 pl o+ o ()
iz, b, )bE N2
“ B { T Fo {3 % - n g G
(9 ) (9 )
=—-(—3- .[1+ 1 » Fe®o) }En.ﬂ\/ﬁR*)}+o(n

i o (5. e 15) J
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| KX (6,) XX, (6)
where in the above expression the term { Zl_o + 22 o } X
) vn n

x By {\/ﬁ R;}z is actually o(n'l) but we have introduced it there
o " .

to bring the expression in the fnllowing form

- u3(e) - u*(e >
— {K* 90)} { 2 I(Q ) }'[“ 0O (‘fl » (5e 26 186)

To get (542.15) from (5.2.16) we hove used (5s2¢8) and (5¢1e4)e

Combining (542¢10)y (5¢2411) and (5¢2:16) we get
* =1 8 . Ly  atn=l
#3(8,) = uzle ) + 6 ux(e ) { #45(0,) - £E(6,)y + ola™)

Wk . ‘_ X
{since KZ(GO) = uz(eo)).
Hence . ' ' ¥

wi(e) = 3u5% (8.) ~ Tg(s,) -0 (0, )+6a* (e )ugce )62 (6; )0 (n ™)

K§(8,) = R56.) - 3{ ggc%) - G581 + o™

Il

EZ(%)
(since [ u5e) - 56 )y = 1P ) E (VA RH%1% o™ = o(ahy).

This compiétes the proof of the theorems
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Proof of Corollary 5e¢1e2 Choose 90 eCE)O arbitrarily and

I 4ee A2 Ua TTF =z 2 ra g L-Ta Ba S5 R get o diraect computmnocion

KZI(GO) = Kgl(go) and K32(@o) = K32(90) =0, (5.2417)

In view of (5:¢2:7}y £5¢2.17) and the theorems it follows from

(581el) and Property 54347 that in the Edgeworth expansion. {under
A

¢,)) for \/E(T; - 8,) VI(e)) and vh (6F ~ 0,)/T(6) up to

n(n"l) the only coefficients which differ are Kgg(ﬁb) and

K55%8.) and KX,(6,) > Kf,(8)) Dby (521e8)e This immediately

implies the corollarye.

Remark S.2ele The corollary remains valid if one replaces Tg

: /; At A' A A .
by T, and &Ff by 8, Wwhere 6! =86 - e(@n)/n with

= A
c{&) = { Kll(@) - Kll(g)} / I(8) so that gé and Tn have

the same " bilas'up to o(n'l

)c

4
Remark S5.2.2. The probability inequality connecting Tn and Oé

has also been recently proved by Ghoshy Sinha and Wieand (1980)
for an arbltrary one-parameter family of distributions by a
different approach. As mentioned theres the technique of proof
depends on comparing the performance of a natural test based on
an efficient estimate for a certain hypothesis testing problem

with that of the Bayes test under a suitably chosen prier and
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notlng that a test based on the melse 1s Bayes up to a certain

order.,

5.3 Non-absolutely continuous case

We assume the same set up as in Section 542 except that
(5.2.1) is now dropped. As mentioned in the introduction, the
formal Edgeworth expansion {(Ss1s1) is then no longer valid.
Howevery we shall show that 1if the loss function satisfies certain

additional conditions, then the inequality (5.1e¢11) is still true.

Fix ¢, ¢ ) « We shall regard 8, as the true value of

the parameter. Consider the curved exponential density
k 3
= : b
t(xm(ey)) = ce(m(e,)) exp {;1:2-1 ﬁj<w{9°)) Py (X% (563c1)

Denote ™ = (pl(X) - wl(Go) vasy pk(X) - TK(GO) and assume
without loss of generality that covy (¥*) = Iy, the k XXk
o

ldentity matrix. We will denote by [ ¥ HH“ the random variable
k ‘ : t o T

z Y? » In view of (503.1) it follows that

i=1 L=

By | X 1% <oo for all s > 3. {543a2)

Given Xl’ ng...,xn 1¢i.,d random variables acpoféing to
(5¢3¢1), define

yi = Yi — ﬁ (ﬁin L ,Ti(go))? % = 1:21-0.’ k
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and

y o= (yli Yol 6‘¢§Yk)

where 5in =g jE pi(xj)-

. . 1 * .
Let P stand for the distributlon of Y* and L+)So_2 for the

formal multivariate Edgeworth expansion of length (SO~2) for Y*
where s >3 1s an integer (vide G&%tze and Hipp (1978), for

detaills)s For any funetion f Rk_~—> Ry define for r 2 0,

M) = sup (14 |y T A [TyM 2 v REY

For any positive integer m, let Cm(Rk) denote the set of all

k

functions on R with continuous derivatives of order mn.

