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INTRODUCTORY CHAPTER

1. The efficiencies introduced by EeJe Ge Pitman and R.R.Bahedur
are both meant to compare the asymptotic - performance of stat-
istical procedured. Howeve}‘theré are many interesting situatiéns
where these criteria prove inadequate and further discrimination

-is necessarys One such attempt of further refinement is the

criterion of deficiency.
This investigation was undertaken with the object of develop-
ing tools for studying deficiency of test procedures with

(1) same Pitman efficiency,
oy

(11)  same Bahadur efficiencye

Deficieﬁcy in thelfirst case has been defined by Hodges and
Lehmann (1970). Defiéiency in the second case was defined by
EChéndra and Chosh {1978). The latter papers together with somne
applications to multivariate testing problems discussed in Chéndra
and Ghosh (1980b), forms Part II of this disseration. Part I is
a study of valid asymptotic expansions for test statistics which
include the likelihood ratio criterions Wald's and Rao's statis-
tics (see Bao(1965),pége5‘347—352). These statistics have the
same 1limiting distribution under the null hypothesis as well as
under contiguous alternatives$) hence they have the same Pitman

efficiency. The above-mentioned asymptotic expansions are


http://www.cvisiontech.com

needed to study the Pitman-deficiency of these procedures relative

to each other.

They oy

Since a substantial part of this thesis is concerned with
Bahadur efficiency, it is impossibls to ignore the criticism of |

Bahadur's asymptotics by LeCam (1974) (see pages 232 and 233) as

a study of "ghosts of departed gquantities" § this remark has been |
quoted with approval by Pfanzagl (1980) (see page 27, Section S.BC)J
No doubt there is some truth in this criticism but it applies
equally well to all other asymptotic theories. Only the Ghosts
appear at different places 1n different theories. In the asympto-
tics of Pitman (and LeCams, Pfanzagl and others), the "distance'
between the null hypothesis Go and alternative-'@n goes to

zero and so after a finitely many~ steps the difference between

¢, and &  becomes "practically" irrelevent; why should one

then be interested in distinguishing such (close) hypotheses -

A1l asymptotics are no more than an approximation to the "finite"

problem of real life. One can only hope that the ghosts provide

a clue (») to the soul if not the body of one's actual problem.

De Recently two works on deficiency have come to our
attention, namely, Albers (1974) and Kallenberg (1978)e The

former discusses Pitman deficisncy of (mainly) ntharamétric

tests and so is not related to this thesise. It is the second

[ ———
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work that deserves some commentse. it is about the asymptetic
optimality of the likelihood ratio test with respect to two
criteria % one of them is an elaboration of the results of
Bahadur (1965, 1967)« Kallenberg works with the 1imit (as >0 )
of the smallest sample size WN(«) needed to get power at least
B (0 < B < 1)y the level of the test being « (0 < %< 1)s In
their paper (1978), Chandra and Ghosh also work with apparently
different but equivalent quantities (see the last part of
Section 3 } see also the review of Kallenberg‘s monograph by
Ghosh (1980))s It is therefore worth-pointing out that there
is hardly any overlap j Kallenberg is interested in cases where
deficiency (in our sense) is infinity while we are interested

in computing it when it is finite.

3.  As noted earlier our results on asymptotic expansions
are useful for studying Pitman-deficiency. To illustrate this,

consider a simple hypothesis H T 6 =0 against H, « 6 £ 0

1
where © takes values in Rl and three tests based on the
likelihood ratio statisticy Wald!s and Rao'!s statisticse These
statistics are indistinguishable from the view-point of asymptotic
efficiencys In the last paragraph of Section 6e.2y Ran{1965)
raised the guestion of higher order discrimination between these

statistics and conjectured that the statistic proposed by him

is likely to be "locally™ more powerful than the others (in the
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second editions this conjecture has been omiﬁfed). Peers (1971)
attempted to settle the above question and conciuded that the
above conjecture has no ground 3 1in particulary his method will
vield the mutual Pitman-deficiencies of these statistics to be
infinity (of order O(n'l/g)).The;hethod;péed«b# Peers isy however,
not quite reasonable. The defect of-his.metHOd is that it
compares the “Ycut-off points“.rathef than the statistics. For
exampley it can be shown that for a one parameter exponential
family, all these tests are two-sided tests based on the same
statistic but their relative deficiencies in the sense of Peers
are # o « We have shown thét these deficiencies ares in fact,

finite} however wa have not yet.completed the necessary

computations to settle the conjectufe of Rao.

4. We now present a brief chapterwise summary of this work.

In Chapter Oﬁe we considery following Bhattacharya and
Ghosh (1978)y a real valued statistic H(Z) which is a “smooth®
function of the sample mean 'Zn‘. In their paper, Bhattacharya
and Ghosh restricted their attention to the case where the

asymptotic distribution of

2 WG - 1wy w=E(Z)

compressien, OCRyavebmptniizationtusing atWatermanied windusd
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W= enHZ ) - )Y

is asymptotically central chi-square with degrees of freedom

= ps saye It is shown that under certaiﬁ conditionsy the
distribution function of wn possesses an eXpansion in powers
of n"l, the coefficient of n~J (j 2 1) being a finite linear
combination of the distribution functions of central chi-~squares
with degrees of freedém Py p+2y p+4dy etce Under Strénger
conditions, it is further shown that this eipansion holds
uniformly in all Borel subsets of Rl. Our examples (see
Section 7) And the applications to asymptotic theory discussed
 in the next chapter indicéte that our assumptions aré reasonable.
4t presents; we do not-have any example of a useful statistic,

- with 1imiting central chi-square distribUtionautoﬂwhich'our

theorems do not applye

In.Chapter WOy we‘apply the above:general theorems'to
get expansions (up to any degree of accuracy) for certain
statistics commonly used for testing multivariate multiparameter
(composite) hypotheses) for this we assume coﬁditions similar
to (but much stronger than) Cramér-Rao regularity conditions
(see for example Assumptions (Al) to'(AB) of‘Bﬁattacharya and
~ Ghosh)s In typical casesy these expansions hold uniformly over

all intervals and over compact subsets of the parameter space
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(under Ho); they hold uniformly over all Berel subsets of Rl

in case the samples are drawn from an absclutely continaous
exponential family indexed by its natural parameter. The most
important example of such statistics is the likelihoed ratio
criterione. Our results unify those of a number of similar
expansions (usually up to o(nﬁg)) for the likelihood ratio
criterion used for testing specialised hypothesis (under normality
assumptions)y for referencess one may consult the survey article
by P«R. Xrishnaiah (1978). Recently Hayakawa (1977) showed
the possibility of such a general eXpansion (fdr the likelihood
ratio statistic) up to o(n—l); his method issy however, purely
formal and are not necessarily valid in the sense of Bickel
(1974). Under the assumptions of our theorems; we have Justified
the formal method used by HayakaWa. A different methods again
purely formals was used by Box in his well-known paper (1249).

Ve have established the validity of Box's method as well.

Chapter Three extends the results of the previous chapters
when the limiting distribution of wn is non-central chi-square)
this is typically the casesy when the limiting *null! distribution

of W, 1s central chi-suare gnd when one considers the limiting

distribution of Wﬁ under contiguocus alternatives. Here too
our results unify similar results availlable in the literatures.

The main theorem runs as follows « under certain conditionsy
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the distribution funetion of wn under centiguous altermatives
can be expanded in powers of n—l/g, the coefficient of nuj/g
€3 2 1) being a finite linear combination of the distribution

- functions of noncentral chi~squares with Same noncentrality
parameter and with degrees of freedom p, P2y p+4d etce Our
assumptions are satisfied by the (absolutely continuous) exponen-
tial family of distfibu’tians indexed by natural parameter

(together with some more mild conditions).

Chapter Four developes methods to compare test procedures
which are equally efficlent from Bazhadur's view-points In liter—

ature such measures of discrimination are called deficiency) see,

for exampieg Hodges and Lehmann (1970) who introduced this
concept. Since two test procedures which are equally efficient
by Bahadur's criterion are usually equally efficient by Cochran's
criterion alscs the problem of measuring deficiency has also been
approached from Cochran's poiﬁt of views It iS shown that
approaches based on Bahadur}s and Cochran's ideas lead to ths same
measure of deficiency if one uses limits in prebability in the
definition of Bahadur slopes } the equivalence breaks down if
one uses almost sn~e 1imits insteads One of the main results
shows that thelexpansion of the signifiCange level aﬁ(ﬁ, ),
attained by a test procedure when the power at an alternative B~1is

; Sk P = A -
reebipiesSiBa 00K, ieboplinization usihg a fafefmariedevalyati
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da(uz(8))
B " du(e)
~c{k) log n + d{(Bs6) + 0{1).

log = (B38) = —nau(e)) + a2 4 o*(0)

Here B stands foT the power of the test at 6, o(k) is deter-
mined essentially by the dimension of the observations nl/?w(G)
and o*(®) (oc*(8) > 0) denote respectively the asymptotic mean

and standard deviation of the test statistic under &, a(u(8))

1s the Bahadur-slope under © of the test statistic; It followss
in partieulars that 1f two test procedufes have the same Bahadur
efficiency at & _and the associated aéymptotic mezns and
variances are élso same for both of themy then the eXpansions

of the logarithms of their significance levels will agreeup to ol
terms and hence the &eficiency will be finite% otherwise the

deficiency will be infinity.

In ChapteryFive, we compute the deficiency in some common
multiparameter multivariate problemssour main interest being to
compare the likelihood ratio and Baves testse We have develoned
here methods of finding expansions of the logarithms of the
significance levels of Bayes tests (the corresponding expansions
for the likeliheood ratio tests can be obtained from Thenrem 1 of
Woodroofe (19278)). The main source of difficulty here is to

obtain expansions (up to o0(1)) of the logarithms of certain
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muitidimensinnal large deviation probabilities. To this end,
Wwe have followed Borovkov and Rogozin (1965). The results of
the last section extend those of Woodroofe (1978) and Sehwarz

(1978) .

It may be noted that in Bghadur's as well as Cochran's

approachesy one compares in effect two statistics rather than

two tests. For when one specifies a test both the test statistic
and the aut-off point(s) are regarded as Tixedy whereas Baghadur
and Cochran choose the latter so that the power p(8) at the
alternative o (where a comparison is sought) is held fixed.
If a weight function 7 is given over the alternative hypothesis,
it may be more appropriate to fix the cut-off point by requiring
that

J B(e) w(de) = 8 0<p<1

However one then faces certain technical difficulties and so

We have omitted it from the present discussion.
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CHAPTER « OWE

VALID ASYMPTOTIC EXP4NSIONS OF PERTURSED
CHI-SGUARE VARIABLES

SECTICN 1. INTRODUCTION

Let {Zh}nzl be a sequence of independent and identically

diéﬁributed(llné*random“vectorsrﬂn with finite second moments.

Let 4 and V be respectively the mean vector and the dispersion

matrix of 3z, *
(1.1) # =E Z V=E(Z - (2 -t

where T denotes transposes. We shall assume that V is non-

singulare Let H be a real valued Borel measurable function

on 'Rk. Consider the statistic

(1.2) W = nl/‘?(H(En) - H@W))y Z_=n

n r ‘2 Z b n_>_lo

It is well-known that (see Crameér (1946), page 366) if all the
first-order partial derivatives of H are contiguous and pon-null
at 4 s then wi 1s asymptotically normal with mean zero ané'“'

variance A° V [} here A = (fyrevearA) with

(1.3) /(i =

odied
]
b [}
—
N
Hi
®
e
LA
[
A
=
»
o]
|
iy
S
Voo
L —_
5
[ ]
L ]
~a
i
~~
ey
o
-

Bhattacharya and Ghosh (1978) improved this result
conslderably by obtainings under further regularity conditions,
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kil

- _ ) . -1/
Berry-Esséén bound znd an asymptotic expansion in powers of = /?

for the distribution function of wi S they showed,_among‘other
things, that the coefficients of n_j/2, j > 1y are polynonmials
(times the density of the limiting normal distribution) which
depend only on the cumulants of (Z.1 - &) of order {j + 2) and less
and the derivatives of H at & of order (j+1) and less. See
in this connection their Theorems I, 2 and Remark l.l. Here we

shall partially supplement thelr results by considering the case

where A is the null vector and

(1e4) Wy 2n(H(En) ~ Hu})

is asymptotically distributed as a central chi-square. J statistic

of this sort will be caglled a perturbed chi-square.

et L = ((A&,j)) be the %k Xk matrix of the second-order

partial derivatives of H at x4 .

22 H(z)
L= ' : 1 isJ < k
L raz(i) /C‘Z('j) z = d S RS

(1s5) A

Assume that these partial derivatives are continuous in a neigh-

bourhood of 4 « Recall now that if the distribution of X 1is

the k-variate normal with mean vector zero and dispersion matrix

T

¥ , then a mecessary and suiticisek condition that X a4 X (4 is

cameatriay follgws o (peptrael) Y© distrpibution is

o
SWL
R
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21 D8

(1.8) ZaxaS=T4AZ

and in this cases, the degrees of “reedom nf the ﬂ;a is the rank

of A% (see Rao (1965)y page 152). Clearly then & necesSary

and sufficient condition for W, to be asymptotically ‘XE is

that A 1is the null vectory V is a non-null matrix and the
T

equation L° V L = L holds (note that this implies L is

positive semidefinite}} 1in this case the degrees of freedonm of

the limiting X% is the rank of L = p, say. Assume then that

H 1is sufficiently smooth (i.ees that H has enough continuous
derivatives in a neilghbourhood of ), that the distribdtion of
Zq is smooth (i.e., Zq has enough number Of finite moments

and satisfies Cramér's condition (2.7)) and fiﬁally that the

above necessar& and sufficient condition holdse Under an
additional technical condition on Wﬁ (or equiValenﬁly on H),
it is shown here (see Theorem 2.1, page 17) that the distribution
function of W can be asymptotically expanded in powers of

n —y the coefficient of n"j {j 2 1) being a finite linear
combination of distribution functions of (central) XQ'S with
degrees of freedom py p+2y p+4 etce In case I is nonsingular,
this technical condition holds but Example (7.1) shows that in

general this condition cannot be relaxed without locsing the

(desirable) property that in the asymptotic expansioh,the
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coefficients of n™9 are linear combinationsﬂof'éentral ngs.
Howevers even ﬁhen this cpn@ition does not hold the distribution
function F (x) = Prob(W < x) of W, can possess a valid
expansion (with x restricted to proper regions) in powers of

N —— Seey eegss Example (7.2)7 at present it is not known

whether such expansions have any application. It is shown in
the next chapter that the likelihood ratio statistic and some of
its competitors do satisfy the above technical condition under
fairly general regularity asSumﬁtions so that this condition can

be regarded as a natural one for expansions of perturbed z?'s.

It 1s td-be noted that the sald expansion holds uniformly

over all intervals of Ry If the distribution of Z, 1is such

that for some integer m > 1, 4 + e+e + Z has a nonzero
absolutely coﬁtiﬁuous component with respect-ﬁb'ﬁébesgue measﬁre
on rE (which iﬁpiies‘that Z, satisfies Cramér!s condition)
and, moreover, Wﬁ satisfies a stgoﬁger form of the above
technical condifion, then the said expansion for Wh holds

uniformly over all Borel subsets of"-Bi. It will-be shown ih

the next chapter that the likglihood.ratioﬂéﬁd othef}éfatistics
do satisfy this stronger condition when the wwample is d}éwn from
an exponential famil&IQith ﬁé&ural parameter space {and witﬁ
some more mild'feétfiétions). Thus it appears that our main

theoremy Theorem 2.1, and its variants are quite general to cover
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-

almost all stec'istics which are perturbed chi-squares.

Secticn 2 includes the statement of the main theorem of
this chapter, together with some comments on its assumptions.
Included also are some simple and verifisble sufficient condit-
Eggsﬂfbr these aséumptions. The theorem is prove@ in Section 4,
the related results being explainedﬁin‘Sectibn 3e ”In_Sectibn 5
we state some useful variants of the-maih theorem in a form
,which 1is needéd'fbf the next chapter. Since the proof of the
main theorem 1is given in metlculous detalls, those of the
variants are omitted.. Some common and frequently used methods
for obtaining expansions of statisﬁ;cs‘are justified in Section &
under the gg@umption§,bf“our hain %ﬁeorem. The last section;
Section 7, includes a few counter-examples related to the variocus
results of this éhapter. All basic notations are stated in
Section 2 and part (4) of Section 4.

t

SECTION 2. MaT¥ THEOREM

(A)  Statement of the main_theoreﬁtf, .

The basic set up ié“described in the”&hf}sauction. Denote,

In analogy with (1.3) and (1.5)y the parbial derivatives‘of-'H‘

at & by

1, 4 1
D Z%..D 9 m)w

Ja Ly 1 < il’..”,i.j < k

(2.1) A3 = (D

1,123-003 ’13


http://www.cvisiontech.com

=] 5 -

where Di - denotes differentiation with.reSpeCﬁ to the iith

coordinéte'variable. Let s

~be an integef 5 4 and denote by

S 1(z) the Taylor e¥pansion around & = E Zq of H(z) up to

and includlng terms invnlvlng the (s~1)th order derivatives of

H S
-~ (2.2)  H (2) = A S B¢ ) BT
oeil G G R O
208 . . -
+‘ (,S"fl)" = /(lilituos'i i F O ClEs 2 .

s=1

Here and In the following 2z, x

k

etece will stand for én element
of R and z(l):

will denote the j-th component of z, 1<i<k .

The symbols | [ and <y > will denote Eﬂplldean norm and

inner product reSpectively, Kl’ K2 etc." W11ﬂ~denote constants

’ el e
(LoSen nonrandom quantities free from n bu & 4

Let p be the rank of I .

Assume without loss of generality

that « is the.null vectors

< «Wlth these notations, we now state our basie set or

assumptions.

ASSUMPTION 1% bt

(1) all derivatives of H o% order s and less are

continuons in s neiohhmrrhaod ¢ o ®

e
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(2:3)

(2.4)

(2.5)

(2.6)

(11)

(iii)

(iv)

(v)

(a)

()

the vector A = (DlH,...,DkH)CU) is null §

the k Xk matrix L = ((D" DY H(4))) 1is nonnull

and satisfies the equation

LVL=1"13

if under some nonsingular linear transformagtion

X = A%y ZT L z becomes a positive-definite

quadratic form in

Xl = (X(l),...,X(p)), p = rank of I 1<p<ks

then

o P j
x) = F xCi)x(J) Pi,j(x) y
for some polynomials fpi,j} y

if under some nonsingular linear transformation

X = AZ, zT‘L Z becomes a positive-definite

quadratic form in xl, then in a bounded neighbour-

hood of Au= 0,

B -1 W] <ok R R

oG -l L Gl g Kl || xS 2

1<4i<p .

~

Z, 1s sald to satisfy Cramér's condition if

PR S VR A A Dou e

-
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(2.7) 1im sup [E{exp(l < t, 4, >))[ <1
[t[[=oo -
Note that (2.7) implies that the dispersion matrix orf Zl 1s
nonsingulare
Zl 13 saild to satisfy CONDITION D if
(2. 8) there exist an m-dimensional vector Y and‘realw

valued Borel measursble functions fisesesfy  oOm

R™ such that

py: sV sve @ 11k

and

D(ii): the distribution of Y has a nonzero

absolutely continuous component (with respect
to.Lebesgue measure on Rm) whose density 1is

positive on some open set U, the functions

F11 veey fk are continuously differentiable
in U and _ 1, flso “e 3 fk are linearly
independent as elements of the vector space

of continuous functions on U »
The maln Theorem can now be stated.
TEOREY 2.1. Let 7% " and H'bo#~ as in the Introduction”
nl’lzl

and define Wh by (le4)s Assume thét, for some integer s > 4,

H and 2y satisfy Assumptions As(i) ~ (iv) and that

rilz, 1571 38 fintta,
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(a) If Zl satisfies Cramer's condition (2.7)s then

there ex1st pnlynomlals {q } (in one varlablel, 1 <r<m

wbose coeffic1ents do not depend on n such that the following

expansion Is valid for all u e Rl and 1s uniform in u ¢ [u 300 )y

u >0 % .
° (W < w
P n S U

i1?!12(‘7 Sp) 2 aTgo(v)dv + e
£ ) =0 e 1

(¢, 1)e Here v s p) is the density at «v of a central
xg with p degrees of freedomy m 1is the greatest integer

< (s-8)/2y p 1is the rank of L,

-

o(n™ if s is odd

]

(2.10) £

o(n'm"l/e)l if s is even .

1]

Finally, u, can be taken to be zero if p > 1.

{b) If, moreover, Assumption As(v) holds and Z; satisfies
CONDITION D (2.8)y then expansion (2.9) holds uniformly over all

Borel subsets B of [0y o) o
P(Wﬁ e B)

(2.11) = m
= (s P) ¥ ¥ a,(v}dv + e, o
B . =0

- 4 L. e I J-gizal o
The Theo I ebontm ATON JUSINGr & wabew :_“J'_.t.i.cll Le
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REMARK 2.1 It will follow from the proof of Theorem 2.1 that]

for each r > 1 the pelynomial qr;_depends only on the cumulant

of (Zl- #) of order (2r + 2)’and less, énd on the derivatives of|
A |

H at # of order (2r + 2) and less } zlso the degree of the

polynomizl will be at most 6r.

- REMARK 2.2  Certain limited expansions fer W, can be
obtalned under relaxed assumptions. For convenience we shall
here consider the case p > 1. Suppose assumptions of part (a)
nf the above theorem hold with s =4 eXcept that we do not
assume that As(iv) and Craﬁér‘s condition hold. Then it can
be shown that the following analogue ofﬁBerry—Esséén‘Theorem

holds : !

u
(*} sup |Prob(W_ < u) - & XZ(vip) dv| 5 C n_l/g(log H)l/z
0<u<eo 1 0

where C 1s a suitable constant. (4 proof of (*) is ketched
in Remark 4.3. Whether the upper bound in (*) can be replaced
by O(n"l/g) is still under investigation.) Ifs moreovers As(i)

holds and the .distribution of Zl is strongly nonlattice in the

Sense that

E .Lrex;}(i < tpaZy )} <1 for all t # 0,

then the left side of (*) is o(n"l/2+63 for any e > 0. Finally

part {a) of the theorem remains essentially true {see Example 7.5)
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bt et

without A (iv) provided P > p,(s)s Po(5) being a suitable
constanty for example ome can take po(S)iz,S.
(B) REMARKS OW ASSUMPTION AS 5

Assumptions As(ii);and (iii)- ensure lthat the limiting
distribution of wa is a central Xg(see the last paragraph,
page 11 ). Assgmption As(iv) is a techﬁical one and ensures
that the Taylor expansion (keeping only the relevant terms) orf
W,» when expanded in terms of A(Zn - 4)y is at least of degree
two in the first b components of A(Zn - i) PlainlybAssumption
A (1v) and (v) hold ir A (1) and (ii) hoid and L is positive-
definite, Assumption As(iﬁ) is a natural sufficient condition
on Wn which guaramtees that the coefficient of n°f in the
expansion of Prob(Wﬁ £ u) will be a finite linear combination
of chi-squares. Assumption AE(V) i1s.a3ls0 of the same kind;
1t imposes restrictions on the function H itself (instead of
on its Taylor expansion Hs—l) « roughly Speaking it {combined
with AS(iV)) Says that H(z) contains neither any term free from
the first o components of A(z - w) nor any term linear in these
P components. This statement can be made brecise when H is
real analytice This and some other facts follow from TLemms Zel
belows We need the following notations. If & 1is a vector of

nonnsgatireodnbeaonmimimtgn usioos E{lisesssali)) and g = (2 7 300ay

& (k)\ =
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e

ﬁl = ‘(z(l)a,..,z(p)) 222 = (Z(p-*-lf):yoowyz(k)‘)--

(x| = [&(1)] +eeat]e(k)] o = (x(1))% eos (x(k))$
(2.12) :

2% = (Z(l))oc(l).“ (z(k))oc(k)

p¥ = ohy* ) ., of*® D= (D yess D)

REMARK 2.3 To check Assumption’ As(iv) (assumption As(v)),
it is enough to check (2¢4) ((2.5) and (2.6) respectively) for
one nonsingular matrix A which has the property that zT L z. is
positive-definite in x1 where x = Az « (Proof ¢« ILet x = Az
and vy = Ay 7y A and Ay being nonsingular matrices, be sgch
that zT L 2 1is positive-definite in Xl as well as in yl.

To show that xl is a linear combination of yl. Pafﬁition

=1 :
41 Ay" as follows

\‘.
/(811 Ry P
Alégz \ B B ,ku-p
: S 284
p k-p

Then x! =B, o+ Byp ¥o. But x =0 Lf and only if

y' = 0 1implying that B must be null,)

12
Recall that a function H & R- —9_Rk is said to be real
analyiic on an open set U (C R if W is infinitely differ-

entiable on U and 1f for any"x in U, there exists an open
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sphere B C:'U with ceﬁtre X such that for any‘hy in B

00 o y "
(y-x)
]uf:o =t D Hx)
converges absolutely to H(y). i

LEMMA 2.1 Let U be a bounded open convex subset of Rk

containing the corigin and H + U — Rk be s-times continuously

differentiable. Let He 1 be the Taylor expansion of H
around origin including the (s-1)th order derivatives of H.

Then one has

(a) ’ o
H{x) - H_ (x| < Ky x|l

o -t E O <K ST 11K

(b) Tet 1 < p £k and suppose that
(2.13) © H(x) =0, D H(x) =0 1<1ix5p

1 .
for a11 x with x = 0 s then

P .
Ho = oz xD By
55 1sj=1 i
vhere P 1, are aritskle ~olymemiale in ¥ %

iy g
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(¢) Let H be real analytic satisfying (2.13)« Then

|8 - H, 0| < K [P x|

and

IA
o
wa i

it H@ -t H (0] <K B KIFE 151

(d) Suppose H is such that whenever |« = s and x #(

<Ky JotP felE if o' =0,
(2.14)  D™H(x)¢
< Kg I T i fec| =15

then the conclusions of (c¢) hold.

PROOF . Recall that (see Gorollary 8.3, page 58, Bhattacharya
and Ranga Rao (1976))

- o0

« 1
(2.15) H(x) = H (0 + S|e<[2=s < J 1) phwax

(a) follows immediately from (2.15).

(b) write Hs_l(x) as a polynomial in X+ and break up

it into three parts

(2.16) L) = H (%) + HE L (x) + H3

p .
where Hg*l(x)does notinvolve x Hg_j(x) 2 x1) 9; (x)

e

]1
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HB

260 < B <00

with G (x) free from x' and finally
N i, Jj=1
% j(X) with Qi j(x) depending on beth x1 and %, By the
?

first inequality of (a) and the first equality of (2.13),

a1 s : 1 : 1 :
Me1® | <Ky [x for all x with x' = 0. 4s H, ,(x) is
a polynomial of degree at mdst (s-1) it must vanish identically.
Next fix an 1 such that 1 L 1<pe Then

*

p .
g = u@ e 2 o

where {Q;,j(x)} are suitable polynomials. By the second
inequality of (a) and the second equality of (2.13) we then get
100 < K, (x5 for a11 x with x% = 0. s Q;(x) is a
polynomial of degree at most (s-2), Qi(x) = 0. This establishes
(v).

