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The study of admigsible deéision procedires began in lat.
forties when Wald introduced the concept Lo characterize the
minimal complete class of decision procedures. Starting with
the pioneering work of Abraham Vald, there has been congiderable
contribution to thig area over the lagt three decades., Héwever,
most of the articles in this field dealt with specific decision
procedures and studied’ their admisgibility. It was Stein (1]
who firgt characteriged, admiggible decigion procedures.

Farrell ([2], {3]) generalized the result of Stein., In spite of
the works of Stein and Farrell the pfcblem of deciding whethex

a given decilgion procedure ig =2dmiggible or not remained diffi~

cult even in smooth set ups. The reason for this is the neces-

gary and sufficient conditions given by Stein~Farrell’g theoven

are not easy to check.

A major contribution towards thisg problem wags made my
Brown [1] in 1971. Ih"this brilliaﬂttarﬁicle,'he showed_tﬁat
the stﬁdy of the admissibility of generalized Bayeg estimators,
under quadratic loss, of the mcan of =2 multiVariate‘normal dig-~
tribution could be-iinkod wp with a calculus of variation problem.
By establishiﬁg a‘felation‘between the caleulug of variation

problem and the recurrence of a diffusion procesgs, he characterized
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the admisgible cstimators under gone COndlthﬂJ. This charac—
terization yields easily verifiaoble coaditions. Apart from taig,
The liﬁk_between admigsibility aﬂd the recurrence of the asso-
ciated diffusion process is interesting and movel. Tn thig

diss rtatlon we extend tho results of Browd [11. We giveia

,

ChapuCTWl G suﬂmary bclow.

s : (
Tn Chapter I we deal with exterior boundary value probl:

and relate them to a calculusg of variation problem. These

exterior boundary value problems play crucial in the rest of

thig diggertation.

The main results of Chapter II are genecrslizations of
Brown's results (Brown [11) Turther, our proofis differ frou
hise« While he goes through diffusion processes, we resort to
exterior boundary value problems. OCur method gives & shorler

proof of the main theorem of arown [14.

Chaptey IIT is devoted to, the admissible estimatbrs of
the mean of multivariate normsl distribution. First, we consgiici
the problem of improving inadm;ssible estimators. Usgsing a regult
of Steim [5] we ghow how to construct eﬂerallzea Bayes minimax
estimators for dimengions m 2 3. We also complétély'establisz
the nonexistence of proper Zayes minimax es tlLator@ for

=3 and 4. Our resultfgeneralizesbstrawderman s [2].
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The latter part of the chapter containg results on the admigsi-
bility of egtimatoreg and also deals with coordinatewise

cetima tdon .

In Chap¥ter IV we ghow tioat the nmethod of Brown could be
used to obiain neceggary and suificient conditiong for the admis-
gibility of generalized BaYes estimstorg of the natural parzmeter
of exponential formly. Theorels gimilar to those in Chapter II

are obltained under same conditions.

In the lagt chapter we relate the exverior boundary value
problem to almost admigesibilifty of egtimators. Through this w-
'3 ] o o ” ] 1 jal

are able Lo obitzin generalizaticns of regylts of Yarlin (11 and

7idek L1) %o higher dimenslons.

In conclusion, we would 1like to remark that fThere are
still quite a few problems reggiding the admigsibility of estino~
tors of the mean of normal digtribution yet to be solved.
Bepecially, the problem of iiproving an inadmisgible estimator
seeng challenging. Our efforts in this direcfion have not been

completely rewarding.
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CHAPTER 1
EXTERITOR BOUNDARY VALUE PROBLEM

§ 0. Introduction and Summary

£ brief account of ellipiic partial differential equa” .
and boundary value problems, which play a vital role in our

of a&missibility; is presented in this chapter., This chapter,

whieh is essentially introductory in nature, contains four sec’

In section 1, we state, without proof, certain properties of

solutions of elliptic partial differential equations, The webe -

is drawn from Mirsnda [}, Section 2 deals with boundary vaiuc
problems on unboumded Comains, We consider two boundary vali~

problens and ﬁresent results regarding thelr solvability, Ta:-.
material of this section is essentially based on a paper of

Meyers and Serrin [1], A eslculus of variation problem on an

unbounded domain is considered in section 3, Its relation tc .-

exterior boundary value problem 1s studied, The wmain resull . -

IS,

this section is the fundamentsl tool for the study of admissini -

In section 4, we outline briefly some goneralizations of resy. -

in the previous sections,

8 1, Second Order Elliptic Partial Differential Equations

We introduce in this section elliptic partial differentisl

equations- and list, without proof, a few properties of their

35T o b e
e RS A
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Let B be the m-dimensional BEuclidean space., We asswas
throughout this secticn and the fOlloWlng ones of this chapter
that m > 2, Let ) @Zﬁﬁm be a region (i.e, () is open and
connected) consider nmtl real functions aik(x), bi(x), e(x)
(i,k = 1,2,,,,,m) defined in (') . We shall denote by L tho

linear differential bperator of the second order_:

it g2 m d
L:zzrl ik ay g +‘§1bi;;+‘c
Xy Gy 1

Supposing that (aik) matrix is symmetric we have the following

definition,

Definition { L is said to be uniformly Elliptic if the a4,

are measurable in ( J and if there exists a consbant a, >0

such that for xe¢ (} and € & E° the following holds

8 E:32_--5 z 8y (%) By &y 5 o ; 3
i=1 7 ik=1 F e el

b

SN MB

We will be dééliﬂg with, in our statistical problems, linear
dlfforcntlal oporators for which the (a;;) matrix is identity

L S and c(x) = So we shall tako, unless the contrary

e m de
is mentioned, I %Yo be of the fom L = X
i- S0 i=1 d_x d_ X

t 2 Dby (x3:.

The results we present below, though more gemerally true, are

-~ S - ol an
Toonipression, OGRvesh
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[3]

Let u be a tuwice continuously differentiable function
defined on (), Assume that by (x) (1 = 1,,.n) ‘are bounded -

_(.—.)_ . We state below a maximum modulus principle,

fheorem 1.1 (Strong Maximum Principle), If In >0 (Tu < 0)
then u can not have a relative positive maximun (negative

relative minimum) wnless u is a consta.nt.

If we assume (7)) to be bounded we have the follomng

max:i.mum prlnclple

Theorem 1,2 T¢ I > O (Lu < 0) in () and u is contlnuou
in ! (the closure of ) ) then

u(x) < max  u(x) | (u(x) > min  w(x))

xe 3 () xe3 ()

For proofs of the above theorems see Miranda [1],

Rgnark Lol By 3 1) we mean the boundary of Q and ()

OO o () . Morcover if" u dis a non-constant function,

one can show that the inquallulOS in Theorem 1 2 are strict

The next two rosvits lnown as Harnack lnequalities, ar

~on the local proportlos of posru:LVO solutions of Iu =0 in

g 28

Theorem 13 TLet 8 be a compact subset of W Theﬁ_ there

i il

exists a conghant ¥ 5 €iInY & ivamrmariied evaluatign cogy@ A »  Ssueh vhai
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[4]

the inequality
ulx) < X u(y)

holds for sny two points -x, y in' 8.

Theorom 1.4 Under the conditions of Theoren 1,3 there exists a

constant b > @ such that

H"—E%z-%H

For proofs of the -abov'e theorens one may refer to Serrin, |-
Two comments are in order in regard to the Harnack inegualitics
The versions we have given are specialized tc_n our set up and -
could be stated more geonerally, The second one is the Vcons'iﬁ:an-:
in the inequalitieg is in some sense 'abSOque; More precisely.
ir (') Q:) 8 and u is a solution (positive) in )7
then the constant K may be chosen independent of ([ )°.

We end this section with an exlstence result for a bounda~:

value problem on spheres,

Let _CJ_== S' {X xl < r} and L be defined on Srf
Let CD be a given continuous function on Sr C { ol XH ™ } ¢

Then the following theorem con be proved and for proof one may

pefer to Miranda [1].

Theorem 1,5 There exists a unique continuous function u definad

en &  such that T =0 in 8 and u=0on 8,

-
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(5]

The above theorem holds good for general regions LT) with
smooth boundary, We do not need the general result, However,
we will have occasion to use the fblloWing result, If
Lfl = Srl* ng, r Z Ty (iee Lﬁl ig an anmulus) and if @1
and @2 are two given édntinﬁous functioﬁé on the two boundarics

of (), then there exists a unlque continuous function u defined

on () such- that Lu =0 on () and u= ¢1 and ¢2 on the

two boundaries,

Finally, the unique solution given by Theorem 1,5 has another
intefGéting property, Considering the calculus of variation

problem of minimizing the integral

¢

IV v ®ex) ax
SI'

with respect to ve V= {v(x) i s B —#,ﬁ}, v 1is defined and
continuous on §, and v(x) = P(x) on 8.} vhere g(x) is a
smooth real valued positive function and §(x) is continuous on

5 This calculas of variation problem has a unigue minimizing

r.

function in V and 1t is given by the unique solution of Theorenm

2
d + Vg(x) Wu, Thus,

1,5 with the operator ILu = g(x) Z

if u, 1s the unique solution of Tu = 0 with u(x) = P(x) on

sr, we have
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L6]

il - . | N |
Sl v, % ex) dx = 1nf § I 7 v Ze(x) ax,
5 M _— veV S
2 | W E ri:
He wili be using this property of solutions of boundary value
"problens in the next two sections.of this chapter,” It plays‘a
crucial role in the proofs of the results presented there,

L

8 o, Exterior Boundary Value Problem

We present in this section an account of boundary value
ﬁfobléms Tor elliptic equations on an unbounded region, One
may refer to Meyers and Serrin [1] for proofs of the results

swated,

Let B De the region {x § || x}l =1 }. Let L be defined
on E., Let § be a given continuous fwiction on the finite
boundary 8 3 =_{x s |l XLlﬁ 1}f of B, We consider the following

T problemsm 3

| ?roblem'l {BPI}, To flnd a unlque golution to ILu = 0 on E
satisfying the boundary conditions u(x) @(x) on E and

g(x) -~ 0 as || x|| =00,

‘Dvoblem 2 (BP II), To find a unigue bounded non-negative
solution to u'=0 onE satisfying u(x) = P(x) on E and

supu(x) < max {p(x)].
XeR Xe BB | ' o T
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(7]

Below we give a few necessary and sufficlent conditions
for the solvability of these two problems, Before dolng so we

give a general result and some definitions,

 Theorem 2,1 There always exists a solution to Iu =0 on

satisfying the boumdary condition u(x) = ¢(x) on DE .

Proof ¢ Let 8 denote the sphere of radius n, Let wu, be

the solution of" TLu, = O on Sy M) E satisfyiﬁg the boundary
conditions w, = on 3E and uw, =0 on J8 . Such a solution
exists and is unique follows from section 1, Now using Schatder's
interior and boundary estimates for u,'s (See Miranda [1]) one
caen show that there existé a subgeguence of‘,{un} vhich converges
to a function u 'aefined on B () 3E , This function has the

necessary properties, deel
L

Definition 4 4 function v{x) is a barrier at infinity for L
on E if (1) v 4is defined and positive in some neighbourhood

of infinity (i1) v(x) ~ 0 as | x|| = o and (iii) Lv(x) < O.

]

Definition ! A non-negative function 6(t), 0 < b, < t < oo

is called a Dini function if the integral- fXDa(t) %F exists

and is finite,

Theoram 2,2 Problem I (BP I) is solvable if and only if L

E T L N gy VT RGP N 1
IF) CEMPIeSSOn, VeI, Wi Ei8 LIS Y ANSYAS


http://www.cvisiontech.com

[l

The next result ig a sufficient condition for Problem 1

to be solvable which we will have occaslon to use.

m ]
Theroran 2,3 If I X, bi(X) > (2=m) + e(}} x| } in some
i=1

neighbourhood of infinity, wvhere e(r) 1is such that
M. ds,
Nty = oxp «{ §7els) <

is a Dini function, then Problem I 1is solvable,

We now go on to Problem II and present some results regard-
ing its solvability, First observe that there always exists
at least one bounded solution for Problem II, This follows from -

Theorem 2,1 and maximum modulus principle,

Theorem 2.4 Problem TT (BP-IT) is solvable if and only if for

every solution u .of Iu = O on E and u(x) = $(x) on dE

*

mex |u(x)| > lim sup |u(x)]

bell =R ) =

for all sufficientl“y large R..

The next result ig a sufficient econdition for Problem T

to be solvable,

»

M ogh.
Theorem 2,5 If Z Xy by (x) 3 (2m) + e} x||) in some neighbour-

hood of oo, whers E:(_:é) is such that
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ALty = exp i 1% __e.sgsz as} ,

is not a Dini function, then Problem IT is solvable,

Remark 2,1 ° The boundary value problems BPT and BPII are in
some sense dual to each other,. In fact, (Sce Meyers and Servin
MY, 3w = 2, Pnen ei%her BFL or BELL A3 solwedic Sov
Lu =Au + g b, (x) %@. = 0,
o 3=l i
In our gtatistical problems, we will be dealing with the
above boundary value problems Tor _“ufn‘lch Tthe boundary daga © = 7,

So henceforth, unless otherwise specified, we take § = 1, We
end this section with & necessary and sufficient condition To=»

the solvability of BPII with {0 = 1, |

Let w, be the solution of Iu'=0 on Sn (HE  as
defined in the proof of Theorem 2,1 satisfying i 1 on OE

and  u, ~—.O on_};i}ono

Theorem 2,6 Problem IT (BPII) is solvable if and only if every
convergent subsequence of {un} converges uniformly on

compacta“ to 1,

Proaf o " ‘A‘Only Kl Suppoée there exists a subéequénce‘ of
.[un} which con*férgeé uniformly on compacta to a function

u, # 1. Tt follows from maximm modulus principle that wug
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[10]

is a bounded solution of Im =0 on B with u(x) =1 on % .

This contrsdicts the fast that BPII is solvable,

t1iett . Suppose every convergent subsequence of {an} :

converges wniformly on compactato 1. Let, if poSsiblew'ad F1l e a

function such that Iu, = Q on E , ubfx) =1 on 8E and

uo(X),j 1, An application of the maximﬁm ﬁodulus principle

shows that u, <u, ¥ n, This contradicts the hypothesis,
‘ | : ; deced.