Finally, for k-dimensional nnn-negative integral vector
= = ('-"Ll! 0(2,40;50(1{);7 let
B“I"’dz'i'cc.'}'a(k

| A £(x)
N %
bxl bxg ...Bxk
and o] = e e, + eae + X
Then the follewing propositinns hold.

Proposition 5341, Let! F 3§ Rk => R Assume the “following «

(1) Ms(fE <~  far goma e S R
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R
5

(ii) £ e CSQHQ(RK) with s_ = integral part of s.

(1ii) Mﬁ(qu) <o for |« = S =2 and for some positive

integer p.

Then
| ;o ag y e
P~ £ = 0o{n .
n (-})30-2
PI‘OpOSitiOI’l 54342 ) For =211 S _,\_/‘_ 3,
Sl T @ P @3 = o(0B/E,

JIISE (5-2) Tog n11/2y

Remark 5e3+3. Propositions 5¢3¢1 and 5.3.2 follow from
Theorems 346 and 3,21 and Remarks 39 and 3410 of GBtze‘aﬁd

Hipp (1978) coupled with (5.3.2).

For any function f£(y); let E £(¥) and Eé _g;f(z) denote

o
the expectations of f£(Y¥) under P_ and (l) : respectively.
0 5072 ' b1

Let T, be efficient and lese (IV) and T; be as defined
in Section 5¢2. Assume that the loss function L(Tﬁ, 90) =

h(yn (Té - Go)) satisfies the following condition.

For some r > 2

nz) = [z|¥ it |y |[gc JIogn

= Kn ’ otherwise (5;3;3)
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where Kn and ¢ are constants to be suitably chosen.

(4.2.28) and the definition of T; that

-3
=
i
(3]
i

n

ALt [Tog n e . £ =
5 fn(f) O i S it Iyl < ¢ VIOF T

Note from

i

(563¢4)

(5345)

where y, = (Pyp - wi(so))\/ﬁ aud a,'s etesy are Constants

(their explicit expressions are not needed for our purpose}zgnd

/log n 4

the term 0(+ ) in'(5.3.3) is uniformlyiso over

n
Iyl < evIogn .
Define E ‘ .
RACIERING fﬁ(f)l'r s W= R
and assumetpatl Lo satisfies
(1) M4(fn):'_§ A <oo

(11) £, c2(xky

(iii) for o = 2 % ¢ y n>1 is equicontinuous on
1 = i o)

compact sets of ¥y

o s

(Iv) for |« =2 and some positive integer Dy Mp(qun) < B <00

{54346)
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We will prove

Corollary 5,3.4 ¢ Under (5,3.3) and (5+3.0),

A o
E{L(T;;a QO)} > E ,{L(g;, go)} + n(n 1).

Before proving the crrollaryy let us establish a few suxili-

ary resultse. Given I satisfying (5.3.3)y we define L' as

L'(ys 8) = £.(y)  if |yl <ec VIogn

=K_ otherwise ) (5634 7)

and claim that

E {—L (Z? 90) (ot L' ('Z’ QO)} = 0(1'1—1)-' ‘ (5.3.8)

To prove (5¢3+8)y note that

- =w s RERISE e
E{L(716,)-L" (y28)} = B[4} vV T, 3+ 0l——F75)

g n
- VA BTy T Jo (5:3.9)
g lvllk ¢v/1log n
Denote
4 =V L@ = Zayy t o= BT Ay,

844 V1 yj 7 (using 5¢3.5)

PR T T

Nl b b2
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and observe that

1

1
) = = . . =0 () and
2 a,¥3 Op(l), 7 2,2.813 vy 3'rJ | Op(\/ﬁ) ar%
Iy - ‘ '
TR TY R LR SUAS S LR ] (543411)