{c) Since H 1is analytic, so is H~H5_1 « Arguing as
in (b) (with H,_; replaced by H—Hs_l and polynomials replaced

by power series)y the result follows.

(d) follows from (2.15) applied to H  and DlH (1<i<p Jo

(C) REMARKS OW CONDITION D °

It is ﬁelléknown that Cramér’s condition is needed for
any general Edgeworth type expansions for distribution functions
(seey for example, Cramér (1937) and Bhattacharya and Range Rao

(1976))s Condition D is stronger than Cramér's condition, and


http://www.cvisiontech.com

D5 -

in fact it serves as a very convenient way of verifying the
latter. To this end, we state the following useful lemma of

Bhattacharya and Ghosh (1978) (seerLemma 2492y page 446).

LEMMa 2.2 (Bhattacharya and Ghosh)
If Zl satisfies CONDITIOW Dy then the k-fold comvolublon

of 2 has a nonzero absolutely continuous component with respect

1,
to Lebesgue measure on Rk. ;

It is well-known that 2y does satisfy Cramér's condition if

for some integer J > 1y the j-fold convoluticn
(2.17) of Zq has a nonzero absolutely continuous
component with respect to Lebesgue measure on

rE

In almost all applications of Lemma 2.2y the following observatien

(see Remark 1.2, page 437, Bhattacharya and Ghosh) proves to be

useful.

REMARK 244 TLet G be the distributinn of Y where Y 1is
as in definition of CONDITION D. If the density g, says of the

absolutely continuous part of G s such that U = {y]g(y) > 0}

is open and G(U) = 1, then one may replace D(ii) in definition

of CONDITION D by

(2.18) D(ii)' . flgoa-,fk are continuously differentiable

on R
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We shall need CONDITICON D ,oniy to use the following result of
Bikjalis (see Corollary 29.€; page 206 and the remark on page 207

of Bhattacharya and Ranga Rae (1976)).
THEOREM 2.2 (Bikjalisi'

Let {Z } be a sequence of IID random vectors on Rk
n
n>1
with mean zero and nonsingular dispersion matrix V . Assume

that EHZlus*l is finite and that (2.17) holds. Then one has

(2.19)  Prob(n/ZZ_ B - & &

B, Ss-1,n (2292 = JC e

uniformly over all Borel subsets B, of ¥ . Here Esulyn(z)

is the multivariate Edgeworth expansion for nl/2 En up to

terms of order o(nﬂ(sd3)/2) (see (4.1) and (4.2)).

SECTION 3. AJXILIARY RESULTS
REMARK 3.  Suppose that Assumptions AS(iii) and (iv) hold.
We may then assume that

(3.1) V=T, 271 z= [z]°

and that (2.4) holds with 4 = I. Here I 1is the k Xk
identity matrixe (4 similar remark is true for Assumpticns

As(iii) - (v)e)
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For a prmafy note that‘there exists a nonsingular matrix

R  such that
RTvir=1, ’RTLR=¢5

where S 1is a diggonal matrix (see Ran {1965), Section lc. 3(iii
page 37)e In view of As(iii), S 1s also idempotent and hence
we may assume without loss of generality that the first p
diagonal elements of S are one and that the rest are zero. The
2l 1 2z under the transformation x = ,R'lz becomes [jx1]|2 and
so (2.4) holds (by As(iv)) with A= RFl. Remark (2.3) completes
the proof provided Z and H(z) are replaced by Rz and

H(R™12) respectively.

The next remark will be used, essentiallys at the final

stage of the proof of Theorem 2.1 to show that the asymptotic

expansion for wn will be in powers of n’l (instead of in
powers of nfl/g} and that the coefficient of n ' (p > 1) will
be a finite linear combination. of chi-squares with degrees of
freedoﬁ ps p+2y p+4 ete. (instead of with degrees of freedon

ps p+tly p+2 etcsde Hence it can be cmitted excdpt for the

notations introduced in its first paragraph.

REMARK 3.2 AsSume first that the rank p of L is > 1

and consider the transformation T. on Rk which sends zlto

1
(1) -
(ry © Y eoes Q(p 1)) by means of a pelar transformation

anid kenn "’.2 T b nsd *
: Adaie “ hEantimiZ28on.
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z(l) = r Cos @(1) +es COS @(pﬂg) 2os g(p~1):’

218 T cOs 9(1) cee COS G(pﬁg) sin G(p—l)
(3_- 2) ’ y :

Z(pél)= T cos'g(l) sin:G(g)

z(p) = v sin Q(l)

With 0 < r <oo and (6, z°) belonging to the set

)

A= {2 | -Z <ol AL 5 JK B3
(3.3) 0 <olP™D) ¢ oo, o ¢ gk ¥
(1) (p-1)

The Jacobian of T, is r*™1 7 (@) where

- (. -3 —
(3.4) J(8) = (cos @(1))p g (cos 9(2))p e cos 6(p-2) J
Using (3.2), an expression of the fornm
(3.5) (2(1))«(1) (z(k))d(E)

(«(1) are nonnegative integers) can be written as

rv

k
«(0) d(i)) ( TT Z(<i) x(1i}

{=p+1

i D /my R

l-'_"'

(346)

[

= M5 Ty 6 2y, gay
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where o{0) = (1) + +ss + «(p) and == («(0) 5 (1) seessx(k)).
The notation R(s) = R(«x % Ty ©y z°) will be used even if the
power «(0) of T in (S.Gj differs from o(1) + eea + (p)e

(We shgll be concerned with those R(e)ts for which <«(0) will

differ from (1) + ees + «(p) by an even integer and «(0) is

a nonnegative integer ). & finite sum of constant multiples of

terms of the form R{&) will be dencoted by Rij(r, By ZE),.i 2> 1y
J 2 le
Recall that expression (3.5) is odd if and only if at least

one of o(1)jseeesci(k) 1is odds 1In the same vein, We shall say

that an expression of the form R(«) 1is odd if at least one of

4

0((1) ,_o;o jo((k)' sy ﬂdd- " Theny for each 1 > 0! i

¢ exp(- 2 [2%17) R(e0 a @2 =0 if R(®) 1is odd.
A

(o 1is defined in=(3.3)). The above equation is a cousequence

of a symmetry argument. Specifically, let o(j3) be-odd. If

p+ 1< <k replape ‘Z(J) only by ~Z(J) (keeping others

fixed) 5 if 3 < j < p» replace 9(p‘j+1) only py 927D

where
( ofP-3+D) ir 0 < eP=I+L)

q)(p~j'+1) = «{

Hlp-iD) o g 2 o@D oo

<7w/2
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if § = 2y replace 9(pul) only by ¢§p~l) where

_g(P“1)+aw if 0 < g(p-lé < T

¢(p—l) .
= oD ir x<oP D) ¢,

so that cos ¢(p— P - cos Qcp 1) and sin @cp ) g sin @(p—l) 3

1 il replacew‘éipua) only by @(p -1) where
r - o1 ir 0<eP) o,

(p-1) _
%, = mn (BT ir <P ¢ o,

so that cos q)(p 1) —~C0S '@.(p_l) and sin q)(p ~1) = sin @(p—l).

More generally, we shall say that the expression

i ay P x o o4
rd(o)( TT (cos Q(i)) (sin @(l)) ) ( TT (z(l)) ) .
1=1 i=p+l

is odd if at least one of the nonnegative integers bl""’bp 17

: e 2
a 7 r
017 Cpp1? ceed G s odd.  Finally say thgt Rij(r, ey z7)

= I T . .
is odd if every R(«) in Rij(r’ &, z°) is odd. Obviously, if

R(«) is oddy so is R{(x) J(8). One verifies that the various

Ri‘ (ry 6y zg) occurring in the proof of Theorem 2.1 satisfy (3.7)
J - '
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below (4 is defined in (8.3)) *

e Ao 2
i By;(rs8:27) J(8) exp(- Zllz7l[") a8 dz° 1is zero

’s)
(3.7) i1f 3 is odd and is a polynemial in r° (instead

of vy for any J > 1 «

The following lemma will be useful to verify that Ry (r:€,z°)
is odd if J 1s so. If P, ()} are polynomials in k
377520

variables, say that {Pj(z))}j 0 enjoy the odd-even property if
> .

the degree of each movwomial of P _(2)

{3.8) J

is - odd or even according as j 1is odd or

aven .

LEMMA 3.1 Let
s-3
-3i/2 .
pl(z) = = n_j/ fo(z) 1<i<k ',Qé‘-’;‘j_
J=1 3
. Ky
and f be a real analytic function om an open subset of R

containing the origin. Write

3 k s—é‘

1 -3/2
TP (2)reseyP 1(5)) = sz n ¥ Qj(z) + o(nf(s'a)/Q) .
If {Qi(z)} enjoy the Qddéevén-prOperty=(3.8) for each
0£igs-3 '
1= 1lssee9kys then so do {Qﬁ(z)}: >

'..'.({ ".‘w-‘:a

—— —
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PROOF I 8ince f can be expanded in a Taylor!s series and
each term considered separately, it suffices to prove the lemma
for the special caSe where f(Uqseeesll, ) = Uy eee U o To this

‘ 1 kl Al kl :
endy fix a J such that 1 £ J < s -3 and note that any
monominal of - Qg(z)-is obtained by multiplying some monomials

(of degree k(ji), say) of Q§ (z)y O < 1 < s-34 where
‘ i

(3f9) e s jl + aes + js—S,:\j ’

also the degreesy 1 saysy of this monomial of Q?(z) will be

given by

-

(3.10) - o k(o) + K(31) + eee + K(ig_g)

The proof will be complete once we have established that whenever
Jot dqs eees J,5 are nonnegative integers satisfying (3.9) and
whenever k(jo), k(jl)""’k(js~é) are nqnnegatiVe integers
satisfying (3«11) belows T given in (3.10) will be odd or

even according as J is odd or even.

For each- 1 = 03lsaeesS~3y k(ji) is odd or

(3.11)

even according as is odd or everns

ji

Put A= {Ji [ ji is oddy 0 £ 1 < s~8} .and B = {Ji | o

eveny 0 < 1 < s—B} « Then since 2 ji is always evens one
ieB

gets in view of (3.9)
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(3.12) £ A 1s odd or even according as ] 1s odd or evas

Since for each 1 ¢ B k(j;) is even (by (3.11)), 3 k(ji) is
ieB

always evene On the-other hand If 1 & 4 then k(ji) is odd

(by (3411)) and so 1t follows from (3.12) that I k(ji) {and
1e 4
hence 1) 1s odd or even according as j 1is odd or evens

We next justify briefly the second half of (3.7)s The
special form of the density function of the multivariate normal
distribution with mean zerc and dispersion matrix identity and

Assumption As(iv) about the function h (see (4.4)) show

S-lsn
respectively that the different R(e)'s arising from the
expansions (see (4.16) ana {4.19)) of these two fUnctions do
satisfy the condition that e«{0) differsfrom (1) + see + o(p)
by an even number 3y on the other hand, for the R(«)'s arising
from the Edgeworth expansion Es-—-l,n (see (4.2)), we in fact

have «(0) = «(1) + «¢e + «(p)s One now need only tc observe

that 1f some R(e) falls to be odds then o(1) + eee + o(p) Will
be evene.
If p=1 in the definition of T the varisble © is

not needed and one takes T = \z(l)[ 5 the different facts

mentioned above remaln true with necessary medifications. This

compietes Rellavn Jede
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SECTION 4. PROOF OF THEOREM 2.1

(A) NOTATIONS ¢

-
Here we 1ist the basic notations of this section, see glso

Remark 3.2. Let X (t) be the jth cumulant of < ty 2y -4 >

and define the Cramér-Edgeworth polynomials-{f’r(it)} s
: ' ' r>l

y (it) y & (it)
g I j-t+2 j 2
| : o1 (3, + )L (G + 2)V
(441)
X, (it) = 13 A 050 te R r> 1,

where the sum ¥* is over all o -tuples of positive integers
(31,...,309 satisf{ying Jl + eve + jq = r ., Let ¢V be the

density of the k-dimensional normal distribution with mean zero

and dispersion matrix V . Let ES 1 be the multivariate
—isn

Edgeworth expansion of nl/efzn- &) up to O(n~(s-8)/2) 5

| | 58, <j/2 2
(4.2) E . =(1+ 2 n P _(-D)) ¢
S"l’rl -_,_l :J V
J.—.
where §jC-D) is the operator obtained by formally substituting
D = (-dYyanes -D¥) for it in B (it), 1< 3 < 53 (for details,
See Section 2.7y pages 51-57, Bhattacharya and Ranga Rao (1976)).

Me mnote that for each Jj > 1, the coefficient of n_j/g' in

bs-1,n(2 18 04(2) Py(2) where P.(2) is a polynomial in 2
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with the property that the degree of each monomial of Pj(z) is

even or odd acco}ding as - j. is even or odd (observe that this

is stronger than the statement that if 3 1is odd, Pj(z) is odd

according to the definition given in Remark 3.2). Let

V2 5y - HE))

(243) gn(z) = 2n(H{z + n

and hs—l,n(z) be the following Taylor expaﬁSion of gn(z).

| s=1 - ~(j-2)/2 (i (.
. . - . 1 1) 1 #
(o) hs-l,n(z) 2 j§2 i1 Z Kil""’i- Z veeZ .

J

Then Wn_= gn(n1/2(2n - u)j and note that the coefficient of
-j/2

n in hs . n(z) is a homogeneous polynomial-{in z) of degree
Lils

(j+2) and hence the degree of each of its monomial is edd oreven

adcording as j 1is odd or evén (j > 1)e Write

-
M= Jz [ 12]° < (s=2) A leg LV
(445) A = largest eigen value of V ,
P I = = ik il
B, = &, (B) ( W O H B {. R

The following estimate of the tail probability of the multi-

variate normal distribution will be.frequently used.
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; 2% exp(- & J2ia
ﬂzH2>s log n iz I )

(4.6) .
o(n"S/Bi-E) e>0y g20s 5>0.

This follaws from the elementary fact that
o0

4.7y 7 rd exp(- 4 r9)ar
(t log n)l/g % 2

0((log n)jfl n-t/z

It

)
-t >0y J 20

*
[

{B) PROOF OF PART (b) OF THEOREM 2.1

In view of Remark (3¢1) we shall assume that (3.1) holds true and
that Assumpt-ionsj As(iv)'*aﬁdv('v) hold with A= I. In the follow-
ing, B will denote a Borel subset of Ri - One can easily verify
that equations (4.8j,'(4(9),:&4.20) and {4.22) hold uniformly

over all Borel subsets of Bi . Now

= Prob (W s B). = Prob(nl/ ?@, - ) ¢ g7 ®))
(4.8) s
, - rLE L (azs o™
: g~l(g) 5"

T'l Lo g
(see (4.2) and 04.3)). In the last equality we have used Bikjalis!

result (see Theorem 2.2, page 26 B

In the sequel we shall use the notaticns introduced in the

firat EARBETeR W Ramank 202 - Th should ha noted that the
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fnllowing arguments are éalid,ﬁrﬁvided (3+1) holds and Assumptions
A (1) - (v) hold with A =T 5 in particular nc assumption on z
is needed. Omne can also easily verify that equations (4.12) and
(4.17) hold uniformly in z & M, and that equations (4.14) through
(4.16)y equations (4.18)s (4.19) hold unifnrmly in
(ry 6y 29) ¢ Tl(Mﬁ).

The transformation T, of Remark 3.2 together with (4.6)

yields _
! £ (2)dz
_l(B) 5-1sn
‘ & i) - . e E
(4e9) oy (zn)-k/g'rp 1 7¢0) eXp(~"%(r2,+ ﬂzglgn
T (B)
R ‘
s=3  _
X Z 'nfj/z‘R‘ (réGazg)‘dr e[ d22
=0 ‘lj.
+ o(n~(s8)/2 R,E1

10

{see (4.5) and (2.12)). For conﬁenience in notations,fwé SHrall
write i .

| RO(PstZZ) = (EW)”k/z L J(8) exp(- %(r3+u22”3))
(4.10) ' | g i

Rij(rsgazz) 22 . «if J=0y 131,

and further abbreviaﬁe' Ro(r,e,zz) and Rij(régszz) as Ro and

R . respectively. We apply next the transformation

|
-
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T2 (raeszz) = (y',@,zz) with

1/2

(4.11) rt = (gﬁ(T{l(r, Gy 22))) (r46,22) ¢ Tl(Rk?

Tote that there exists an integer n_ > 2 ‘such that T, is a

¢° diffeomorphism on T; (M) if n > ny « In the following

(o]
Z £ Mn _a_:p_q V(I‘, G, _22) £ Tl(Mn)’ Since by’part (a) of AS(V) one

has (see (4.4))

(s=2)/2

(4;12) g, (2) = hs_l’n(z) +fﬂz}H2.0((ing n/n)r )
and since under T, ﬂ

(4.13) hg (@ = r? jgi n3/2 Ryy

(use A, (iv) and (3;1)), it follows that

(4;14) r! = ;_( ;és o372 Ry + 0((log n/n)(s~2)/2));

(Jere and in the following we have used the fact that any real
ah,f&\ej\:m
analytic function,ta(an open neighbourhood of the originsof

3-3 "j/z 2
g <5 Rij(r’ 6, z°) can agaln be expressed in the form
J=0

3 ni/2 sz (rs0y2z°) + o(n“(s—z)/2+s) uniformly in (rs6yz°) e

g(mg for any ¢ > 04)
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It can be shown that the zbove equality can be inverted
as follows
| | 5-3

(4. 15) e Bl 3 nrj/g Ryq + ©
| 3=0 !

(n.gg-z)/zw e)) &> 0

(To verify (4.15), let 'r, = r' and define inductively .

as follows

= pr! -
ri+1,n 3 riyn
One then verifies inductively that

5~3

I-l - P 2 _j/g . 2
1y =7 Z BBj(ri,n 3 85 27)
= T+ o(n-(i+2)/2+€) ‘ 0< 154y e>0
uniformly in (ry O, 22)_5 Tl(M ) and that T can be
: n s-3sn
—(3—3')/2)’ in

expresseds after neglecting terms of order o(n

the form
3
Cpl 4 pt SZ n—-j/2

=1 flag, (Fi3 83 2y

Plainly esquation (4.15) holdse)

We now want to expand the Integrand on the left side of

(4.9) and the Jacoblan, Cr/f 'y of T Clearly in view of

2 [ ]

‘A "=y L ok
I COMpPressen, @, Weid aopat
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53
R (1:6:2%) T a 7% R (10427
j=0 J
= R, (r!182%) 2 n~3/2 Ry (r150:2%) + o (n=(5-3)/2,

Now from part (b) of As(v), one has

i : d (s~2)/2

(4.17)J Dlgn(z) - D<hs—l,n(Z) + [lz21][ - 0((log n/n) )
L | Bl X 5D =
Also from (3.2)
| %% g (T (TsQ:ZZ)) -%% hs 1, n(Tl (T19,z2))[

p D | . =T o .
< 207 (1y7 (18427 (D hs—l,n)(Tl L1042 |
. A e (140,27 & T (R
Using (4.13) we therefore get ‘

._ Lz e (17 65 )
(4.18)

5-3
=2r{ I n—j/z R
3=0

Ml
65 * 0((log n/d)(sug)zg)
In view of (4411), (4.18) and (4.15),

N 8 -—. Y o
(19) %r/irt = F 72 Sy (55r8122) + o(n (5272,

Thus (4.92) can be written as
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(40 20) J E (z)dz = J’ séa —'j/2 R

-(s-3)/2
gy S0 T, ®) i 83+ L

{The above derivation shows that the o(nh(s—a)/g) term of {4.20)
can be replaced by O(H-(s_g)/2+e) for any € > 0)s Tow note
that (see (4.5)) Tz‘?l‘(B,n) = Tg?l(Bo) (M T,7,() where

(4.21) B = f(r'5852%) & Tr, (B ()7 ¢ By

Using the continuity of the transformations T2 and T (see

also (4.14)), one can choose noﬂso large that if n exceeds
LR T2T1(Mn) contains the set ,{ﬁrf,ngg) : (r‘)zﬁ (s-2) log n

- % log 2 szn:3£ {s-2) log.n} (see also Lemma 3.2 page 183
of Edwards (1973))% consequently (4.20) can be replaced by(using

once again (4.6))

J (z) dz
g;;l(B) -131’1
(4.22) f
=i .I' R (I“,G’,Z ) jz T j/z RSJ(I‘[,GQZZ)G.I“deZQ
0 =0
+ 0(n~(s-8)/2)_

\

I

Integrating now with respect to @ and zZ and using the second

half of {3.7)s one can see that the integrand (except for the

factor (r‘)p"jL exp (- %{rf)g)) on the right side of (4.22) is a
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polynomizl in (rr)z. More precisely from (3.7) oﬁe can conclude
that 1f j 1s odd ;éo R, Rgy = Or'and 1f 3 2 2 1s even °

f R, Rgy=J (r1)P exp (- H(r1)?) {(r1)2)art

B 2 2 J
o (r*)“eB.

where ¢* (v) is a suitable polyromial in v e Ri » It 1s

J
wellrknqwn that

R 0 L XP(En® ) et
o (r')% B |
With the following choilce of

| /2-1
(4.23) %, () = 2P T (p/2) q;/g(v) , j & 2ydyeney

equation {(2.11) therefore follows from (4.8) and (4.22).

(C) PROOF OF PART (a) OF THEOREM 2.1 ¢

As before assume that (3.1) holds and that Assumpticn.
As(iv) holds with A =1 . For some technical reésons, we need
The following preparatory lemmas.e The first two give estimates
of certain multivariate integrals. To state these lemmas, we
need the following notatinﬁs.

For E> 0Oy A C: Rk and f a real valued function on

Rk, let
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sp(x 3 ) = f 2 [ | z-x][ < e}
sp(h 3 e) =TU f splx 3 e)| x ¢ a}
(4.24) bd(a) = the boundary of A
0 (RS = sup 1T -2 3 vz & B

Copa(x3e) =. sup{]f(y)~f(z)[ * vz e sp(x, e)}

LEMMA 4.1 TLet s be an integer > 4 and { Qj}

: 2B
polynomials in k variables’ (QOE 1)e Let 1 Xp <k and B
denote a Borel subset of R}_ e Then one has
4 .v(a)
(4+25) o $(z)dz < 2 _;' ’Ag (v 3 p)dv + O(nw(S-S)/25
E_ ) :
Wwheré _3
S .

| En(B) g { 7 [ “ZlHZ 2 - ~3/2 Qj(z) . B}
(4. 26) , s

. v = (Zgl),... 7Z(p)) zZ = (z(l)g...,z(k))

. and finally the o (n”(s's)/g) term does not depend on B .

(b)
(.o N (A LR
Sp(bd(En(B));E) L eel R ‘( ( L‘:r{ b7y
i il ' . Ez;ﬂ%{ﬁp){iv ¥ o(ﬁn“(s'a)/z)

sp(bd(B)je((2s-3}1og 6)1/2}
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l‘where the o(n—(s'a)/g) term doss not depend on B or
e (0 <e< 1)

PROOF ¢ (a) The first part of the proof is based on the
arguments analogous to those glven in (4.9) through (40 22) of
the proof-of part (b) of Theorem 2.1 except that rt s to
replaced by

o=z %o @ e PNV,

One then integrates with respect to 6 and z° y and reﬁeatedly
uses (4+7). (It is readily seen that (4.25) remains true even

1f the O(ﬁ“(s“augh) torm there 1s replaced by‘ o(n-(sﬂz)/2+ %)

for any € > 0. )

(b) TFor notatlonal convenlence, put

B(e) = sp(bd(B) 5 £)y A = bd(En(B)) ;

Yote that for any n 21y &; (CE  (d(B))s Get an nj 21

such that the Euclidean norm of the gradieunt of

5-3

¥ 2 5
120" Qj(z) restricted to the set Sp(Mno, 1) (see

AT

(4.5)) 1is less than ((28-3) log Y2 o ¢, says Then if n 2 ng

0 = sy 1

{4.28) sp(Ah y &) (C (EnCB(ﬁ;)) Oy Mg) U Mg
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where Mg 1s the complement of. Moo dn appeal to part (a).
(with B replaced by B(s;)) and (4+6) now establishes part
(b). | i

This completes the proof of Lemma 4o le (One may note that

Lemma 4.1 remains true if the Thtegrand on 4he left side of (4.9

or (4.27) is replaced by an expression or! the form : E £ (with
= I)} see (4.2).) e o o

'ty
,t-‘

LEMMA 4.2 Tet s be an integer > 4 and 16t

(4. 29) Lk sh(B) & { z | h (z) £ B}

5- l,n

(see (4.4)). Then one has unlfnrmly over aIl Borel subsets B
1T <A
of 3+ 3

| in(B) ES--l n (z)dz
(4.30) : = |
- jfb n“jf X (v Y ) % (v)dv + o(n“(5“3)/2)
where E is defined in (4.2) and the polynomials

s-l,n

{ G S and the integer m aré as in Theorem 2. 1.

PROOF T The arguments given 1in equations (4.9) through (4.23)
of the proof of part (b) of Theorem 2.1 establish the lemma

provided one now defines

rto= (a7, 6. DHNYE
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(Bquation (4.30) remains true even if the o(n—(s“a)/z) term
- there is replaced by o(n’(s“z)/2+€) for any € > 0.)

The next result is due to Bhattacharya (see Theorem 1.5
page 10, Bhattacharya (1977)). We use the notations of (4.24)

and (4.2).