8 3. A Calculus of Variatlon Problem

This section deals with a caleulus of variation problem o
an unbounded domain., We shall see in the next chapter that *ho
study of admissibllity is related to a calculus of wvarlation |
problem, We shall study here the relation between the calcuius

of varistion problem and exterior boundary value problem 1L,

Let f£(x) be a piecewise differentiable positive function
defined on whole of ﬁna_ Let X be an unbounded closed convex

subset of B, Let J be the following class of functions &
J=§3e3l E' ~> R, j(x) 20, i(x)=1 for =] % 25

J(x} is differentiable and sup j(x) => 0 as r —» & }
(el xll = r, x=K]
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[11]

Consider the following caleulus of variation problem.

inf Wil % or(x) ax
B x| =
We want to find a necessary and sufficient conditicn for
the minimizing funection jO cf the above calculus of variation
problem to be 1, 1.e, To find a2 necessary and sufficient condi-

tion for inf [ IV il © £(x). ax = o,
jed

We set about obtaining this characterization below, We
first prove a result for X = Em. In the next result we consider
the case K is an arbitrary unbounded closed convex set, This

is done mainly for ﬁhe-purpose‘of clarity,

Theorem 3,1 TLet K = E', A necessary and sufficient condition

for dnf f || 7 3(x)]| ® £(x) dx = 0 '1s BPII is solvable for
e : T ‘ TE
the elliptic differential equation Im =48u + Tu N O

Proof i We shall use the characterization Theorem 2,6 of BPIT,

Suffiéiency, Let\{@n} be a 'sequence of functions such that

Ly, =0 for l<lix|]l<n T (Gh =i B liee]ietil, ., (x) =0
for || x|l > n. Assume without loss of generality I
uniformly on compacta (If‘{gn} 1s not a convergent sequence

tadte & subsequence of it), Plainly, %un e J for all n, By

o

applying Gauss' divergence theorem and,pgﬁggw- ,;, ct that un's

6T 5431 R S
PR LTS
Xed gV LIV .
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L1el

are solutions of Im = 0 din their respective domains one can

show that, for fixed R > I,

dm s B Tl Vun(x);U I(X‘dx = lim J 1l Vun(x)-VIH%(X)dx_"
R TP 1 g )l <R

(3,1)

Also, it follows from section 1 [ || Vun(x)‘[lgf(x)dx decrcases

as n - o

Suppose, now, 1n.f‘ 2 v j(x)lllgf(x)de 0, Then
o Ykl 21 |
. Ly 112 o = ; ra ot
n{iﬁo J 7w, GO £Ca)ax = & >0, because fu;} (CJ. Let
x| ]>1
be such that § ||V U, (X)Hg f{x)dx < ga . Let ns >ng
lxll=1

be so large such that J v uy, (x)_H2 f(xydx < e/8, This is
’ 7 1<HXIL§n]_ <

ey

possible in view of (3,1), Also, § |V u, (x)‘llgf(x)dx =< -3-8 ;
| |1 = -
uni i unz
Let u = s uconll 3 The minimizing proporty of un impldes

that > J WWulf e(xdax > J | v U (I rx)ax :»_ e, On the
HXH 210 HX“>1 2
otherhand us:mg Schwartz Inequality and the cholce of un it

" 1is easy to show [ - ||V u(x)|® £(x)dx <&, This is a contradlo"clvn

k|1
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[13]

Necessary part, We shall show that if BP II s not solvable

then mf.f v a(x)l! £(xjux > 0,
38

S0 assume BP IL is riot soivable“ Then there exists a
solution to Iu = 0 on E satisfying u(x) =1 on 3E s wlx)y <
such that wu # 1, Let {un} “be a sequence of solutions, as

© defined in the sufficiency part, such that u, ~*u unifonﬁly

on compacta, We shall now prove that -

0 <K, =/ HV’u( IF f(x)dx < inf f‘ [jv j(x)lF f(x)dx
'/Hxlhl - o 0 ied |xil=1 (8‘2)

=

Sﬁppose not, Then there exists a j, 8 7 such that

W 3 (x) [2 f(x)ix <K - & for some & > O, :
Ik | b1 | (3,3)

Let kn be a sequence of functions satisfying

knég) = 0 for 1 = J&Jl< n
B () =1 for || =1
- 3,00 for Jx|| 2 n

Il

By the minimizing property of k, (x) in the region

1 < Jxl] < n it follows

§ W kn(x}_\\z f(x)ax & § b 30(31)““2 $(x)ax < K8
fli=1 B 310

1 SIC '\‘.t'..,
Ioy aLr 1, ‘ b .
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[14]

et R > 0 be such thas

JoWe P sax x x, e2 (3
1<1|Y1LR | B '

It is oaslly socn by maxamum nodulus prihciple, that

0 < Kn(x) —.un(x} < s JO(K) for X -such that 1 < |xlik n.
IxfFn . 8 , |
This,combined with the fact that sup J (X} =0 as 1 =>ce,
Izl ' B

enablesus to show that (km(x) - un(xj)~¢ 0 as n =» oo uniformnly
on Compucta,‘ Hence kn(ﬁ) ~= u{n) as n —alaD unlformly on

compacta, Now, i we show

§ (i u(X)Hz"HV ke ,,,\“2} £f(x)dx ~> 0 as n ~> 00 .(3,é}
1<}b€lLR E
it would lead to a contradlctlon because of (3, 4) and (3 5) . The
proof of (3,8) follows oa31ly by an appllcation of Ganss!. divergence
theorem and the Hamack ineouality(Theorem 144, JeThis complets

the proof of nocoqsar; part, |

Remark 3,1 The proof of (3,6} can also be obtained by appealinc

to Schauder!s estimates for {Kn} and u instead of using the

Gauss!? dlvcrgenco thoorem.

Remark 3.2 The proof of the above theorem is very similar to

that of a “theorem proved by L,Brown [1]};- However his set up

is different from ours, His arguméhts go through the transigﬁme
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(157

and recurrence of a related diffusion process,
The general case is considered in the next theorem,

Theorem 3,2 A necessary and sufficient condition for

inf § |7 j(X)lF f(x)x = 0 if and only if BP II is solvable,
jed

Proof ¢ “Sufficiency". Exactly same as in Theorem 3,1,

!'Nocessity'!, Assume inf J |7 3(x)|f £(x) ax = 0, We shall
jed ' :
give the proof in three stages,

(a) Let {k (x)} be a sequence of functions satisfying

Lk (x) =0 for 1 < |x]l <n
Lk (x)=1 for |k|l=1

= 0, (%) for ||l =n

= b" for x| > n

where @n(X§ is & smooth function such that ¢, (x) = 1 for
x ¢ Xend 120, (x) 2 ¢ >0 for xe K and k|l = n yith

equality holding at some point and & < 1,
By hypothesis there exists a sequence {jn} C J such thet
I W jn(x)jF £(x) ax |, 0, Let {fu, } be a sequence of functions
satisfying L, =0 for l<lx| <m, u (x) =1 for x|} = 1
n ; n 5

5 is so chosen

and w, () 5 3, for kil 2my, whore m
| . i |
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L1e]

to satisfy sup () s8.

{x ¢ ki, xeK}
The minimizing property of u, implies
St o | :
u,gh(x\ B £ dax i jn(x)‘llgf(x)dx.

Assume without less of gencrallty thau {mn} is an 1ncrca51nw'
sequence, It follows fronl Suhauder s estimates thai um
converges to a solution u of L in EF satisfying u(x)

v lxli = 1,
From a result of Serrin's on lower semicontinuity (See

Morrey [11) it ftllows that for every compact set

§ IV u)? rixddx < 1im int |7 “m'h”?' £(x)ax

< lin inf IW J (X)IF f(x)dx =

n—00

This implies u(x)

i

1, On the other hand
Kmn(x) > um (x} for 1 x ‘kH < m, by maximum modulus principle.

Therefore Kﬁ (”3 convo?gcs unlfovmly'on compacta to 1.

(b)  Let {(+}( i}oe a sequence of functions satisfying
L {x) = for 1< k| <n (X) -1 for lXH =1 eand.
@ Q0 e

(+)(x)= 0 for lk|lzn, ILet {7a(¥)} e another sequence
Tn e .
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such thet Lvy = 0 for 1 < ||| <n,

v, (x) = 1 for || = 1
and v, (x) = W (x)

for |x|l = n here W,(x) is a smooth
function satisfying e < mh(xﬁ‘g‘l ~ &g O-<E <-% and

AY

W (x) =

1~€ for x@‘iﬁu‘zgu =n and Wﬁ(xi)@(} for x€K, |kll.=

Suppose vn(x} converges to 1. unifommly onrcompacta, Then

v () = = [v (x) ~ (L - ¢)] also converges to 1 uniformly on

compacta, Moreover L Vn(xf = 0 for

1<)zl <n. By

naximum modulus principle it is éasy'to see that

(+)(x)'i V.(x} for 1 xlx|l<n for all n, Hence
Raeh -

C{}(X) =>» 1L wniformly on ccupacta,
In

(¢c) Observe that the result in (a) goes through if the

bound ary functions '@n!S‘Of X, 's satisfy @ =1 = &

..\_,_. 1 wr

o = NGte P 5 T [
for kﬁKﬁllkH =n and 1~€ >¢ (z) > ép for xEE@ﬂx[[

‘ £
n
ns where €n

monotonically decreases to zero. Now, using (b) we can get

a subsequence of {(+J} vhich converges to 1 unifomly on

compacta, - But {L#)} 1s' & monofonically Increasing soquence.

Therefore Q%)

s & unifo tm Ty on compacta
4

qoebd

As we have already mentioned {Rcmark 3. 2] Lo Brown [1]

Troves a sinilar regall, ‘But X appears, wo'havo To work

harder for our general case than he does in his characterization

-~


http://www.cvisiontech.com

[18]

theorem (See Theorem 4,3,1 of L, Brown [1]). His set up is
such that he is able to get hold of a function directly which

gives a lower bound for
inf § IV 3(x) P £(x) ax,
jed : '
We do not have any such function, Probably, this is the rea::n

for the lengthy proof of the above theorem,

Our next result, which will bo used in the proof of the
main theorenm of‘chapter 2, gives a necessary condition for tho
solvability of BP II, We need certain facts forjthe-proof of
The next result which we develop below,

Consider the one dimensional calculus of variation problen
inf |k 5(x)]® £(x)dx, If this infimam is positive, then
Jjed x>l ,
the unique minimizing function exists and 1s given by

oo -

3o (x) = c}J; Y 4% &5

where ¢ 1is = normalizing constant so as to make Jo(x) = 1 |
for Il = 1. 'c;mversdy,, if - jo(x) as defined (3,7) is finitc
and goes to zZero as x~»oo, then_the infimum is positive, Ona
can in fact show | | \ |

. ‘ djo(X} 3 d%i?ﬁiﬁdf@) 2= ,
Lj,= £x)- 2 TR Ay~ =0 for x>1
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1]

vhenever the infimum is positive, If m > 2 and f£(x) is

spherically symmetric (i,e, f(x) = £(]x]})), then 3, (x)
defined by

L = o [ b —L— alk

lix el el (3,8

has similar properties as in the one dimensional case,

Now we are in & position to state and prove our next

theorem, Let, fﬂ(r, $) denote £(x) in plar co-ordinstes,

Assume that { is normalized,
Iheorem 3.3 % If there is a measurable set § - {@} with
fdd > 0 such that
2

m »
sup § _%:ﬁ_- -frl‘—(——@ dr < o
ge@ 1 x g TP
then BP II is not solvable,

Proof %

1t suffices %o show, by Theorem 3.2, that

Jinf 5V og|Peeoex > o,
359 el

such that § |7 I B £x)ax ~> 0 as n—>oc0 and J (x) =
el

for |kl =1 and j,(x) =0 for

Jollv 'a’n(-x)llz £(x) dx
lix]j>1.

~Let,if possibie, {Iy} (LT be

Iz]l > n, Now, observe that

>

2 1l £ Inlr, DIF fh¢r, §) ar) a9,
SR )

R


http://www.cvisiontech.com

But for § & Q, ‘

S a2 c_,cp)n AL £ (x, §) dr

,_ulflr

e ey g (rmwlfR(r,@)nldpug 7l (r, P)ar
T

o0

vhere c(f) = (FL failr, 93" tar , Hence

J
J v (X)UE £(x)dx > Qj’ ( I rm"I%..(r,ﬁ))"’ldr?‘ aQ > 0

lI=lf>2
for 211 n,

Hence the result, g , Ue@as.

8 4. Some Generalisations

The results of sections 3 and 4 could be stated fo.

uniformly elliptic equations of the form

85y
Iu= 2 a,
iklk axaxk

2

& VEEx) . =0 (4,13

We will have occasions to deal with the general equation, We
briefly spellout in, this section how the results would get

transformed in the general set UD

- Let us begin with the cxtcmor boundary'value problems
BP I and BPII Both thosc problcms could be posed for this
general equation, Theorem 2,2 and 244 ramain unz_a.:_l.tered in th»
general case, However, thecrems 2;3 and 2'._'5 undergo‘ a change,

B
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: | LEN |
- Let M = JE & 8y, X X, where 1 = [x| , Define =
o 1,k
m
Looa., X,V £(x)
function A%(x) by 4* = ’igh*w~if-

The analogﬁes of Theorams(g,3Yand (2.4) are respectively,

Theorem 4,1 3 Ir A*(x) > 2xre({k]) in some ﬁeighbourhood
of infinity, vhere e(r) is such that Ai(t).=,exp{*fte(sj %ﬁ}
is a Dini function, then BP I is solvable, | 4 |
ggsgggggglgrz' If A%(x) = 2=e(|x|]) in some helghbourhood of
infiﬁity,wherg: a(?) is such that Alt) = exp{*ItE(s) %ﬁ}

1s not a Dini function, the BP IT is sovable,

Let us now consider a calculus of variation problem of

, m aj éj !
the forn inf J ( 2 = 84 —===) f(x)dx (2,2)
ieJ i=1 8x, L X,

=T
where (a;,) is a positive definite matrix,
The results of section (3) wlll go through for (4.2) if
the BP IT is consideréd for ‘the operator

2 CVr(x)
Iu= 2 &, —=——+ W, (%) *

- 0%y
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CHAPTER 11

ADMISSIBLE BSTIMATCORS AND ZXTERIOR BOUNDARY
VALUE PROBLEM

8 O« Introduction and Summary

In this chapter we shall be concerned with the problem of
characterizihg admissible estimétors of the mean of a multivarisic
normal distribution. wunder quadratic loss function. This problens
which is not news has drawn the attention of manys andy over yoars{
there have been many articles which studied the admissibility of
cstimators. 8teins in 1955-58s5 gave a fillip To This study witih
his fundemental papers (8tein [1]s Stein [2]s See also, James
and Stein [1]). Later, Brown [1] formulated the problem of )
characterizing admissibility in terms of alproblem in calculus of
variations aﬂd'oﬁtained, under somc conditionsy neccssary and
sufficient conditions for the admlssibility of a gencralized
Bayes estimatore Actually, the idea of using calculus of varia-
tions to study the problem of admissibility was due to
gtein [3j. However; 1t was Brown [1] who proved the first result
in this line. We goneralizc this result in this chapter and
obtain a fairly complete characterization of admisgibility of

generalized Bayes cstimatorss

This chapter is divided into nine sectionse. The first

section gives the basic notations and conceptse. In sectlon 2s
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we formulaﬁe the probiém and state the main chérécterization
theorem along with the aééﬁmption_s- 'w;e discuss the assﬁnmtioné'
in section 3 and show that Brown's assumption easily implics ourse
gection 4 contains purely technical results which arenneddédidoe
the prové?tﬁe mein theorem. The proof of the main theorem is
given in soctlon 5 In scction 6y we relate the calculus of
variations prdblem W1th diifusion processese Aigenéralization

of the main theorem for spherically symmetric esﬁimatorsfis

nroved in scetion 7. This rosult'is very general and covers almost
all estimators in the spherlcally symmetrlc casce Some statistical
* results are given in scctbion 8. Finallys in the last sectioa W

glve examples and make sone general comments.

g 1le @ggjg‘motggjogg -
et X be an m—dlqen51onal normal random varlable W1th
. unknown mean 6 and the 1denL1ty matrix as the dlspeTSlOH matrlx.

The density.of. X is denoted by

pe(x) = (Zwr)"m-/2 exp(— E (Xl,' ©;) 2)

with respect to m-dimensional Lebesgue measure on 2, Let
5 = (51,...,6 ) denote the estimate of & = (01,...,0 Yo We
take L(0y 8) = [[o - 8|]° as the loss fmetion. (The symbol
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[lo]] stands for the Buclidean norm on E")e As usualy for an
estimator 6(s)}y the risk function R{sse) is defined by
R(8:8) = B L(0y 8(x)) = J L(856(x)) pgy(x)dx.

Let . G be any nonnégative Borel measurc on E e Suppésé
4 pg(x)_G(dQ) < oo almost everywherc with respegt to Lebesgue
‘measures The generalized Bayes estimator 6, with respect to

the measure G  is defined by’

J e pg(XD G(de)
§ pglx) £(de)

If G is flnlte, GG is nothlng but the usual Bayes estimator

Wlth respect to the prlor Goe dece
.y, R(o,’oaczj) G(de) = inf J R(8y8) G(d6)
B x5 :

We will be interested only in measures G Tbr“which
g*(x) = J pg(xj G(d8) < oo a.es with respect to Lebesgue
measure. For such a measure Gs the generalized Bayes estimator

8. is well defined and, differentiation under the integral

G
sign yields , : &

v g*(x) . S
T T BG(XD - X | 5 (1.2}
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'a_nonfinite measure G such that g¥(x) <co asee ig known

as improper pricre

gince L(6yt) is strictly convex in t the class of non-
randomized estimators form a complete classs This ensbles us
to confine to the class of non-randomized estimators in the

above formulatione.