Hences (5.3+9) can be written as

B 1K+ 0 o8 n)é) T ]
‘ + - o I
{ j§ 1’13/:2 { [ nt } “}f“ :\.- c r'_"—leg n -

e i e
= + - e LA R e 4 - 4
{15072 Sl o VIEE (13,1 2 0,

- B 0 n)4) e P '
SRR T v Qe 074y,

AR (5'.30 12)

Now \
g s = : 4 - |
the first t {' {f41 ' ((\/10g_p)-)-_-i, . !
e firs erm £ C.E 4| X 0 L R LI
| B { n o EYE

= = 0(11’1"1) ’ by {5-3. 10) 1'.765--;3‘0 11) and (50302)0

. and i
=t (V1og n)4

the second term < n 2, {n-3/4 + 0(— 375 )}r
| 7_ /2

; . " cne
{ 3

= o(n"l), since r > 2.
. g = LaE % )

This establishes (5.3+8).
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e e i s

We next define LM ag

L"(Za 8,) = [Xn]r for all ¥

and claim that

(543413)

B L'(y» 8)) = LY (y» €)% = o(n™)). (5.3014)

To prove (5.3.13)s note that

E{ L'(_ysgo)—ls” (_y,go)} = E[K_ I

"yl e VIog nulxn[ I”}IH > fl_—}'

og n

Using a result of Bhattacharys and Ranga Rao [ (1976)y p.179,

Corollary 17.3]; which is gssentisally a weaker version of
Propositlon S«3e2y 1t follows that

2
E[I = O(D—c /2).

]
”g” > clog n

Also, from (5¢3.10) and (5.3.11), it follows upon applying a

suitable moment inequality snd using Proposition 5.3.2 that

B ip = o(n™1) (5.3, 16)
EE[XHI Iyl > ¢ v1og n] > nr

for an appropriately chosen c¢. Combining (5¢3.15) and (5.3.16)

and choosing ¢ and K, suitablys (5.3.14) follows.
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Tri, view of (503.8) and (543.14), ‘1t follows that-

B{ L(10,)} = Bf L'ys 80} + o(n™D).  (5:317)

éoléodpdte EJLT (g; 85) we'identify |Xﬁlr'.as fhe fUnction

£, (¥) and use the easily verifiable fact that Proposition 5e3.1
{with s = 4) 1s also valld if one replaces r by fn satisfying
(5.336), g | |

a~

This leads to
EJL" (y» 6,3% = E} f L" (y, Qo)}-+'n(ﬁ—l} » (543+18)

. where Els as mentioned befores; refers to the expectation taken

undep | (here s =u4).
s -2 O

We. now apply Lemma 2¢1 and Remark le.4 (p.438) of Bhattacharya
and Ghosh (1978) to conclude that ¥ - S

EL § L" (v38 )% = }n [u T aF_(u) + ( _1) : .\
2 { L8}y = 4 |u[” dF,(u) + ofn (503019)

where F_  1s the (formal) Edgeworth expansion {(of length 2) Ffor

vn (;z'; ©,) ‘ory what is the sames that of 1ts Taylor's. expan-
sion Xn} To" justifyt(5.3.19), -1t is encugh to note that (i)

Lemma 241 of Bhattacharya and Ghosh (1978) does not assume Cramer's
condition 3 (ii) the proof of their Theorem 2 given on pages 445~

446 that the Fn of Lemma 2¢1 coincides with the formal Edgeworth
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expansion does not require Cramer's condition and (iii) the second
identity in their (2.10) is true if we replace hi 1(3) by any

function L (hs

e

1(z3) provided 1 has at most a polynomial growth

as u —=» F oo

Having established (5.3419)s; we are now in a pesition to

provide a proof of the corollary.