THEOREM 4.1 (Bhattacharya) Tet {Zn} >l‘be a sequence of IID
n2

k-dimensional random vectors with mean zero and dispersion matrix

V. Assume that EHZIHSfl 1s finite for some integer s >4 and
that Z, satisfies Cramér's condition (2+7)s Then for every real

valued bounded Borel;measuréble funetion £ on Rk, one has

1/2:

[E(f{n Zn)) - Rk £{z). Es~1,n(z)d2[

(4.31) [ ' | .
—(s-3)/2 \
n (S. )/ mf(Rk) + J mf(x §:exp§5dn))¢v(x)dx‘

where 6 tends to zero as ' m - co s 4 1is any positive constant

such that A4 =k log 2 vwhere

(o =A3 -1
[ > (16 E“Zlﬂ ) }

& = sup {[E(exp(i < t;z1 >H]

and moreover 5,0 d do not depeﬁd on, T

We now start proving part {a) of Theorem 2.1 byfébtaining”

Y i

X . 1/2
first the asymptotic expansionrofh_mé :‘h ~l;n ( Z ))

IR o gl ) e e o o ) OB G

eersntt 4
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By part (b) of Lemma 4.1y Assumption As(iv) and {4.7)

L ¢! {53
(4.32) iy 9(z)dz = o(n - )/2)

Sp(bd(Bh(u))?eXp(ﬂdn))

-

uniformly in u € 3% for any 4>0 ?,fbr hise consider sepurately

the twe cases p > 1‘fénd‘ p = 1. Theorenm 4«1 and Lemma 4.2

together show that W! possesses the expansion (209l =

Let. & _(h) =h n=(83)/2 y4tn h > 0. Then there exists
an integer n_ > 1 such that if m2n, 0 <u <o "

(433)  fur ¢y =B, MY T My C o, < wh Wl wes (R)Y T M

Also since (2.9) holds for WA ’

w6 (h)
2 i ; ,_.j n il K . |
Prob([IrJT'l—u[ 26M)= Z n 0 Kz(va)qj(V)dv
J=0 (u-5_(n)y"
n
* D(nf‘(s"s)/g)
where the o(n_(s'a)/?)'term'does-not depend on u er h and

(u - Sn(h))+ stands for the maximum of zerc and {(u - 5n(h))-

e ostimate
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u+8,(h)
S v x?(v 5 pliv = O(an(h)) §
(u—an(h))+

is uniform in u ¢ 3} if p > 1 and uniform in

u>u, >0 1f p = 1. Clearly then (4.33) and the fact that

(2.9) holds for wg complete the proof of part (a) of Theoren
2o 1a

REMARK 4.1 In case p = 1y the expansion (2.,9) helds

uniformly in u € Bi as well provided Assumption Agq(v) holdse
Under this stronger condition one proceeds direetly with wn

as in the proof of Theorem 2.1(b).

REMARK 4.2 Let p > 1. From the above preef, 1t is seen
that in part (a) of Theorem 2.1, the expansion (2.9) holds

miformly over every family;@-oijorel subsets of 3% satisfying

(2.34) _sup, ! X% (v § p) dv = 0(e) as e = 03
B 8&*“sp(bd (B):E)

equation (4.33) 1is to be replaced by

e sp(B % -6, ()} U M;
C o ey

C MY e sp(B Y 5,(n)% U My


http://www.cvisiontech.com

where sp(B ) -5, (h)) = Ufx [spéxy & (h)) _ Bl » Note that
the relatinn Sp(B 3 6,(0)) - sp(B 5 - 5,(h)) = sp(bd(B)S &, (h))
is true on R° (in fact this relation 1is true in any metrlc
Space every open sphere of which 1s connected). It also follows

that the T -probability of the set {w e sp(bd (B} ,Maxﬁlmgnﬁ)}

(s-3)/2.

1s ofn” Y uniformly over all Borel subsets in ﬁ’satlsfym]

(4434) (Here d. is any positive constant).

REMARK 4.3  Here we briefly describe one pessible way of
proving the dnequality (*) in Remark 2.2 ‘(see pagé"lé );i
start with Cornllary 8 of Sweetlng (1977) (see also 1nequd11ty

(2.15)y page 444, Bhattacharya and Ghnsh (1978)) and estimate

the § -probability of e, ~Sphere (s€“s 0(n~1/2yy around the
v

set W, £ u} repeating, the arguments up to’ (4.28) rgiven in

Lemma 4.1(b) and then using Theorem 3.1:ofIBh%ttadhérya-aﬁd'

2. ¢

Ranga Rao (1976) for cach fixed z sy to apply Theorem 3.1 one

notes that for sufficiently large m, Wr1 is econvex in zl nn Mn'

SECTION 5. SOME VARI%NTS OF MATN THEOREM

In Theorem 2.1 we assumed that {Z 1 is a sequence of
n
n>1
independent and identically distributed random variables. In

most applications(e.gey to the asymptotic theory of statistics)

this assumption appeam to be restrictive. One however does

*

. a * - [ T T - \ b e ot o S R, ol Y
“.f’f{- neal t’ 2 PT‘] IMNZaen s t:'}.’? MK 8V 'L\ NCODV. J
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for example,; in definition of W= zn(H(Z ) ~ H{u)) the normalised
1/2

deviation n (z ~ #) based on the IID sequence {Z } can be

n>1
replaced by an arbitrary sequence {Un} posseSSing a similar

Edgeworth expansion. Theorems 5.1 and 5 2 below .give the precise

statements, Since the pronfs of the theorems run parallel to
that of Theorem 2.1y they are omitted.

In almost all app;ications of these two theorems, we shall
be supplied with the statistic Wﬁ-rather th;ﬁ the function H -
and the sequence {U } .” One has to choose judiciously the
sequence {U } such that Assumptinn-'g (iv) or (v) is satisfied.

n>1
This problem of choice arises typically in most statlstlcal

applications § see, for examplea g Chapter Two and Example 7.2

THEOREM 5.1  Let {Un} 3 be a sequence of k-dimensional
w1l At

random vectors admitting the following Edgeworth expansion

k
uniformly over all Borel subsets Bk (01 G e
e
Prob (n (Un - M) € ?k)
(5.1) ’ |
PG (z)dz + o(n (S‘S)/g)
B S-—-l’l’l
Xk !
where & ¢ Rk and .
S3 .j/2 . | iy
(5. 2) Een.y (B = Z n P,(2)) by (2) (P E 1),
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{PJ(Z)}ﬁﬁsﬁs—S being suitable polynomilals in z and @V belng

the Aensity of the k-variate normal distribution with mean zero

and dlspersion matrix V . Let

(563) W= ZnCH(nl/zﬁUn - u)) - H)) ﬁ >l

where H 1s a real valued Borel measurable function on Bk

satisfying Assumptions 4 (1) - (v) for some iriteger s > 4

(see pages 15-16).

. -

(1), Then there exist nonnegative integers kjseresk 4

and constants {aij} not depending on n_ﬁO'g'i < kj’ 0 < j £ s-3)

—

such that the following holds uniformly over all Borel subsets

1 -
B of E+ .
Prob(wn e B)

L | g
(5.4) -y a2 5 a5 XP s 2D

j=0 1=0 ) B

+ o(n(8-3)/2 k, =1

(11> If moreover j} enjoy the cdd-sven
<Jgs-3

property (3.3)s then
{5 5) aij =0 for @ll; %0 £ L < kj’ j odd .
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THEOREM S. 2 Let,{Un}rj_ be a sequence of k-dimensional random
n2l
vectors defined en( X ),/ ,P) such that for some integer s > 4,

Assumption (I) below holds.

assumption (I) ¢ There exist w4 ¢ Rk} V  a nonsingular matrix and

i

polynomialis {P [ (® 1) in k varisbles such that

Hogigs-3
o :1/2 - _ :
.E§§4 lP(n / gUn #) & By) {ék asml’n(z)dz.{

= o(n-(S_a)/z)

B

for every family;ﬁg-of Borel subsets B, of Rk séfisfying

Ll

(5.7) sup, fil 0 _(z)dz = 0(e) € > Oa"
Bitd splpd(s)ve) '
Here
5-3 -
\ - : ~j/2
5’8 —_—
(5+8) e 1,(2) B 2o 0 By Gy(a)

Tet 1 £ p < %k and define w; by

1 l)

1 o1
J1 = i = =
w o= n@l - uHT el -

53 %
R N D)
351 g

(5. 9)

where I, 1s a positive semi-definite matrix of rank p and
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{% ()%

1<3gs-3
of degree two in _zl = (z(l),...yz(p)).

are polynomisls in 2, each of which is at least

Assume that
(5410) s 2l A%
Then (i)y (11) and (iii) below hold.
(1) There exist nonnegative integ?rs kl""’Ksms and

constants {aij} not depending on n (0 < i.< k

37 1< 3 £ s-3)
such that ,
-sup_ [P(W! & B) -
B 863[ "
3l P ; ' ;
(5.11) 5 ~i/2 4 5 -
% n Sl X G +2i)dv
3=0 1=0 13 B R ld
. —(s-3)/2 _
= ol (s-3)/ y

for every family % of Borel subsets of Ri satisfying

(5.12)  sup ¢ (v $ plav = 0(e) & = 0.
Bef\% v R
~ sp(bd(B)Se)

(i1) If W 1is any other statistic defined on (), 1 4P)
n . -

such that
) N . 2
ﬁip {]Wn(m) SR M CUEE nuqn(m) - 4] > d log n}

(5.13)
_ ﬁfn~(s—3)/2)

?
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then the conclusion of (i) holds with W) replaced by W_ (with
A
the same choice of
fesy and fagyy).
(1i1) If /P1}

. ERaC Fiema =
- 0<j<s-3 { J}lgj_{s—B
odd-even property (3.8), then (5.5) holds.

bath enjoy the

REMARK 5.1 Assume the set up of Theorem 5.2 except that we

now have a family '{Pe} of probability measures and a family

{Wﬁ(@‘)'}' of statistics, . Suppose that assumption (I} helds in

the following uniform sense .

!_VSU.p Bsup ;‘i. lpg(nl/g({jn i M(Q’)) £ Bk) =

oy S5 e By B
(5.14)
o Fagnlss D

= o(n~ (8872,

“for evéry familjrifﬁ of Borel subsets of -Rk satisfying
=aP B;‘?E [ 5 QV‘(Q)(ZMZ
© sp(bd(B, )5¢)
(5.15) k
=0(e) ~  as " =» 0.
/o 3 (— .

Llso assume that there exists a positive constant d (free from
&) sucﬁ that_,-
Sup sup {[wn(uﬁ@) - Wé_(a_)';(-})_ L e n[]Un, - () [[2 > d log n}
(5.16) Q’ w I'd P T
. o(n"":" W ._;) ' 5
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and that
for each ©y the rank of the positive semidefinite

(5.17) matrix LE(©) 1s ps free from 831 <plkeoa

Then one has

sup  su P W ) ¢ B) -
Ui %3 [ ( ( )

(5.18)

=S .y/9 B !
2 n ?ij;g X% (v 5 p+ 21)av{

J=0 i— x
= o(nﬁ(sna)/z)a
for every family @% of Borel subsets of Bi satisfying (5.12).

SECTION 6. VALIDITY OF SOME COMMOW FORMAL EXPANSIOWS

suppose that Wwe are given a sequence of statlistics {Sﬁ} p

: n>l
We shall say that the distribution function F (x) = Prob(T < x)
of T  possesses an asymptotic expansion valid up to o (n~T/2

if there exist funcfions A’,...,AT not depending on n such tha
T _y/2 /2

6.1 F - n =

(6.1) %) 356 n AJ(X)‘ o(n %)

If moreover (6.1) holds uniformly in x € ng we shall say that
the expansion 1s uniformly valid up to. QCn"r/z). In this works

all the expansions obtained -=are ﬁniformly valid gnd hence will

he eimply raferred, to as walild,

-
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Since the first term A (x) of the expansion (6.1) is
nften insufficlent to get accurate approximation of (%)

the problem of getting the higher order terms is considered by

various people. The methods used are however not necessarily

valid in the sense of (6.1). We shall mainly concentrate on

two such formal methodsy namely, the &ethmd using the approximate
moments ofr Tn and the method using the approximate character-
istic functions of Tn « Each of these methods yieldd explicit

(and convenlent) determination of the higher order terms of

(641}

In the rest of this section, we shall assume the set up

O! §ggtior; 2

(4) METHOD OF APPROXIMATE MOMENTS &

“Let r be the highest degree of the polynnmigl

=3

(6.2) otmmCV) = n qj {(v).

i B
l 5
® M

where {qj} and m are as in Theorem 2.1. ASsume that the

moments of Z; ef order (s-1)r are finite. ‘4 Taylor expansion

of Wﬁ vields the statistic

‘ /2
WP = R ( [
. b e !—5))
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{see (4+4)). Then the first r mements of Wl are alse finite.
Expand these moments up to o(nr(sda)/z) and get the "“approximat

n f 1 »
monenbs 5y of W! (or wn) .

(6.3) BOWDY =6, 4058 ocigr

Using Laguerre polynomials (or any other cormvenient methed) find
a polynomial
e
£ . -J o~
Si,m O TERB 0 )
of degree 1T ( ﬁh‘s do not depend on n) such that

6. 4 : — =
( ) éi v X" (v 5 p) uﬁyn(v)dv 61,n @l Wi &

Suppose now that the assumptions of Theorem 2+1(a) hold.

Then

A
o = el

(6.5) myn myn

so that the formal expansion

2 (v S :3,»\
(6.6) X“ (v 5y p) jzg n Sy (v)

of the dieribution-fUnctiod of Wﬁ is valida
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PROOF OF (6.5) =

i
B(W!))
i
= é‘k [hs-lg?’l(Z)) Es—l,n(z)dz " 0(1’1"(5'3)/2),
(6.7)

The first equality follows from Bhattacharya's result (Theorem 4.1
while the second can be proved by a slight modification

page 46 )5
In view of (6.3) and (6.4) and in

of the proof of Theorem 2¢1{a).
view of the fact that both of ® and o _ involve terms of
Ty n myn !

order o(n"(s'a)/g), one can then conclude that

rvi dﬁ,n(V) X2 (v § plav = rvl Q%,n(v) Xz (v 5 plav

0igr

S

Singe both of ¥ and & are polynomials of degree r 4 they
My N msn

must therefore be identical.
() INVERSION OF APPROXIMATE CHARACTERISTIC FUNCTION

To derive the asymptotic expansion for wn' it is often.

convenient to evaluate one of the three quantities : the exact charac:

teristic function of W,y one of the two possible approximate

characteristic functions
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E(exp(it wg}) or J exp(it hs—l{n(?)) ES* ,n(z)dz. (t ¢ Rl%

2

A formal inversion of the ., expansion up to b(n~(sq3)/2) of any on

of them will lead to a fnrmal expansion for wn. In general such

formal inversions are not valid. Under-certain'conditions we
justify below this formal inversione

Suppose that the assumptions of Theorem 2,1(a) hold. Thed

E(exp(it Wﬁ))

E(exp(it WIEI))+ O{n"(S-—S)/Q)

u

] | ~(s3)/2
= B eXP(itV') (_1_) (v) dv + O(n“(S—S)/g) - Rl
Rl s

where Y (v) = dﬁsn(V) x?(v 5 p) (see (6.2))e The first
My T2

equality follows from the estimate of the tail probability of

normaliséd deviation 1’11/2('21‘1 - &) due to von Bahr (see (2.31);
page 4475 Bhattacharya and Ghosh (1978))% the second follows

from Bhattacharya's Pesult (Theorem 4.1, page 46 )% and finally
the third can be obtained by following the proof of Theorem 2413

£

Let
A

(T) (v) =
msn J=0

H M8

'n™? "Eij ) v 3 p) v en
1
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( Q‘ are polynomlals with coefficients free from n) be sueh that

»\
J emﬂiW)(+) (v) dv
Rl MmN

= E(exp(it W) + o(n™(52)/2),

Then from (6.8) it follows that the Fourier-Stieltjes Transforms of

Qf) and ) agree up to o(n—(s_B)/g). 45 @ach of thess
My 7N My

involves only terms of order o(n"(s"s)/g), they must be identicale

" VAN .
In other words, the formal expansion (+) for WT1 is indeed
Mam '

valide.

SECTION 7. COUNTEREXAMPLES

This section is devoted to five examples related to the
assumptions of Thenrem 2.1. The first example shows that in
Theorem 2,1(a), Assumption As(iv)cannot in general be dropped.
On the other hand the second example shows that this assumption
is only a sufficient condition for Theorem 2.1(a). The third
exeample 1llustrates the important fact that even when Theorem
2¢1 as such may not be applicables; the method employed in its
proof can be applieds The fourth one points out the need to

verlfy the odd~even property (3+8) (see Theorems 5.1 and 5.2).
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EXAMPLE 7.1  Suppose that 1% are IID two-dimensional
n>1 '
vectors and that Zil), Z£2)are independent N(031). ILet

2 i) 32
H(z} = %(z( )) ES %(Z(g))g. Theny with s = 5, all the assumption

of Theorem 2.1 hold except As(iv). We shall show that the conclﬁ
lon of Theorem 2.1(a) (and hence that of Theorem 2.1(b))does not
hold.

Clearly W_has the same distributicn as 2+ nV2A3

where XsY are IID N(0O,1)e Pix ayb such that 0 < a < b < oo
and let a < x<b. Put

A

= 2
5 v < 3 log n}

L
T,
=
)
)
A
£
A
&

A “-:{(W,y) [ 8<W_SX’ —m(y(OO}-

Then for all suffieciently large n,y 4. is a subset of
"y LE

{CW$Y) W a2 y3>'o} ;
One hasy uniformly in x ,
Prob (a < Wogx)
= Prob (a g W< Xy Y% < 3 log. n) + o(n’D

Aﬁ (2r) (w—ﬁi/gysfl/g eXp(-jé(w~n”l/2y3)—,%y2) dwdy

1

+ n(n-l) iy
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~-1/2 o
(2#) w / exp{“ %(w+y2yg fn(w,y)dwdy + ofn l)

i

—1/2w—1/2

(7.1) exp( - %w)(1+n”1a1+n"l e o E@)dw + o(a1)
: W 2

W

where 850 &, are nongero constants and

-1/2.3 = ~1/2 = 6
f (wyy) = (1 + ll——-i_ = n_}r_)(1+ B—Wﬁ-+ W T Ve
n 8W’2 )

Clearly (é.9) is incompatible with (7.1):

(If 0 < x < ay then there exists a valid expansion of
Prob(wn < x) but 1t is not gquite identical with the above
expansion and moreover it does not hold uniformly in X.)

REMATK - 7ol Example Tel suggests thdt even when Assumption
A (iv) does not hold, alternative expan51ons in pnwers of n i

are available. It is not however clear whether eXpan51ons of

this sort may be easily obtained by some formal technique. Wc

shall not explore this guestion any further.

EXAMPLE 7.2 Teke Z.'s as in Bxample 7.1 and’ lét F(z) =
%(Z(l) + (Z(z))g)2 so that Wﬁ = (X + n“l/? Y2)2 where Xy Y
are as 1n Example 7+1l. Then considering the Edgeworth expanSion

-1/2 2

of Un =X+n (see Theorem 5 2) it can be shown that

wn has an expansion of the form (2.9). But evidently H does

rebmpbdisOCR: webbhtntiEamn uSing a
v ‘C_-’ 4 IZal S wal
o


http://www.cvisiontech.com

=65

EXAMPLE 7-3 Let Z;'s be as in Example 7.1 and take H(z)
= $liz| + %<z§l))5 lz™F so that W, has the same distribution

as that of

2 =

T4 ¥ 2 n“‘l X5(X2 + Yg)“‘l/g

where X,Y are as in Example 7.1. Applying the polar transforma-|

tion X =1 cos &y ¥ = r sin 6, Mﬁ can be written as r2 + n"lr4

><icos5 @ so that wn possesses an eXpansion of the form (2.9).

. BXAWPLE 7.4 Iet fZ;} _ be IID W(031) on R and put
1>1

Wn = (nfﬁ'in)g SR n‘l/g). Then

2
Prob(W < u) = Iu ¥2 (v 5 1+ T=byav + o(n—l/z) u s R
n 0 2. /A *

so that the coefficient of nhl/2 does not vanish.

EXAMPLE 7.5 Tet xi,...,xg be IID N(031) and put

— 2 2 "'1/ 2 3] i - ¢
Wﬁ = Xi + ven + XS +7n Xe‘ _Then ona._can. show using arguments

rof-Example 7.1 that

P(W < u)

= PxZvss)av + = (X %v35) - 2X2 (v33) + X2 (w31))av
0 8n/ 0

+ o(a™ly, unifornly in u € B .

Thus even when A (1v) does not hold (here s = 4)dib p 2> 5

Wn can possess an asymptotic expansion (up to o(nﬁl))such that

Ik

the coefficient of n™~ is a finite linear combination of

chi-squres with degrees of freedom p-4s p-2y p etc.
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CHAPTER TWO

VALID ASYMPTOTIC EXPANSIONS FOR THE LIKELINQOD
RATIO AND OTHER STATISTICS

SECTION 1. INTRODUCTION AND NOTATIONS

The general theorems obtained in the previous chapter can

' be applied to get valid asymptotic expansions of the distribution
functions of many statistics whose limiting distributions are
ce?trql_chi~squaresm The most Important example-of such 8.
statistic 1s the (transformed) likelihood ratio criterion proposed
by Neyman and Pearson (1928) 5 others are the statistics due to

A Wald (1945) and C.R. Rac (1948) (see Rao (1265)s pages 347-352).
We show under very general conditions that these three statistics
indeed satisfy the assumptions of our Theorem 5.2 of Chapter One
and hence that they possess an asymptotic expansion up to any
degree of accuracy. We consider separately the case when the
samples come from an (absolutely continuous) exponential family
with natural parameter space since the proof for the general

case is quite cumbersome; 1is based on some tedious approximations
. and_dses a rather deep result of Bhattacharya and Ghosh (1978)5

‘ for the exponential fami%y it is moreover shown that in typical
cases the expansions are valid uniformly over all Borel subsets

of R% . These examples show that our assumptions are not too
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restrictivey in fact we do not at present know

a5 P S ——— .

any useful statistic whose limiting distributinn is central chi-
Square and to which our theorems are not applicable. To apply:
Theorem 5.2 one has to make a natural choice for Un 3 for the
above three statistics it is shown here that the natural choilce
is the unrestricted maximum likelihood estimators together with

a few of partial derivatives at GO of the leglikelihood fUnctiom;

It is worthwhile to mention that our theorems always yield
valid expansions (see Section &, page 55 3 Chaptef (me). All the
previous expansions (for these statistics) obtained by varilous :
people are only formal. One of earliest reference 1s Box (1949) {
and a recent one is Hayakawa (1977) where further references can |
be found’(see also Korin (1968)). Most of these expénsions are
obtained formally by inverting an approximate characteristic
funetion or by equating the first few moments of the exact and
approximating distributionse. In general, the above procedures
cannot be justifieds. Conseguently the validity of the formal
expansions in the literature has remalned an interesting open
problems That under the assumptions of our main Theorem 2.1 such
formal expansions are valid was proved in Section ©s Chapter One.
However the expansions obtained by Box (1949) and Hayakawa (1977)
do not exXactly fit(the set up of Thecrem 2.1 and are justified in
Sections 3 and 4(C)}.It is to be noted that although methods of Box
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and Hayakawa are formals whenever their methods are appliczble
they are more suitablé and less tedious {for detérmining the
expansion explicitly) than the méthod employed in the proof of

our main theorem of Chapter One.

Below we list some of the notations to be followed in the

rest of this chapter. Let {Yn} be IID m-dimensional random
n>1

vectors with common density f(y 5 @) with respect to some sigma

finite measure s where € = (9(1),...,G(k)) takes ﬁalués in

some subset (H) of R, Let 1 <p Lk and put

(1.1) ot = (9(1),...,9(p))a _92 = -(@-(P"'l)-,...,g(.k)) .

Consider the problem of testing
S e o al 1
(102) HO « BT = @0 VSe Hl s & # g'o
where Qi 1s a specified element of RP. We write

-1 B

L.(8) =n"t T log £(y55 ©) 1,(8) = log £(y} ©)
=1
{Ve3Yicur ¥ 5 2n[ sup L _{(B8) -~ sup L_{8)]
s -9 e (H) " e CE)O n
@, = @ |o =
| 0

Thus Ln(e) is the average loglikelihood functien when the sample

is (yl””’yn) and A, is the transformed likelihood rgtio statistie
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(exp (=12 /2 )} is the conventional likelihood ratic statistic).
The unrestricted (restricted) maximum likelihood estimators will

(4%15 respectively).

be denoted by \5;

L () = 5P T, (@) 1 (B) = sup _ 1 (0)
_ H e (H) ° ' ' 8 e (ﬂ)
(1.4)
il kil N e
@n = GO ’ Gn =5 K Qn[ Qn)

To define the criteriam® proposed by Wald and Rao we need some

further notations «

15 1.3 _ 1] -
1.9(6) = DL (0, I;;(8) = Bo(L7(8)) 1< 44 gk
I(8) =((1,:(8))) 5,5 i ¥
» =058 1444 5k, T (@) = (5@ gy, 5y
1%, (8) ¥, (83
(1.5) 1(e) =<\ . . )
15, (8 15,(8)

I,.5(8) = TF (8) - I,(0) (T5,(00)7F 15 (9)

9,60 = n/2 0P L (0) Igigk,  0(8) = (0;(8)senss0,(8))

Thus — I(8) is the conventional Fisher Informgtion matrix when

& obtains and ¢i(@) is the i-th efficient score of © « Then

Waldfs statistic is

(1.6) W, = (.87 - 8" Iq o
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and Rao's statistic is

(1.7) Sy = - 08T T8 9B

SECTION 2. EXFANSIONS FOR EXPONENTIAL DENSITIES

Let {Yn} be mrdimensional randem vectors with density
n21
(2.1) f(y 5€) =exp( £ © fi(y) ~ c(8))
with respect to some sigma finite measure Ky Where ESELREE

fi, are continuously differedtiable real valued functions on R

and 6 takes values in (H), the natural parameter space. We

assume that x4, has a nonzero absolutely continuous component
(with respect to Lebesgue measure on Rm) whose density is
positive on an open set U (C R® and 1, flg...yfklare linearty
independent as elements of the vector space of(confinuous

functions on U . Then

(22) Zy = (£1(¥)reees £, (¥4))

satisfies COWDITION D (see (2.8), Chapter One) under each & e (M.

We_assume that (H) has a nopempty-interior. ‘Consider the testing

problem (1.2) where e, 1is an interior pointwof'CE)o « We want
to establish the existence of a valid asymptotic expansion for
the distribution of the transformed likelihood ratic statistic

kf(defined in (1.3)) under e: s
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THEOREM 2.1e Tor all integers s > 4y there exist polynomisls
1

{qr (in one variable) with coefficients free from n Such
OLr<m

that the following expansion holds uniformly over all Borel sub-

1. {
sets B of R+ 5

m -
(2:3)  P(A B 38)= E ul g‘z?(v;p) q; (V)av + ¢

i=0 S

where my e and K?(v?p) are as in Theorem 2.1 of Chapter Ome

(see page 18 ).

PROOF . Without loss of generality we may take 6, to be
the origine The likelihood eqguations for the unrestricted ML

estimators oy = '@n) are

(244) Dle(o) = Eéj) 1£J<k

and the corresponding equations for the restricted ML estimators
8 (= Qn) are

(2.5) ple(e) =28, or-ool, pr1<ic<k ;

n o

Let « = E(Z 5 Qo). If in (2.4) and (2.5) we replace Eéj) by
’ tﬁen.they have a soiution B = 90, 6 = Go respectively.
Since the k X k matrix whose (iy3)th element 1s ~D'DIc(e) 1is
positive-definite, it follows by the Implicit Functidén Theorem
(see page 272, Dieudonﬁé'(1969)) ﬁhat there is a bounded convex
neighbourhood W of # such that it "7 & W, then both of (2.4)

A ’~ :
and (2.5) have unigue solutions B and © resvectively and the
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(2.6) sup _ L, (8) = L ( ), sup _ L) = 1, (8) .

e e (M™" e e @),

Since ©, 1is an interior point of Ga)o, by Chernoff!s Theorem
(see Theorem 3.1, page 7 of Bahadur (1971) and Bartfai (1977))

We may assume that

(2:7) P( Eﬁ £ N5 90) =0on™®) for all s >0 .