An estimator 6(.) is called admigsible 1fy for any other

" estimator 8'; R(6s8') < R(858) for all © implies R(8y8)sR(855').
In fact it can be shown (Farrellgfl}),‘using thé convexity of

the loss function Ls that 5‘ = 8 almost everywhere with

respect to Lebesgue measures

For a given generalized prior TFs let KF denote the
closed convex hull of the support of Fe For any point x in
E® define

inf {“XEY[ézyf€'E%}

i

d(x)
Ky ={x>d@ g«

for &« 2 O(K% = KF). Plainlys if w(x) denotes the projection
of x into Kgs then a(x) = || x = m(x) |}

k]

Finallys if u. g —> E7y we gshall say u 1s piccewlsc

differentizble if there exists a collection (countable) of

’ o0
disjoint opea sets {0;} such that E'=(J0; and u is
| i=1
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. T TR L ; . '
continuous on E  and continuously differentiable in Q;

1= 1025 eew o

§ 2. Th@ Problen

The basic problém of this chapter ig to find verifiable
necessary and sufficlent conditions for an estimator &(.) of
& to be admissibles Sacks [1] has showns for dimension 1w = 1,
that generalizedlBayes.estimators form a complete class (See
-also Férrell [2])s Using a continuity theorem for Laplace
transforms Brown [1] has given a short proof of this fact. for’
m~dimensional'ndrmél-ﬁroblem. We récord this as a theorem:

belows 2

Theorem 2.1 ¢ 1If an estimator 6(s) is admigsible for © then
there exists a Borel measure F on EY such that (%) < oo

gece and 6(x) = BF(X)_a,e. with respect to Lebesgue measure.

Thus our study on admissibility can be confined to genera-
1ized Bayes estimators. The cenftral aim of this chapter is to
find necessary and sufficient conditions on f*(x) (hence on .F)
for GF to be admissible. Thoughout the remainder of this
chapter F 1s a fixed non-negative Borel measure with unbounded

supports (If the support is bounded then 65 is a Bayes pro-

cedure and hence admissible)s
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The basic tool for our study is the necessary and sufficisal
condition for admiésibility due to 8bein [1l]e 8ee also Farrcll

[3] and [4]Q The version given below is due to Farrell.

Theorem 2;2 (stein-Farrell)
An estimator 6 is a&missible if and only if there exist
a sequence of finite Borel measurcs {Gn} satisfying
(1) Gn has compact support LR '.‘ (2;1}
(ii) The supports of G, increase to " as n-ﬂ«>km

(1ii) There exlsts a compact set € and a constant

B >0 stch that G (C) >8>0 for all n (2.2)

(1v) S(R(B36) - R(0s8; )) G,(d6) —> 0 as n —>oo
. n

(2e3)

-t

Using the definition of (1.1) and interchanging the order of

integration in (2.3) we havey as in Brown [1]
F(R(836,)-R(B18, 1T (d8) = & || 6,6, (D|F gX(max  (2.4)
n n

&
. g¥(x) 2
where gﬁ(x) = J pg(x) Gn(dQ). Deflnlng hn(x) = (“ﬁL"T)

and using (1.2) one gets; afterlspme algebras

A e : .
y
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Sl 8p(x) - 8, (=) [F gh(x)ax = S |[ 7 hrgl(x)ll2 £ (x)dx
n . :

(245)

This identitys which plays a crucial role, may be viewed as
fundamental for our study. The connection between the exterio-
boundary value problem and admissibility arises through this.

This was first observed by Brown [1]. We outline the relation
below.

We can take, without loss of generality, € to be
8y = {D : el g _1} and B =1 in the regularity condition

(iii) of Theorem 2+2. As pointed out by Brown [1]s this impliizs

L
hi(x) >1 for |k|[£1 for all n (if necessary normalize the

measure & on the unit ball). Hences without loss of generaliityy

Wwe can assute

g2¥ (x)

ho(x) = By 21 for [l (2.6)

The condition (i) of Theorem 2,% has an interesting implicatiocin.

Let ¢ be a Borel measure with compact support.

the following resulte

Theo w3 Lot « > 0 be any fixed numbere. Then
gt (x)
1im sup ™(x)

T3 00 §x ¢ xek ™ |l 2 e

Brown has proved,

|

|
|
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It immediate1§ follows from Theorem 2e3 that Condition (i)
of Theorem (2.2) implies the féllowiﬁg boundafy condition at
infinity for hn‘s |

e

1lim $up : hg(x) = 0 ¥n (267)
r-xeo fx 3 xek Jbell 2 v}

Let us now consider the problem of minimizing

ST 3R o (x)dx

with respect to j§ where j 1is a-non-negative real valued
piecewise differentisble function defined on g" satisfying

‘the constraints

(1) §& =1 - for k|2 (2.8)

(41) lim ~ sup 5(x) = 0 | (2&»
r—»o0  fit & ek ll=)l >

We shall denote by J the class of all pieeowise differentisble
funetions J 2 0 satisfying (2.8) and (2.9). Plainly,

W RN
A

J(R(6y65)-R(896, )) G (d0) 2 11;; S v j(x)"l[z'f*(x)dx (2.10)
n - d

Soy if 65 1is admissibles by virtue of (2.3) and the faet that

&
gh (x)
TQTET is piecewise diffcrentiable for every ny we have
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inf § |V 3IF £*(x) ax = 0 (2411)
jed

Therefore (2411) is a necessary condition for %he admissibility
of  bpe At this stage the question arises whether (2.11) is
also a sufficient condition. The main result of this chapter

is that it is so under some conditionse.

Brown proved the sufficiency of (2¢11) under the assumption

that ]]Eé;Té%Lﬂ is bounded in K. This assumption amounts to
saying that the risk of 8p 1s bounded ip KF' This also
implies all moments of the posteriori distribution are bounded
in Kge Our result,the statement of which is giveh.belom,isa
generalization of Brown'se Our technigues are different-from
Brownt!se For details see the discussion in section Se However,
the idea behind the proof is similar to that of Wisw It could
be stated succinetly as followse If (8;11) holdsy then we could
get hold of,by appealing to Theorem 3.2 of chapter 1, a smooth

sequence of functiong {jn} such that

Lim £ |7 5, {% (%) dx = 0
n-—%oo Gl - -

Nows use this sequence {Jn} of functions to manufacture a

sequence of flnlte measures {Gn} w1th “the propertles listed
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in Theoren 2&2 and. then verify (243) for this sequences
We now state the basic assumptions and the main theoren

Assumptions

(i} Alog f*(x) <B wxeE where |
, ' i (212)
(1) HopGil < I =+ X

Theorem 2s3 (Main Theorem)

A necessary condition for 8 to be admissible is that

F
BP II ne solvable. Converseiys i1f 8P Il 1is solvable for

Lou=0 and (2412) holds then b6y 1is admissible.
A part of the theorem has already been establised. That is
if 6 1is admissible then. (2,11) holdsy which in turns by Theorem

3.2 of Chapter Is implies BP II is solvables

Before we go on to the proofs we shall discuss the assump-
tions and commars it with Brown®ss. We postpone the proof to

saction 4.

g 3. Discussion on the assumptions

The assumption (i) is equivaient to saying that the

posteriori risk is bounded. Indeeds
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Ly 2
(0
.rux_gu232uX ”fﬂm) sk
, %)
Alog ©*(x) = = - : -1 \f3ﬂm
™*(x) (%)
: ok X- 0 4 ,
= ¢ Je-6,(0) |F o 2l llF(dG)
= - - - - 1
*(x)
Brown assumes || lf—;f—?%lll < C for x & Kpe We shall show that

v £ (x) Fap e
“ f#'("'"“"'x) |[< C in KF implies A log £*(x) < B.

Suppose X E KF"‘ Plainly,

sl . ‘ __‘.“]a -0 = P4
5 x-of e it F(de)
Alog £*%(x) <
™ (x)
1 2
Ja) -
eﬂX I ! 5|z~ T
- .
. (%)
~%lherg -0 |2
K S e F(de)dt
[1E [kl
< ——k (3. 1)
* (%) _

for some constants K, >0 =and K > 0. The last stop follovs

from a lemma of Brown [1]s Nows .
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| gy sl TR
(3.1) <k, J fﬂ?;??i < Kl‘e f*(x) ¥ 2
Bl S fefl< 2
> (3.2)
<6
‘ K,
vhere G4 > 0 1s a constant such that X, ¢ = f dg < Cye

el <x+l1
The last iﬁeqﬁality in (3¢2) is obtained by Tayloréxpangion
of log f*(x+f) upto the first derivative and Lemma 34243 of

Brown [1]. Thus we have shown A log £*(x) is bounded in Fgpe

For x £ KF we procced as followse Tet w(x) be the projec-

) - ; " i il G
tion of x onto KFJ It suffices to prove |4 log f*('n‘(x))E

is boundedgfih view éf the fact that A log f*(WCXJ).ﬁ.Cl'
Assume without loss of generality that X =(-A(x)90se0e30)s .
7(x) = 0 and K (: { e & 2 O}. (This can alwé&s be dones
Congider the hyperp;ane tangent to the boundary of K at
7(x)e Clearlys; = 1lies on the normal to the tangent plane.
Now rotate aﬁd translate the space so that the normal to the
tangent plane c;inéideswwith'the axis (~LlsOseesy0) and

7(x) = 0 ), Then

, -0 ng
e e

f2.23)
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and

= (3¢4)
12
” - 587 . 2

slelP

WoLe that *OY=Sfe - F(de) under the new co~-ordi-
nate systems Nows conditioning with respect to Gl and intcgr-e-

,ting.with respect to the other variables we have

: 00 5 x40 -
iy 5 @l =3 G Fl‘.[g_dg"[)
£ () 0 5 R
DHIOgFERY S
: l@2

oo —x R s
Se 11 piae))

o Ee A2
;,gfal e e Flﬁdgl)
“X:Lg“ “ |
.Cf; e . (dgl)
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o

238 |
. 2
~ where Fl(dgl) = Je T(de ,...,d@m/de )- (Note that

fixing ©

o8
PR

1 amounts to;fixlﬂg;a-hyperplane). Also, observe that

e W

*0) = §f e 2 p(d8) is observed inside thus normalizing the

measures in (2.17).

It is casily seeny by integration by parts,

co —O_ X
g 02 ¢ L1 ¥(o a0,
ptog g} < -
§oe Y 1 F(o,)d0,
0
ij' :"“%Eéif;l NPLCI
_ 0 1'0 | ”(?1)%;1
T “91 . ; .
g @ F(Ql)dg (3.6)
o, 1.2
- i -§t _
where F(Gl) = /i T Fl(dt)«- A word of caution is in order
O .

at this stage. In the sbove expression (85$5§ ‘?TO) may be
positive. We have assumed that F(0) = 0 for convenience (to
avoid cumbersome expressiéns). The’afgument that follows does
not depend on the value of F(0). ILet us now take a close look
at F(G ) and study its prOpGrtleSo First of all note that

Fald
0 < (Ql) < 1 and non-decreasing sete F(o) = 1. This

-l |

follows from the fact that £*(0) = f e F(d®) has becen
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so absorbed in (2.17) as to normalize 'ﬁ(él). The second proporty-

which 1s more important to uss gives the precigse implication of

v £*(y) &
the assumption []—?§T§$“|]< C for yeX, on F(8). We have

already observed that there exists a constant Kq (depeﬂding

only on G) such that A log ©*(y) < K, for yekK Thus tho

FQ
posteriori variance at vy is bounded by Kq e
Therefores; by Chebyshev!s inequalitys; there exists a

constant Ké(depending only on Cs Kl‘and m) such that

~glly-o?
2 . :
g < rde) , 2 (37)
|l 85()-0 < Xy £ ()
T () ..
Sinces || GF(y)-YH = l[“T§f§§"“ < Cs there cxists ano?her constant

K, (depending on X, and C) such that

gl-eif

W SRy (3.8)
*(y)

¥

it 4
fy=eil < Kq

T

Observe that (3«8) is true for all y e Kp and the constant X.

doeg not depend on ye Nows taking y to be w(x)} in (3.8) ard

linearly transforming the space so that w(x) = 0 we have
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e—-iglpng

F(de)

H

s A
bl &g S0)

in the transformed gpaca. Going back to %{@1) now 1%t follows

from (3.9) that there exists 2 constant K > 0 (depending on

K,) such that ¥(8,) 2% for ©, 2 Ks This is the bearing of the

£*(y) ' % |
assumption || IR | <C for ye Ky on F(8)e Now, to show
Alog f*(x) is bounded above for x £ K1 we shall glVe an estimnbe

for the first term in (3.8) using (3.9) as followses

Alog £*(x) £
o B X ; ZK -0 X . ~9 1K
S T _ 2 1% o~ 3 Oy
g 6] e g;g) de; J eje F(8,)d6, +f 2y T(eg)ae,
-i - ==
00 -B.X ZK -8 s 00 B %,
5o Yl¥epae, 4o V1R Flopaos £ e 11 CRL:
-0 0 2K -
2K B oo -8
2 TF e ) 2 159 s
g 01 e .chl)del_ I 8] ¢ F(@l)del
= ~Glx1 % ZK "91 -
J (9 )dG J F(8. )dG
0 0 1

K- X ;
1 + f a 1X1 F(Gl)dg / f e L7 F(0,)de,
oK
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2K @ b oo e
2 8] (2K) E + 2K
== 2K -B.x
ZK ~O_ X il 1 T
O K
: %21‘2)11 -ZKx -ZK X
. ~1 g -l
(K8 Bt pi(og) S g Eellom
2 3
. % G R
< (2K = e R e s (3+10)
© =KX -2KX1 :
l. [ ) = & ]
4 <) X

In the last steps the numerator of second term follows from

integratioq”bj'ﬁarfs and in the denominator of the same term

we have used the fact F(8;) > § for 6, 2 K. Therefore,

Alog £ (x) < (Z)Z (1+4) fory sayy x > 1 (3.11)

For x; ¢ 1 (that is a(x) = || z~r(x) ]} £ 1)y it follows

from a lemma,of‘Brown'[iJ (Lemma 3e3e3) that

ll—(—"l‘ll< €(1+ aG). g2 T, (@12
(x7)

where the constant E depends only on C and m (the dimension).

Thus, it follows from (3¢2)y (3.11) and (3+12) that O.log £ (x)

is boundeds We shall record this as a theorem below.
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‘ - T £*(x) | |
Theorem 8.1 Let Ih?ﬁTET—H < C for xe Kge Then there exists

a constant X (depending only on C and m) .-such thaﬁ‘

Alog f#(x) < K for all x e EO,

7

Remark 3e2 It is inberesting note that for any given 1 > & > J,

6, > 8 = ¥(e,) > C.

To prove this let Hy denote the hyperplane given by

1 ' ) A,
Hgl = {(tl"‘tm) M tl = Ql} « Thus Ho‘qoincides With.thg tangon®
plane at w(x). Supposc theré exists a 8, > 0 such that

g

?(G Y =0 for ©, < 6.. Considers nows the set H, = () H,-
. : o)

Plainly _F(HBO ) KF) = 0+ Therefore the closure of K, - HGO;

which is a convex sets is strictly contained in KF and conteing
the support of the measure F. This contradicts the fact that

X. 1is the smallest closed convex set conbaining the sﬁpport of

P
Fo Thus F(8;) > 0 for &y > O |
The second asswmption || sF(x)11 < |l x|| + X, also follows

LD il .9 I |
easily from Brown's assumption lk?;fg5—\l{ ¢ for xe& Kp For

X & Ky Brown's assumption trivially implies [p(x} |l < [kl + C.

On the other hand for x £ Kns we go about proving as follows.

oG Nl < TopE) = 55l + lpglrG ] (S
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Fao]

where w(x) is the projection of x. Nowy if ?(X) denotes
1 2

ox -=lelf

e e F(d8)s then

8,(x) = bp(r(x)) = 7 log =& O (8.14)
Flr(x))

Again, we can assume X = (-A(x)y Oseees0) and T(x) =

as in the proof of the previous theorem (Theorem 3.1). An

estimate for ||V lo g-ﬂzifl;;ll is contained in the argument
T(x

that 1ed! to Theorem 3+¢1. To scc thisy using the same notations

as before, it follows.from (3.12) that for d(x) <1

#

7 10 £ = v z0g HLD g (3.15)
£l ()) £(0) - :

where & depends only on ¢ and me For x such that d(x) > 1,

the bound given in (3.11) is slso an upper bound for |

ﬂ V log JLJSJ—H iees
£ (r(x))

{| v log e (210 L (3. 16)
: f(r(x)) ‘ ‘

To prove (3.16) one has, to note that the bound which led to

(3.11) is aotaallv an apper bound for
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L;ﬂ ’

o -~ Il
6,d(x) 2% &5 of

f@%e s 2 L g ZlF(dQ) :
(3173
m
8,4 (x) ‘%gjgt "j‘é"‘z of
S e: e e 72 m(dase)

But (3s17) is greater than or equal to | v log LG e,
' ' flw(x)) :

Hences there exists a constant K, (depending only on ¢ and u)

such that
But [[ 6@ J[7v)I+ ¢ 5 [ x|+ ¢ because 7(x) is the
projection of x onto KF and the origin is ih 'KF. Thus there
exigsts a constant K (depending only on C and mn) such that

I o) [l < Il %}l + K. | (3.16)
Thus we have the following result.
Theorem 3¢3 » Let | ﬁiixg'u < Ce Then thore exists a constant
K (depending only on C and m) such that

lep@ Il g Il x|+ K for all x e E™

Remark 3.4 The assumption (ii) is a condition on the growth

¥ (%) ) bp(x) -
of —=———=— in the direction of'_il_'-"' 80 1t is a smoothness
£* (x) [RE 2

condition on the measure. §tatistically, one could interpret
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[42]
assumption (ii) as a condition on the expansion of the estimstor
SF(X) in relation to X e Of course it is more meaningful to talk
of shrinking or expansion in cnc dimensional case rather than in
higher dlm63810no It is not at all clear how one should define
shrinking or expanslon in higher dimensionss ‘Howevers we shall
see later ir this chaptery theav assumption (ii) could be dispensed

with in the spherically symmetric case.