proof of Corollary 5:3¢4. By (5.3.17)s (543¢18) and (543¢19))
oo s - |
E { L(TXs ©,)% =‘£; [ul” dF {u) + o(n™™)

and exactly analecgously

E L(g\*, 0)% = J?o luj® ar¥(u) + otn™)
{ n o } n

-0
where F:(u) stands for the.(fnqmal) Edgeworth expansion (of
length ) for /n (gi - 903. The {formal) Edgeworth eXpaﬁsibns
Fn(u). and F;(u) are readily obtained from the right hand side
of (5.1,1) by replacing the Kij!s by the corresponding cumulants
of v CTg - QO) and \/ﬁ-(g% - 90) respectivelys Upon evaluating
the integrals involved above and applying the theorem, the '

corollary followse
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5.4 An example cf Berkson - revisited

The follow1ng example was stualed to get an 1dea about the

numerical accuracy of the approx1mat10no used in Chapters.&.and iz

Following Berkson (19%5) consider 3 doses 6,4, and d?

17 2

equally spaced, unit distance apart, say ~1 0, and 1 respectively,

L

ic anlnals are exposed to each dose and the true probabilities of

au animal responding to doses d,,d, and d, are tazen to be

1072 3 \
Ty = 03 W¢*=~d=5 and . = 0,7, respectively which in turn-
v

dotermines the values 0* the parameters as © =0 and B = G.8473
(using the notation of S&ction 4,%), Then we expose 10 animals

for each dose, there are 11possibilities of animal response at each

dose and hence with 3. doses we getl 113 = 1331 possihle sampies,

We toeok only 1329 of these vamples heeause at the two remaining
cases namely when all the anlmalﬁ dlea or surv1ved i e,, p; = G

”
!

or 1 the‘m,l;e, of © is not flnlte; In all the other cases, the
i

m,1,e, is the unique solution of the likelihood equation, (In the

language of Chapter 4, this amounts 1o taking a swifaﬁle |
(@1’P9’p3) which excludes (O,U,O) ‘and (1 1,1)), We‘coﬁputed the

m,1,e. using the method of scorlng (1) with two iterations (e (1))

and three iterations (GH(B)), The minimum logit ohisquare was computed

Zor cach sample, Whenever P; = 0 or 4, the minimum logit chisduare

estimate i5 not well defined, As suggested by Berikson we used the
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2n rule to compute the estimate in these cases, As given in (4,%.9)

: _ Vol LA,
ve computed the bias adjusted m,1,e,'s namely Gn(2) and 9n13),
{7t turns out that in this ewample these two agree in mosi cases

ap to three decimal places),

The mean sgquare error and the fourth moment of Qh(%) are
0.13428 and 0,05691 respectively and the corresponding'values
for the minimum logit chisguare are C,13544 and 0,C589 respectively,
{(The mean square error ¢f the minimum logit chisquare estimate
agrecs dguite well with that given in Berkson (1955),) fhis shows

that the m,l,e, has a slight edge over the minimum logit chisquare

estimate w,r 6, the souared error lioss and its square,

According to formula (4,4,9) the mean gquare error of the

bias adjusted m,l,e, 1is given by {(up to o(ngz))

4 .2 3 2o 2 5
= - + ———j S, {l-r)(Cr,.-11"+ T ro(l - 7))
nl n21 . HZI 1 i i n213 } i

log & 2__3 -
" 23 Z my(1-m)(2ry-1)°"- . [2 7y Q-r ) (2ry -1 ] E(2r,-1) ]

LA CERICADEE 2 (e, -1)]%

0.12719

Il
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and tpat for the minimun logit chisquare estimate using (4,4 .4)

ig given by (up to o(n ))

1 2 e 2
-T.-’lhi ) i-—l) Tri(l""lTi)]
n I
1 3
+ = EZwv(l-qr)(l-f!r)(fB'rr -1) +( Y Z (or —1)
ne1t 11 1 ol 4 1

o) =7 1 ""‘-2l’5"' 2'
+ 555 - n214-) [Z(amy-1)1" - 273 Z(2r3=1)" 7y (1-m3)

4n"I

- s 53 (or,-1) (o, -1)1r(1-«rr)
n“T i J

= 13154

30 the approXimations;aré'in ¢rror by 0,007C3 for-the- m,l,e,

and ,0C490 for the minirmun logit chisquare estimate,

[ & (I BN 0 -
= § i - 5 . ¢
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