Thus xn can be regarded as well-defineds Now in a suitable
neighbourhood Ni( C W of &, Eﬁ and 65 can be written as
funetions of ‘5;, the functions themselves being free from n 5

consequently we may write using equation (2.4)

i PRI ok S P
A, =2z 8 DD oy -z B DL By
11 f J=p+l
(2.8) "
= 2n H( 8 )y say,

(H is defined only on Ni),

We now apply Theorem 5.1 of Chapter One (with Un replaced
by ‘ﬁh). Differentiating the likelihoed equatien (2.4) for 3

with respect to Eéj)(l < J £ k) one gets,
(2.9) I = (@0 e (28 W23V

and consequently the second matrix on the right side of (2.9)
(evaluated at 4 = E(3; 5 @ )) is positive-definite, Since by

a version of the Implicit Function Theorems @ can be chosen to
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i

be an analytic function of 7 and since Z; satisfies CONDITION]

Dy it therefore follows from Theorem 2(a) and Remark l.l of
Bhattacharya and Ghosh (1978) that nl/g(ig e @O) has a multivarish
HEdgeworth expansion which holds uniformly over all Borel subsets
of Rk 3y in facty as L@ and E% both have the same dimension I
the expansion for ® is almost immediate from that for Eh = | B
therefore remains to verify assumptions As(i) - (v) far‘the
function H defined in (2.8). Since c is analytic(implying as |
before that © and © can be taken to be analytic) H 1s also
‘analytic. It is well-known that the limiting distribution of Ah
is a central chi-square with p degrees of freedome Thus As(ih
(11) and (1i1) hold, (That 4_(ii) and (iil) hold can as well be |
verified otherwise } one convenient way is to expand all functionsl
of £ around '® and use the likelihood equations) seey es.8es the
ancrnd- paragraph,” page-85). . For A (iv) and {v), it 1s
sufficient to check that (see Lemma 2.1(c)» Chapter One)

Fa( B ryee e axaen

7

for g3l '8 such,that % = 6. . To this ends note in view of
(2.4) that

=

+

. k . )
H( =28 I pla(8y ce(Brrz B GpIed) + o)

i=1 j=p+l
Bnd o iy e N il p
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pu( ey D
f
|
|

D w(iplpd, @ % <l JLon oy, RRUY
=3 BUIIc (B Y+ = @e®) -Dle(8)) S
§=1 j=p+l 28 (D
= 0 i 5L w e
; pX1
in the last equality we have used the fact that when t@ Al Oy
6‘3{6\0

By Theorem 5.1 of Chapter One and (2.7)y the proof of the

theorem 1s complete.

REMARK 2.1 We have verified Assumptionslﬂs(iv) and (v) by
writing Ah as afunction of the unrestricted ML estimators %9.
Clearly ln can as well be regarded as a function of ﬁn. However
considering the problem of testing the hypothesis that the popula-
tion ¥ariance 1s one against the alternative that it is not oney
the population mean being unknown and the observations coming
from a normal populations one can easily verify that assumption
As(iv) need not hold 1if lh is regarded as a function of Eﬁ.

In case of a simple null hypothesis, these two assumptions will
always hold and consequently the above theorem can be proved
without using the Edgeworth expansion for B (There mays however,
be cases where even 1f the null hypothesis is composite and Ah

is regarded as a function of Eﬁ, As(iv) and {v) hold. This is
the case whens eegesy one is testing for the mean of a normal

population with unknown varilance).
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REMARK 2.2 The above theorem holds gnod (with the same proof)
KR N, is replaced by Wald's or Rao'!s statistic (see (1.8) and
(1e7)). In facty; the case of Wald's statistic can be settied

rather casily.

REMARK 2.3 It can be shown that the expansions of the distri.

bution functions of & s W_and S hold uniformly over all 6, suci

that @g lies in some compact subset of Gﬁ%} .

SECTION 3. VALIDITY OF THE METHOD OF BOX (1949)

In Section 2.1 of his (1949) paper, Bok'considered,the
‘problem of testing constancy of variances or covariances of k

|
!
i
I
l
|
i
.
|

sets of p-variate normal populations and derived an 'asymptotic
chi-sguare series solution! of the null distribution of the test
statistic ™ (see equations (4}, (5); page 320) which is a

generalised form of Bartlett's statistice We use our results of

valid one. In the rest of this saction we shall follow the

l
}
|
!
|.
%
Chapter One to show that Box's asymptotic series is in fact a i
i

notations of Box (unless otherwise stated).

We describe briefly the approach of Boxe He first derives

an asymptotlc expansion of the logarithm of the exact characteristi
function §(t) of oM ( 5 is a constant which may depend on u) |

and uses it to deduce that ) 1
) !
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3t = (t) + o™ £ e BT
where '

g () = K(1-e1t) Y2 g L a,(1-2it) 7" ,

: =0
K being a constant depending on 4 and f = (k-1)p(pt+1l)/2s the
degrees of freedom of the limiting (chi~square) distribution of
pMe This part of Box's argument is rigorous (at least can be
made rigorous without any difficﬁlty). A férmg; inversion now
glves an asymptotic expansion of the density pkx) of M3 (
p(x) = p (0 + o™
n

K S 4 a X% xS T+ o)
v=0

It

pn(X)

i . i A .
where X (. 3 f+2v) 1s the density of a chi-square variable

with (f + 2v) degrees of freedom. This step is in general

unjustifiasble. Box gets the final forh of his series solution

by writing X asymptotically in a series off 4 and rearranging
the product of the two resulting series (see egquation (30),
page 323) % obviously the last part of Box!s argument can

be justified easilye.

To establish the validity of the above formal inversion
of characteristic functiory take (in Theorem 5.1) ©M tb be
. v _ ” tu 4
our wn and let Qn be the vector of SijA s (the usual

.-

’ - ~ L RO e} FIE T I J—— P TRl 2 1N o S ]
‘.1]‘_\11 ' R '3'\:'\-.;'71'.'. D AP o "l( EwWalemarkes T’:y!fﬁuezt, AET G R PO DR
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J~th variable in the A-th sample). Define the vector z1 in an
obvious manner (see our relation (2.2), page 68 )e Finally let
Es--l,n ;—1,n
n1/2(‘§£ - GD) and nl/z(ﬁn - E(Z1 » 6,)) up to terms of order
O(n~(3~3)/2).

and g be respectively the Edgeworth expansions of

In view of Section 6(B) of Chapter Oney it is
enough to show that

| E(exp (it wh)sso)
m i : S
(3.1) = f exp(ity) £ 0™ q,(v) P(v H27)dv
1 = |
R{. e
+ o(n"(sqs)/g)-

It should be noted that the argument given in Section 6(B) of

Chapter One does not applye. Define the functions &, and gé

k

on R~ such that (seey esgey equation (443), Chapter Omne)

L 172, @ _ 1 1/2 . |
Wy = 8 (07708 = 80)s W = gl (0 - B(Z, 5 80
Then the left side of (3.1) is

ék eXp(itgé(z)) §g_1,n(2)dz_+ O(nn(SFS)/g)

It

L axp (1tg, (@) £, (@)do + o(n~(5-3)/2
R

The first step follows from'Bhattacharya‘s fesult Theorem 4.1
(page 46 y Chapter One) while the second follows from a multi-

varlate analngue of the firét’relétion in equation (2.10) of
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Lemma 2.1 of Bhattacharya and Ghosh (1978) (in facts since ©

and En both have the same dimension ky the proof is quite

simple). Relation (3.1) now follows by arguments similar to
those used in the proof of Theorem 5.2 Chapter One.
L
It is interesting to note that Box in the last paragraph

remarked ¢« "we see in effect we are finding a‘K?—series to the

statistic M by arranging that to the order of accuracy chnsen

in the asymptotic seriss, the! series will have all its cumulants

3

idéntical with those of M™ Hey however, did not suppij a proof
of his remark 5 for thisidne would{ﬁéed to ‘show that the formal
diffe;entiation of identity,h (18), page 322 of Box's paper is
permissible. This seems difficult but an alternative pronf is
given belows Since all the moments of M(= W ) are finite and
since the rth cumulant is a polynomial fﬁnction of the first r

moments {r > 1), to establish Box's remark it is enough to show

for each r > 1 that

' m .
(3.2) B = de ¥ j§oﬂ % (v) V) dv + o(n~(5-8)/2),
: n =0
Since Wn can be bounded in absolute wvalue by a polynomial in
Sijils’ Theorem 20.1 of Bhattacharya and Ranga Rao (1976) implies
that

i )
(3.3) E(Wﬁ IMC) =0 LT
n

“(5“3)/2)
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where IMc is the indicator function of the complement of

n
Mn = {Hnl/gfﬁn 2 E(zl;eo))ﬂz < (8-2) A log n} (see (4+5), Chapter

One)}s Let ks—l be the Taylor expansion of K up to terms involv-

L
ing (s-1)th order derivatives where & = K(Zn). Let h__, be the

similar expansion of H where wn = Zn(H(gﬁ;) - H(@O))h

Then
(u? = - 1 o -(s-3)/2
E(W, IMn) = é (hy_;(k _5(z))) Esﬁl,nﬁg)é%“f:gfn | )
T nen=(8=3)/2
: % (hS—l(Q)) Es—-l,n(@)d@ + o{n é )(.)
i .
- o
(3.4) = _flvr 5 n"J q(V) }{Z(v'gp)dv 1) O(,n-“(S--B)/2)
R+ - j=0 J |

/2, o
H N = -0 _ . ‘
ere N = Jlln/ (% -8 )| < (s-2) A log n}. Together (3.3)

and (3.4) imply (3.2).

SECTION 4, EXPANSIONS IN THE GENERAL CASE

Valid asymptotic expansicns for the distribution functions
of the likelihood ratio statistic as well as of Wald's and Rao‘s
statistics in the general case can be obtained, using Theorenm

5¢2 of Chapter Oney up to any degree of accuracy provided sﬁitablel

regularity conditions hold. Although the essential idea of the
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to verify the technlcal conditinns imposed in the sbove mentioned
thenrem.
Consider the testing problem described in the last part of

Section 1. Below we shall consider only the expansion for the

LR statistic since that for Wald's statistic or Rao's statistic is
quite similars In fact for the case of Wald's statistic the
“expansion is relatively simpler to arrive at (using Theorem 3 of
Bhattacharya and Ghosh (1978))? the same is true for the LR and

Rao's statistics when Hb is simples It is instructive to work

out these special cases firste. (See Section 55 Chandra and Ghosh(1979))

() Basic pssumptions <

Let G(. 5 @) be the distribution of Yl under &.

Assume that (H) is open in B . We shall write P(.58) to denote

the product probability measure on-the space £ of all sequences
in Rm and regard Yn‘s as coordinate maps on this spacee The
following assumptions (see Bhattacharya and Ghosh (1978)) will be
madee s 2 s 4

*

ASSUMPTIONTBS .
(1) - There 1s an open Subset U of R" suech that (a)
~for each & ¢ (@) one has G(U6) = 1 and (b) for ecach

1 ' g .
X = (q( ),.-.,«(k)), 1< |« < s+1, -Ll(y,Q) has a «th derivative

Do Ll(y;e)‘with respect to & on U x (H)
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= ¢ . .
(11) For each o 1< [« <& E([D” 1,(%30)(° 5 o)
is finite and there exists an & > 0 such that

(4,1) B max D% 1 (¥,30)[® 3 O} <e0  if |« = s41 % ..
CR-NEL:
(111) For each 6 e (@), E(D'L (Y;36)36) = 0 for

1 {r<k and the k Xk matrices

| (e DI 1 (¥,36) 3 @)
(4.2) ; . -
(" 1, (7,50) DY 1,(Y 5003 03))
are nonsingular ',
(iv) The functions
g(p? pJ Ll(yl',g)‘, 8) 1<1y i<k

(4.3) oc s ! o\ ® :
E(Q 1,(¥.58) D7 L (¥,50)38) 1% |y [«] <5

are continuous on (H);

(v) For each © & () f(y 3 0) is strictly positive on
U. Also for each 6 ¢ (H) and sach o 15 [« < sy 0%t (y $ ©)
is continuously differentiablg in y on U

(vi) The map © — G(.36) on (H) into the space of all
probability measures on R" is continuous when the latter space
1s given the variation norm to‘poiééy. | =

( Remark 2.4 of Chapter One and Remark 1e6 of Bhattacharya
and Ghosh wi1ll be helpfule) I.
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Under the above assumptions, Bhattacharya and Ghosh (1278)
proved that

i,
(a) there exists a sequence of statistics { @ﬁ} such

that the prebability under @ 6f the event

. 18 - elf < a n"20g 12, ® satisries
s n

(4.4) '

the equation _D;an(G) =0, 1£i<k

is: 1 % o(n'(s“m/2

).

-

(b) there exist polymomials dr,Q (in k wvarisbles)
not depending on ns such that for every sequence {lﬁhy )

satisfying the property stated in (a)s one has the following

asymptotic expansion o

/2. g ) * oy
P(n”“( 8 -86) B 5 0)

(4.5) ' 52
= {1+ % n"r/2 q (x)) $ {x)dx + o(n~ (5'2)/2
Bk r=1

uniformly over every classtfi of Bopel sets of RE satisfying

(4.6) sup

dx = @ ' 0 »
¢41 Sp(bd(Bk),e) ® (X) X (a)( .as e = 0

Here M 1s the dispersion matrix of the limiting distribution

of 1/2(9 - 8)s For a more precise statementy see their
Theorem 3. Of courses a similar result is true for the trestricted

. g o P ° -
MsmoezSimador el ota fibanusing eanwkitermarioad: eMdluatienscopy Saplliar iy
11
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with Théorem 3 (anl 1ts proof) of Bhattacharya and Chosh (1978).

It may be noted that the existence of a measurable choice
of ML, estimator can be estsblished using the selection theorems
of Kuratowski and Ryll—wardzewski;ggg_Kunugui and Novikov (see
Theorem le4s page 462 and Theorem 3.4, page 471 of Kuratowski
and Mostowskl (1976)% note that Theoram 3.4 remains true even

1f Y there is assumed to be Polish).

(B) EXPANSION FOR THE LIKELTIHOOD RATIO STAPISTIC &

We shall discuss first the case p = 1y k = 2 and obtaln

an expansion up to o{(n"1), Choosefand fix a 6 ¢ (E)o 5

assume that 8, 1s the origin. The following notations will be

used. 2 " .
ol 1
Lnl J(o) =7 oD ] Ln(g)’

i
I (6) = B(L 1

il'..ij

i .‘.ij iloaoij '
= I @), I 1, 71 ...1.(8 )
g n e L il

S

j 2 1’ il,.-.’ij = 1 OI'..? .

N
in expansion of the likelihood equation for 9(2) artund
& shows that '
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1/2(@(1)

i
+ n728(2) g (2 _(HJ/_'? R, ¥ n % Rop) + o(n™1),

. ’ A, A .
on a set Ah « Here R's are polynomials in n%/z(e - &) and
Un whose coefficients do not depend on n, Un'being'the vector

whose components are

i on;i. {
(L % J(\:'é.‘\) - I. . (\6\)) > j = 293,4, i ,'.li.:
i} 11—.'..1' i 1 J
; SRRy : 1 or 23

also Ah 1s the set whepeﬁj@ and © satisfy their respective

nl/2

likelihood equations and moreover the following inequalities are

i . i 4

true &

”n1/2(U:; 5 E(U: ',g,o)) “ 2 . “nl/g(ﬁ - 98“2 ,

/2

. 2
(Vn - E(Vn ’ 90))‘[[ are each < 3 log n

[

U;: beiﬁg\théﬁvector whose components are

oty

i1 141 i i 1.1
5 512, Lnl 213, Ln1234-’

% i,i,i,i- = 1 or 2

1" 23 "2

and V_ the vector whose components are
n

il.l-i

1
T [ sup L S8 3 Y. )] diyesesi =1 or 2.
it=1 & -8, /< ¢ 2 -~ L ot Ut

A4 0.
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Under the rezularity assumptions stated below, it can be shown

that P = -1
at P(a 36) =1+ o(n ).

One can verify that on the set j the following is true .
n

for any sequénce {tn} such that o < tn <1 and for ény

ij=1'o‘r2, 1<i5,

1,i,101,1 '
12 475 . \ )
Ln (Go +,th{‘§‘— Qo)) 1§ bounded.

This fact will be used repeatedly'wifhout any explicit mentione.

.(One can verify that the polynomials le aré given by

“Top! &) By = 1/2{1‘21:12&) * % El o/2@H)- 8 Tois
wym L1 2 /248G g (), 12,
-I22( e ) Ris = 3 jfl a o 5850 m -(Ln - Izij)
£ s Rl/2R0) & () /2@ 5 Wy
Jrk=1 . 13k
i=1,2

where all functions are evaluated at ‘51 One should note that
although in the eXpressions‘fbr R'sy derivabives of Ln.up to
third order are involved, to get a cbrrect_estimate_of the error
consideration of derivatives of Ln up fo fifth order is

5
RECeASSTV ey
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Below all subsequent expansinns are performed on the set

Ah « We also need aAssumption Bs(iii) {among others)e.

W
A usual iterative approximation of nl/zcﬁ(g) < (2)),

starting Qith —nl/zfa(l)-Léx(l)) 121(\@5)/122(l§\) as the
initial gpproximationy gives
12 A2) o (2 . 2 AL w (1), 11®) P Py
n (e -6 ) = n (e & )(h.I_-T‘_é:_; + gn + == )

: 22
+ o(n" )

where Pl and Pg.’ére polynomials in nl{g(@(l);‘@(l)) and

U  whose coefficients do not depend on n (a similar computation
u — , ? .

Wwas done in the proof of Theérem 2.1 of Chapter One 3 see the

proof of (4.15), page 39). We only need the fact that each

successive gpproximation of nl/z(@(z)Lka\(g?)

n1/2 (@( 1)

has g factor

m‘ﬁxl)) which 1s quite obvious). Here we have used

the fact that on the set A ,{H%szz o{log n)e Expanding now

all the partial derivatives at ® of Ln appearing in Pl and

P2 around Go sy 1t can be verified that

by

(4.7) /2812 g @)y | 1/2gl) F (1), RY(U%) + oln1y

A

1/2

¥ (17 * L "
where Rn(Un) is a polynomial in n (Un E(Un { Go))

whose coefficients devend on n .
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Expanding > around 8 and then expanding the partial
1 , .
derivatives at & of Ln areund 6, and finally using equation

(4.7)y one gets

(448) A = nD L (1) prpry 4o
n n st L ;

where P:(Uz) is a polynomial in nl/g(U; = E(U:]GO)) whose

coefficients depend on n .

It may be noted that in the case of an exXponential family
of distributionsy all the derivatives of Ln‘of order two or more
are constants (l.e.; nonrandom) and hence (4.+8) can be used as
an alternativeVWay of checking Assumptions As(ii), (iii) and

(iV)o

Coming to the general (i.e., non-exponential) case, suppose
that Assumptions Bs(i) ~ (v) with s = 4 hold and that the random

variabhles

-

.i‘l,.o.ij a ' ’ : !
Fln -—-Iil.--ij » '_:I_ljtto’lj = 1 or 2 1_'{,]54:‘5'

are linearly independent (l.e.y have nonsingular dispersion matrix),
Then the fact that P(Ah 3 90) =i +'o(n'1)'follows from relations
(1.28) (1.29) and (2.32) of Bhattacharya and Chosh(1978) and the
analogous relations for the restricted ML estimators. ilso
following the proof of Theorem 3 of Bhattacharya and Ghosh we can

show that the vector U: have a multivariate Edgeworth expansion,

Al

1 efnpresEibf O vbobikkabh asha s Waterfigidd aalualish sy dfoiSNESECH
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1/2( 6 - 9 ) of this theorem 1s replaced by the vector U* .

By Theorem 5.2;Chapter Oney it is now immediate that the distri-
bution function of Ah admits of an expansion of the type

stated in Theorem\5o2.

 Supp0se now that. Assumptions Bs(i) - {v) hold (with s = 4)
but that the random variables

1 2
| G -
1= -y Tsi) -1
s 1e.ed, 5 .
'_'ii: {Ll - Iil"'ij . ilaoooslj = 1 or 2, 2_‘_5, J X 4:}
are not Iinearly independent. Let yi l/z(L - T)s 1= 1,2
; i
and let xlyo..,xm stand for the set
1/2(]'_, ...ij L ) p i vesesi =1 07 2 2 £ 34 .
{n i 1 el pLE ? j ? = = -ly

2.,
(We shall use these notations for this and the next paragraphs
only)s Then we clailm '

(a) that it is possible to choose Tlac-.aTr s a Subset

of T, such that Ti, Té"Tl""’Tr are linearly independent ?

and

(b) that on the set Ah each of X..17%"*?X  can be

expressed up to o(n—l/z) as a polynomial (in fact a linear

combination) involving XyyenssX (and the constant function 1)

, i . 179 o .
WL EHNREeTDN:i PS-EnWed eRinpEssan USing alwategerrked gyalliagg ). Uonsequently
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in equation (4-8) the polynomial P* can be replaced by another
polynonial in nl/é( - 90) and XpreeesX 5 and the argument

of the previnus paragraph goes throughs.

To justify the above claims, we begin by writing all the

linear restrictions among Tl’ Té and Tl,...,Tm in the following

form

(4. 9) €11 T+ oo+ oy Tp o+ dyy Ti +d 19 Th =0

for 1= 1ljeeeyr where r 1is the rank of (C[D), C ((e33))

rXm
and D ((d ))e Observe that r 1is also the rank of C
 rx2 1 N
since Ti, Té are linearly independent (ieces Ti, Té have

positive-definite dispersion matrix)e. Without loss of generality
let the first r columns of ¢ bhe lineérly independent. Then

clearly T!, T! d AT = oy 5 : indep .
Ll¢ Yl 1’ to 24 1?0 ’Tm are linearly independent. A4lso

from (4.9) we get

c.. X + + e, x
i1 71 e ir “p

(4.10)
~C. w - *. - a - E ‘ -
i(r+1) (1) ~ 0 Cim Xy - d‘l ¥, = Y40 Yo *

1/2

Ly
On the set Ah we now expand (up to o(n ») Vit around @

and then the partial derivatives at & of Ln around & , i =1,2)
SEialde 5

equation (4410) then implies that
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[t
(cil + Pil( [a ))x1 + see + (cir + Pir(ﬁs )) x

~(ey(re1) * Py )(L@ Wy + oeee + (o, + Pim(vé\))xm

1{r+l im

(% ) + o(n 1/2)

Ny
- dyy PH( @) ~a,, Phy

where for each 147, P ( r ) is efther (@(1) (1)) or

t( 9) _ 2 1_11/2 (g(j) (j)) T

j=1 E
.2 3 W28 )y /200 ey
jedt=1 itJ3
1,1 = 1,2; Hence for all sufficiently large ny the r X
matrix ((Cij + Péj(73 ))) is nonsingular and so we can write
(up to o(n~ 1/2)) X1’°"’x as_linear combinations of xr+l;;;;’

m
1/2

X and the constant function 1 with coefficients polynomials in

(€ -0 e

This completes the discussion of the special case p =1

and k= 2,

Now we shall consider briefly the general case. 4s before
assume that © =0 and that Assumptions B,(1) - (v) hold (with
S = 2m+ 2). ‘Apply first a nonsingular linear tfansformation on
the parameter space which leaves the first p components of @

unchanged and which reduces ((Iij)) to the identity

priLis jgk
matrix of order (k-ple
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1

Bxpanding D Ln(’e\) around B for 1 = prlsseesk and

replacing all the partial derivatives at B of Ln by the
deviations from their respective asymptotic meanss one can express

the likelihood equatinns for B2 as follows &

1/2(’6(1) (1, )) . ; 172 5 (1) (1) 2 -13/2

e ¢ 2)

o
+‘o(n-m), p + 1_5 il < Yy 5 L

/20

where are polynomials in n (9 - G ) d the normalis
24 1213}

ed partial derivatives at e of Ln (of'order'(2m+2) or less)
whose coefficients do not depend on ne The above and all subse-
gquent approximations are performed on a set of prob&bility (under

-m
'g'o) 1+ O(H ) '

An iterative approximat’on of
(1-) (1) :
n1/2(‘a 1. 6 e Yy prl £ il <k
where at each stage we use the approximation of nl/gﬁﬁg wﬁa 2)
obtained at the previous stage and keep terms of appropriate

orders of approXimations, gives

1/2(,\(11) (11)) = D nl/z(,é\(iz g 2
. il = A

+ on™

where have the same properties as those of
s b

excent that JP. , . % do not depend on n/2(B % -8 %, me

1270
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rest of the computations is similar to that of the case p = 1,

-

k=2 and m= 1.

REMARK 4.1  Suppose that gssumptions B (i) - (vi) with
S = 2mk2 hold zgnd that the folleowing stronger version of B (11)
hﬂlds » -
S(ii)' + for each compact X @)O and each &
1 < l Sy

e . SH1 .
su DI <

i g

and for each compact X there exists an € > 0 such that

sup g( max  |p% L(¥.30)[" 5 @) <co if [« = stl.
8t ek [6-6'|<e 1 ' |

Then 1t can be shown that the above asymptotic expansion for

Anhbids uniformly in 8 ¢ ¥ for any ‘compact K (C (E%).

(C)" VALIDITY OF HAYAKAWA's EXPANSIONW &

Here we consider the related work of Hayakawa (1977), He

has obtained an asymptotic expansion up to o(n'l) of the distri-

bution function of A by first approximating A by w' up to

o (n~ ) and then 1nverting the resulting apurox1mate character—

1stic funetion of Wé « TNote that
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S exP(iths—l(ks—l(Z))) E;_lan(z)dz

= gem(ith, , (kg (2 B 5 ,(2)da+ oln~' 83V %
n

2 1 o+ o(p-(s-3)/2
IJ\;eXp(lths_l(G)) ES-—l,n(Q)dg + oln 3 )

n

m .
éi exp (itv) j§0 R qj(v) X% (vip)dv + 0(n¢(s—3)/2)

i

(we are using the notations df the last part of Section 33
. i 1 . ess
except that here we take W_to be A and 2z, = (L1 I
n ey 1 1
11?...,13 21y 153X 4)). It follows arguing as in Section 6(B)
of Chapter One that the asymptotic expansion given in Theorem 1

of Hayakawa is valid.