Remark 3.5 The fact that assumption (ii) is essentially a condi-

tion on the second derivatives of log f*(x) is- Drought out by the

ox Hlelf

foilowing, Let Flx) = J e F(d0) and A(x) denote the
second derivative matrix of log F(x). Suppose A(x) satisfies

the condition

A, | T -
ZWA(x)Z < 1 + “Trifhw- for all x and for all Z (3419
%

where Z is a unit vector and Y ({x|) is a non-negative dini

function (Sec Chapter 1 for the definition of dini function)e.

It igs eagy to seces by integrating‘along*ﬁhé line segmentsa
that (3.19) implies asswption (ii). 4 measure satisfy;ng (3e19)
can have at the most eXponéﬁtia1 growth rate in any direction at
a given pointe. There are bther condltlons on A(x) Whlch woqu

imply the assumptlon (11)r' We Shull not pause here to catalon

thems.
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It is not surprising at all that Brown'!'s assumption imiics

‘ v £*(x)
our assumptionse The condition that 1‘;-—1{.-*—6{—)-“][ <G for x e

S s

idaa

1ls so stringent that it implies that a1l absolute moments of “ho

form
1 &
. ~slk-e|[“
5 k- lf o 2 F(36) e
e - f -5l
' g K=ol 2 7(d0)
are bounded for x & KF Indeed ie

. A _ £ (x)
bounded for x e B“F‘ Thls is very stringent compared to our

assumption Alog f*(x) < B which is equivalent to

Lol
S lp"SF(X) ”2 o ZHX ” F(de) . -
T (x)

We c;onclude this section with a co: mont on the proof «-_J
Theorem 3«1s A closc look at the argumem; precedlng the thoeovs
reveals that we have used only the behaviour of f£*(y) on tic
boundary of Xy to prove £log f*(x) <B and lop(x) ] < Ikl + =

for x £ Kp e iece Tor =x /£ KF’ we have used the fact

| L),

STl < Co Thus we have the following results E

Thoorem 3.6 ¢ Let A log f(x) <B and brp) || < lkxll+ K

' ST P (x) e
for x e Ky« Buppose ”W“< ¢ for x & lKF‘ ‘where
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E: is ﬁhe boundapy of KF' Then there exist constants Bl
F

and K; (depending only on Bs Ky C and m) such that

(1) A log f*(x) < Bl for all x ¢ Em

(11)  fopIlg [kl + 5y 7 for'al; x.e gt

§ 4» Some Technical Results

In this section we develop some technical lemmas which wouvld
be needed in the proof of the main theoreris

The first result gives lower bound for functions of the

Bheolf '
e €

form o for x such that [x|| = n.

‘f*(x),

F(dé)

Lemma %s]  Assume (24£12)s Let r be sufficiently lerge
(say r > 10(X+B)). Then thére exists a constant Ky >0
(depeﬁding~8h1y on K and B} such that

_4 2
[p fg lbcrell - ‘ |
inf s S 2RSS0 T g
X y
{x : [xﬂ#r} e o

Proof s Let 8., denote the spﬁeré“qf rgdiqé re. Let x  be
a point on @ dee, kM= m Tet x  be the voint on the

e
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line segment [0,x] (Yhe line segment joining O and x) such

that |z lf= r - (X#B+1). Note that [=x } = (#B+1)s Tt

follows from the assumption (ii) of (2+12) that le(xb)l]< -

Nows observe that by Chebyshevis inequality we have

i 2
e B |
ik, [IF(dQ) i .
s oy — &L E 52 Bp1 > 0o
le-s,(x )|l < B+1 ™ (x) : : (B+1)

We shall use f*(xo) to get a lower bound for

L
—=|k-0
! 2 glk ” F(d0)

Bl< fieg

as follows.

Expanding log f*(x) by Ta ylor expansion about %, we get

v *(x,)

f*(xo)

log % (x) = log f*(xb)_+ (x—xb) +(x~xo)‘ Q(E)(x~xo}

(<4 2)

where. § 1s a point on the line segment [xyx ] and . Q&) is the
second derivative natrix. MNoreovers Q(£) = A(E) - I where
A(f) is a positive semidefinite matrix and I ig the m Xn
identity matrixe The matrix A(E) is a variance covariance

natrix whose (i,ﬁﬁmth element is given by


http://www.cvisiontech.com

'[#6]'

ot _ 2p|fZ ot &[] o®
o 58y 050 2T r@e ) (fe e e 2l 81 2 o
i_. 1 o i ;? -:§ | il % .
" et Allel b or Ll
fe e?2 F(de) e 9'2“9” 7(de)
ot -3l o &
fese -5l oI F(dg) g :
== foo(28.3)
oF 4=u oI y
fre F(de)
Therefores
4 (an )t Q(E)(x—x )l < (K+B+1) 2(B+m) (4a 43
In (4.4) we have used the fact |k-x || = (¥+B+1) and the diagonnl

elements of A(E) are bounded by (B+m)}. The lﬂtter fact follows
from & log £*(%) < B and O log f*(g) ig the sum of the diagonal

elements Q(E).

Hence it follows from (242) and (4eh)

V:ﬁ(%g
() TR TRG)T ~@se1)? n @G |
f*(X) = € 1 . (405)
Now consider |
. , p 2
¥ : —S)-x X -0
5 pg(x) ¥(dae) o ) T ”ﬁ/a’g) ,
lell< r . el | (46)

(=) | o PElx)
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where Pg (%) is the norwual density.

i — — ) N -, — o -~ \ 3
e @umz, iz %0}(150- BF(«»O)*'% “:0) 9@,__3{30' ":
B2 (x, )=6 [[<B+1 £¥(x,)
: 5T
TEX(x )
L 412 0
—(¥+B+1 7 {x-x )(_-ﬁ -
2 e 2 g*y @0 THE) 5
~fheex, illlop(x,)~2 |
. ’r,\ n . : ol PG(XOJF(G‘Q)
1o )~2 fl<341
f%(XO) (%6
Xz )
2 X
~—(§l+B+1) (X )( (=% 5 —-(K+B+J)(B+1) 1 P
1 L ,j

> ; Ll
— m}— \

In cbtaining (4.7) we have used the assumption to conelude

e . i i = —
bp(x ) [l & r-B+I and hence i8 plx,) (_ %. Bl < r§
: Vf*(sco)
p (4.8), we have written (5. (x )=x )} ag ———2 | n the last
& G o f*(xo)

step we have used Chebychev's inequality.

Therefore, using {4.5) and (4.9), we have for x such

that  [p]f =
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\

5o pelx) Fa8) i ue(y) F(dgj

ol <z - el s m(x)
263 SRR € ac)
| " TE* (x,
e—%(K+B+l) %o (BtB+1) 2@ (x-x,) "f—f(%
) e €
2 Bl
v f*(x )
~(R+B+1) Zm? (Bkm) R (X )~y f*(x)
X e
~(KB1) 2(B500° (Bm) ) |
25 e 9 ‘, (4410)
s -(K+B+1)2(2§3-m2(13+m))“
Now get: - Kj = Bl = : »

This completes the proof of the lemma. q;e;d;ﬂ

As aAco;ollary,to Lemms 4.1 we have the following result.

Gorollary 4«2 Assume Cgﬁlg)}"Lét—iga},be a. sequence of functions

satisfying :
Leu, =0 for 1< |kli<n
w =1 ror jxlg1

=g for |gll=

=0 for fx]|>n

whona 1.5 & >0 o fixede
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Lpu =06 forl < [gf|<n
p=1 for [x X1
€ for [x|| =
O tor Igl> n

18 fixed. Then there cxists a constant X! > C
such that Can e e )

| neﬁ_gn a4, (8)pg (x)r(as)
inf

= i J ( 5, B £} for all sufficientiy large .
2ot 3 o £ N r
{ % <n? XM=

o
Il

where 1 > Q > G-

Proct ! By wmaximum modulus principle u (@) Di € for [[@H <n

and we have ol

h d - X)r(ae
u, (&)pg(xlr(se) R P )

v

bl £5(0) £ 45y
Therefore,
inf HQ{L(.;} 4, (8) pg(x) F(as) _
fxiflenl o TR
_ e pg(x) F(as)
S et gl > ex
ETEY ) g

Taking Ké =€ Koﬂwe hava,xhe lemma. This completes the

Prove.

Ge'€eds
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The next lemma is a rather standard technical result.

Lemma 4¢3 I TLet u be a pieeswise differentiable function on

E®, Then there exists a constant 02>0 such thab
) ] pg(x) dx
|- f"

Byid

£ @)-u)? pe(x) dx < 02. S 7P

+0p 4 1l TV u@ P pg(x) gy,

Proof & Write x in'polar'co—ordinates around © i.e.
x = (p(x)y ¢) where .r(x) = |x=¢|ls Assume that ¢ has been
normalized. By SChwartz 1nequa11ty we have -
( AN SO | 2
(u(8) - ux)) £ r(x) _g H7 u(ss®)]] © ds
Therefores denoting r{(x) wy 7rs we have
1 1.2
-1l x-elf 477,
fa@-ue)® e 21T Tax < £ 20T [T u (e9) Bas)e ? r®ar
B . el 18 » e _,‘ "'fgl;'rg
J' Jiv u(s}(})]] [P e -dr dsd¢ (4e12]
-0 8
How integrating oy parts we have -
o '”%rg R ] '"%S "%52
- dr g Cols e + e )

for some constant 02 S0
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Therefo re-., i ‘
Lo 5 2 W-lrJ% ® %s ¢
(4e12) ¢ czg,g H 7 u(sy ¢)H &sd¢-+f HVu(s,¢)” “ dsds}
y . o A w . | : . i.
= Colf T ux) P p (Y) ax + f }}V H(X)If remmmt e p (x)ax}
2 Pa\X P
8 freefft
Hence the lemma, J-“ P
JeCe Cw
Lemma 4e4¢ ¢ Let p be a oconstant such that © <:p {4%. ' Then
there exist constants K; and X, such that
d it
q f s I "Vu( 3” _—""':1 pG(X) d}x < Kl J! “V'LI(X) ung(X}d};t
x| <o o -l

k-6 lik Xq

Eroof}::Fix Be Define a density function _r(@,x) by

;_ - :
r(63x) = C I(6yx) —_L_‘_"X“@Hm"l._ pg(x)

Il

where I(8yx) = 1 iIf [x-6]|<p and = 0 otherwise and C is
the nérmaliziﬁé'conétant go that r@(x)dx = le Note that C
depends only on o « Define o new density function s(6sx)-by

setting

S(QQX) - J‘ XY J‘ I‘(gatl) I‘(tljtz)o;o I‘(tzx ] X.) dtl o-‘o dt/e :
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where A > 1 is a fixed integeT. Plainly J s(@yx)dx = L.

Moreovers s(8sx) = O for |jx-e > Ef_. and s(0sx) is bounded.

The bound of s(8;x)s say Xgs depends only on psm and A .

It is also easy to sce

T @ B Y @ermdx = £ 7w [P s@rmax (4015

Howy
-

A P () ax = S (| T R Ve
ux-gu_”“”” e s ax= 4 1|7 a Ygtex

]

ST GO s@yx)dx

A}

=g gl 7 u@) | s(e,x)ax
ol %
<xy 4l ue P
-6l < 57
(401‘1)

Slnce: : 2
a2 124y . | :
2“2!: gn e 2(.9) for X in {X . ‘”X"'QH < % } B

we have |
Bl o 8 1 2
5 T e Laad §
(4213) < Kg © P J |7 u(x) | dx
kol %
1,242
=(%5) oA _
Letting - Ky = Kg e P71 and Ko = 52 the lemma followse

Oy Or df
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Gorollary 25 : Let u be a pc,icawise differentiable function in

Then there exists a constant K > 0 such that

2|1x4||2

£(a(0)-u())? py(x) ax < K & Hv u(x) P ax’

£ « By lemnma (4.3) We have ’ - y

! (u©)-u(@) pg(x) ax g G S v u=) [ia _L__p (x) +

Ix-—OII’“'

+ Gy 4 11V ulx) |12 pg(x) dx

ﬁb\h white 1

u(x) ] 2 ""—]‘—_'_" (X-)‘ dx = [l v ux) ” -7 De (Hhix
o P78 le-lf< o o
\.\2 § X\d'ﬁz
R P LT X
N ST ol =
(‘:c 3)

where p = p- is & fixed positive constant; say -3‘1-

The first term in the right side of (4s16) can be bounded

- using Lemma 4 «4 as follows
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"71 ool < g

< Eq S V”‘u(X)“Zpe(x)dx
. R o (4616)
The second term in right side of (4.15) is bounded by

40 I pg(x) v a(x)]? dx (4.17)7

Cormbining (4916} and (4.17) we have

£(a(0)-u()? pg () ax < (@K™ 5 |7 u@|f pg(x) ax
qﬂ?‘d*

Henee the corollerye

&

g S Prb&fJBT the Main Theorem and Other Resuits;

After developlng °li the nocessary auxiliary results we

come to the- proof of the main theorem nowes

......

Proof of Theorem 23 (Main Theorem)

“We give the proof of the sufficiency. Recall the basic
assumptions (2¢12) i-e.rzglog‘f*(x) <B and (ii) [bF(X)llgﬂxH-+ru

Assume that BP IT is solvable for the Elliptic equﬂtion

Leu = Oe Then there exists a sequence {u } of functions

satisgying Lo u, =0 for 1 < || x|[< ny u, (x) 1 for [x] <1
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and u (x) = ¢ for ||| = n, u, = 0 for [kg|f> ny which converge
to 1 uniformliy on compacta. Definec =z sequence of finite measur-.s
{Gn} by setting Gn(dg)z un(g) F(de). Plainly, Gn(sl) = F(Sl) > i
for all n(sl denotes the unit sphere). iorcovers the supports

of G, increase to E

“Tet 6, be the Bayes procedure with respect to G o Thus
- K n
| v g5 (x) ‘ \
BGG (x) = ——;?—yﬁ + x for all =xe We shall show,
e gn ;Sg '
J (R(8y8p) - R(835; )) G, (d8) —> 0 as n -» oo (8.1
I 7 1 ;

Computation gimilar to that in section 9 yields
A C N
I (R(8y8p) ~‘R(936Gﬁ)) G, (a8 = ¢ MGy = ax

_‘ . P (x)F(as8) 2
=0 LE (0 e TLH R

X W ™ (x)dx (5.2)

5 - . : po{x) F(d8) 2

[k lken

TR
* @/ ) ¢ Tedx
1
gE(x) 13 '
) [N(“?E?;T)gﬂg * (x)dx (543)
Y o A |

i
LA
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We shall show that the solvability of BP II implies that the 7%
term in the right side of (5.3) goes to zero as n > oo+ THo

second termy the tail, goes to zero independently as n —> oo,
Consider the first terms It follows from corollary 4.2 Shr o

there exists a constant X (depending only Bs Ky m and &) suc

ok (o .
that g,r—%g- <K  for all x = {y vl & n} e Thgrefore

&y Pa(X) \
£, (0) -, () (emx-riS —Rs 7(40)1% —dry pf(w)ax

ﬂ31KJ? Hx

- VeR(x)  py(x) F(d9) zﬁ*
LKy, & Liu (@) -u (%)) (0-x~ Y ]‘L (%)

|kelign

(51‘3;)

Nows by an epplication of Schwertz inegualitys, 1t follows

5 ' v (%) pg(x) F(ae) 2
LS (ur(G)—un(X))(Q—X— () ) TR (%) |

[ pg(X) F(de)
< I(Un(g) ‘UR(X)) TE(x)

pglx) F(d8)
ot s ol e o mal

since A log £*(x) < By

V£ ()2 pg(x) F(do)

S |p-x- TF(x) % (%) - = A Tog ¥ (x)n £ (Bnm).
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Hences
(x) 7(d8)

P
(5e4) hY _(B-f-m)-Ko”J'HJ' (un(-g:)_,un(x))g- e =TS £ (x)dx
X &n L

= (B+m) X, g J (uA(Q]~uﬁ(x}) pg(x) dx F(d8).
Ixl< n
From Corollary 4»5 it follows that for some constant Ky (éeﬁendn

ing only on 'ﬂ) e
(5e4) < (B+m)K oKy & T un(x)||2 pg(X)'FﬁdG)dk~’f'"

lxlin f
< B KoKy ST u @) [P e () (5.5)
[B< flsn
The right side of (5;5) goes - to zZero as n —»>oo. This follows

fror the, solvability BP II for L = O.

Let us now deal with the sccond term (the tail) of (5.3).

The second term can be bounded ag T0lloWse
. ¢ - p

pg (%) F(de) :

£ (g)(g_xligé%ﬁ%) TR ?;?*g;(g? =

lxllon i e WS A
< 4 S (0) |[emx- _1:T§§1“2 pggx) F(de)dx  (5e6)

953

(We have used gSchwartz inequelity in (5.6) with respect to the

pg(x) F(d8)
ngagure g* (,X)
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AY

Since un‘ﬁe) =6 for [|8]{ > n, we have
(546) <c & nxu '(llxll—"gll)chae) dx . (5'7) '
lkibn HQILH

Observe that the assumption {5, () || < ||l + K implies
-ﬂ%ﬂ ¥ log £*(x) £ Ke Thercfore integrating algng the line

segment x we get f*(x) <4 e!b{""'}K. We shall :doﬁ show that
Bl x

J e i F(d8) < oo for sc;me constant K:L > O
- -l %8|
i 1F(aa)- —d— o e 2" ld x) F(d8)
1 —2lk-o| il Ey K el
5: (217)‘”}/2 J J. e | | ‘ | dx F(O-Q)
(5.8)
1; lemma of Brown'!s (See:.:jBI'own [lJ), _ir;_plies _
~2k-0] 2 K. |k-o Ao |
a7 o Tl T T

Substituting the right side of (549) in (5.8) we got

Sglbeolf -lxll w ol At
: _l-. =, 2 s -
v g ol a—e;u " LS

< Ky dx F(de)
IE g
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LS

1

S o (x~E) e “Lax ar | (5.10)
e ik vl .

But £*(x) < e]lx][K o Therefore

i e D Sl

e\
g kK +1

el x e°lkJ|K1 = | (5.12)

If we choose Kl = K+1 (5411) is finites The constant K

3 ig
bound for X. J P
an upper bound for K, £ e
Il flg+
Therefore; '
L lhe
kln Bl e, il
et T L NG
o 0F —ellxy —sxi-lelh
o, JelE BAE-RDE
fx[l>n lle li<n
(5.12)
~Clel-le® Ll
Now observe that e is a concare function in [l

for Bl < lix]le Let F Dbe the probability measurc defined by

elitkn)
Fy () = S— ,-i@iﬁ(‘%?_-)kl) =~ for || & || < ne

Bln i S
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Iet G = e"’.'@.”‘Kl”}me) and
el g n [ -
-,y

b = : v
n =& ”@ﬁinl e F(d)

It is an easy fact to check that  1im sup L b < a< l.
n w» oo R D i

Hences by Jensen'®s inequality we have,

- Ielle BBl B 1P g - ney?
S . B li 1578 |befl- B ] E) c, o 2(ﬂx]] na) .

Tor all sufficiently large n. Therefore,

. Sl R
nk, ~=(|kxl|-na
(5412) < Cn ! ”X”?. s il. e © ”X” is! )

dx
x|l2 n
1 2 2 1 2
nK., ~Zn“(l-a) -=(|k]| -na)
$Com ;oIxlF e % dx
= flon
‘ 1l 2
) nx -=n~(1-a) ‘
L€, - (n&+2}m+l & -, &t —->0 Gedlis )

It fOllOWS from (5-14) that (5- 6) goaes to zero as n->o¢, ‘Thus we
have shown that right side of (5.3) goes to ZErYo as n -> .00,

This completes the proof of the mein theorem. v e d

Remark 51 ¢ Note that we do not actunlly need thé“aséﬁmption
log all < k[l + X to show that (5.7). goegrtGEZefo.-'Iﬁ ig possivlc

to prove it from the condition Alog £*(x) < B Thereforey bhe
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condition [| 65(x)] g Ik|| + K» 1s neeGed only to prove lemma 4.1

and ig not used anywhere else in the proof of the main theorer.

Ls a corollary to our theorem we have Brown!s tesulte

We record this belowe

Corollary 5.2 e Let’ﬂz§§%§%l | <Cc for xe Kpe Then &, 1is

admissible if BP II is solvable for qu = 0,

We have already observed in Theorem 35 that our agsunmptions crn
be stated in a different form when X, # E' Thus we have bho

following theorcm.

Theoren 5.3 « An estinator 8ns generalized Bayes with respout

to Fy ig admissible if the following conditions are satisficd.
(1)  Alog ©™(x) <B for x &K,
(11) fbp@ | < Ikll+ X for xce K

I 588 1 ¢B, for xe [ whore [ is the

(1i3)

boundary of KF

(iv) Bp II ig solvable for L. u = 0.

We end this section with a few commentss Our proof avoids
the construction of smooth minimizing solutions on which Brown's
heavily dependss To prove a result similar to that of Lemma <.l

Erom needs smooth sclutions of the boundary value probleme His
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method can not be cextended to the general case (the case when

[Pf*(x))llls not bounded) bécaudb he uses a Harnack 1nequq]1“v
which is valid only for solutions of Flliptic equations with
bounded coefficientse. .The author believes the condition thav
65 G || <-{f]| + K. could be relazeds To do that, we believe
one should get hold of a seauence of regions expanding Lo A
which may h;t be spheres as in our case. - The choice of such

regions will very much de end on the behaviour of 65.(x) or
P , F

¥ (X)o

g 6. Diffusion Processes and Admissibility &

The eiliptic partial differential Operafbr 'Lf which plirig
a crucial role in our admissibility problem ig inbtimately rel: vcd
to Diffusion procegses. Indecds associated with every smooth

clliptic operator ILu= I ai}(x)'féaL—“*'+ = b{(X} %ﬁ- thero
11— <4

1, 7 @
ex;sts a‘local diffusion process Zt with local mean {bi(x)z
and variance (aij(g)) (8ec Ito and Mckean [1]y Brown [2]s Varni. on
‘and  gtroock [1]§; By smodfhness of L we mean that the coefi-
cients df I, should satisfy gome mild regularity conditions.
One can show that BP II for L is solvable if and only if Zy
is recurrent i.e. Prob { 1@1 Il 25l < 1% = 1 where Zf is
the diffusion process sturtlng at x. See Brown [1]; for a
FeempressionbDER, Webodptis

390 Ok
d3
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The above facts enable ug to state our main theorem in tor o

of the recurrence of a diffusion processs

Theorem Gel ¢ Lot 8p Pe a generalized Bayes procedures Zy we

the diffusion process associated with Lf. A necessary condition

for BF to be admissible is Zt is recurrent. PFurthermore, if

x| + X

4y 1is recurrent and (i) A log ©*(x) < By (ii) HGF(x)" <

then GF is admissibles

liote that the usual best invariant estimators 8, (x) = x,
is the generalized Bayes estimator with respect to the mudimoas;ocal
Lebesgue measure. The differential operator which corfesponds'to L
this prior is Lu = u and the diffusion asgoclated with it is
a version of Brownian motion run with % speed clock). Thus it
follows from Theorem S.1 that Gl(x) is admissible 1f and only if
the Brownian motion is recurrcnts It is well known that Brownisn
motion is recurrent for dimension mn £ 2 and transient when
mp» 3 (Zt is transient when Z, 1is not recurrent)s The result
that 51 is admissible for m £ 2 and inadmigsible for m > 3 is
already known (8tein [2], Stein and James [1]). We find this
relation with Brownian motion interesting. We shall show later
in this chapter that BP II for Lu = au is solvable when

m £ 2 and not solvable when: m > 3.
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g 7¢ A generalization in the Spherically Symmetric Case

A gencreglization of our main theorem is possible ia the
sphcrically symmetric casc. 4 closs look at the prbof;bf,t}a_-
main t%eoremwrgaveals that we have usced the assumption
I(GF(E) o< Hxll+x .at twe polints, 4in proving lemma 4 1 i’
taokling:the taii;inftﬁe‘proof of ﬁhe main thoorem. - We. shall
show, belowt that in the spherically symmetric case this assunr-
tion could be dispensed with and the main theorem could be devivcd
from the assumption A log f*(x) < B. Let T be a spherically
symmetric-mgaSQreloﬁ  EY

all x

such that f£*(x) = £*([(x|]) < « ror

Theorem 7,1 * ;Leﬁ,-é,lég,f*(x) < B Furthermore, if BP II ig
solvatle for L,u.=0 then & is admissible. :
. First we shall prove Lemma 4.1 1n this case and then gb

to the prcof of.the,theorem. . g 4

Lemma 7.2 3 Suppose BPEI is solvable'ﬁor fou = 0. Then

B7 1Y 'Wfl*(llﬂl)"_ (3 - m) 3

i T M T T T T

where [:> 3> O. ‘—';‘”

Prooft=  Since BPII 1s solvabie for L,u =0 ELL | I mob
solveble for Lo = O i.c. there' dovs not oxist a solution U

for Lju =0 such that ullix|]) =1 for Ilxl|l =1 and T

= ..
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and ullixl]) = o as

lix|] => = . This follows from Chapter I

Now, a sufficient condition for BPI to be solvable for L
ig

Q=0

- 3
x| iy [1x]]

for all sufficlently
large }lx}ig Henes the Llemua,

Qeesde
Lemma ?-3 Suppose BPIL is solvgble for qu = 0. Then therc
¢xists a geQuence 74 ”énd a constant ko‘> 0 such That

ol

inf

) |ix-0l)®
[xlfg e, [l8]

Xt

b F{ds) > k, for all n (7.3
o () _
— n " ' E i

kk => oo

Proof': . By Lemma ;2‘Ithore cxlsts a seQuence e o Ty | o
88 , such that

£ r( rk)

(2-m) " 5 £ 2N
< + - for all k.
et r, = |

n

r, +B +1, Since the infimum of the left side of
(74) is attained on the boundary it:suffices to prove
" nte () F - By oh
n
where x 1s such that l[xll =ms

N
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CORM

We adopt the following notations in this proof. Let pg(¥)

denote pa(X) “such that [1z]| = . By §F(r) we ‘mean §F(k)

such that ||x|| = r. Moreover, an expression of the form

(ry = r,) means line scgment.

As in lemma 2.1, we shall obtain a lower bound for

e -
({_ ..p@(;f‘n)F(de) £*(r, = B= 1)

f*(rn' B-1)} * f*(rn) |
- 2 ¥ 2 0
Observe that rp =r,-B~-1 and %‘(rk) < rk+"5:'"}; + }_1_; and
hence :
T Y \ T

(e )R(a0) = [ “oxp (< L(p v )2y0-
g Pg'\Tp L} —({ exp 5(r, rk) i
eXp iirn-rk)(rk-ﬁF(rk) + aF(rk), e).]pe(rl;)?(de)

> oxp [ 22 lexp [lr -8 (r)) (r =, )]
I'n . - B ' A ]
g' eXp ((rn-rk')(ﬁp(rk)* 8) p-e-(rk).F(de) | (7.3,

It follows, thereforc, from (7,3) X
W o
({‘ pg (1, )F(d0) __ 1   o . . AN
f-*(rk)- ‘ ZK(')--ap(- §=(3+1'), )QXpL;(.fhrrk)(rkwﬁF(rk))J |
' - LbE ' (7.%)

where K! (depending only an B and m) is a constant such that

e s by
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1’1 G
[ "palay-exp Lrymry) oyl )~ 0)lw(a0)

n ot
1 o

) 2 kL2 @ )
Note that in the above step (7-5 ) we have used Chebyshev
inequality as in Lemma 2.1 -and the fact frn-rkl < B+ .

Using an argumcent similar to that in Lemma 4.ls we have
fH(r =Be1y G
ni s - . - \

-

where K, depcnds only on B and m. The lemma how follows.

from (7.5) and (7.6) easiiy q.e.d.

Having proved a result. similar to Lemms 4.1, we now come 5o~

the proof of Theorcm 5.1

“Proof of Theorcm 7.%:

Let un be a sequencc of solutlons of qu = 0 such

that qun =10 G@oRl Ik € [1xl] < n, u, =1 for |fx]] < 1 wa@@

w, =€ for [le[ - u, is set to be zero outside Snf, Dafinc

& sequence of finite measurcs by settlag G (a®) =u (s8)r(as).
Let, as usual, §; denotc the Bayes procedurec with respect to .
N ; | ;i

To prove the theorem it suffices to show

Y

i ) - : & =g
nlir; ~ S (r(s, &;) - R(s, aGn)) G,(a8) =0 (

for some sequence n. Take the sequence n  to be the
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seguence %?nj as defined'in‘Lemma“7.3’ The rest of ‘the proui
is exactly as in .the proof of the mein thecrem. So, it follonf
from Lemma 7.3 and the hypoth651s that BPIT is solvable for

L = ¢ that.

fU.
yee(x) Pg (x)

nii‘f’*‘ocuxlﬂ ()=, (0= 2 T Py s

f*(x)dx =0 C (7.9)

Therefore, to show ( 7.7 ), it rémains to prove

£%
Lt [ ¥ [ f(a, (8)- u (1)) (8= x- LortED)
n=-> « ||xl|>n
g () 2 ' ko
Flde " f*¥(x)dx = 0O : i
=y F(@) 1% x(xax (7.0
Now,  observe that A log f*(x) < B implies
w*(X) LRl II B  const 1
: 1 s n depending only
]lxl[ f*{x} X wherc 1 1ls a cons ant epending y
on B and m, Mcreov h o there exists a constant € (0< € < 1) such
Lo [lell%_ TR, L
that [ e , F(de) ¢ =, To6 prove this, we proceed as folioud

Clearly, log £*(x) < Bll|XL|2/2 » Therefore; we have
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o bz L]

~(5y4) [ x| [ -8, ) x| [% 11 ol |2 -
JSex(x)e % dx = fe a S e A _ F(de)q.x ." .
| (7.19)
Lllgesll® -®B) | ]x]|3
= f( e 2||X 9” c L o dX)F(¢@)_ "
(PR
ol SR 0 12
t il =1 /2¥E : gelw-ww
= [ fe - I <5 -3
o poEellel? (7.22)

(1+ Bl)

where C is a constant depending on Bl and € = _(2"’—]37 L

t is easily secn that the left side of ("-10) is finite and
-hence (7.12) is finite. Note that in obtaining (7.11) we haye

used Tonelll’s the:orem.
- ' i e
The proof of (7, 9) is now easy. By an argument similar to

that in the proof of the main thnOI‘&]’D, it follows

S S ey e)-u, (x) (o~ x- % )?1—(——) 7(as) | 123‘.”*°(x)<:‘br

”XH > n )
( -
<¢c f llxll? { | “XH “eII)F(d@)A .
Hxl| >n lleTl< n (7.1%)
. | ' _; , _‘.- 2
Now fx"om the 'conéairi'ty of 5'2("‘%( I=le for ”e” < [k |f

ang by (7,12} e haovn
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-S(x| =118 ]])®

lim N AT N S , 7(de) =0
n => o llxll}ln o ||9[|_;n : ; R
This completes the proof of thce thooren. Qe oda

§53.180mé Admissibility Results

In this S@Ctl@ﬂ we present varlous criteria for the

.....

- admissibility (or lnadm1851b111ty) of a given generalized

Bayes estimator & The cogditions are interms of solvability

F‘
of BPIT (or BPI) forf-qu = 0. We do not consider the case

v

m =1, Tt ig slmllar to the case of spherical symmetry. 5o we

aSsume 1n what follows that m > 2.