We finally remark that Hayakawa gets his expansion by

: i-i 1,351, i1ioiaid
1 172 112+3 1121314
expressing Ah as a function of { L, Ln . Ln » L
1, i.isdn 4 4 4ad,
{instead of {\§‘, Lzl 2; Ln1 C 3, Ln:L 273 4}&. But as observed

earlier Assumption AS(iv) then need not hold in general even

. ~1
on a set of probability 1 + oln 7).
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CHAPTER THREE

EXPAVSIONS FOR THE LIKELIHOOD RATIO AND OTHER
STATISTICS UNDER CONTIGUOUS ALTERNATIVES

SECTION 1. IVIRODUCTION aND MAIN RESULT

Asymptotic expansions were obtained in the previous chapters
for statistics with a limiting (central) chi-square distributicn.
In this chapter we shall study the correspending case of non-central

distribution under contiguous alternatives.

1
Let © be a fixed element of Rk and {Gn} a fixed
. 1

t
sequence 1n Rk . Let {Zn} be a sequence of k-dimensional IID
1

random vectors. Write

| e T e Tc
(1.1)  we)) = B(Z56), V= E((Z-u(8)) (2~ (8 ))50))
h. = 0,1)_.0.
where T denotes transpose.
REMARK 1le1  We shall assume later that {Qn} is ‘''contiguous™
' n>

to 6  in the sense that the first (s-1) moments of 2z under e,

have expansions (in powers of n”l/g) up to o(n“(s"a)/g) whose

leading terms are the corresponding moments under €, ¢ Suppose
that S(8 ) 1s a sphere around © such that the distribution of
o} ' 0

Z1 under © 1s defined for each & - in S(GO)- Then under

ptimizitichousingt watdinharikedrevakiationizopy obCVISION PRE

L

enomziremagulanit;
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(s-3) times continuously differentisble. In this case if €

is contiguous in the commonly used senses isee; 1s of the form
k

- t
@0 + m /2 t* for each n > 1 and for scme t* ¢ R™ 5 then

the Taylor expansion for the j%h moment under @n(around 90)

will lead to the kind of expansion required by condition (c) of

Theoren.
(1.3 ))u
‘Let E be a real valued Borel measurable function on ‘R

We shall also need a uniform Cramér's condition (vide

and define W by equation (1s4) of Chapter One with « there

replaced by 4(6 ); isesy let

(1.2) W= en(H(z,) - H(e))) .

Recall the notations and Assumptions As(i) - {iv) introduced in

Section 2 of Chapter Onee Assume without loss of generality that

UGGO) is the null vector.

THEOREM l.1  Let {Zn} ‘5 {@ }. and H be as above and
e, nnz{) _

define Wn by (1l.2) above. Suppose that for some integer s 2 4

the following assumptiohs hold

(a) H and Z1 ~satisfy assumptions. As(i) - {(iv) with
4 and V there replaced by U(GO) and7'Vo respectively (see

pages 15«18
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(b} Zl satisfies the uniform Cramér's condition

Sup

3 Sup » -
n>0 I[t]>b [p(exp(l < t,rzl >) 5 6.}

(1.5) ‘
< il for each b > 0 3}

(C)‘négpo E(”zlns 3 ¢ ) 1s finite and for each « ,
1< |« < 3-1, E(z? K Qn)adﬁits.of gﬁ eXpansion (in pOWers of
n2) up to o(n-(53)/2y,

Then there exlist nonnegative integers kﬁ""’ks~3 and
constants {Pi,j} not depending on n (0 £ i ¥ kj, 0 < J < s-3)

such that the following expandion is validy and holds uniformly

£ 5
in u [uo,fxb, u, > Q :

, P(W, < w3 6)
(1.4)

5.3 ‘ o = ” ) ‘
= % pie g (+) (V)av + ofn (8"3)/2)
One can replace Uy by zero provided p > i. Here
k .
(1.5) ) (v) = ) W2(v'% pr2is 6)
.{-j 1=0 i’j ) ? ’

0_<_j X S=3y kK = 0, P = 1 ',
o 00

~

rank of Hessian at 4(6,) of H

5 = < ti, Ve "B

3
i

(1.6) >
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|
Xe(v 5 pt21; 5) being the density (at v) of a noncentral chi-

Square with degrees of freedom p+2i arilnoncentrality parameter
~11

530, T |

p columns of the Inverse of Vs and finally

the submatrix consisting of the first p rows and

' 1/2 ; .
107 = k . -
(1.7) t 1%m n (E(z1 3.8,) E(z1 s 6))
(see (2.12)y page 21 s Chapter One).

REMARK 1.2 The Theorem in its pregeﬁt'form is often unsuitable
for statistical applications because of the"assumption that wn
is a function of the mean vector En based on sdme seguence of
IID random vectors. One can however easily verdfy that the Theore:
2% ~u(e)) there
n 0

- E(U_ § & )). where - i
(Un E(T, 5 R {Un} is an
n>1
arbitrary sequence of random vectors possessing an Edgeworth

remains valid if the nbrmalised deviation n

isrreplaCed by nlfg

eXpansion which is upiform with respect to Qn .

REMARK 1.3  Suppose that assumptions (b) and (c¢) (with s in]

place of (s-1)) of the Theorem hold. Assume As(il and instead
of the rest of Ay » asSsume as in Bhattacharya and Ghosh that the

vector f

A = (0l oody D5 (8 ))
is non-null. Iet wi‘x /2 (#(Z) - H((8,))s Then the distri-
bution function of wi _under Gn has an expansion (in powers
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R VE: ~(s-2)/2

) valid uo to ofn ) with the leading term a
normel distribution with (nonzero) mean <£{y t > where + 1is

a8 In (1.7). One may prove this by applying Theorem 2(b) of
Bhattacharya and Ghosh with P(6,) in placo of P and then

expanding the coefficients in the expansicn. Also it is easy
to check that this expansion agrees with the formal Edgewnrth
expansion obtained by evaluating the first s moments cof Wi

formally up to o(n‘(s's)/g) by the delta-method.

REMARK 144 i Zl satisfies Cramér's condition under Qn
i 65, JEIE

sup |E(exp(i < ty Z; >) 3 el <1 boe R,
Itll > b

(see Bhattacharya and Ranga Ran (1976), page 207) and if the
distribution of Z1 undger @n converges in variation norm to
that under 6, then the uniform Cramér's condition (1.3) holds.
Under the set-up described in Remark 1.1y suppose that for each
6 in S(8))s the distribution of Z; under 6 admits of a
density f such that the map © — f; is continuous in S(Go);_
then using Scheffeé's theorem (see Lemma 2.1s Bhattacharya and 7
Ranga Rao(1976)), it is easy to see that ﬁhe above sufficiéﬁféondition
for (1.3) holds. |

The proof of the Theorem is given in Sectien 2. In Section

3y we consider applications to the likelihcod ratio and other

relgted statisticse 1Tn Section 4y expansiors under & fixad
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alternative for these statistics have been obtained (a) when the
null hypothesis is gimple’ and (b) when the null hypothesis is

composite and the observations are coming from an exponmential

family of distributions.

SECTION 2. TFROOF OF THEOREM (1.1)

We assume throughout this section that the assumptions of
the Theorem hold. We may then assume without lnss of generality
that

T

(2.1) . V=TI, z = {1242

and that As(iv) hold with 4 = I (see Bemark 3.1, Chapter Cne).
Define g, hs-l,n and Mﬁ by equations (4.3)s (4.4) and (4.5)
respectively of Chapter One (see page 35 )e It is well-known

that for any x ¢ R and any q‘g 0

(e=2) !l exp(- Sz - x[®dz = o(n” (s-3)/2)
M
n

We need the following three auxiliary lemmase.

LEMMA 2.1 Let assumptions (a)s (b) and (c) of the Theorenm
holds Then there exist {Q+) }, not depending on n (n > 0,
. 3
J = 1924+44495-3) such that the following expansion is valid for

u e Rl and is unlform in u e [ud X))y U >O(u can be taken to be
zero 1f p>l1)

(23) P(Wﬁ fuyeys 2 n73/2 fu Q+)(v)dv + o(n"(s"a)/z)
j=0 . L -


http://www.cvisiontech.com

0%

whers

() ¢ = i 2 2 :
SECER G Al

1}
QT) (v)
o

Thus once this lemma is established, the Theorem would

(2e4)

It

X(v 3 p) j21, veR.

follow if one could show that (+) given by (2.4) can as well
be expressed in the form (1.5). iemma 2«1 will be used here to

showsessentiallysthe existence of a valid expansion for wn

which 1is needed for the proof of Lemma 23 below.

PROOF OF LEMMA 2.1 ¢ Let tn be defined by
il 22
(5

@@ ) = @) +n Tt + t)
(see (1.7))s The Edgeworth expansion up to o(n—(S”a)/g) of
nl/g(_zr1 - 4(6)) under ©_ can be written as
- s8-8
E1,sm,m(z) & @V (z) 1+ = n"/2 g R (2))
m j=0 FR

where {Bij} are polynomials in =z with coefficients rational
functions of {E(z;% 6,) : 1< [« < s-1% with nonvanishing

denominators {(at least for all sufficilently large n). Because

of the uniform Cramé}’s condition and the uniform boundedness of

5
E(Z- § & W et setti =
( 3 m)a é g ng Elgs,n(Z) El,s,n,n(Z)
?(W S G B 9= T -{s-3)/2
o ’ n) ,i_EJ,S,n(Z v tn)dz + o(n )
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'] b i 1 [= T g 3 ‘ ) o
uniformly in u « R . Here A 1s the set {2 ¢ 8.(2) ul s
and we have used Theorem le5 and the first cbservation following
its proof on page 11 of Bhattacharya {1977)« For this one needs
the following estimate

" _ ids8)/2
0cuze % ¢Vn(Z) i shain

n

)

(see the last remark following the proof of Theorem 2.1(b) of
Chapter One).

We now make use of assumptieon (b) and expand Rij's and |

QV (2)s getting uniformly in u ¢ Rl
n

+-
(205) P(Wn .S u ., gn) — i Eg’sin.(Z)dZv + 0(]’1"‘(5—8)/2)
) ) > A
where
' s-3 .
3 - ~J/2
bR 21 San(z) @(Z -~ t) jSO no Pti,j(Z) B

(z) belng suitable polynomials (free frem n) in z Pi O(z)E
b

We now proceed as in the proof of part (a) .of Theorem 2.1 of

Chapter Ones. Since : =

sl ‘ 5-2) /2 2
ngpﬂnign(z) =H 3,0 B =00y e, = 7B 210 n) Y
and since
sup R @(z—t)dZ{ = 0(en), B = {z e M :th_l’n(z)—u{

0 <u<co B
L}

S.€.h i
134 ,
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one gets from (2.5) and (2.2) that | -

iy ¥y

PV < u s 9?) = i"; 52'5 n(z)dz + o(n=(53)/2

s-1, nCZ) < u} One
(1)

now applies first an 6rth0gonal transformation on zt = {z yeees
1 ‘
> 7 M2,

keeping the remaining z's unchanged (provided tl‘ is nonaﬁull)-

) ' l E: I , 5 .
uniformly in u ¢ R, whgrg An ?‘{Z £ Mn‘.

.
z(p)) with the first transformed variable as < tl, z

The rest of the proof is gquite s1milar to that of part (a) of

{4

Theorem 21 of Chapter One and hence is omitteds

To state the next lemma,y let jl(oo denote the number of

odd components of the vector o of nonnegative 1ntegersa

LEMMA 2.2(a) R Sy
o S exp(-% iz - P az
“zl "25 u b . we S,
(2- 7) . ' e i
o, T RE e _— 0
= 3 °f1(’°) Of’ X% (v 3 pregs g }
J= m

/

where {&%(t)} are suitable pnlyﬁSMials in t and

(2. 8) : m = (lg(li + 31(,,(1))/2’ m = |°(1[ '_;:.ﬁ.._‘;,_

A

(b)Y Tat »* he 2 nomnagativa iatesap. Than


http://www.cvisiontech.com

-10]~

(1) 5 exp(ivizt]]2 ) 2 sxp(- L)1z-t[12 yaz
R
(2.9) LA . |
m2 - Pé . s
S, «S(t) X°(v sy p+ 275 &)
j:ml_r*

" provided that [q;[ > 2r*, where {q?(t)} are suitable polynomials

d . FAN . '
in t and o m, are as:in (a) and . denotes the Fouriepr-
Stieltjes. transforme.

Tt follows from (2.5) that Lemma 2.2 ,e.stabl_ishesl the specisl

case of the Theorem when

- T —_
Wo=2n( Z. - “4@.))" 1L( Zn - u(@o)'?

PROOF OF LEMMA 2.2 ! Without loss of gemerality we may assume
that p = k . We need the following fact °

Fact (4) ¢ Let, for some nonnegative integer v ,

(2.10) g(x 3 bar) = x exp(- 2(x-0)%)  xe R b e R .

Then there exist (numerical) constants 8,98 90es9a  such that

if x _2 0’
(g(xl/2 ybar) + g(-xT 7 5 byr)) / 4
(2.11) i 1 \
A S

= ¥ a_b 1 y2 (Xt 27 b)

RE
where jl = 0 or 1 according as r 1s even or odd and
C?’T‘?) ﬂ < -‘l)tjf!‘f‘ g meo= (:“ ’le/,? |

L


http://www.cvisiontech.com

-102-

Tact (2) can be established as follows « the left side

of (2.11) is ' 7
- Qi+jl i+ 5 -1
oxpf- by 2 v ox T
i=p (233)}
$ +9 1

while the coefficient of x 2 in the right side of (2.11) is

ad+al(21) + a2(21)(2(1~1)) R Gl 2i+31
L ] b L ]

22i+q/2

[ (1+1) T (i+q/2)
Here [ (.) stands for the garma function. One therefore verifies,
using the duplication formula for the gamma functions that

2i+q/2
2 T (1+1) [ (i+q/2)

(21 + jl)l

is a polynomial (in 1) of dezree (r-jl)/E « This completes the
proof of Fact (A). By |

Observe that the integral on the left side of {(2.7) can

he written as

iy.1l/2 -
TT {73+ g @) 20 i )} dz

A i=1
where A= .{ Z : Z(l) + see + Z(k) _<. Uy Z(I) > d,...,z(k) > O}
and gi(z(i)) = g(z(i) 3 (D, d(i)), i 2 1. Fact (&) the fact

that the family of noncentral chi-sguares is closed under convolu-

tion and relation f2.12)5complete the prnof of Lemma 2.2(a).
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Part (b) with r* = 0 1is equivalent to Part (a). The cuss
nf the general ‘r*  follows from Part (a) and the following

elementary fact ¢

Fact B) © If g2 2r*+ 1 and v ¢ Rl,
* A e TH g 3 AN =
W™ x¥w S w M =2 3 DD XF ha-en
j=0

LEMMA 2.3 Suppose that the assumptions of the Theorem hold

and that for each real v

5 . ' ~( 53 2
Blexp(iv W) 3 6) = ¢ (v) + ofn "%
. n n n
where Cn(v) is the Fourier-Stieltjes transform of -4
!
‘ 53 . ' S,
i /D "
(2.13) 5 o /% g (v) v e BT
| 320 4y

(with gj free from n for each J > 1)s Then (2.13) is the

valid expansion for Wﬁ under Gn up to o(n—(s"S)/z).

The proof of this lemma 1is omitted since it is based on
arguments similar to those used in Sectioni6(B) of Chapter One

(see also the first part of the proof of Lemma 2.1).

PROOF OF THEOREM 1.1 ° We make here the convention that
P(z) (with or without suffixes) will stand for a polynomial.

in z wilth coefficients free from n . Proceeding as in the

first part of Lemma 2.1,and using (2.1), definition of h_ ,  (2)
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and estimate (2.2), one can show that

E(exp(iv W) 5 &)

) . bl
(2 14) . gf{ eXp(lv hS"l,'ﬂ(z)) Eg,s’n(z) dz + O(T'l (S )/2)
* n

o 1 eXp(iVHzlﬂ’B) () (z)az + o(nmr-(s-'-a)/g)
RE T'n

where

s-3 -3./2 1 .
c+>1cz) -+ 5 Y (iv) i g1 . (2)

3 (z)
S T T 1732

295891

is defined in (2.6)). We can rewrite (T)l(z) as follows «

3!
2985em el

s-3 ~J/23 J |
(2.15) gf) e zo n 1 () 2 p] | (2) 0(z-t)
)= | j—~o 1’72
2

2 . d ) £ d
(Pan(Z) 2 1)e In view of Assumption As(iv)s'note that 1f 2%
x " g
1s any term of some Pj (z)y then [u@] > 232 + Clearly this

117
property 1is 1nherited /@ the polynomials {P? ] (z)} » Thus
3

if we let Cn(v) denote the integral on the right ‘side of (2.14),

then Lemma 2.2(b) and (2,15) imply that

k.
s-8 -j,/2 41 Ao
¢ = £ n = P13, X" vy pr2j,y 6)
i =0 8 o =~
l 32—0
BErompibbsibn, ©CR wek satinizesiorl ndiegewateniiarkell evaliatdion cdply ait THISION PDEG S
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{le’jg} 5 ko £ 0, qo,o e other words, }
s-3 /o
@16) 0,0 = 5 emvn) 3 02 () oo
| Rl J=0 i

d

where {( )} are of the form (1.5). The deflnltlnn of C_ (v)
relations (2.14) and (2.16) and Lemma 2.3 together complete the

proof of the Theorem. . -

SECTION 3. APPLICATIONS
THEOREM 1.1 (suitably modified as indicated in Remark 1. 2)

can be used to obtain asymptotic expansions of the distribution
functions of the likelihood ratio statistic, Wald's and Rao's

statistics (see equations (1.3), (1.8) and (1.7) of Chapter Two)

under contiguous alternatives (see Remark lel),provided that
Assumptions B _(1) -~ (vi) of Section 4(4) of Chapter Two hold
and

SupE(z 8) <o

s B(lz, %5 e,

S S oo bl . .
and {E(Zl » Qn)} s 1 5’{5}_5 S=1, admit @8 asymptotic expansions
in powers of n~1/2, Here 2z, 1is the'vectof‘whoée~components
are indeXed by o , 1 < i < s ,and the oth component is

¢ . . , . P 3
D LI(Yl ) GO) y in parti?ular, the dimension of Z, fis
L ol

Te=] r ¢
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It should be noted thst the above assumptions are satisfied by
the family of exponential distributions with @ as the natural

parameter, provided the assumptions made in Section 3 of Chapter

Two hold.

To establish the desired expansionss one constructs a set
An such that

-{s-3)/2
o(n

(1) P(AZ 50 = ) 3

and

(ii) on' A s the statistic under consideration can be
sufficiently well approximated by a Wﬁ which is of the form
(1.2) and which satisfies condition (a) of Theorem lsl. The

set A used in Section 4(B) of Chapter Two does this job §

in fact the only new thing to be proved is P(A 3 6) =

o(n—(s's)/2

Z, has an Edgeworth expansion).. Wote that the possibility of

) which follows easily (under Qn, the normalised

the uniform Edgeworth eXpansion for maximum likelihood estimators
(suitably normalised) is gugranteed by Theorem 3(a) of Bhattacharya

Ay
i

and GhoShe

Hayakawa (1977) obtained an eXpanéion, up to O(n-l/g),
for the likelihood ratio statistic under contiguous alternatives
by a formal inversion of characteristic function. His formal
expansion can be‘jﬁétified by suitably modifying Lemma 2.35 for

detailss see Sectlon 4(G) of Ghantar Twn.


http://www.cvisiontech.com

~-107-~

SECTION 4. EXPANSIONS UNDER A FIXED ALTERNATIVE

Suppose that {Zn} is a sequence of IID random vectors
>l

with common distribution either Pgo or P@]. Let E(Zl y @i) =

U(Gi) i= 051 Define wn by (1.2)e We want to find expansions

for wh under Gl » To this end, assume that Assumptions Ag(ﬁ

and (ii) of :Chapter: One hold with

g

A= @ HyoursDX B) (u(s))

and that . |

Then the distributionlfUnction under 91 of

-1/2 ¥ | o
n M, - 2ﬁ(H0w(91)) - H(M(GO)))}
possesses an .asymptotic expansion (in powers of ﬁ”l/z) with the
leading term a normal distribution with zero mean and variance
Al v Ai Where

| | B
Vo= B((Z2%(8.)) (2, - u(n}l)) b 6)

(V. 1is assumed to be nonsingular)s The result follows from
Theorem 2(b) of Bhattacharya and Ghosh (1978)e It is evident

that a similar result holds under the assumptions of the last
paper{i.e.y under the assumption that A and Xl are both

Nnonzero)e.
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Consider now the preblem of testing a simple mull hypothesis.

One can apply the above result to get asymptotic expansions for

the likelihood ratic and other statistics under a fixed alternative.
In the last section of his paper (1977), Hayakawa has obtained

- formally such a result for the case of the likelihoed ratio

statistice It can be shown that this formal expansion is in fact
a valid one.

We assumed above that the null hypothéSis is simple.
Similar expansions are possible for the case of a composite null
hypothesis provided the observations are coming from an exponen-—
ftial family.of-distributionslwith natural parameter sSpace and
provided that the ML estimators under H_  exist } one has to
express che maximum likeliherd estimators under the null hypothesis
in terms of the sample means. Sinée Wald's statistic depends only
on the unrestricted ML estimators, the asymptotic expansion for
the{statistic‘can be obtained even if the null hypothesis is

composite and the parent population is not exponential.

SECTION 5. COMPARISON OF THE LR, WALD'S AND
R40*S STATISTICS
We briefly indicate how our results on asymptotic expansions
can be used to study deficiency of tests which have equal Pitman

efficiency. Consgider the nrohlem nf tastineg a siprls byra*hcosis
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N Tt 8 =0 vs. H, ¢+ ©# 0 where & takes values in RPgnd thme
testps based. .on the statistics proposed by Ueyman and Pearsony
Wald and Rao (see the last part of Section 1). For the sake of

conveniencey we denote them by Ah,l’ Ah’zg respectively.

}h,B
These tests have the same Pitman efficiency and so Rac (1965)
raised the question (see the last paragraph of Section 6ee2) of
higher order discrimination between these statistics and conject-
| ured that the statistic proposed by him is likely to be locally

more powerful than the others (in the second editions this

conjecture has been omitted).

Suppose now that the assumptions of Section 3 holdse Then
our results in Section 4 of Chapter Two show that if ﬁ;id is
the 100« per cent point of the X° -distribution with p degrees

of freedoms tThen

5. e s o ' ~1/2 ]
(5.1) PH { \n’i>,/{ ‘l]._o;+ o(n ) s i= 152483 .

q
o P

For contiguous alternatives of the form & n“;/g, Peers (1971)
has expanded formally Pe( A,p 2 Kg;cg up to o(n“l/2) and
noted that these expansions do ngt support Rao's conjecture. 1In
Section 3 we have established the validity of these expansions.
This fact and (5.1) imply (see Section 5 of Hodges and Lehmann
(1970)) that the deficiency (as computed by Peers) of one of thess

tests with raspect fn tha others is + 00 « hoth valves heine
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one gets from (2.5) and (2.2) that 1N

PG, < w36 = iﬁ 52 o, (232 + a(n~(5-8)/2)

- oo
. . 1 1 i p . ‘ ‘
unifermly in u e R where A= {2 € Mn . hs—lyn(z) < uf, One
now gpplies first an orthogonal transformation on zl_z (z(l),.r.,
LS |
>/ 112

keeping the remaining z's unchanged {provided tl_ is non~ﬁu11)-

z(p)) with the first transformed variable as < tt, z

The rest of the proof is quite similar to that of part (a) of

Theorem 2,1 of Ohapter One and hence is omitted.

To state the next lemmas let jl(oo_denote the number of

002 components of Yhne vecktor ¢ of roomegskive intezeves

LEMMA 2.2(a)
If 7= exp( - % iz - tﬂz) dz
Iz [P<u :
(2. 7)
m v
- 5 d;(t) g 22 (v 5 pr2d, 5) dv
J= T4y !

where {a%(t)} are suitable polyndmials in t and
w0 mee @ gl

(BER, Ve loptritfatiol Gsirg daBeERSd svaludtivheemmof CURIN,
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Now observe that the latter reglon can be written in the form

(5.4} {;nl/z T >t or < t

nylsel nyl,E}

; : ~1/2
where tn,l,l and tn,1,2 are determined (up to o(n M)
such that the region (5+4) has the same powar as that of the
region (5.3)s 4 similar remark holds for Rao's test. Note

that Wald's test is equivalent to taking {hl/2\8 > X& or < -&Q.

Thus each of these statistics have the game power function under

contiguous alternatives as a two-sided test based on T, at least

~l/2).

up to o(n In the special case of the exponential family,

this equivalence holds up to o(n“a/z) for any J > 1 and hence
the relative deficiencles of these tests are zero.
To really compare the statistics, say }hxl and Ah,z s the

following procedure seems more reasonablee First choose Ah,l,o

such that

s -1
PHo (}hyl < Ahyléo) =%+ oln™) .
y

¥

One can find (vide Section 4 of Chapter Two) statistics Ty and

TZ such that

Ahal 2 {hl/g ‘6}(1.+ nfl/z T, + n—sz)}? + Op(n";).
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Tet

% = { nl/2'3 5 (1 + n ;/ng + nﬁng) > (Bh,l’o)l/g }

B 1/2 /2 4, 1/2 .
°‘z“PHO*{ /M(IJ"”/T:L*"“ (%10/

Now choose té,l and ! such that

ny 2

PHO{ l/2w>t113’ % + oln b
and

/2% ¢

1 (5 - =i
By {0 B, =% ot

It can be shown as in the previous paragraph that

172 g 5 4

P5 n“lfg { a ns1 °F < téaE }

‘ -1
P ~L/2 { sl Ah’l,o k o)

which leads to a finite deficiency.

4 similar development is possible for the multiparameter

case but will not be presented here.
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CHAPTER FOUR
COMPARISON OF TESTS WITH SAME B HADUR-EFFICIENCY

SECTION 1. INTRODUCTION

In thelr paper Hodges and Lehmann (19270) studied the problem

of diserimination between two statistical procedures which ares

according to some criteriony equally efficient) deficiency is

essentially a quantitatlve measure of this discrimination. In

the same sSpirity we have discussed here the problem of discrimina-

tlon between two test procedures which have equal Bahadur-effici-
encye |

It 1s suggested by’Bahadﬁr (1967 and 1971) that in many
cases alternative test procedures mightibe compared on the basis

of the associated limiting "attained levels™.

On the other hand, Cochran (1952) measured the efficiency
of a test procedure by thé fate of éoﬁvergence to zere of ité
sizes when the power is held fixed against a specified alternative.
It 1s well~known that Cochran's approach to efficiency usually
leads precisely to the same ponqlusions és Bahadur's approach
does. Motivated by this faét we héﬁe'introdubed in Section 2
the notlon of Cochran-deficiency (to be referred to as BCD for

reasons explalned ian the next paragraph) and have shown by means
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of an example that at the level of deficiencys the above equiva-

lence between Cochran's and Bahadur's viewpoints is no longer
trues A unecessary and sufficient condition for the existence of
Cochran-deficiency is provede In most cases this condition does
not hold and so Cochran-deficiency will rarely existe When
appropriate asymptotic expansions of the significance levels are
availables an Yapproximate! Cochran-deficiency is calculated

as a compensation. Conditions under which the saild expansions

are valld are also investigated.

If one defines Bahadur-deficiency by comparing attained
levels, then this’quantity.will in general be random (see

Example 4.1) and very difficult to compute. 1In view of this

one may like to go to the considerations of taking some sort

ERyr

of averages of Bahadur-deficiencye Bﬁt since this did not turm
out to be feasibley, we probeed along-a somewhat different route

in Section 4. Using limits in probability in the definition

of Bahadur slopes (rather than almost sure limits) we reinterpret

Cachran-deficlency more in line with Bahadur's approach. Ip

view of this interpretatiorn we shall refer to Cechran-deficiency

as Bahadur-Cochran-deficiency (BCD).

The following remark on the computation of (approximate)

BCD (or equivalently the computation of the expansion of the
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size of a test proéedure when its poWwer is held fixed at B,

0 <8 <1) is woréhmmentioning. It consists of two distinet
steps. The first step is to determine (with appropriaﬁe accuracy)
Hthe cut-off point™ of the test statiétic;so that the.ﬁower of
the test is p. This is easily done once the asymptotic distri-

(nul/g)) at a fixed alternative of the test

bution (up to o
statistic 1s kxnown; in case the limitipg distribution is normal,
the problem of establishing the existence of such an expansion

can be settled under general conditlons using one of the results
of Bhattacharya and Ghosh (19?8)3 see in this connection,

Section 4 of Chapter Threes The second steﬁ-is typieally to
Solve a large deviavion problem:; Lo be more specific; it is Yo
find, essentiallys a uniform asympfotic expansion (up tQ o))

of the logarithm of.the large devigtion probabilitys the expan-
sion has to be uniform (in a suitébiersenSe) since Mhe cut-off
‘point" will depend on the sample size. It is this second step
which is interesting and Quite challenging when the parameter
space is multi-dimensionals 1In this chapter; we shall cnncentrate

on the "one-parameter® testing problems’ here the above-mentioned

problem is easy to settle ﬁsing the techniques of Bghadur and
Ranga Ran (1960).
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SECTION 2. WOTATIONS AND PRELIMINARIES

Let %m(.‘,@) c e e (D % be a family of probability distri-

butions on some space X. Let s = (Xl,xz,....) be an infinite

sequence of independent observations on x &« Let T{(s) =

{Tn(s)} - be a real valued statistic. In the next paragraph
= briefn;ynopsis of Gochran'é efficiency is giveny for details
consult Cochran (1952) and Bahadur (1967 and 1971). |

Let (ﬁ?o be a proper subset o? Qﬁ)-_ We ére interested
in testing Ho 0 & ﬁE)o against HI: o e (@ - di)o . Forrthis
purposes we consider a test procedure which 1s based on a test
statistic T and which regards lgrge Valués of Tn(s) to be
significanty le.cesy the critical region Wh of the test procedurs
is of the form

(2.1) Wn = ,{S : TH(S) _>_ k(ri)} .

Fix 6 in (@) - @_ and :p such that 0 < 8 < 1.

Choose {k(n)} " such that
n“

(2.2} P(Wn y 8) =8 as n —>oo .

Note that k(n) will depend on B as well as on ©. Let

«(n BY = «(nsp,6) be the resulting size of the test &
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(2.3) «(ny3+40) = sup {P(wd% @0) : QO £ (ﬁ)o} -

In bypical cases the silze tends to zero as n tends to infinity.
Gochran argued that the rate at which «(n Y By 8) converges to
zero 1is an indication of asymptotic efficieﬁcy of T against

G . Equivaleﬁtlyg one may proceed in the following way which is
more sultable for our purpose $ for each 6, 0 < &6 < 1y let

M(8) = M(&6 ) By O) 5e the least integer m > 1 such that

«(ny By 8) < & for all n>m 3y and let M(8) =oo if no such

m exists. Henceforth we shall assume that o(n 5 8) — 0 as

n -> o s which ensures that M(8) is finite for g1l & and that
x(n 3 B) 1is strictly positive for all sufficiently large n »

which ensures that M(§) — o0 as & — 0. The Cochran-efficiency
of the test procedures; when it existsy; is equal to the limit of

(M(8)) ™ 1og(1/6) as & — .0 .

Consider now two testing procedures based on the statistics

T (s) ={T (s and T_(s) = f
g lsn 13’ = 4T, _(s) for
_ ’ n>1 2 L 2sm >l
the above testing problems. We want to discriminate between these

two procedures when € obtains. Let Mi(ﬁ) be defined as above

with T wreplaced by Ti’ i= 1,2+ Clearly the 1limit of

MZ(S)/MICG) as & —> 0 gives the Cochran-efficiency of T,

relative to T2 when © obtainse When this efficiency is 1,

. -
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(1 () =My (BN (8) >0 as 6 > 0.

In typical casess howevers (Ml(ﬁ) - Mg(ﬁ)) remains bounded as
5 - 0, and so for the purpose of a more subtle distinctiony
one may use the limit of (M1(5)_- Mg(é)) as 8§ —> 0 whenever

this 1imit exists.

DEFINITION 2.1 The lower (upper) Bahadur-Cochran-deficiency

(BCD) at © of the first testing procedure with respect to the

second 1is
Qc(Bs 6) = 1§m_§?f (g (8) - M2(5))
( ﬁc(ﬂs @) = 1lim sup (Ml(a) 3 M2(6))) .

§ -0

In case these two deficiencles are equaly we say that the BCD

at © exists and 1s equal to the common value.

Of courses D, = Bc =co or —co if the limit of M, (8)/M, (5]
exlsts and is differeut from 1. The main use of deficiency is
to discriminate tests for which this limit is 1. Note that

although the relative Cochran-efficiency of tweo test procedures

is usually free from 8 {(see Proprsition 11y Bahadur (1967)),

their relative BCD need nnt be S0
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SEGCTION 3. COCHRAN'S APPROACH

In thislsection, we shall discuss our preblem from the stand-—

point of Cochran's theory nf‘efficiency. It 1s proved that for
the existence of a finite BCDy, the size functlons of the test-

procedures must be related in a very special Waye

(&) EXISTENCE OF 4 FINITE BCD.

THEOREM 3.1  Suppose that for each i = 1,2, di(n) is a
decreasing function of n for all sufficiently large n. Then

the following two conditions are equivalent &

(a) IM% (M;(8) - M;(8)) exists and is equal to an integer
§—

d

[

d(gy 6)

(b) there exists an integer d = d(3y &) such that

“g(n) = ﬁi(n+d) for all SuffiCientiy large n .

PROOF . Tet {“i(n)} be decreasing function of n 1f

n>m and let (2) hold. Then there exists a 'Gi > 0 such

that Ml(G) = d4d + M2(5) if 0 <6 < 61 « Now assume that

(b) does not hold § ieces that «2(ni) # o(l(ni + d) where

wlo o] B d fix . such that "
nl < n2 2 n3 < . Choose an n1

ng > m (ng +d) < 5y g +d) <5 .
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We may then assume that qé(ni) < di(ni + d)e Then if
B = “i(”i +d)y M (8) >n; + d while Mz(a) < n; 5 plainly
the last fact contradicts (a).

REMARK 3.1 It should be noted that the main reason why the
existence of a finite BCD imposes a strong condition like (b)
on the sizes is the discrete nature of the quantities Ml(ﬁ) and
M2(6). Unfortunatelys any attempt to make sizes continuous by

taking resort to mixturesy as done by Hodges and Lehmann (1970),

does not work here.
The above theorem is a special case of the result beiows Let

{ﬁ(n)}n>l be a decreasing sequence of real numbers in [0,1]. TFor

each 6y 0 < 6 < 1y let M(8) be the smallest integer m > 1 for

which o(m) < & § M(8) =c0 1if there is no such m .

THEOREM 3.2 et «n) >0 as n ~->oc0 . Then

(a)  the function & -» M(8) from (oy1] to I, 1s a

left continuousy decreasing step function (1+ is the set of

natural numbers) 5
(b) 6 1s a point of discontinuity of M($§) if and only if

o((M(8) —~ 1) > 5 or M(8) =1 %

(e¢) the function 6 — M(aj determines the Segquence

N

{d(n)} _., uniguelye More precisely, let S =M(5) S M(5)>1,0<551%
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and let the elements of S ,arranged in ascending order be

i <-m1 < m,, < +ee 3y 1let 85 be such that Mgﬁi) = my and
61 1s a point of discontinuity of M(8)e Then

T e
61 if n(ml,
«(n) = < 5y if_ﬂmiﬂl £n< m 3
0 if S has 3z maximum element

B and n > my e
The proof is simple and omitted.
{ ) .

(B) BOUNDS FOR THE UPPER A'D LOWER BCD I TERMS OF
APPROXIMATE BCD ¢

As we know from part (A) that BCD will exist rarelyy we

now turn to the problem of finding bounds for the upper and lower

BCD!'s. We zssume that

Assumption I. Each of {di(n)} and {Hé(n)} is a decreasing
function of n for all sufficiently large n .

Assumption IT. For sach 1 = 12, there exists a function

{ai(x)} deflned for all x > 1 such that

(a) di(x) = «1(n) if x 1is the integer n

*

{b) qi(x) is a decreasing and continuous function of x for

. - - e - €
srtosnifinden ,1':," e usi
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i

(¢) there exists d = d4(8y 8) (~eco< d < + ) with the |

property that whenever the sequence Jm(n)} satisfies the

equétionr qé(n) = di(m(n))a the limit ofj(mfh) - n) (as n > )

exists ané/equals d e

DEFINITION 3.1 The approximate BCD of the first testing |

procedurse with respect to second is d{gs &)

Note that the appreximate BCD need not be an integer and
that it'depepds on the particular extensions {«i(x)} 1= 1,2

Wwe are using.

Define for each 6y 0 < & < 1, two real numbers Mll(ﬁ)

and M _(5) oy
otl(Mll(a)) = °<2(M2(6)—1), ocl(Mm(a)): «Z(Mz(e))-

Then Mil(a) < Mi(ﬁ) £ Mig(s) + le 1In view of part (¢) of

Assumption IIs one gets ’
(3.1) -[~d(By0)] -1 < D,(898) < D (pye) < [a(py0)] + 1,

where [t] stands for the gfeétest integer less than or egual

to t e

REMARK 3.2 Tt follows that the BCD 4s +60 or -co according

as the approximate BCD 1s +co or -~co.
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REMARK 3.3 In view of inequality (3.1), the approximate
BCD can be taken as a- "reasonably good" measure of deficiency; for

even whenBﬁE)doeS'not existy., thg upper and lower BCD can differ
by at most 2 and in typicai éaseéiﬁﬁee Remark 34 and (E) )this
differgnce will be exactly 1. For this reason, we shall hence-
forth concentrate on the approximate BCD.

REMARK 3.4  If BCD exists and is finite, théh it must be
'equal'to d and so d will be an integer, d may however be
an Integer even 1f BCD doss not exist (see Examples 3.1 and
3.2)s If 4 1is nOnHintegral and finite, say 4 = mt (0 < t < 1,
m 1s an integer), then (3.1) implies that the upper and lower
BCD are respectively m+l and m. On the other hand, if 4 1is
an Integery then the upper'apd lower BCD are respectively, d
%nq ;d—l, or d+l 'énd d, ér d+1 and d-1s according as
m{n) ~n < d for allﬁsﬁfficient1y~1arge n or u(n)-n>d for
all sufficiently large ns or m(n)-n.» & and < d for infinitely

many values of - n (for detailsy see Chandra and Chosh (1978)).

- N

(C) DETERMINATION OF APPROXIMATE BCD .

Wle assume throughout this -section that the significance

levels {cci(n)} i = 142 -of the two test procedures admit of

the following asymptotic expansion ¢
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«(n38:6) = exp f-n 2, (8,0) + 0’21 (p,0)

(3.2) + ci(B,G) log n + 4;(8s0) + oi(l)}

ai(B’G) > O’ i = 142

In typleal, cases, ai(ﬁ;_@) w.il-i be free from B 5 this will be
the case if Baghadur-slopes of T, and T, exist 'y for a precise
resulty see Theorem 2 of Raghavachari (1970). TUote that _
M”(s)/M (6) —> 1 1f and only if al(ﬁ, 8) = g (B, e). Henceforth.
we assume that the last equality holds and denote the common vahm
of al(B;Q) and az(ﬁ,e) by a(Bs6)s. Also in typical cases

b (B,Q) will be _ZB o*(8) times the derivative of a(ps8) with
respect to G where ‘zﬂ is ‘the upper 1005 -per cent point of the

limiting distribution of (suitably normallsed) 1 and o*(8)

is the(positive)norming constant for T, Y sce equation (3.4) of
Condition 4 in part (D)e Finally, in typical cases c,(ps0)

will be free from B and 8 and will depend only on the dimen-
slon of the basic models Thus 1f the alternative © 1s such

e
that the two test procedures have the same Cochran effic%pgi%
AW
then the expansions of their sizes will usually agree up to

terms of order o{l).

For conveniences we shall suppress the dependence on B and 6
of the quantities a, bi’ etcs The following lemma connects the

two sets of assumptlons made in the present and previous sectionse
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LEMMA 3.1  Assume that the size functions{ui(n)} and

.[cxz(n)} s'a-itis\fy (3¢2)+ - Thed AS'sumptions I and IT of part (B)
arg valide TIn facty part (a) of Assumption II holds in the
following strong S@nse'a there exlst exégnsiensr_{o{i(x)} 1=1,2
Which satisfy (3.2) for non-integhal values of x( 1) as well.

PROOF .  aAssume (3.2) and define o4(x) by
(3.3) % (x) = expfA log c(i(p)r-.-- + 4 log e(]f(m-l)} - i=12

where n < x < mly X = nA+ (t;r%:l)u for some ‘A and 4 such
that 0'< x <1 ~and A+ % = le It is plain that the lemma

holds"'(for.part (e) of pssumption II, see Theorem 3+3 below)a

Henceforth we shall work with those exteﬁé’ioﬁs {qi (,?1‘)}

which satisfy (3.2) for all real x(> 1)s  The next theorem
gives the possible values of approximate. BCDe

THEOREM 3.3 TLet the size functions {c(i(n)_} i=142 satisfy
(3.2)s Then one has = ‘

- dz"')_/a 3

(a) 1f b. =b_ and ¢, = t¢c_s then d = (d1
|

1 2 1 a3

(b)  1f b £ by then d 1s +oo or -so according as

bl >b2 or b1<b2y

(e) 1f by = b2 and ey # cy then 4@ 4s 400 or -

according as ¢y > e, or ¢g % 02.
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The proof is quite easy and so is omitted.

REMARK 3¢5  Although the approximate BCD will in general
depend on the particular extensions of‘the;sizeSa it 1s clear
from the above theorem that this dependence is slight and the
value of d wiil not depend on‘the extensions so long as they
satisfy (3.2) for a1 x ( > 1).

REMARK 346, It is evident that a version of Theorem 3.1
can be proved when the asymptotic expansioﬁsﬁof the siZes are

not necassarily of the special form (3.2). Ve shall not discuss

this point any more because we do not have, at present,any

important testing procedure which does not satisfy (3.2).

1

(D) ON THE VALIDITY OF (3.2)

Here we shall fiqdcoﬁditiéns under which the‘ésymptotid
expansion of the form (3.2) of the significance level of a
test procedure is valide We motivate ourselves by considering
a test procedure In which the eritical region consists of
large values of the sum of some sequence of IID random variables

on 31. We have the following general (one-dimensional large

deviation) result in this direction. We shall closely follow

the techfiques of Bahadur and Ranga Rao (1960).

THEOREM 3.4  Let {Yﬁ}  be-a sequence of IID random
>l

. 1 .
variables on R with the moment generating function
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M(t) = E(exp(t ¥))e  Iet

~1/2 1 1/2

P = Prob(n” 2Y>n 4+ q) ml & il
= i=1 1 n -
where 4 1s a nonzero constant and {qﬁ} is a bounded sequence
W1

of realse Assume that

(a) the distribution of T, s nonlattice‘,

(b) if T &stands for the set {% . M(t) is fihite} then

T 1s a nondegenerate interval) and
*(eY . there exists a positive- to(u)-in‘the'iﬁterior of T
sach that

oxp (-4t (4))MU(t  (U))= inf fexp (-ut)M(t) I t & T}

= o (u) say 0 <o) <1
Then oneé hasy
1ogpn=nlogpcu)—n qn T : 210gn
; . 48
' ‘ 2 oad il Yy .-
3 postor P 4 o S22y o

4w

where o) is a positive constant’ more specificallys

«(@) = b, o)y o) = L) 2l

Mt W))
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M%) being the second derivative (with respect to t) of M(t).

One may verify that

(1) t, W) = - £ (log o (1)) 5 _\
N ol

(11) o2 = (%5 (log o INL .
due

PROOF . We shall follow the ideas of Bahadur and Ranga Rao
(1960). Let H_ be the distribution function of the standardized
n-fold convolution of the conjugate distribution of ‘Yl' 4 v

Then o) is the standard devigtion of this conjugate distribu-

tion. Proceeding exactly in the carﬁe ﬁayzangemma 2 of the: above
mentioned papers we haye P, =Vpn»f I wpﬁre o
o0
L= f; -exp(-n 1/2 () x) &, (X)’ q‘ qﬁ/ccu) .
qn

One now uses Theorem 1y Chapter XV.4 of Feller (1968) and evalua-
tes the integral I by direct computationsy for details see

Chandra and Ghosh C1978). The proof of (i) and (ii) above is easy.

REMARK 3.7 If we assume that the distribution of Xi
satisfies Cramér's conditions We can get an expansion (in
powers of n"l/g) of log P, similar to the one given in
Theorem 2 of Bahadur andfﬁgngéwﬁaéﬂ(IQGQﬁ. More preciselyy

P
i

one can then show that


http://www.cvisiontech.com

-129~

log Py = n log p(uw) - nl/z to(“)qﬁ-% log n

: k-1 .
- $(log(er «ZCU))+'q57620u))+ d 4178

n
nyj

z
520
+*b(n-k)

where {an’l}, {dn,E} etes. are suitable hounded constantse

Considér'now the set-up of Section 2. Our main interest
is to find an asymptotic expansion of P(T, > k_5 ) where
kn is to be determined from condition (2.2). We_assume_ that

the distributions of tnder Pl 3 95 and (56336 ¢ @)
4} o o] o]

satisfy the following conditions |

CONDITION 4 There exist constants (free from n) ()

and o*(6) > 0 and a polynomial q(s% ©) such that

BT, = a2 u(o) < 6*k9) x5 9)

(8¢4) X . y £
0 =0 P(B)dt + n e

i

(x5 (x) + o(n"l/z), uniformly in Xe
Here ¢ (t) is the density of the standard normal distribution.
CONDITION B. Whenever {q } is a bounded sequence of
sy _
realsy Py defined by

©u5)  py = e, > BT @) a5 00) 2 0y e @)oY

satisfies
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“3/2

2
-, B : / $
(3e6) log p, = -na + n & qn-+ ¢ log n+ ( YE+qn Yé)+ o(1)

for suitable constants ‘ag dﬂ Cs Yi, y; (a > 0).

LEMMA 342  pssume that CONDITION A holdse Then

3.7 k. =n2 40 + z

n ;3‘ a*(8) - n’"lygq(zgm)c*(g) + o(aV/3),

Here z‘3 is defined by

;o0()at = B .
Zg

PROOF ¢ Let us write

i

Fn(x) P(Tn - nl/g w(8) > o*(8)x 5 8)

I

£ opmat + 02 gGhe) o).

-00

G, (%)
Then Fn(zB - q(zB§@)n—l/2)'=(1-ﬁ) +”o(n_l/2)o put d = -q(zB?Gh
el(n) = sup [Fn(x) = Gn(x)[, eg(n) = Fn(ZB + dnil/z) - (1—3);
x

Choose e(n) —» 0 such that e(n) >0 and nl/2 ei(n) = o(e(n))
for each 1 = 1y2. Then L

1/2 W "= pig
Ty e+ @v e 2™/ - a -y

= 'ETT .{Gn(z +(d+e(n))ﬁ"1/2) -G (ZB"'dn 1/2 Yy + o(1)

I

61 (g,) + o(1)
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for some g lying between z; + d a2 ang g+ (are(n))n™/2

and so g -> zje A4S JOL(WY] 1is bounded away from zero in a

neighbourhood of 2. s one gets

B

/2 : :
By Falzp + @+ eI ™E) - 7 (0 Bui@) 784 >0

for all sufficiently large n. This implies that

(k- 12 4(0))/0*(0) < 7, + (d+ e(n) o/

B
for all sufficiently large n . Similarlys

~1/2

(k, - 0% u(8))/0%(@) > 2, + (d - e(m))n

B
for all sufficiently large ns+ 4s e(a) = 0, the proof 1is

complete.

THECREM 345 Assume that CONDITIONS 4 and B  holds Then

one has

1/2

(3.8) log «n) = -na + n b+ clogn+ d+ o(l)

where

(3.9) B =o'z o*(0)s a=Y, - «'qlz;38)0% (@M ¥, 2E(a¥(eN)",

The theorem 1s easlly proved using the above lemmae.

n
/2§ ¥} satisfies
i=1 TVl
CONDITION 4 where JYqL is & sequence of IID non-lattice

' v .IL

|
A

REMARK 348s It is well-known that {h
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random variables with finite third momente One of the results
of Bhattacharya and Ghosh (1978) indicates that this condition
is satisfied for a large collection of statistics (see Sectiow:
§n H of Chapter Three). The resﬁits of the ﬁext chépter
indicate that CONDITION B is also typically true.

REMARK 349  The proof of Lemma 3.2 shows that the ahove
theorem remains essentially true even if in CONDITION 4y (344)

is replaced by

p(T, - a2 u(0) gor(@) x 3 0).

(3410) -

= Jf £{t)dt + Fl(x) n~

- O

~1/2 2

/2 ) uniformly in x

+-0o(n

L e . i
provided f(x) is a strictly,positive continucus density on R

and Fl(x) is some continuous function on Rl.

(E) EXAMPLES ¢

Here we shall discuss two examples. Ih these (and many

other } examplesy the size functions {di(n)} 1 = 142 aduit
n>1

@ cxtensions {a&(x);i 1:% 'x < oo } i = 1,2 which are continuo
decreasing functions of x and moreover the following asymptoti:

eXxpansions are valid &

log % (x3p+0) = ~x a(®) + x2/2 5(8ye) - ¢ log x

(3+11) ~1/2

+‘dﬁ(ﬁ’g) + e(ps0)x ~1/2

+-oi(x ) =



http://www.cvisiontech.com

~133~

where a{@) > 0, ¢ > 0y b(p,8) = 0 if gnd only if § = 1/2
and finally dl(B,G) - 62(5’9) is always nonzerc and does not
depend on B « also if 8 = 1/2,

log « (x38+9) = -x a(e) - c log x + di(%,g) + e(%a@)X"l/z
(3.12) ‘

+ £ + 0 (x™), 1= L2,
From Theorem 3.3y the approximate BCD  d can be calculated
and will be free from B. To compute the upper and lower defici-
encles; recall that if d 1is non-integral, then they are respect-
ively [d] + 1 and [d] and BCD cannot exist. Below we consider

the case when d 1is integer. Then one can show that

(3.13) Y 2mn) - n - a) =+ dbiple) (2ae)) ™t °

.
b

0ol

(3.14) n(m(n)wnwdi —?‘wdc(a(G)}"l . S

Clearly then BCD cannot exist and from Remark 3.4 one can
evaluate the upper and lowér deficlencies. fhus the upper and
lower deficlencies do dependfon B but in a very wealk Sense.
Cur problem therefore reduces to show that (3¢11) and (3.12}

indeed hold in these exampless

The deficiency o¢f one test procedure relative to  another
was defined in Sectidﬁlz for the same testing;problem.'“In the

following twe exampless the two test mrocedures under commarison
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are for two different testing situationse More specifically,
we want to compare one-sided test and two-sided test in what

is apparently a one-sided testing problems There are two
reasons for doing this. Let (—E)l and -@)2 correspond to the
two-sided and one-sided alternatives respectivelys @)2 C (El)l ?
Suppose now in a given problem the natural alternative is (_I-_{)l
but there 1s some information (not entirely reliable) that the
real alternative is @)2 « In this case under the usual
assumptions the likelihood rétio using @)2 is as Bahadur-
efficient as the one using (B); for all 6 in (@), . So if
Bahadur-efficiency were the only criterioﬁ, one should certainly
ignore the information that (5)2 is the real alternative.

Our examples show that the choic;e is not so clear if one also
cousiders the deficiereys The second reason for considering
these examples is a mathematical one 5 they are nontrivial and'

1 T
illustrate the various technical aspects of computing deficlency.

EXAPLE 3.1 (The Normal Distribution)s

Let (H) bé the real line (-, +00), @)O = {o} S

vor ‘6 ¢ (B)s 16t P, denote the normal distribution with mean

=2
® and variance le Fix a positive € .

For the testing problem H_ that the population mecan is
zero against the alternative that it 1s non-zero, the critical

&2 nression~OCR .. Weli-ontimiz N LS TR
lng_l.fu S w3 ALY (VIR J_u oy Gl u}
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1/2 = - ! n
(™= X > ky(n) X = 1_2.1 Xy

where kl(n) is such that

(3.15) p=1-~ E(kl(n) =it 2 8) + E(-ﬂkl(n), - nl/gg).

Then 1ts power at 8 1is p and its size is

(3.16) o« (n) = 2(1 - Bli; ()
Bghadur's (as well as Cochran's) slope of [nl/z Xn{ at ©
is %@20

For the testing problem Ho that the population mean is
zerc against the alternative that it is positives the critical
region of the most powerful test is {hl/zlin > kz(n)} where

kg(n) ::nlfg e + Zp » Its power at © 1is B and 1its size is

(3.17) %) =1 -3 (7% + 2

Bghadur's slope of nl/g‘in at 6 is % QEQ '

Thus the two test procedures are equally efficient when
& obtainms. At the level of deflclency hOWever their perfor~

mances are different (as indicated at the beglnning of (E)).

We want now to show that (3.11) and (3.12) hold with

a(e) = 9?/29 b(Bs ) = -z, 8y ¢ = ~1/2 d2(37@) = - %(Zg +

P
log(2r6)), 4, (8s0) = dy(80) + 1og 2:6(B0) = -z, 67,
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£(6) = - 872, In fact, one can assume that (3.15)y (3.16) and
(3417) hold even if the integer = is replaced by the real

x(> 0). That Je (x)} satisfies (3.11) and {3.12) is easy. To
show the samérfor {Hi(x)}y it suffices to show that

exp(x-@g) (ky(x) -~ 31/2@ - Zﬁ) and eXp(xgg) (16g ﬂi(x)—log aé(m
- 1log 2) tend to zero as x —> oo . Since these are easy to

1 ( |
establish, the details are omitted (see Chandra and Ghosh (1978)).