8.1 Spheripallyrsymmepric.case

We assume, throughout this_subsection; that F 1is spheri-
celly symmetric. Hence . x(x) | ex( | x|]) = £%(x)) is also
SpheTlCullV symmetrlc and consequently any solution of Lf =

is also SpheTnglly symmetrlc. o Y

Theorem 8.1.1. Let £¥(x) = f*(llxll) If

" ‘ ;‘gj? Viomk e
- ! (1) rmfjl

qr:< o | (8.1)

then 6 is inadmissible. If the above integral is infinitc

and Alog f*{x) is boundéd‘thbn 8, 1is admissible.

A
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Proofi- -If (8.1) ‘holds, then the function ulr) = ff:i(t)' —Iodt
' r t

is a barrier at e, Hence, BPI is solvable and & 1is inadmis~
' f°° il il
1 - £*¥(E) m-1

" sibvle. Coﬂvérselys if dt = « then the furiction
u =
(I‘) { £x(t) 4m-1

1s solvable and it follows from Theorem 7.l that & 1s admis=

dt 1s an antibarrier at <. Therecfore, BPIl

sibvle, This completes the proof of the theorem, d.¢.d.

(T " V= :
As a corollary to the abere-thtorem we have the following result.

Corollary 8.,1.1l: If there exists a L > 0 such that

| f;“"l(r)‘ ) (2- m}_w_'h i.ii
r ®

for 211 r > L
LFEF)T = S

- where ait) igs 4 non-dinifunction (see Chapter I for the defini- -
tion of a dinifunction) then & 1s inadm ssible. Conversely,

if

i (r)  (=m) , 20

for 211 o > 1

whe re qg(t) is a dinifunction, and A log £*(x) is baunded then
'GF is admissible, '

If F is the Lebesgue measure A oo BY (note that the
Lebesgue measure isrépherically‘is symactric) then it follows from
the above results that &, is-admissible for m < 2 and inadmis-
‘sible for m Z 3. We have already noted that 8, (x) = x i.e.

6 is the best invariant estimator.
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8.2. Genn~ral results in m dimensions

I3

Th_s Sﬂctlon COﬂtalnS several criteria for adﬂissibility

in the general ol dlmcn sional case. We assume in what follows that
e G < Tzl + %, we again remnd the reader that this con-
dition is needed only to prove admissibility and is not needed to

prove inadmissibility.

Theorem 8.2.1: If there exists a L > O such that

Iiiif' Vf+(£) > (2 F) E%é%ﬁill. for all Iixl‘ > L

(8.2.1)

where Ql(t) 15 a non dinifunction, then GF is inadmissiblie.

e .
: % ) '
(-m) HXH for |z}l > n (8.2.2

x  veH(x) <
x|  £*x(x) ~

whe re qg(t) is a dinifunction and Alog f£*(x) "is bounded then

@? ig admissible,

Proof: Supﬁoéé (8 l) ho1du. We shall produce a barrier at

w for qu = 0. It would then follow BPI is solvable and hence

'QF is inadmisgible.lct, v(r) be a function defined as follows
-ft gl(s) ds

v{r) = Se § dt (8.2.50
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e i e

(731
Plainly V(r) dis a positive function and v{(r) => 0 as 1 => .

We shall  show that v(l]xl') is a barrier at <.

A *( )
Lo vilixll]) = fﬁV\||x|I) E e f*i ) votixi) oy
V([ =D

= T'_TT vi(llx llf ' -

('IX” |
x VE¥x) vi( )

TTalTeete) ™ ”XH
_ et FIb TN S ) 5 7E* (%) (m- l)

" vio(] =) (IIXII e s II)V (IIXII)

= vureilxih v @y Uil D) LARGNESED (8.2.2

[x]]

In obtaining (8.2.4) we have used that fact V'(ljxll) < 0 azud
(8.2.1). It is easy to sce, by substituting (8.2.3) in (8.2.4),
that

vu(HxID;¢(L+j%(HXH})E!H%HLLZO .

Therefore V 1s a barricr at

To prove the other part assume (8.2.2). Let F(r)  ve defined
e "GE(SW

‘ r REA

T o el e
BRI e - dt

T e P e L 2T

®

i Y T P S o .~.}
Clearly, V(r) is a positive function and V(r) => o6 _lalg)] Fri=h cs,

- ] _
Moreover V'(r) > 0. Using this and (8.2,3) it is easy to check
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-~ .
Le V (lxl]) <0
Thepefore, vV (||xil) is an antibarrier for Lea =0, This
implies BPII 1is solvable for Lu =0 and hence 8p 1s adels-

~

sible. : q.e.%

£ p
We could catalogéébméimére results of this type using the
results in Cha@teriI -~ for eXample, if there is B@:{@§ with
JSda¢ > 0 (here (r,Q) denote spherical co~ordinates) such thel
.? 1 L
£*(r,0) -1

but we willlnot pause here to do that.

dr < « for all @B B then BF is inadmissiblc -

. Examples and General Comments

We have already scen, in section 3, that our main theorem
containg completely Brown’s result., In this section we glve a
few eXamples to indicate that there are Quite a lot of measures,
especially in highe; dimensions, with Welrstrass transforms which
violate Browms condition but satisfy our conditions,

1 Fi2
-zl lel]

Example: Let F(de) =e d® . Clearly F is a finite

measure and its transform

' -.:L.. o= 2 .._]; e -1 ‘!‘2@
a*(ell = e §i|x ?t} e 4|!9[| de = e Glll |

Plainly, £*(x) ‘violates Brown?!s condition. However,
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Alog £%(x) = (-% x| 1%2) = - 3:-1" Therefore A log £*(x)
is bounded. NWow GT(X) - lx*f X =

3
<
-

x. Hence ||&.(x)|| ¢ [lx]]

Since F is finite, 6 1s admlssible.

One can give e plethora of eXamples involving finite measures

Woere Brown?s condibtion is not satisfied btut ocur condlvlions are.
satisfied. Indéed, wé have not been able to find any finite measure

which violates our conditions.

The next few ‘examples are non-finite measures which violate
Browns & condition but whose admissibility can be checked by our

nain theorem.

Example 2. Let F  be an absolutely continuous measure on B

vhase density is given by

ey, 8,) = qal(el)..qﬁz(e ) =
It is easy to check that

IRACHE -9_24.) 46, dey, = o .

- Al
The transform f*(x) is given by cie Z*'xg 'Plainlya

1 7e*(x) :f?_ _ . o
H (%) /] ! 2’ which is not bogﬂ:lded in Ty

On the other hand A log r*(x) = - % Also,
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—}’;_‘. a 1 i o
2 o i -yn
a2 = Hxy, 2B = 1 12 + 5ix, 1% ¢ 1I=lB. 80 (=
satisfies our conditions. Since
. e
x_ Tex(x) . 2
x|  £x(x) [ 1x]

—

< Q, it follows from Theorem .2 ..

that By is admissible.

The next example deals with a measure whase support is nov

the whole plane.

Example 3. Let F = Fj+F, be a measure on E- defined ag
follows

F,(a8) = ¢(eq,85)d8, as,

<1, 8,<0

B
BN

where Q(8y, 85;) =1 if -1 <¢#

=0, otherwise .

That is, F, is the restriction of the Lebesgue measure to the st

=f

¢ . The measure TF, 1s defined 1,

g

!
i(elﬂeg)’" 1<6 £, 8,¢<0

rl-u

F,(a8) = 9le,)as, ds, ~1¢88 ¢1, =< ag<
e (g elsewheféa
-5 05
where Q(G?) =g )

It is casy to check that the support of -F is the convex set

=y
? and F is not a finitc measure.

,%(el,ez): 18 <L

i
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*(x) = f{(x) + f;(x)
1.9 il 2
- 1 -z(x, - &%) .
= r(x) +e Z 72 [ e S de;
-l
1 ) 2
1 -z{x=-8,) 0 -z(x,- 8,)
ks o 25 hl, ol g B 2y R ae,, de, +
_l -—
~2x2 1 -E(x - 8, )2
o 2% AT a8,
=51
1 2 1.9 L il 2 <5
1 -m{x = &) uE s 0 =~=(x,- 8,)
= egl ldel[eﬁz'l- 62}? 2d8?]
.-l ' -C

It is easily seen that, i]zgzéz%ll 1s not bounded on the gstrip
) X

{Fxl %5):-1 < x <1, Fé > Oﬁ}and hence it is not bounded in
KF. It can De checked, after going through some computation,
that A log £+(x) is bounded and IIQ%(X)II S’IIXI] + K. To
verify the admissibility of § we appeal to Theorem 8.2.1.

It 1s easily checked that x. E%;%ﬁ% <0 for all sufficiently
- large Xi and X?.
~ One could go about listing a lot of similar examples vhere
the admissibility of the estimator can be checked by our theozen
and not by Brown?s.
We nave some more éxamples,»Wbere the underlying measures

arc discrete, violating Browrn’s condition and yet yielding
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admissible estimators by our theorem. We refrain from catalosin:

them for the simple reason that - the computations invalved, thougr

not difficult, are very tedious.

We end this chapter with some general comments. In spilts
of the-b?Oéd'SCOpe.df our theorerm, we do believe there exist
estimators which are admissible but do not satisfy our assumpiion:,
However, we have not teen succaséfﬁl in obtalning such estima-
tors. We do have cxamples in which the ¢stimators do not salisfy
our Eséﬁmégions, But we find it hard to verify their'admissibiv

Lity. -In some of the examples the estimators turn out to be

inadﬂissible.'

ﬁinally, we have stated éhd proved our theorem for a norm:l
distribution with variance covariance matrix as identity malrix.
We could have assumed the dispersion matrix to be an arbitrary,
but fixed, .positive definite matrix. Then.we can reduce the
problem, by crthogonal transforma%ioai to one in which the dis~
persion matrix is diagonal. - Qur pfoof would go through in this
case with little modification. ﬁe could have also assumed tha®
the loss function is a Quadratic form of a fixXed positive deiiadlse
matrix A, This would entail a changs in the differential operator.

In this case the differential operator L. would be of the fora
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where A = (a..);
1]

The exterior boundary value problem can be stated for this
operator and conditions for tholr solvability can be given.

Our proof is such that it would go through in this set up

with some modi fications.
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ON TEE ADMISSISILITY OF I8TIMLTORS OF THE MEAN F A
MULPIVARIATE HOLILEL X

g 0. In*roauctlor uHJ Summa‘“

e s ekt

The material in thi: chapter could be considercd
as applications based on the results of the previous
chapfer. This chapter congists of two parts. - In the
first part, we consider the problem of improving inadmis~
sible estimators. Using a result of Eteln (5] on tae
representation of the risk function, we show thatl supor-
narmonic functions give rise to generalized Bayeg minimax
procedures. e also prove that there do not exist proper
Bayes minimax estimators for dimensiong 3 and 4. Thig
generalizes the result of Strawdermen [2]. Woreover, our

method is different from hig. However, we have not been

-

succepsful in proving similar results in the general cage
We consider, in the second part, the admisgibility of a
given estimator. This part consists of results which are
generalizationg of results of Strawderman and Cohen [1] and
Brown [1]a

Thig chapter containg four sections. The firat

section eives the notations and concepts. The second
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section is on minimax eetimators and related régults. In
the third section we congider +the admissiBility of a given
estimator. %e Bivd BTUEy $nrinkers and expanders: The 1ast
scction coniaing results - on coordinate by coordinate

estimstion.

Bagic concepts and notationg.

B T ey

Let X denote the m dJdimensional normal random
. a . 51 o . el P JLt Faw
varishle with mean ©¢ F  and the digpertsion matrix iden-

tity Imjgm‘ An estimztor of © with respect to the

? is denoted hy

quadratic loss function L(8,t) = [je-1

§({z). The generalized Bayes estimator with respect o a

o ‘ 11 2-.—_1/ o~ '
o ~finite measure F such that (x) = [e ?IIX 9" FLas)< e
for all x, 1s denoted by 6. We have already seen, in

Chapter II, &plx) = %%% + x .

Let I, denote, as usual, the elliptic differential
operator Leu = ﬁu-+g%§-%— u, where u:E‘ml:-—> R is a
twice continuously differentiable function. A real valued
twice contiﬁudusly‘differentiable'function v:D f) Ry where
D ig a domain in E- {a domain is an open connected set),
is called a super golutionm of L, in D if Lpv{ O in D.

We will also use the foliowing gtandard terminology if T
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if L is such that Lu.=aa . A twice continuously differentiable
real valu.ed function u, Gefined on a domain D« Em,
called guper ha AOHIC, harmonic, or subharmonic according a:

Au< 0, At =0 or pu>0 din Do

We will have occaslon to use the following result in
this chapter. Let R{:EFl be a domaln with smootn.boun ALY
Let w and v Dbe real valued twice continuously differen-

& ° reen L
tiable functions defined on R. The following identity, knowmn

as Green’s identity, can be proved using Divergence Theorc: »

-—_._-._.-.“_.‘.-.-n... - e !

fi (uﬁsv'—iflxu)éf" =/ uD v'—‘V‘D u)do‘ e
R i R

o

Where B8R is the bowndary of R and do is the surface
neasure . Hér_e D f denotes the dlrectlonal derlvatlve of 1’

in the direction of +he outer normal n to the 'U.I‘f']CE of R.

8 2. Minimax Estimators

— o mem B . Bees

It 10 a well kIlOWﬁ fac L, for arbltrary dimension m
that 60(:;) = i i..: mlnlmax estlmator for- the underlying
problen- S:Lm,e 5 (x) i &Jlssible ‘for m {2, 1%t is thc

e

only minimax eﬁtlmator for thdt case. However there do exist
I -
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other minimax estimator (other than ao(x)) for m > 3, by
virtue of inadmigsibility of 60(x) when m > 3. So a natural

question arises at‘this s¢age. The questien is how to cong-

-

truct, when m > %, minimax estimators different from 60(2}-

We solve this problem in this section. Usirg a result of

o2
.

Stein [5] we give a method of constructing minimax procecu «

We asgume throughout this section that m > 3. The
result of Stein’s (Stein [5]), which plays a crucial role

in what follows, is given below.

; £ " o . .
Let gy 7 = R+ = [y ) ‘be a twice continuougly
differentiable function. Tet §{x) be any estimator givern

by &8(x) =y Llogg(x) + x.

Iheorem 2.1 (Stein)

A Uuif101eﬁt condltlon for &§(x) to be1minimax

is. 'f'(x) is,superrharmonic_ i.e. £5g§ () <O

in Em.

Proof; Observe that in order to show that §(x) is minimax
it suif¢ces to prove R(e, 6) < R(8,5. ) =1. It is easy

to show 1ntegrat1ng by-parfs

R(8,8) = m~-E[ || g\_ﬁf kBl sl (2.41)
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where the expectation is. taken with respect qo m~dimensional
norrmal digtribution with mean 9. Wow, i gé'( is supere

harmonic ‘it is easily seen -that

V'._He[ﬂvf-iyln - g(x)]

Therefore, 1(9 §) L m= R(e,‘ao). Iience fhe theérem;
Qo od.
Remark 242 = Stein obgerved (2.1) and showed that if g(x)
is super-~harmonic then &(x) 1is minimaxl' It ig easy to see
Aglx) £ T inmplies 1/2 (x) 1is super-harmonic. Secondly,
the above fepféseﬁt tion (2.1) can be given a shorter and

elegant prootl uging Gauss-Divergence theorenm

Ag noted by Stein ome can use Theorem 2.1 to ghow that

Jameg-ftein estirvator §(X) = x{(1 - ngfﬁ%;;), dominates 6O{x}
‘ ) b B : !

in the semse R&(8,8)  R(8,6,). Indeed, &(x) can be written

as x + WVlog g{x), where g\x) ] o Tt ig well kuown
; Hx|lm‘2

[EtS

=) is a harmonic function, except at origin, for mn > 5.

Let us now go‘inﬁto the problem of constructihg'genefaw
lized Bayes minimex éstimators._ Inadmissibility of &, we
observed in hu ter II, ig equivalent to the solvability of

BPT for Iu = u = 0. Therefore, there exists a unique


http://www.cvisiontech.com

[85]
function jo(x) > 0 guch thatv

Ad(x) =0 for |l=x [{> 1

'

satisfying the boundary conditions (x) =1 for |ix]l =1

jO
a ! 1‘:11- 3o(x) = 0. set 3 (x) =1 zfor izl <1. W
x i =

can uge jo to construct a generalized Bayes estimator as

an

follows. Define a meagure on B by setting @(a8) = j_(8)d6.

Clearly, d
1 i
. = o lix-ef X
g (x) =f e G(@8) < » ‘for all x.
Let 5

G\
egstimator with respect to G. Our next theorem says that: 6,

(x) = x + Vlog g¥(x). 6,(x) by the generalized Bayee

dominateg 60-

Theorem 2.3: - &, 1s minimex i.e. (8, 6) < R(8, § -

Prooi:= It suffices %o prove, by (2.1), g*{x) is super-

rmonic.

i -g'_“-‘X"@.“
DEXix) = JA_ e i (8)es
A el
gl S Te ) - dgleiae ¥
2 '.‘_ 1 “ e e“
Y TR S T NOL I I
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By -+ Green?s identity we have
I pe(x) o (e)de = S e(x) £3j0(9)dé
Hlellc 1 dfe, % leli< 1

T ‘-E.if ! N 'y -
+ S 3 e) D@ pe(x) @c - T pg{x)dy 31,(8)d
-Hell=1 | Hlell=1" |
: (2.3,

whe re Dnlf is the derivative of % in-the-direction of the
outer normal 1, to the surface of |le|} (.1 and ds 1s wio

surface measure.

In obtaining'(Erﬁ) we have used O Pe(X) = -e PG(Y)

Slmllarly, applylng tho Greﬂn’s 1denb1tf to the second term in
(2.2) we get '

S o, pax) 5 (e)ee = Jifiﬁe(x),zxjé(e)de
itell > = - - el 1

oo
e

= f pe(x) j (8)as - S p.x) D, ji(e)deo f4
oll =12 O Hotl=~ 2°°

where D, f 1s the dire ctional derivative of f 1in the dircc-
o

tion of the outer no mal to thﬂ surface of I[ell 2.1 i.e.

n, ==nj. Observe that D Jo(e) > 0 ror leli

g~

D, jo(e)::rO"forﬁf 19}@ =1" and nnl pe(X} = =D pglx)

1 . N n2
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for IIQ I] =1, Therefofe;-cqmbining (2.3) abd (2=é), we

have "
Al = FAI(e) Bglx)de = S po(x) Dy Jo(6)e <
| leH=1 o
since g&jo =0 . for {lell>1 and Hall < 1.

This completes the proof of the theorem, ' Qeiad,

Remark 2.4: We have used, in (2.3) and (2.4) of the above

proof, that 30(9) has directional derivatives at |]e]] = 1.
It can be shown that 1f the coefficients of the differcnti.l
opérator of an elliptic boﬁndary value problem are smoosh o
the closure of its domein (of definition) and if the bownda -
function is smooth, then any solution of the boundary valuc
problem has directional derivative, in the direction of the
outer normal, on the boundary. See, for a jprooi"3 Ladysheng'mye

and Uraltseva [1].

Remark 2.0 In the abore construction, we could use any

smooth superhérmonic function to obtain procedurss better than

8, so long as 1t gives risc to a generalized Bayes procedure.
It is interesting to note that the estimator 8. (x),

define& abové,'is.élsQfadmissible To see this;we‘app@allﬁp

Theorem 7.1 (or Theorem 2.3, the main thoorem) of Chapter IT
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- *
Clearly, Alog g*{x) = J%§T§7~ - i%%ré%illz <0 by ﬂhuortr

2.3 above., Moreover, the mea sure G is eawsily seen_to gatisty
the growth condition. po, it sufflccq to check the solvability

= N ¥
of BP II fgr- Lo =pAu + o z)

vu = 0. First observe that

is (8) = [I I‘m Times  for el Z L s Théfefore‘ G is.Sphericglly

symsctric:and it is easily checked that. gglr) = o ( H},_2)

where gﬁ(r) is  g*(|]x||)(Hers the angle (= TT—TT 15 sup-
pressed). Hence, it follows from section 8 of Chaptor T that,

BP IT is SOldelb for Lgu = O.- Therefore @G-ls admissitle.

Thus we have glven_ a method of constructing gencralized
Bayes minimax estimators,  The next two results are on the exis-
tence of proper Bayes mlnimaXx ustlmatows Strawderman (2]

showed that there do not ex1st gpherically symmctric proper
Bayes minimax estimators for m =3 or 4, We prove below
- there do not cxist proper Bayes minimax estimators of any kind

for m =3 or 4. Morcorer our proof is short and elegant.

Theorem 2.6 There do not exist proper Bayes minimex estima-

tors for dimension m = 3 or &.-
Proof:= Suppose there exists 2 flnite prior measure G suci '

that &g is minimax. Then we have R(@,‘Cb) £m¥e
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Moreover,

N 2 ' |
R€69q}) :1n+ikflli%§%§§l‘] H@(X)dx +-gcv[—Y§;%§% (X-Q)pa(x}dx

(2.5)
3 .
where ( = ~ . Now Integrating by parts we have
(2m)/2 ) ,
2
Iﬂ@,%ﬁivm =‘]C§%,flogg*hﬂpebO@XH +
ZQQQSnggﬂfm@i\dng‘ (2.6)
1o Yos last steyp e have Ve Sonvartz Anceoual)i by.
setting W(8) = ¢ [ log z*(x) ne(x) dx, (2.6) becomes .
g : N _ ek
2hye) + [I7y@)| <o rforall o (2.7)

_ ¥ 5 W ()
It follows from (2:7) that o is superharmonic
. ’ L 1 . . . ‘ :
But u‘e)-—TTéTﬁ;? is a hermonic function for {iel} > o
N > = !
Therefore, by maximum modulus principle,

teant C. > 0O

there existe 3 cong-
13

such that

é‘#” (&)

e |

ror llell 2

ELN

Hence, by Jensen’s_inequality, we have
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¢ [ e*(x) Pe(X) ax 2 Cl LHCHESES “aﬁlz(m-z) B
and | :m;; 3 ’ - ¢
CoC g oe¥(x) palx) dxde > 2 S - —57 de
B 11" e A A AT ol a0

The right side of (2.10) is infinity for m = 3 angd 4? which
inturn lmplies that [ g*(x)dx = « . This conbradicts that G

is a proper prior measure. Hence ‘the theorem. qie.d,

Strawderman [o] showed the existence of proper Bayes -
mnimax estimators for d:i.menSJ.on -m 2 5 He cons:l.dored estinatore
Bayes with respect to the prior probablb_ty measures glven by
-] 7\"'?«

QxﬁJNm(O, I(I:x)' )? <A<l and XN ‘has density =5 for

% < a < 1l. These Bayes estimators are of the form -

o NENE
x(1 - (222 . 2o

IELANE e PR EPE ”2/2 dx”

They belong to the class of minimex gstimators, constfucted

by Baranchik [1], which are of the type

X Q=Y G Il B2,

- Lo 2
wvhere 0 ¢ Y< 2 and Y is a nondecrcaging functionm of [=]1=.

We can give a very simple proof of the minimaxity of Baranchik
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type estimators, using Theeorem 2.1, without going into the

evaluaticon of thelr risk.

Assume to avold tochnical detalls, that )Y is a diffie-
rentiable funetion.(Note that & nondecreasing function is

differentiable almostjeveryQWhere)‘ e

%(X) = XD (W (@':2—?: 10% —l-l}—i—lg ))
X

»

Where  is such that Yy =-Y (Lllxllz)(r- 2) T 1‘2
Clearly,'the;estimator

| L {lm-2)
(x) - -1 1 (.2
X+ —YRX = x[1 - Y G x| —F5T1
i g o 2y TR
I ‘ i
We shall now prove that gg(x) is superharmonic

Agg(x) Ac:cp(l L;;((Iig-z—) log 1

1012,
. B @ :l.: f&...r.[l'a)‘; L“ m-2 L
(exp(z Y5522 log HXH2))( 5 1y( log ||X112)
+ LITpER 10g L 11 (2.5)

The quantity in the brackst of the right side of (2.5) can be

written as
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8 i lia) ' (= 2) Tog B2k FL] &
! = 2) dog g+ (= 2) 2os T4 T
"1“2_7”‘_;)’ ((1 2) log H - ll)ll (2“’,

- a ,
Uh s (1 D ———— angd 5 11t
e A allxu? *’”

put (Ll 1) = = ¥ (lixl]) 8220 iy D 7L -
X

.t .. =Ll Y (m'Z) Mg :
Il == 7 U1l D 82k y (11l D22

Therefore (2,6) is equal to

1 Y= D(m-2) _ (m-z)UPW)
BILE llxn?

L1 Oz D202 v
SR st £

-3 U= D2

Since 0 < Y< 2, it follows that. (2.7) is less than or cducl
to zero.. .This preves that g%(x) 1is superharmomic and hence
Baranéhik type. estimator is minimax. Finaily, 12 Y(||xl]) i
not given to be dlffCruntlablE 1ts mOHOtOﬂb naturc ansures

that Y(||x||) has der1ththS almost everywhere and hence

the abqve’argument gocs through.
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We have not becn successful in construéting_prOpér Bayes
mnimex estimators generally. IP is possible to construct, usi
subharmonic functions, Bayes procedures which aré minimax outsl
a compact set. A method of constructing such procedurcs is as
follows. Let 3i({|e]|]) e a non-negative function such that
Sitliet])as < « and jl/é(]lell) is superharmonic almost ever,
where, Moreover, assunc ié%%#g%%% = O(TT%TT). Note that such
superharmonic functions exist. Consider the Bayes estimator ¢
given by the finite measure G(de) = j{8)ds. It is not difficu
to show that 6G is minimaFfoutside a compact set., This is
achieved by showing gl/é(x), where glx) = j“g&x) G(de) is suy
harmonic outside a compact set. We shall not go inte the proot

of this result.

Next, we comsider the problem of constructing procedur. -

ot

which dominate a given inadmissiblc gencralized Bayes estim to .

Let F be a o=finite measure on Em such that f*(x) < oo,

Supposc the generalized estimator & given by F is inadmis-

¥
sivle, Then, by Theorem 2.3 of hapter II, the operator

L A ¢ O s
Lej = ilJ_*]ff?(ET vi (x) =0
has a nontrivial soclution in the exterior domain p: ]lxll "
satisfying the boundaryrgoﬁdition "3z =1 for Yixl| =1 and

jlx) <1 for |lz]] > 1. Let us denote this solution by jb(x)
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We can use thls solution to construct a procedure dominantiing

BF as follows.

By Theorem 2.1, -the iisk of bp can e written as

|k £k
R(G,GE,) ) +'Eeigi%£— - IIE%—I1 . Using this it can easily
be shown that an estimator § (X) X +'E§£§l is better than 6

1/2( ) " g{x)
f g* = 0. ‘A@@E&ling to*,thié*facta'we can immediatcly
L 1/2(X) |

prove the following theorem, Let 3, be as above and set

if L

Iglx) =1 ror 1lxll ¢ 1.

Theorem 2.3. Lét 6. Dbe inadmissible, Then, the estimator

B
75 ol %) £ (X))
s{x) given by &(x) = Q?%Q%E%%;éi% + x improves upon GE&X)

O
i.e. R(8, 8 < R{e, 6)) for all @

<

Proof'- Obsorva tbau ijb =" 0 almost]?verywhere wi th respect
_ L = PR o
to Lebesgue measure. Ihgreforej Lf(—?;—f)g 0 almost everywhere

This compLetes the proof, . L q.a.d

Remark 2.4: It is casily scen, from the abgve theorem that

one can use any smooth function j such that ij < 0 almost

everywhere to manufactd?é éh esﬁimétor petter than g

The ddminating procedurcs, given by the abow method, need
not in general be goncralized Baye's estimafops. Following a
suggestion of Brown [1]; we could consider the generaliged ¢

Bayes estimator 8. given by the measure G{(d8) = jO(G)F(ﬁe)
o5 & competitoy fer 5., Prown [1]

e
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conjectured that 8, 1s admissible and better than 5p We
have not beem able to prove this gonorally.l However, in the
spherically symmetric case, it is possi®tle to prove that BG’
constructed in the above mafner, is admissible if Alog F¥( <. “i
proof of this fact is not difficult and follows from the resuits o
section 8 of Chapter II. ¥We refrain fromrgiving proofs of such remih

since our results are not completec in this direction. We end

this section with the following simple resutt,

Theorem 2.5% Let @F be an inadmi ssible generalized Bayes

cstimator sach that f*l/é(x) is subharmonic. Then any gencrs-

lized Bayes estimator 8y, with g;g*l/é(x) £ 0, is better than

6F.

 Proofi~ Since f*l/é(x) is subharmonic, R(G,ﬁf) > e Therecfore,

1f &, 1s such that g*l/é(x) is superhermonic, RQB,QG)S mggBIEGGF}
q.ec d—._'-\._m* ‘,

OH Admissibility of Estimators

L4

In this section we givé scome applications baséd on the
characterization theorem of Chapter II. We observed tn the last
éhapter that the class of generalized Bayes estimators form a
complete class. Tﬁtrefore? in order to verify whether a given
estimator is admlssible we should know whether it is generalized
Bayes or not. Strawderman =nd Cohen L1] have given necessary
and sufficient conditions for an'estimator to be generalized-

% >) ~ -
¥ DRGSO

- o e o . . L ~ .. Py
Bowes, dn theunivariste.nose.and the &idtevaliation ¢opy S CVISIO


http://www.cvisiontech.com

[96]
We extend their results here and also study some properties of

shrinkers and exXpanders

3.1 Univariate and Spherically Symmetyic Estimators
- We are congldering spherically symmetric estimators anc ouic

dimensi onal, estimators in the some section because of the simila-

rity in their behaviour and treatment.

The following two results hawe been proved by Strawdermai

and Cohen [1].

Theorem 3,1.1¢! A one dimensional estimator 8(x) is gensrallucd

Bayes if and only if
i ‘ _ _
2
S e (8(y) -v) -}2-;| |X"'@" I

e © S e 7(@e) for all x

where F 1s a o-finite measure on E'.

o
165

a corollary to the above theorem, an alternate condl-
tion for one dimensional sstimator to be generalized Bayes can o

given as follows.

Theorem 3.1.2%1 -A one dimensional estimator 8(x) is generalized

X
Bayes if and only if exp L%;a(y)dyj is the moment generating

function of a probability measure, . = - “uQg" D L oLn

Using these twé theorems .and Theorem 7.1 of Chapter II
we can give necessary and sufficient conditions for an estimator
8(x) to be admissible, purely interms of 3(x). Recall that

Theorem 7.1:-of‘the previous chapter has one regularity condltion.
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That is Alog r*(x) < B¥X. In particular, if a one dlmen51ou@;

estimator o(x) is gencralized Bayes wvith respect to a measire ¥,

then the above condition is equivalent to  8'(x) <’B*~l=‘wher¢
| 6'(x) 1s the dérivative of 8(x). Thus-we have the following

theorenm.

Theorem 3.1.3% A one dimensiocnal estimator #(x) is admissible
- if the following conditions are satisfied
1) s(x) is‘generd_iZéd*Bayes

ii) &' (x) < B ¥ x

iii) jff L _dx= jrll;l;; adx = Ql
Ty e(x) e glx) .

| s f 8(y) - y)dy S B -
where g(X) S " ‘conversely, &(x) is admlsbible Only
if (1) ahd (ill) are satisfied.

Proof:_ Follows 1mmed1atcly from Theorems 1,1,1 and 7.l-of
Chapter II. -

\

A similar result holds in spherically symetrie ¢ase. The

following theorem has been proved by Strawderman and Cchen [1].

The orem 3,1.44';A'spherically-symmetric estimator s{x) =h(]lxzl|®)x

is. generallz@d Bayes if and only if

2 - L Ix- ol 2
5 fl =t (h(3)-1)ay = fe Z g F(a8). < = ¥x
g @ | | L

-
k)

for some spherically symmetric o-finite measnve T.
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We are now in a position to characterize admissible spheri=

cally symmetric estimators.

Thaorcm 3.1.5: A sphefically symmetric éstimator‘_s(x) =n(}ixliz

- 1s admissible if
= 1) us(x) is generalized Bayes
4i) Veslx) =hiv. s(x) < B ¥x .
dr = o
fl rm"'l glr)
: r2 ; .
where g(r) = exp E% S (a(y)-1)ayl. conversely, (i) and (iii)
o ‘ '

iii)

arc nece :ssary for 8 to be admissible.