REMARK 3.10 One can easily see that alfﬁough the above
test procedures are equivalent from Bahadur!s pnint of view, the
Pitman efficiency of the first one with respect to the second
ils = il in facty the Pitman efficiency at the alternatives

72 ' 2 A=2 hoal i
n (& > 0) is (zq —.ZB(G)) e whereﬂh

co ; oo ‘
(3.18) g(e) = ) p(t)at + pltyat = (e < (@) < 1)
Zq/zﬂ ‘ Zq/2+9

REMARK 311  Consider the agbove testing problem except that the
observations are now taken from g one-parameter exponential
family with density (with respect to some absolutely continuous

sigma-finite measure)
f.(x) = exp(6x - c(6))

where © takes values in the natural parameter spaces ASsume

that the natural parameter space is an open set containing the

T

R—
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origin and that ¢(0) = ¢'(0) = 0. Then the deficiency of the
first testing procedure with respect to the second (i.es.s the

likelihood rabtio test when the alternative is © > 0) is

log(1 +Veu(B(x))/ctB(x)) ) |
et (8) -~ c(8) ,

here ¢! and c¢" denote respectively the first and second

derivative of ¢y x, >0 and %, <0 are defined (uniquely)

by
0(x)) = 0(x) =6 c'(®) -c(B)

o

where :
x@(x) - (B (x))

{1

0 (x)

and @(x) is the unique solution of the equation x = c¢!'(0).

The proof.depends on the results of the next chapter and hence

is omittgd,
EXAMPLE 3.2 (The Student's t distribution)

Here @I) = {(ﬂsO') : —o < <ooy 0 < g <oo}, @Do =
{0} X (0pa). For © = (4s0) in (s let Py stand for the

normal distribution with mean « and variance 02. Fix a

. -1
Gl = Qulg cl) such that #q > 0y oy > 0 5% put w© = My 0179

8 = (4y1l) and 8, = (0y1)e
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For the testing problen Ho that the population mean is
zero against the alternative that it is non-zero (the popula-

tlen variance being unknown), the "best™ test is based on the

critical region JT;(n) > k (n)} where T,(n) = [01/2 Xn 5;1),

2 L 2
ns, ' = 1§ (X Xh) and

B = Pgl(Tl(n) > kl(n)).

Its power at Ql is B and size is

2% 71 sk (n)

°(1(n) = ng (n

Bahadur's slope at €. of T, 1is %1og (1 + ug).

L}
If now the alternative hypothesis is taken as "the mean
1s positive and the variance is unknown'y then the 'best" test

is based on the critical region {Tg(n) > kg(n)} where Tz(n)

/2= -1 T .
n Xn S | and kg(n) is such that 8 = Pgl(Tg(n) > kg(n)).

Its power at“ 91 is B and size is

-dé(n) = Pgo.(nl/2 in sgl > kg(n))

Bahadur's slope at 6, of I, is %1og (1 +

2).
oz
Here too the two test procedures/emm equally efficient;
though their deficlency is not zerce We shall show that
‘{«1(11)} and .Lrogz(n)} satisfy (3+11) znd (3. 12) with a(eq)=

%log(l+u2), b(gy0,) = ~Z, (1 + -;,,u )1/2 w(1+62) ™t ana
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@ - iA ! = : . i .
1(3, @1) dg(B"s Gl) log 2 ‘The éxten51ons {ﬁl(x)} can
be defined as in the proof of Lemma 3¢l. To show that Joo(n)}
satisfies (3.11), one proteeds as in the proof of Lemma 342 and
nek
gets constants d; and do (we doAneed the exact values of

d and d2) such that

il

+ d npl/2+d n“1)+ o(nﬁl)Q

év 12.1/2
(zB 1 o

(3.19) Xk (n) = 0%+ (14 )

here one uses the fact.thay there exist twocpolynomials Pl

and P2 whose coefficients are free from n such that

P (T,(m) - 0% > u(uduf V7

= jﬂ P(t)at + (Pl(u)nﬁl/2 + PQ(U)=nf1) 0 (u) + o(a™h)

uniformly in u & B (see Bhattacharya and Chosh (1978))s Recall
that under 0, s(n-1)Y2 072 1_(n) follows Student®s t-distribu-
tion with (n-1) degrees of freedome A repeated application of
integration by parts (vide Chandra and Ghosh {(1978))then yields
the desired expansion for log d%(h)., Consider now the case of
{dl(n)} . Since under &y, (Tz.(n) et ) ("l+%u2fl/2converges
Weakly to: the staﬁdard normal distributions 'PGi(Tz(n) < = kl(n))

is O(nhl)l this implies that kl(n) also satisfies (3.19) and so

log og(n) = log 2 + log dﬁ(n) + o(h”l/g).
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This completes the proof of the fact that {al(n)} also satisfﬂﬁ
(3411) and that dl(ﬁ 7 89) - do(p 3 ©;) = log 2 « The proof of
the fact that the sizes sabisfy (3412) should now be clears

SECTION 4. BHADUR'S APPRO ACH

In this section we shall consider two possiblé ways of
measuring deficiency from the standpoiﬁt‘bf‘Bahadur's theory of
efficiency (see Bahadur (1960) énd (1971)). It is shown by
means of an example that Bahadur-deflclency 1n.the strong sense
need not exist even when BCD exists. A new 1nterpretatlon of

the latter is suggestéd in part iB)o

(1) BAHADUR-DEFICIENCY IN THE STRONG SENSE.

Assume the set—up of Section e For'eéch real ty let

Pig(t) = supP(Ti(n) > t 500 6 ¢ CE)O}

p S
S -y - : -
: IO st T oy )

For each 6, 0 <5< 1y and for each sy let N&(S Y s) ée thé :
least integer m > 1 such that Ly,(s) < & for all n2m}
and let N,(63s) =c0 if no such m exists (1 = 1,2)s For Some
interesting properties of Ni(a,s); see %ection 7 of Baghadur
(1971).
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DEFINITION 4.1 The random lower (upper) Bahadur-deficiency
at 8 of the first testing procedure with respect to the second
is

,QB(ﬁ Y ) = (asse Py) 11§_§%f (Nl.(a,s) -~ Ng(é,'s))

I

(Dy(B 3 ©) = (asse Py) lim sup (Nl(o‘as) - N,(658)) )

§-—>0

In case the above two deficiencies are equaly wé say that the
Bahadur-deficiency exists and is equal to the common value. 48
in the case of BCDy the main use of studying these random defici-
enciles is to discriminate tests withthe same Bahadur-efficiency
i.cey tests for which the (a.s;“Pg) 1imit 6f Né(G,s)/Ni(G,s)
is 1. _" _ V

In this approach, e} A VA ST O difficulty 1s that the
quantities

sup{Lin(s) R m m>1

are difficult to expandj any possible expansion would seem to

depend on the particular sample sequence considered.

EXAMPLE 4.1 (The Uniform Distribution)e Let © be such that
0 <6 <13 let £;(x) and -fé(x) be respectively the densities
of the uniform distributions over [0y &] and [0,1]. Consider

thae vraoblen of testias
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on the basis of the following two statistics ¢

it

6

it

Tg(l’l) HlS.X(X-_LS XB! TR inﬁl) n _2 2.

nwl-

Then clearly o (n) = 5 0 and <(n) = B 67 so that the

BCD exists and equals 1 for all B

We ‘are going to show that the (ass. or stochastic) 1imit
of (Ni(s,s) - Ng(s,S)), if 1t exists, cannot be degenerate.

Clearly

Po(ly(8ys) = m) = PN (8y8) = ml) m 2 2,

and the distribution function of N,(6ss) under 6 is given by

y pel - [ o :
561 P exp(( = 3™H logs)  if m < p-o
- j=m+1 _m_
Palli;(0y8)=m) = < ; gl-p if w= p-l
L 1 i m=p

where p = p(@38) is the integer satisfying

log & . ' log &
Tog B = p(e 5 6) <rlog”9

+ 1.

p]

The next lemma studies the weak convergence under P, of

p(e 5 &) —-1\T2(6, s) as 5 = 0.
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0 ) o
- . LEMMA 4e1 For each ¢y 0 < ¢ < 1; let X, beArandom variable

such that Pé(ic = 0) =1-06% anad Py(X, = 1) = (1 -0) go+i-1,
12 1 Let 2(8) be the excess over (p{e $ 8)~1) of log 8/log 6,
0 < e(6) < 1. Then o '

(a) 1ir e(én) > 0 and fﬁn -5 Q? p(6 5 6n) - Né(ﬁn y 8)

converges weakly to X ° under Py 3

(b) if 1p(e 3 an) - Né(an 3 s) converges weakly to X

under P, and & >0, {é(ﬁn)}nzl is a convergent sequence %

moreover X can be taken to be Xﬁ where ¢ 1s the limit of

e(an)-
PROOF ! (a) By definition of e (s ),

e(al’l) C

Also the definition of p(6 $ &) Implies that for each X 2 1,

2 61/ (p(856,)~k) K (p(838_) k)

>
n 2
and .
S 61/(13(9; 5,) k) y g(k:--l)/(p(G', Bn)~k) .
> .
1/ (p (8% 8,) k)

Thus for each k > 1y 5 —> 68 as mn —-» oo

n
Consequently one has for each m > O

RpleB B 38 = NAL S 8w P ) s
! v ’ e C: - r ’

1 11 3 <


http://www.cvisiontech.com

~144 -

which completes the proof of (a).
- (b) As {6(6 )} is a bounded sequence; it has a
R

convergent subsequence. By part (a), gvery convergent'subsequenm
of it converges to the same numbers Part (b) is therefore immedi-
ate.

It follows from the sbove lemma that the (aes. P, or
stochastic) limit of N (6)s) - N,(85s) cannot be degensrate’
to see thiss one needs 6n1y to note that Ni(é?s) and N2(6§s)
are indepeﬁdent and then to use Theorem 2 Chapter VIII.3 of
Feller (19685o Thus in this example one cannot hope to get a

single numerical value of deficiency from Bahadur's point of

view.

(BY ANOTHER INTERPRETATION OF BCD o

So far we have considergd asymptotic efficiencies of test
procedures in terms of almoét sure convergence onlys However it
is possible to discuss'the same with almost sure convergence
replaced by convergence~in-prebability; indeed this was the
approach ©of Bahadur (1960). AlthoughlBahadur’s (exact) slepes
are easier to interpret in the former case, the (approximate)
slopes based on convergence~in-probability arenot only easier
to use but perhaps more basic and stableé. For these reasonss
we now consider the fbllowing alternative -measure of deficiency
EGTOER chedurfv wptmiEativf usihg e '

7 [N



http://www.cvisiontech.com

-145-

The following result is due to Raghavachari (1970)5 see

his Theorem 2. The setmui is same as that.given in Section 2.
LEMM4 442 (Raghavachari)

For all B8y 0 < é,< 1y one has

1im n"l log «(n3¥By8) = ~c(8)y 0 < c(8) <o
n->00
Af and only if
> Py
-1 8
n -~ log Ln(s)'-—"> ~ c{8) »

This fact leads to the following definition.

DEFINITION 442  Fix a © £ (@),s an e with 0<e <1 and
ad with 0 < 86 < 1. Then V(5%es@) is the smallest integer

m > 1 such that whenever n 2> m

Pe(Ln(S)‘ <8y >1 -5

and let V(6%e48) = +oo if no such m exists.

The next lemma gives the asymptotic behaviour of V(6%e,8)
as 5 ~ Qe
LEMMA 4.3 Assume that
p
= | e
(4.2) n log L (s) —> - c(&) 0 < c(B) <ooo

Then for eech g2 0 < ¢ <1 one has
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log &
(4.3) V(G; 8’ 9) _'> S C(@) aS 6 "“> O -

PROOF ¢ Fix a © and an €. We abbreviate V(8%5€;8) and

c(e) as V(6) and c respectively. Also for notational convenience

we shall write Ln(s) as L(n).

Since c¢ 1s finitesy V(53) tends to o as & +Hends to

zeros. Clearly then it suffices te prove that

(444) lim inf f ~log 6/(V(&)-1)] > ¢ %
5’ >0 °

and

(4e5) 1im sup [-10g 8/V(8)] £ ¢
5§ >0

To prove (4.4) we assume,by way of contradiction,that (4.4) is
false. Then there exist an 7 and a sequence {Bn} such that
0<n<e 5 -0 as n —>oo, and

log 6n

- ——J e -7,
V(ﬁn)"l

From the definition of V(5), we have

log 5 log L{V({(5_)-1) !
Py (= o7t > - 4 ) 2 €.
8 V(on)~1 = V(Sn)~l =

So certainly
log L(V(Sn)—l)
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which contradicts Assumption (4.2).
The proof of (4¢5) is similars

Lemma 4.3 suggests the following measure of deficiency; consider
the set-up of Section 2 and define V,(83£,6) and Vg(éﬁs,b)

similarly using Lln(s) and LG(s) for Ln(s) in Definitinn 4.2

DEFIVITION 4.3 Fix a 6 £ (@), and an &y 0°< e < Le
Then the lower (upper) deficiency at @ of the first testing
procedure with respect to the second is

lim inf (V4(8%8,8) - V,(63€,8))
& =0

( 1im sup (V(6%e30) ~ V,(65+8)) ).
5§ =0

Let Fin(t) be a strictly decreasing continunrus functinn
of ty 1 =1,2. For cach & £ CE)Oy we make the same assumptlon abou
o om—l
Po(T; > t)e For each &, 0 <6< 1, let tin(a) 2 Fin(é).

Consider the sequence of tests @in(G) 4

Reject H, 1f and only ir T, > tin(s).

Then the error of first kind for this test is & . We denote

. *
its power by Bin .

Fiz © £ (@), and define, for each p,0 < B < 1, the
test (+) (g)

in
Reject H_ if and only if T, > e, (B)
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where cin(B) is such that PGCTin > cin(ﬁ)) =@ o Let its

error of first kind be denoted by U

Using the tests (f) (g) deflne Mi(§§5,g) as in Section
Lo Therlﬂ

(4:6) My(5 3 8y ©) = V;(8 5 1=y ©)

To see thisy note that if n x V;(6 3 1By 6}y then by definition
of Vi(ﬁ? 1-Bs @) y the tests @in have error of first kind = &
and power at 6 > B . Hence for n > V1(6§ 1-ﬁ3_G) the tests
(+) which have power = B3 must have error of first kind

%, < 6, By definition of M;(8} p, ), this means that
Mi05§ By ©) £ V;(85 1-py 8). Similarly the reverse inequality

can be provede. ' :

Thus BCDy upper, lower or approximate; agrees with the

corresponding notion as may be defined usiné Vi(6§ Ey &)e
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CHAPTER FIVE

DEFICIENCY FOR MULTIVARIATE TESTING PROBLEMS

SECTION 1. .. INTRODUCTICN Aﬂﬁ NOTATIONS

In the'preﬁious chapter we considered the pfoblem of discri-
minating tests with same (Bahadur-)'efficiency% the {examples
considered there concern with essentially the "one parsmeter"

' cases Here Wwe shall compare the likelihood ratio test with other

common (and equivalent) test procedures for. the multiparameter

exponential familye ' For this the main problem is to find expan-

sions up to o(1) of the. logarithmsof multi-dimensional large
deviation probabilitles (see the last paragraph of'the:int?oduct_
ion of the previous chapter)} to this end we have described LT
method which is féirly general and also may wﬁrk even for s&me
non~eXxponential famil 1ss. Some closely related works: are Borovkov
and Rogozin(1965). and Woodroofe (1978)% some of the results of
Bahadur and Zabell also have peripheral CDUHGCthnS (but we do

not explicitely need them).

Gonsider a simple null hypothesis Hj e =-Qé, a composite

alternative H; 3 6 ¢ Gijl,htmg test statistics Ty . and T,
and critical regions of the form {Ti9n > ti,n}' Let dl L and

5i,n(9), i = 1,2y denote the error of first kind and the power

function respectivelve. Thtoughout this chapter, 6 will denote
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a ?ixed element of Qﬂ)l and we shall chonse ti,n such that

ﬁan(G) = ég,n(g) = Py B Dbeing fixed and strictly between

zero and ones

As shown in the previous chapters; the following
expansﬁons for .qi;n(ﬁQG), 1 =192y willl be valid under quite
:genéral"COnditions .

(1&1)-

1og'ua;h€ﬁ+e);b_gnaF§,@) %!Pl/z b.(py0) + (lcg a)ey (Br6)
+ di(B,@-) + 0(1)s 0 < a(psd) <oco .

Then for sufficiently small &, there exist ny (&) and n2(6)
such that %,x = 0 1f and only if x = n,(8)] morecver,

the limit of (nl('o‘) - ng(ﬁ)) as 6 -> 0 exists and equals
A= (4 (858) = a,(2+8))/alBs®)  1f 1 (3% =1 (820 wnd
01($s8) = ¢,(8:0)} vide Lemna 3.1 and Theorem 3,3 of Chapter
Four, This limit is the approximate Bahadur-Cochran deficiency

{of Tl,n with respect to Téan) to be abbreviated hencefeorth

as deficlencye fnother simple interpretation of this deficiency

is provided by the relation
(1.2) %on = (eED(=aL)+ o(1))

] ‘ " 1 the i
showing how large ﬂi,n ig compared with dﬁin In the subse
quent pages we calculate this quantity (or equivalently show
that the sizes 1ndeed satisfy (1.1)):§n.some common multipara-s

meter multivariate problems.

Py
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In Sectinn 2 we have a sample of size n from a k-variate
normal pepulation with the mean vector & = (@(l),...,@(k)) and

identity as the dispersion matrix 5 the null hypothesis H, T =0

is tested against Hl o Q(i) >0y 1 = 1532seas3ks Here Tg,n
is the likelihogd ratio statistic and Tl,n is the likelihood
ratio statistic agalnst The unrestricted glternative H! . 6 # (e

i

The deficlency at © 1is

(1.3) L = k(2 log 2) |p|I~°

. i . -k
i + n t 3 = &
and what 1s more 1lluminating in this cases “q?,n (2 +0(1))di,n
L similar result holds when k& = 2 and the alternative is

restricted to a non-convex set
(1.4) o | 6 50 ana o' 50,01 61 <0 ana 0@ 0}

In Section 3 we consider a sample of size n from a
bivariate normal population with the mean vector € and disper-

sion matrix identity) the null hypothesis is H_ . & = 0 to be

tested against H, . 6 # 0. Here T is the likelihood ratic

1 l4n

statistic and

{1.5) 1 = J 1

2y Byn () d@/fo

where fg’n is the joint density under © and 7w 1is a prier
density) the second procedure will be referred to as the Bayes

test. Aésuming that 7(8) 1s continuous and positive everywhere
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W;[f%rst approximate Té&n “and then approximate t2,n here -

Lemra 3.2 of Chapter Four is needed)s Under additicnal condit-

lons, qé,n is evaluatedy the value of di,n remains the same
as 1n Section 1 and so the deficieuncy can be calculateds It

turns nut that the deficiency of the likelihood ratioc test is

less than or eéual td

1.6) 612 Logf v 25 &Cpl% 05)Y

vwhere - %g 1s the logarithm of the prior density written in

terms of the polar coordinatess (icee,

(L7 g(rs$) = -2 log m(r2 cos 95 /2 sin ) )

¥

Dg g dendtes the second order partial-derivative of g with
respect to Q"and 0, 1s the value of: © at which, for fixed

r= ||6]l% g attalns its minimum. Thus the defieiency at ©

depends on the curvature of g on the circle that passes through

-.& and has origin at the centre. If the pricr density is

bivariate normal with zerc mean vectors the variances equal to

‘02 and rcorrelatlion Qoeffic;enp o # 0y then the deficiency is

(1. 8) Bl 2 [- 50D 762 4 10z fr bl

according as o 1s positive or negative 3 here b = lgi/az(l—DZL
(Here g attains its minimum at two values of § and hence a

slight modification of (1.8) is needed.)
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in becflon 4, We extend the resalts ni Sectinn 3 te 11near
exponential densitles on Rk
(1e9) fé(x)‘z eXpr Z G( 1) X(l) - c(Q)}
TRl i=1 '
with resnect to an absolutely contlnuous measure with © varying
over the rnatural parameter space whlch is assumed to be an .opon

sete  We test Ho-i 8.= 0 against H1 ¢« e # O -~ and dcfiqe T1 =

and Tz,n as before. Under the assumptlons that 7 18 positive
gverywhere and twice contlnuously differentlable. we show that

an approximate Bayes test is givén by the criticai region

{ XY1 £ Sn's, where

Gamaley S . <L6}'ih > = e(8) =0T (F ) ~ log w(B))> ké,n

. Here L@ E‘B(ih) is the maximum likelihoed estimator and

.

(1.11) ;’- - 0(@) log(det(c“(G))),
c'i(®e) bei%g the,. F Xk ‘matrix of the second order partial deriva-

‘*ntives of ¢ . This‘follogs from tﬁéxfollowing identity

ig;ﬁ = f.exp{h < @,’ih >.7 nc(8) + log W(g)} A6
:(2#)3/2 nfk/g exp{n;<73, X, > (B - c( 8 +

1;g ﬁ(kau)} (1 + o(1))
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where the o(1) term goes to zero as n —» oo uniformly over

compact sets of i%_? incidéntally equation (1.12) nay be

Tegarded as a refinemeht of the main result of Schwarz (1978),

under conditions stronger than his. Under some technical

conditions, qé;n"has been foundg Usipg;Théorem.lef Vioedroofe
(1978) 4 deficieﬁcy“can then be readily computed and bouhdedtbﬁ
a certain integral involving the curvature of o( '8 (x)) =
log w(La (x)) fbr’fixed 0(x) 7 < I Lx),x?>51 c(}@ (x)).;
Section 2 containé fhé épecial case where the qu' Mﬂ _gefinad,

g /7'.'_‘=

below 1is zero dimensionale
(1.13) M= fxe S, [ (0= d
(1.14) @min = inf{$(x) | x e Sn}r

In Sectien 4y only the nmain steps nf‘the computations will be
given since the arguments are quite similar (at least concept-~
ually) to those given in Section 3« One may note here that

the function @(x) i= the negative of the point entrepy (and

hence 1s the Fenchel Transform c*(x)) introduced by Bahadur

and Zabell (1979).

The remarks of Sectlion 4 are intended te elarify the

teechnical assumptions. In particular the final remark indicates


http://www.cvisiontech.com

~-155~

how our results are related to Theorem 1 of Woodroofe (1978)
and can be used to get expansions for the large deviation
probabilltles for a class of statistics which 1ncludes the

llkelihood,ratio criterion.

Results of the same type for composite hypotheses havs
been obtalned, but they require even more technical conditions
and so are not mentioned here.

IN THE SUBSEQUENT SECTIONS WE SHALL ADHERE T0 THE NOTATIONS
INTRODUCED /BOVE UNLESS OTHERWISE STATED.

SECTION 2. NORMaL WITH RESTRICTED MELN VECTOR

We shall first find the size of the unrestricted liPelihood
ratio tests The critical region of this test is {H X% ko ke

Since || X H s when suitably normalised,has an Edgeworth expansion
in powers of n 1/2, there exists a.coustant d(k) (free from n)
such that

(21) k= [ell®+ 2 z5 224 sl a@nT + o™

(d(k) = (z§-+ k - 1)/2[6[))« Now using polar transformation one

can'verify that
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X
2 S 1 , e,
(Ylkl n) exp(" ) Klj?]) <o . k "
- : 2 ~u/2,.. u 2
22 [ (k/2) . et B2

(20 2)

(nklﬂ,/2)k/ ot oxp(—nk,  ,/2)

[ (x/2)

(1 + (1))

We now come to thércase'of the restrieted likeliheod

ratio teste Its critical region is of the form

XA > ky o ¥ 50, 1= 1125eeesk}

v sz @2, 4

s T Lo oifr 16 T

where the unlon is taken over &all nonempty proper subsets J
of V{Iy.q.,k}'._ One sees immediately from the well-known

estimate of the Egil of the standard nermal distributicn that
pg(uﬂg;kg ) =B >0 as _}1; oo
2 £ ' 5 X fx
at an exponential rate. Consequently one can verify thét )
kz;ﬁ - kl"g": ﬂ-(h_i) foi"- all 1 > 1.
It is then evident that

Poo(ll X 2> Ko, q ? D 50 1=1r000k) = (2"k+o(1))c=<1’n

258kdzibn I6GR 3485 onth
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(1)42 < (1) ,
PQCO(iEJ @HE >k 0 T <o 1fr 1)

!

2“"]‘ (the right side of (2.2) with %k replaced by (1{-;}“))'
= °(°‘1,n)

| s I g, ' o ok \
here 3 is the number of elements of J. Thus d? (2 +n(1);d1,n
implylng that the def1c1ency of the unrestr1cted 1iﬂellh00d ratio
test with respect to the restrlcted 11ﬂelihood ratio test is as

given in (1a3)e ¢

® 'S

We now consider the above problem except that the new
!

,alterndtxve hypothesis specifies a non—convex set of & . Speci-

~fleally let k = and H; be as in (le4)s  Then it is easy

te verify that the critical region is the .complement of the

bounded convex set o

(1) 1/2 ={2), 1/2. .. =(1) =(2 z
U {[K( [ e kn/ and [X€ )l < kn/ if X X ) < Oy
(kn being a suitable positive constant). Proceeding as aboves

one can verify that % = (2"1'+ o(1)) di;n"and so the
-2
deficiency 1s [@{ log 2.
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SECTION 3+ COMPARISON OF BAYES 4ND LIKELIHOOD RATIO
TESTS FOR THE MEAN VECTOR OF A BIVARIATE
NORMAL POPULATION

To get an asymptotic expahsion of %, > 1t is coavenieat

to write the Bayes critical region (see 1.5)s in the form

y - -1 4 —1 m
(3.1) on” — log((2m) n Lz’n) > k23?.’1 2

The reason fo_r writing the critical region in thé 'f'oriﬁ will becone
cleaz;irom.KB 2) below. Ncw

Tyt = exp(li[{i” ) y e){p( 3”9” + log w(6 + x))dg

i

27 _ .
eXp('Q'HX“ ) Ir f f g eXp(—- + logw ( X(i)

VA

+ rl/ sin @)) o O(eXp(wno/E))}

(34 2)

t

2™ exp( l[x[] + log w{(X)) -+ O.(l))s

where the o(1) term is uniformly small on ccmpact sets af' X &
(Here we assume that w(6) is poégitive and continuous everywhere.)
We therefore consider an approximateiBayes test whose critical

reglon 1is { Té,nl > ké,n } where

(3.3) Té,n = [ﬁ([{2+ 2n—l logyn'(:i), .

-1/ 2) g

and ké’n 1s determined so that its power at'6 is B + o(n

T cat an ovwansior fon k! .« observe that

Y
DR


http://www.cvisiontech.com

L = ﬂgﬂg + 2nTTlog T(8) + n"l/z‘{Q
-1/2

el U

+n (U+V)“+0(nl).

where U,V are (appropriate linear) functions of iﬁl)

and
7(2)

and are IID K(031)e Clearly then the statistic Ty, has

an Edgeworth expansion in powers of n—l/g. There existé there-

fore a constant d- such that

(3.4) n/2ey - Jol® - £ log w(e))/zuan

(vide Lemma 3.2 of Chapter Four). It is to be noted that d doas

not depend on the prior 7 % in fact® d° can alternatlvely be

determined from the condltion that

=

Prob (U + (U + Vg)/(gng“ nl/g) S ZB + 1/2 Q.
ﬂl/z)

= B+ o(n
where UsV are IID N(051) (d = (Zg + 1)/2[e [ -
To evaluate the size qé,n of the apprnximate tést,‘wa

apply the standard pelar transformation and get

b = n{4r) ™ A4S ' exp (-nr/2)drdd

r-n”lg(rsI2kL

‘where g(r, ¢) is as in (157)s  ITet N g
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= inf{r st 0<r < ooy 0 < (P < z'iTﬁI'énnlg(I',(P) > kl,n’:’f

ro,n 2

and fix & > 0s Then

I

b, = 0™ exp(-n v /o)y i S em(-nr/2)apar

(3.5) i
+ O(eXp(—n6/2))}

where ' = )
%::@: 0<¢<i%7rmn+:r—n4g(%

x4,
gnﬂ_r,(p) 2 K‘Bsn}

We now want to replace A, by a suitable (approximating) interval

of « Note that is bounded and the infimum is attained
P 0N

on the boundary and hence

_ = [
(1) ro,n >0 and rmn kB,n —- 0 as n —» .

We now assume that

(i1) there exists a unique 0, say po,n y such that

r - g(ro’n, P) =k

o and that @O:n ~ b, (say)s

!
2yn
0-(@0(2'&”9

(111) g 1s twice continuously differentiasble with respect
to r and § 5 and finally

(iv) Dg g (Jolf 0.) >0 .

Then by (1)y (ii) and (1ii) and equation (344), one can conclude
that
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ro,a = 1017+ 2flf fz5 02

- + d n_l}-+ Zn"lﬂlog T(8) -

(3.6) a1
log w(|le[[ cos qJO, 8] sin (po)}+ oln )

and that a Taylor eXpansion of g around (ro ’ @O,n) yvields

11l

-1
by + r - T 4+ r
osn n g( o 9 tD)

=k v T - n Tl D g (14 0, AN

- (@) (@ -9y, )T DF & (14 0 (1)

1

where D, & and Q% g 4denote respectively the first order and
second order partial derivative of g with respect to r and
¢ and or(l) denotes a term which goes te zero uniformly in n
as T —> 0 % here we have used ths fact that the partial deriva-
tive D¢ g of g with respect te § vanishes at (ro,n ’ ¢o,n)°
Above and henceforth all partial derivatives of g are evaluabed

at (ro o ¢O’n)o In view of the last equality, we can approximate
, : _

A, by the interval of ¢

N 1/2
!q) = q)o,nl _ﬁ tn Cﬂr)
where .
(3.7) t =22 (1 - 77D g) /2 (v g) /2

n

In facty, 4 cortains ond is eontaired in intervalc 2f the tvmae
4 =
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QOgn + tn(nr)l/2 (1 + or(l)). Thus from (3.5) one gets
o = (2r) ~1/2 t, exp(—nro,d/g)(l-P o(1)) |
(38) = ey~ BloI® - Jo] z, n™? - [l @ - § 1egt
= logw (8) + log w(|e]| cos ¢ sl sin @O)}“(1+ o(1))
where
(3.9) b= opeell3 o)

(g 1is defined in (1.7))-

We now return to the (exact) Bayes test with power 3 .

Fix & > ¢ and choose a compact set C such that

() Pg® £0)=o™¥?) 3

(3,10)

(B) Py

e - n 2 -
(X 2 C) = 0lexp (-~ s({pf| "+ bl))). 6, > 0.
Then for any € > 0 the set

enllog(er) ™t n T, ) >k Ty $%cc

"{ ‘ 20 251’1} { :‘f
iies between the sets

t =ik, - En
{ Ton > Fo,n 2l e n™ () § X e Choe

Also (3.2) and (3.10a) imply that T and Tén (in sppropriate

-1/2y,

2:m
normalised form) have same Edgeworth expansion up to of{n

From this one derives as before that

(3.11) Ko . = k"} + o(n“l) .
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It follows from the above facts and the expansion for the size

of the approximate Bayes test that

(the right side of (3.8) with d replaced by (d + e))
+ 0(exp(- %([(G{_{2+ 5,)))

S %yn

< (the right side of (3.8) with d replaced by (d - &))

+0(m®(—gﬂpﬂ2+ %}Di

which shows that (3.8) can be taken as the expansion for %

as well.

The last fact and equations (2.2) and (2.1) together imply
that the deficlency of the lielihood ratio test with respect to

the Bayes test is

(3412) H@ng[—E log f w(|@f cos P,y [Bf sin D)/ W(G)}-+ log t]

(t 1is defined in (3.2))s From our assumptionss; it follows that
for fixed [8[[; the function w([8] cos {; lefl sin ¢.) is
maximized at @ = ¢O » Hence the deficiency (3.12) is less than

or equal to the expression (1.6).

If in Assumption (ii) we have b, =0 or 2m, then the
above analysis goes through except for a minor change 5 in parti-
cular (3.12) gives the deficiency provided cne redefines t as

i dompeass
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ot = or o (Rl 5 8y
If in Assumption (ii) we have Bai, g(P@Hz b )y=0
0 U e
for 1 = lyeessp-ly but Dgp g(Jol® ¢,) >0 and

21 = s
D¢ g(ro’n, Qoan) =0 for 1= lsseesp-ly 02

(and pssumption (iii) 1s changed accordingly), then the expansion

of the size of the Bayes test will still be given by (3.83) provided

one redefines t as follows .

'!T2 (Dq?p g)l/p

L o R
((2p) HYP (T (/2pr1))2 2P

If assumption (ii) holds with oiyn""’@g,n (instead of

a unique ®0,n) satisfying similar assumptions and converging
to @i,...,pg respectively, then the deficiency will be a sum

of J terms, cbtained by replacing QO by @%,...,@g in (3.12).

In case the prior is a bivariate normal with the mean
vector 0, variances equal to o and corfelation coefficient
o # 0, one can directly work with the Bayes test (instead of

the approximate Bayes test) and easily verify.that

(a) the critical region of the Bayes test is

2 + 20 (o2(1- o +n LD 3@ gy, 3
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(b) J = 2y for all n 2> 1, Qé,n = 17/4 or 3w/4 and
¢§,n = &w/4 or . 7r/4 according as p 1s positive
or negative and
k23 n .

T = :
D1+ o] (ne2(1~ oDy
(c) the size of the Bayes test is

o /2
'L_rexp(—-n ro’n/2) g(l - 57}

- @

el] (rleNY?

(4) the deficiency (3.12) is as given in (1.8);

S

A numericalrinvestigatinn, whefe we tabulated the deficiency

(108) for 6% =1, p =+ 48y & 465 % o4y £ 42 and ofD), o(@
+ 340y £ 2.0y % 1e5y # 1.0y # 045, shows that the deficiency lies
between (2.5y «4e2)s (048) =17} (0.6 ~1.6) and (0e3, —2.7)
respectiyely for the above values of , . Thus .there is no signi-
ficént difference between the Bayes test and theliikelihnod ratiec
test 3 when = 0, these two tests are identical. This may be
interpreted as a sort of closeness of the likelihood ratic test
statistic tn the Bayes test statistice Oyr computations show that
the defilciency is negative for most pairs of 9(1) and 9(2) Y

in this connection one may note that the deficlency is indeed

_negative for all 6 such that HGHE < 1/#b where
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b=0op| (1 -9 4 se b oo as fp| > 1 ad b = 0

as p”%Ov

30 far Wwe have assumed that the dispersion matrix of the

population of the observations is identity. If we now let

o 2

p |
o 23

0 < g% < o0

2w g

be the dispersion matrix (o* and * ‘are.known), then applying
first an orthogonal transformation Y = AX on the samples so that

the dispersion matrix of Y becomes identity,one can easily verify

that the deficiency is still given by (3.12) except that the prior
W Me reglacad oy w\SYY ] 6?3'“ G Q&\L{Q‘ Woavra

e

o*x(1) . 5-1/2 c*{(lr+ p*)l/Q o1} | (1 - p*)1/2 9(2)}

ox(2) _ o-1/2 o*J(L 4 Q*)l/z o) _ m'p*)lfz 9(2)}

(Think of © as E(Y).)

For instance in the above special case, one can verify the following

statements &

(a) the critical region of the exact Bayes test is

| =13 % . w22
) BEARL!
e

. ' L4 T2
ney+1 mog 4+l ’
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where o
O'% = 02(1 + p)/‘(}'* (1 + p*)
cg = 02(1 - p)/G*g(l - 0% 3 o # o*
- e N | L e .
(o) oun = kg’n/(l 62) or kz,n/(l ) U2) according
1 2
2 2 2 2 .
as oy > O or gy < 0o 9
() the size of the Bayes test is
(2/(#)-1/2 eXp(—-’n rO,n/2) .
B -2 ~2,y1/2
Bl (fog%= 0771)
(d) the deficiency is
(3.13) Lo {- % log® = 072 | + 108 & [e]? |03? - s PR

fle]i®

where o = (@*(2))2 or (e*(l))g according as 05 > og

2 2
or oy < 0o o . " :

Note that if o* = 1 and p* = Oy then the expression (3.13)

agrees with (1.8) as it should be (observe that in this case,

-2 ~2
|02 - 0y | = 2b)e

For priors whose densities are not positive everywhere; the
deficiency may be finite or infinity and in case it is finites the

value may considerably differ from (3.12}s For eramples 5f the
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prior is Lebesgue measure on the positive quadrant and is zero
elsewheres then it can be shown that the deficiency at © (lying
in the positive quadrant) is -4 leg:é/ﬂ@“g, which is same as
the negative of the def101ency of Section 2 (with %k = 2). On the

other hand 1f the prior is degenerate at 6 4, then

expf- 5 (/% Joi+ z,)%

= (1 + o(1))
o T T o )72 |

B ) ,""":"
and so the deficiency at © is oo,

SECTION 4. BAYES TEST FOR THE EXPONENTIAL FAMILY

For the exponential family (1.9), assume'thaf the natural
parameter Space“FGE) is opensy c¢( @ ) is strictly convex and
that for some n ih lies in the set of possible expectations
of the family almost surely (under 8,) for all n > n, o ZIhe -

last condition ensures that the maximum likelihood estimator

‘® =% GRR givesm by the (unique) solution of the equation

(4.1) ¢! (8 ) =%

is well-defined 3 here c'(8) 4s the k X1 vector of the
first order partial derivatives of c¢(8)s . Assume without

loss of generality that
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Ed
*

oy \
“

(4.2) 6, =05 co(6) =0, 'c';‘(Go): = O\

Let I(8 $ 9") be the Kullback-Leibler information number of &

with respect to o' 3
(4+3) I(e 3 8') =<0 -6y ¢'(0) > - c(0) + c(o').
Recall that EG(X) = ¢!(8) and the dispersion matrix under 6

of X is c' (8).

Consider now the Bayes test procedure as introduced in tl%;e

introductlon and observe that

TZ,H

]

S exp(n < 85 X > - nc(®) + log m(8))de

I

exp(n <8 X > - ne(€))
> S exp(n<9,3{>—nc(0+f)+nc(ﬁ)
+ logw (& +8)) ade

exp(n §(X) - o(@ exp (nt(6)

i

)) 5
{ 0<t(e)<s

+ log (0 + gL 8)) de + O(GKp(-—nG))} .

 Here B 1is a matrix such that BTB = c"(vﬁ )y o(@) is as

iY} (l- 11) and

1]

{ <93K>—C(g)
00 = sw § }

il

<\3'(x),‘ x > —c(‘a(x)r)“ .

(4.4)

weY = ¢B lo. T > -c(8+ B0 + ¢t T ).

i
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One now applies the polar transformation and observes that the

set {O < H(B) < 5 } lies between two sets of the form {HQ”Z < 5‘},

6" = 0(6)5 for this one uses the nonvex1ty of t{6). Thus the
identity (1.12) is established.

We therefore consider the approximate Bayes test which

rejects H, 1f and only if X S, ¢

S, = 4% 2 0 - o7l 6B () > kL, oY

- G(8)= g(6) - log mw(6) .

(4.5)

The constant ké n is determined se that the power at & is
&

B+ o(n 1/2). It follows ?rom Theorem 2 of Bhattacharya and

Ghosh (see also Theorem 2.1 of Chapter Two) that under 6, {(X)

has an Edgeworth expgnsion in powers of nhl/g. Expanding 0,

6ne gets, as in Sections 2 and 3, a comstant a (free from n)

~such that
Py f n/%(< T - E.(D) 9>+<e-9 % - 5D >
6 {n Bg(X) s J 5

--32&< -85 %) (B -9) >) > zB+n“1/2d}

= B+ O(n“vg).u

It alse follows that

o

kS = 1(6356.) + (< @, cn(eye »2 (z n1/2, 4 a1y
~(log m(8) - a(e)¥In™" + arn~l

s


http://www.cvisiontech.com

-171- &

To evaluate the size qé,n of the approximate test, we
assume as in Woodroofe (1978) that there exisbts an integer n»

such that the vector of sample totals has a bounded continuous

i ot N el o, i L4 i
density for all n > 1] 3

local 1imit theorem of Borovkov and Rogezin (1965) is valid. Let

R T Ty L.

(40 7) Opin = 3nf £ 0G0 1 000 - n7he () 2 kb Y s

where the subscript 1 in Gl refers to the composition of G

with © as a function of X (feees G(x) = G( 6 (x))) 5 similar

conventions will be used below for cther functlons also. Now

uslng the techniques of Borovkov and Rogozin (1965) (see also

Proposition 1, Section 2 of Woodroofe (1978)), we get

o = (/em B p 8 em(n 000 - oy (x)ax
‘ %36

(4.8)

+ OCexp(-n(p . + 86)))} I+ o(1)) ,
where
(409) Al g = P |GG - e 60 2k 0L G - P <6

Note that As is compact and so on it dl(x) is bounded above.

To evaluate the integral on the right side of (4,8)s we
need to make a few assumptions. The fellowing remark explains

why they are plausible. Let
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(4.10) Mn = {k £ Sn P O(x) = ¢min} %

REM4RK 4,1  Since ¢ 1is strictly convex and its global
minimum is attained outside Sn’ Mn is a subset of the boundary
of Sn » Using Lagrangian multipliers, one eXpects that Mn
may alternatively be obtained from the dual problem of minimising
5 Sinée ’

) subject to the condition that § = @

min ©min

- converges to TI(e % &) as n —» 00 3 one can consider also the
problem of minimising Gl subject tec the condition that

¢ = I(e 5 6))s ILet M¥ be the set of points where this restricted
minimum of Gl“is attaineds One would then expect that Mn will
"converge!" to a funique nonempty) subseib M of M* y since § is
strictly convex, M and M* are {(nonempty and) compact. We
assume below that M 1is also compact. Let ¥ be a (k-r-1)-
dimenslonal submanifold of the (kwl)—dimensicnal manifold W =

fx [ p(x0) = I(e 3 6% (in Section 2, M and M are zero-dimen-
sional). Get a finite open cover UjsecoyU, of M satisfying
the following conditions + for a fixed U;s there exists a

coordinate system ﬂi(x) = (ﬂgl)(x),...,ngk)(x)) such that
(a)  x = m,(x) is a diffeomorphism on Uy

®) 2% =93 ana
(k1)
1

(C) 7l§_1) ,‘dl.’?‘l’

Wand M () Uy =4fxen ()0 | n(l’(x)s...zn(k“l)(x):c)}p

are local coordinates for the manifold

-
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In view of Remark 4.3 belows we may assume without loss of

generality that there is only one such coordinate system 7

which 1s a diffeomorphism on a neighbourhood V of M. Put

(k-r—l)) 2 (ﬂ(k-r) (k—g})_

1 = (77(1) a?"ld 77 = ,-ao,n

(4011) n secp s’

Since Mn converges to My, it seems reasonable to assume that
for a1l sufficiently large ny the dimension of M 1is also (k-r-1)
n

and that it is in fact of the form

(4.12) Moo= fx e V[ﬂ(k)(x) = Ppin? n%(x) = Cn(nl(x), ﬂ(k)(X))y

where
(4,13) Cn(ﬂl(x)sﬂ(k)(x)) e RY tends to zero uniformly in V.

Then on M, the partial derivatives of G1 with respect to
(1) (k-1) are zero and the corresponding (k-1) X (k-1)

is

T) 9-.0,?7

matrix of the second-order particl derivatives of G1

positive semidefinite. Iet Qf denote the Hessian of Gl with
2

respect to 7 lecos

(4.14) ot = ((DiDle))
(k=1) < 193 £ (k-1)

We assume below that GT is positive definite on Vy and hence

on Mn for all sufficiently large n »
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We now state these assumptions more formally. Assume that
on & s (see (4.9)), there exists a one-to-one thrice continuously

differentiable transformation =x —> 7(x) such that

(a) ﬂ(k) =9 3

(b) equation (4.12) and (4413) hold for all sufficiently

large n 3

(¢)  the Hessian Gf(ﬂlg GU(WIJ ng))a b
2

min) of 61 with

respect to 7% is positive definite for all 7

(a) the elements of the Jacobian matrix are bouﬁded.

Here and In the following we use the same notations Gy9 Gl etcs
even after a change of variables. (The assumption that there

exists a set M to which Mn converges ﬁiil be made later (vide

(4.20)).

i In denotes the integral on the right side of (4.8),
then In can be written as a
$min + 0
6 o exp (-n ﬂ(k)) ie) i o
k k
min Dn,a(n ) Bnyﬁ(n 177 )
(44 15)
@m(~qﬁnn Jmhmg)dﬁﬁn@ji

N {
here (MY 1is tha Tanobian of the trapgfarmation 3nd
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Dnaé(n<k)) = the projection of Ah’a(ﬂ(k)) to space,
(4.16) Bn,a(nlsﬂ(k)) = the sectiom at 7% Ofﬂn,a(n(k)),

ﬁn’a(ﬂ(k)) = the section at n(k) of the image

'ﬂ(ﬁh,é) of An,ﬁ under 7 .

For any 7 € ﬂ(Ah 5) one getss by expanding G, around
b

(ty oty nUNy, 00y e (),

~1
@y Y@ - e

k

=Ky a1 = 275 D5 Gy o (14 o))

» )y
~(2m 7 < nPeg (1) (o (1)) (P _(nt, 0Oy 5,

where the o0(l) terms go to zero uniformly in. n and nl as
¢ — 0y a1l the derivatives of Gl' are evaluated gt (nl,
Cn(nl, ﬂ(k))’ @min) and Gi is defined in (&.14), (Here we

have used the Tact that DlGl =0 for 1= (K-T)jseees (k-1);

that 0(x) attains its infimum on the boundary of S, @nd that
the following inclusion holds because of Assumption (d) o

(4.18) n(ﬂh,a) C sp(M(M )5 6')y &' = 0(8)s §f free from n)

By Assumption (c) and (4.17) ome therefore gets
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s exp (- cl(n))J(n)dn2
Bn’aﬁnl,ﬂ(k))

= (I+o(1)) X iy exp (~09)J
< nPg_(ntyn'8)y,0x, (e (nL,n Wy < a
(4.19)
exp(-0)J (':ran)r/2
=] 1/2 . (l + 0(1))’
(det(GI)) r‘(n/8+1)
where

N (k) -1 .k
a, = on(n - @min) (1 ~n" D Gy)

and all the functions are evaluated at (nlg Cn(ﬂl, n(k)), @min)'

Now we note that
el i 1 (k) :
Dn,6(®min) = { LA I (7 an(ﬂ 5T ) mmin) € W(Mn)y .

We shall demote the set on the right side by 7 (M ). Iet M be

A 1
a nonempty compact subset of R& such that as n -

(44 20) the Hausdorff distance of Mn and M - C
and '

1 i
(4.21) AT (L) + 10AD) > 0y

where A 1s (k-r~l)-dimensional ILebesgue measures + denotes
symmetric difference and nl(M) is the projection of M tOi;ﬂl

space (for the definition.of the Hausdorff distance, see page 19

P -

Bhattacharva and Ranga Rao (1976))¢ We note that the strict
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convexity of 0, the fact that the origin lies outside Sy and
assumption (4) imﬁly that

(k)
the Hausdorff distance of Dn’a(ﬂ ) and Dn,6(® )

min
(4. 22)

>0 as 6 —» 0 uniformly in n and ﬂ(k)

8

We also assume that as 65.-3 O

k : T L ,
(4.23) A(Dn,ﬁ(n(-)) + Dn,5($min)) = 0 uniformly in n and ﬂ(k).
Note that under (4.20) and (4.22), Assumption (c) can be deduced

(using compactness of 7(if)) from Assumption (c!) below

(c') the Hessian GT(nl, 0y I(e 3 90)) is positive

definite fgr all n' e MM (4)).

We now replace Assumption (¢) by (stronger) Assumption (e!).

finally assume that

We

(e} the Jacobian determinant of the transformation n{x)

is positive and beunded away from zero on N{M).

[y

Using (4.22) and (4.23) and equation.(4.l9), the integral
In can be reduced to

- I, J
n 1(2v)r/2 exp (-n ®min) (I+o(1)). J 5y

1 #y1/2
n (Mn) (det Gl)

ant .
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Finally using (4.20) and (4+21) we get

O(é’n = nk/g""l (2”_)"'(1{"'1’)/2 eXp(-n q)min) (1+o(:[_))

(4.24) otp (-0,)7 .
>< I 1/2 d"f? 3

where in the integrand all functions are evaluated at (ﬂl, Os
I(G?Go)). It can now be seen as in Section 3 that the size of
the Bayes test has the same asymptotic expansion as that of
1
dgﬂ’l u
REMARK 4.2 Let"cn’n(k) and C be nonempty compact

subsets of ﬁk"r“l such that as n —> o )

(1) the Hamsdorff distance of C () and C tends

' nsN
to zero uniformly in ﬂ(k) 5

(ii) the Hausdorff distance of the boundaries of

C (%) and C tends to zero unifeormly in ﬂ(k) 0
Ny

and
(ii1) Abda(Cc)) = 0

A being (k-r-1)-dimensional Lebesgue measure, Then one has

a(c + C) = 0 n ~» oo s
naﬂ(k) '

unifornly in ﬂ(k). This result may be used to check conditions

1ike (4.21) and (24 23)n
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For a proofy fix a > 0 and get an e > 0 such that
AMsp(C 3 &) - 0) < /2y A(sp(bd()} 2¢)) < a/2 .
Choose N > 1 such that n > ¥ implies
agbann,nqk3), bd(e)) < £/2, d(cn,n(k’ y C) <ef2 s

Here d stands for the Hausdorff distance. Now if

d(C y C) < &
n,n<k) '

\
MC gy + ©) < A(sp(C g) - C )
nyn K g )’ nyn (B
(4+25) | -+ AMsp(C 5 &) -0)
< alsplc i N ) + 8/2 o
nynK) T n,n(k)
We next observe that for any n > 1 g
(40 26) : :Sp (C ¥ . ‘E) - : s (bd(C )0 N
. 5 _nvﬂ(k)_’ n$n(k) C: - naﬂ(k) S

(to see this, let x be an element of the set on the left sidé?as

x lies outside ¢ () 2ad C (k) is closed, there exists
: ns? L

ns N ‘
v € bd(C } such that d4(x,y) = d{x, ¢ 4)y as
naﬂ(k) nan(h)

x ¢ sp(C (k) 5 )y one can then conclude that d(xyy) < & and
ns? l

hence that- (4.26) is true). Thus i R 2 N

A(sp (G A ey ) < Msp(bd(C); 2e)
B A (60)) Tl nym () r a}i 2
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The last fact and (4.25) together complets the proof.

REMARK 4.3  Suppose our assumptions do not hold for S,
but there exists a finite open cover UpsesssU,  of { O(x) <
I(e S e,) +6%  and the assumptions arve true for Spp1 T Sy (W) U,
Then we can write Sn as a finite disjoint union of sets Sé’j
for each of which our assumptions hold. In this case, the final
result (4.24) remalns true.

REMARK 4.4  If instead of Assumption (e)s we assume that

as ﬂ2 —= 0

71 yn2n &)y 77, ('t n )y (L) % > 1

where (+)(c ﬂz) = cy Qf)(ﬂz) for some Yy Y > 0y then (4.24)
holds with a new integrand.r

EXAMPLE . Consider a tri-variate normal populatien with
mean 6 = (9(1)3 9(2),-9(3)) and dispersion matrix identity.
Let the prior density be w(8) = exp {wa(GCB))2/2} » a> 0.
The eritical region of the Bayes test is {ﬂﬁ”g m_pnfi(g))g >

kg,n} where

b
n

1

(n+a—-l)a/2(n(n+a) )

kgyn

H

e + 2{je|| (z, 2 4 anl +rp(n-l):

d being a suitable constant. The slze of the test is
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Tl/B

E S exp(-nr/2) 5 sin @4 d@l d@z dr,

0(231’} = (n/2m)
the integral being taken over the regilon

r(1-b, sin® §1) 2%, 5 0 < T <0, 0 <Py <wy 0 <P, < 2w

2n

Here Mn = {($1,$2) K ¢1 =0 or @2 = w} and is free from =n %

the dimension of Mn = a5 Toyn? the smallest 1 in the above
region,is kz,n and Y= 1 (see Remark 4.4). One can verify
that
2 exp(-nk, /2) /2
%en = (I+a(1)).

1/2
(er kg,n)

REMABK 4.5 To see how our results are related to Theorem 1

of Woodroofe (1978)s consider instead of Sn a set
8 = Jx | 0(x) - G(x) 2 Ky, k< x(0)

where G 1s a thrice continucusly differentiable real valued

functlon. Definey in analogy with (4.7) and (4.10),
04y = Inf {m(x) | x ¢ §% s M=ifxes | §(x) = $mia}

and suppose that there exlsts a coordinate system 9(x) with

properties analegous to (&) (b)s(e)y(d) and (e)y in particular

ﬂg =0 o M, Aganme fyurthapmsra thaot
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(4.27) 1 -0 >0 on M.
It can then be shown that
1 —— . ——
o] ¥

(4028) 5i eXp(-U) (1 N DkG)I'/Z

e L4 — d'nl
n () (det a*)3/2

?

N
where (k-r-1) i1s the dimension of M and in the integrand all
functions are evaluated at (ﬂl, 0 $min); the definitions of
O J? etcs should be obvious.

In Theorem 1 of Woodroofey G 1is his 0, and cone can

1
take ﬂg as his wo(here D£ G=0 on M.

The assumptions made here can be relaxed as in Remark 4.3
In fact both of (4.24) and (4.28) can be suitably modified to
cover cases where M 1s a finite disjoint Pnion of manifolds of

different dimensions.
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