# -

Proof:- Follows from, Theorem 3 1.4 and Theorem .1 of

Chapter II. o
: m
Remark: - The condition (11) V-G(X) a%; 6, (X) where: 6 (x)
\ él
is the ith component of the vector &= h([|xl|)x, is equivalent

to the assugptlon Alog £*(x) < B. Here £*(x) = g(|lx|{). so
we could have stated tho condltlon (i1) asalog g(|ixl]) < B in

a seerdngly dlfferent form.

In their paper Strawderman and Cohen have proved results
‘similar to THeovems3.1.3 and 3.1.5 using Brown’s theorem. Our

theorems are more gencral then theirs.
. |

They have studlud one dlmenSLonal ustlmators of the form |

5(x) = x + a(x) such that exp L j'ﬁ(y)dy] is the Laplace
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transform of a provability distribution function TF(8). Suck
estimators arc genvralized Bayes. We have the following, easily

provable result on such estimators.

Theorem 3.1.6: (%) is inadmissible if liminf o' (x) > 0 and
: ~ X=> 0

admissible if limsup ¢'(x) < 0.
K=> oo

Proofz= Firest, note that o1 (x} = H% a(x) exists, because 6(.)
1s generalized. Ba¥es: and &hkrdfors we o lises Bayes

* .
a(x) = ?—%Lzl , where £*(x) is the Weirrstrass transform of o

measure F. The coadition liminf «'(x) > O implies 3 ¢ > 0O
S Xmoeo

such that ar(x) > ¢ for all Largc X It is now easy to check

the inadmissibility by showing j’ dx < e, Similarly, the

f*(x)
other part is proved. - o) =Emldls

One can show the inadmissibility Of an estimator by proving thai
1t i1s not generalized Bayes. Strawderman and Cohen have shown

that the class of estimators §(x) = x ~ ax/(b+ XZ--), &> 0y B o®
ar¢ not admissiblc because they are not generalized Bayes. We have

vV -

nothing to add in this comection,

Je2 Non=Spherically symmetric Case

In the non-spherically symmetric case it is not easy to give
characterization of generalizcd Bayes estimators which involvs

easily verifiable conditions as in tho spherically symmetric cacs


http://www.cvisiontech.com

R

[100]
We consider in this section estimators of the form &(x) = n(x) x

where hi(x) : EO => Bl

Theorem 3.2.1: An estimator 6&(x) = h(x)x 1is generalized Baycs

if and only if there exists a o-finite measure F such that

| b > s liesl?
oxp b J “Qﬂ@q)'lﬁ<ﬁ]?.fegnx “cwwrvx'
X o S o L) ‘w (5 2y
¥ | 1=l |

Proofi- If (3.2 1) holds, differentiating with respect to X,
it is dasy to see that a(x) 1is geheralized Bayes. Conversely,
ir g(x) is generalized Bayes, then integration along the line

segments yields (3.2.1). | iy q.e d.

We can now state an easlly provable result regarding the
adrissibility of estimators of the form 8(x) =h(x)x. Assume thaf
n(x) ¢ 1+ ilgrl;ifor‘éOme'K. This assumption implies |

X .
sG] < Hxli +x

Theorem 5.2.2: An estimator &(x) = n{x)x isc admissible 1f

i) 8(x) 1is generalized Bayes
T [
1i) Alog g(x) < = where glx) =exp [ (b t,TT;TT)-l}tat
. ' o]
L L | stall et
iii) BPIT is solvable for Lgu = 2w g‘Vu 0

Conversely, 6(x) is admissible only if (i) and (iii) hold.
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Proof:;~ TFollowg immediately from Theorem 3.2 .1 and Theorer: Dl

&

of Chapter II.

- It is pogssible to construct estimaters which arce notb
generalized Bayes in spherically gymmeiric case. For example

estimators of the form 6(x) = X(1 = =S ) = xh(]| % ) where

=

b+ | x|]
a>0 ad b > 0 have non-removable gsingularities and hence
cannot be extended to the complex plane as an analytic function.
.* 1 42 N

If 8(x) were generalized Bayeg, exp Ig-f h(y)d;r] is a

0
Laplace trensform of a measure. Thig is a contradiction because
any Laplaoce tranctform is analytic in its domain of definition.
Therefore 6(x) is not generalized Bayes. Similarly one can show

PP - ! . - 2 =

that estimators of the form s{x) = X(1"E?I§ﬁ§§)’ where a > O,
b >0 and A¢ isa mxm pogitive definite matrix, are not

generalized Bayes because of non~removable singularitics.

3.3 Bxpanders and Shrinkers

We consider expanders and ghrinkers of gpecific form in fthils

section.

Definition 3.5.1» We define a one dimengional shrinker to be ax

estinator of the form §(x) = x - €(x)) where ¢€(x) > 0 for
x> 0 and €{x) <9 for x £ O.
We have the following fésult which is a generalization of a result

A1e to Stregwmdarman and Oohen.
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Theorém 3.3.2: Any shkinker §(x) such that 6'(x) < B is

admiggible i.e. Any shiinker 6(x) with bounded pogteriori miasl
E

is admissiblie.

Proof:~ ILet 6(x).- be.a generalized Bayes shrinker such that § -

iz bounded. To show that &(x) is aduissible; it suffices to

prove by virtue of Theorem 3.1.3

r

o0 1 -— O
f X' ) . dX:OO:f X1 dx (3'3 |
expl/ (5 (y)~y)ay] expfg (8(y)-y)dy]
0
"X :
It is eagy to see,from the defirition of a shrinker, J(@(y}»=fﬂ3§
X )
for any —= { x { = and heunce expl/ (6 (y) ~ y)ay. < 1« How, 5.5 1)
0
easily follows. Hence the theorem. 1 q.e.d.

We could define a shrinker to be an estimator &§(x) of thc
form §(x) = h(x).x where O h(x)<1. This definition is rore
restrictive than the Definition 3.3.1. However, this enables oac¢

to define shrinkers towarde a given point as given below-

Definition 3.3.3. An estimator §(x) 1is called a 'shrinker

towards x,' if 8(x) = h{x)x + {(1-h(x))x, where 0 hix) < 1.

We have the following result about shrinkers towards  x,

.',(.,

Theorem 3.3.4: Any generalized Bayes estimator &(x) which is

a shrinker towards x,. is admissible if &t(x) < B.
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Proof;~ It follows from a lemma of Strawderman and Cohen that 1
an estinator 51(y) is generzlized Bayes ér (and)'admisgkble,
then so is 61(y + g)—a for any-<oox _{@OQ(-OCLét, 10V, “5(}:) e :
generalived Bayes shrinker towards x, such that g'(x) < B. e ,
it 1s easy to gee, the estimator GE(X)’ given by

&Q(X) = g(x + %)= Xy0 1s a shrinker ir the sense of definitior
3.3+%1« Horeover Sg(X) { B. ¥Now, appeal to Theorem 3.3.2 &0

complete the proof. ‘ Q€ s

Next, we define an expander.

Definition 3.3.5- An estimator s(x) is called an expande:r .f

§(x) = h(x)x where h{x, > 1.

We could have, following Strawderman and Cohen, definec ar
expander té be an estimator of the form g(x) = x + €(x) where
€(x) >0 for x>0 and €(x) $@ X ifor! - xR 0. "I‘his definitioa
coincides with Definition 3.3.5ﬂ The following result is easily

proved using Theorenr 3.1.3.

Theorem 3.3.6: A generalized Bayes expander g(x) = x(1+¢(x)),

1y(x) > 0 sgsuch that § '(x) < B is admissible if and only if

f? ;- . ‘dﬁzf X1 5 0l (-5
explf wiyyayl 77 ewlS w(y)yay]
O O

As a corollarv to the above theorenm we have the following ragult



http://www.cvisiontech.com

[10%]
the proof of which follows'easily,

Corollary 3.3.7: A generalized Bayes expahger of the form

8(x) = h{x)x {s inadmissible if 1liminf hi{x) > 1.
=z T

Remark 3.5.8; WNote that the proof of fthe necessary part of
Theocrem 3+.%.6 does not require the assumption &'(x) < 3. Ve

have stated.the theorem in that form- for, convenilepnce. .

There do exist meny expanders which are admissible.
Strawderman and Cohen have given an example of an eipander which
is admissible. Indeed, one could construct a plthora of admigﬁible
éxpanders using Theoren 3.5.6;- For exanple estimators given .V
the improper prior measure with density Q%é@l =1 + TéTTR o

6> 1 and =1 for lel< 1, where k3 1 ave easily veri-

fied to be admissible expanderss

‘JHFinally, we haﬁe the following two regults on shrinkers and
éxpanders in the genersl case. We define an estimator
§(x) = hh(x).x to be a shrinker if a r(x) < 1 and an expender

if h(x) > 1.

Theorem 3.3 .9; A generalized Bayes shrinker g (x) = h(x).x such

that x7hi(x) < B is admigsible if

Hxll2alx) = 1) < (2-m) + Y Cll=ll)  for || x{j> m> 0 (3.3-2]
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where Y (|ix||) is a dinifunction and ¥ is a constant.

Proof:- It suffices to check +the conditions &f the main charuc-
terization theéfém of Chéfter II, because (3+5.2) implies that
BPIT 1is solvable. Clearly, §(x), being shrinker,. satisfies the
growth condition e ()l ¢ lxtl+ k. Tnaeed, [ig(x) 1< ||x]]-
It is now easy to check that the condition A log £*(x) is
bounded is equivaient to xVia(x) is bounded. Hence, tﬁé

theorem follows from the main K theorem of Chapter II. g€ Qs

Remark %45 .10:  This result isg comparsble to a thedrem of Cohen (1

which gives a sufficient condition for the adnigegibility of an
estimator of the form §(x) = Ax where A is a nxm matrix,
A part of Cohen’s result follows from the abové theorem. However,

we would prove Cohen’s regult.

Theorem 5.5.10:; Completely in the next section where we congider

co-ordinatewise co-ordinate estimation.

OUn generalized Bayes expanders we have the following inad-

misgibility result. | _ | =

Theorem 3.3.11: A generalized Bayes expander §(x) = h(x).x in

inadnigsible if

= (atx) = 1) 2 (2 =n) + Y (|[x]|) for large || x| -
I Lo d (?5-;-31

A
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where Y (|| x]|]) is not a Dini function.
Proof;~ Follows immediately from Theorem 8.2.1 of Chapter 7.

Tt is well-knowp ?hat,a generaliged Bayes estimator GW{X}
is Bayes if and_only st ~aff f*(x)d:{<Am. .Strawderman‘and Cohen
have given sufficieﬂf coaditiogs for a generalizedsBayés spheriw-
cally symmetric estimator &(x) = n(i|x|[)x to 5e‘Bayes interms
of h(llxll). We can easily extend their results to the estimg~
tors of the form 6(x) = h(x).x. However, we do not pause here

10 do so.

We end this section with a comment on the admisgsibility of
estimators of the form

§(x) = T hix - XO)(X -~ Xb) | (3.3 44

. where x, 1is fixed. It is easy to show that an estimator. '6(x)
i admissible or generalized Bayes if and only if the estimator
BS(X) = Ga+ 8(x™ 2) Tis admissible or generalized Bayes. Indeed,
if &(x) ids generalized Bayes with respect to 7(8) then &é(y;
is generalized Bayes.with';espect‘to F(&+a), the translate of
F(e). Uéing‘this fact and the previoug results of this secticn,
one can easily give gufficient and necessary conditions, in terus

of n(y), for the estimator of the type (3.3.4) to be_a@missible-
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.

The problem of coordinate by coordinate estinmtion can

explained, succinctly ag follows. SuUppoge we have +two norm-l
3 .

populationg with direngions my o and

152’ regpectively. ILe=x
X = (Zyyene, Xm1> and y = (y1""’yﬁ2) b

e the obgervation iro
the two populations. Further, suppose qi(x) and 65(y) are aduie-
gible estimators of the mean vectors of the two populations

regpectively . We want to gtndy the admisgibility of 6==(61,69}_
ag an estimator of the mean of (m1+ mg);dimensional problemn.

£ 4 ) L ) i . = g
(Mote that the loge Ffunction is quadratic.)

* - - kl
Brown [1] congidered tnis problem and showed that there

.

exists a one dimensional generalized Bayes egstimator 6§ on F

such that the estbimator 6(m) on Em, defined by
a(m) =) (5(x1),---,5(x%)), ilg admigsible. He also proved a ver-

(=1

gicn of the following result.

: - m
Theorem 4.1: Tet 5, be any admisgible estimator on E T ea
m
te any proper Bayes cstimator on E 2- Then, the egtimator 3
m, +
1 i
on R s given by 5(X1""’Xm1’ y1if--:yﬁ2) =

(51(}{1""’%1)’ 65(Yqsever¥y ))y is admissible.

2

Proof;~ The proof is similar to the one givén by Brown and

we omit it.
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Az a corollary to Theorem 4.1, as mentioned in gectiorn 2
we have the following result of Cohen [1]. Tet ¥ be a dinen~

gional randoml variable with mean . Let 4 be mxm matiix.

Corollary 4.2, The estimator &(x) = Ax 1is admissible if 4 i
aymmetric and the charaoterisyic rcots of A, say ayo satigfy,

g <ay &1, with equality at one for at most two of the roots.

Proof; T[irst observe that Ax ig admissible if and only if
(P'AP)x is admigsible for any orthogonal mxn matrix P. £o,
without loss of generality, we assume 4 Is a diagonal matrix

with (a1,..., a ) as the diagonal elements. If all the d.zuo-
nal elements B9 ry s aTe strictly less than one, it ig e2:ily
checked that the sstimator Ax 1s Bayes with regpect to the

prior (proper) given by

1~a,
i 2
P T
a1z im0 \
g —) e a8, -...a8 - (41}
i=d 2/
and hence admisgible. Now, asgune ay = 1, a, = 1 and &y <1

for 1 > 2. The cage, when only one characteristic root is
equal to 1 ig similar. Clearly, the estimator S(X) ig given
by GX1,x2,a3X3,...,amxm). We, now write 6(x) as (64(x1,X2),

SZ(XBQ---,)%H))S 1.-'.7.1:lere 51‘(}{1?}{2) :(X1,X2) a.rld 62(X3,-.-}(m) =
(aBXB""’ame)' Now, 51(X1’X2) ig admiseible on ‘

E2(i:a.m1::2) ard Qz is Bayes with respect to a finite measure
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Finilar to (4.1) on Em2 (ie m, = m-2 ). Therefore, by Theoren
I . N R o . . It
41, 8(x) 1s admigsible on E « This completes the proof ol
the corollary.

perark 4.3; The fact that i all ai’s are legs than 1, fther
ig Bayes with respect to the prior (4.1) is due to Cohen.

Secondly,note that if any ay iz mero, then the marginal prior

puts all the mass at ei = O

Terark 4.+4; The converse of Corollary 4.2 is also true.

s

is, 4x is admissible only it -A ig gymmetric and itg el
valaeg lie in the interval {O,1j- Thig hag been proved by Coien
Fe has ghown that 1f A ig not gymuet¢1c then Ax is not ge
iized Bayes and hence, not admissible. If A lg gymueiric Bt
its eigen valueg do not lie in [O,i], then it follows from

| ccotion 8 of Chapter IT that Ax is inadmiseillc.

Pinally, we congider the following problen poged by Brovm i1

. Ls =5l y ; A
Ig there an esgtimator 63 on ¥ which is noet genuine Bayes =

. p ’ , -1 , [ 8
' that for any adnissible egtimator 63 on » The estimator

' 2 Tile— 1 5
Slxy,y) = (6?(X}, ssky)), where %€ I 1y£ E, is admissible?

Ve anawer this question, below, under some conditlons

N ; L= . .
Tiet 6? be any admisggible estimator on K satlsfyin

the conditions (2.12) of Chapter II. Let T' be the meagure 01

Em"‘I with respect to which &, ig generalized Bayes. Then
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ﬁglog (x) <B and o, (x)li £ jix(i+ ¥ for some congbmts 5
) RN

iy
e V% (x .
and K. Assume x =ﬁ*( { (2 - m~T) outside a compact set i:
I~ 3 . s il
kD) . We s%a 1 exhibit aﬂ estimator '3\3) on E guch that
11 I

(& (x), 53(y) ig admissible. Let & be a measure on BT wik

s

continuously differentiable density g(8) given by

cg(e) = 1 for (87 < (1 + ¢)
= zat——  for 8> {1+ c)
g log & - N
Er “%u~ for 8 < = {1 + ¢)
e
where c ig & positive constant. C(learly, the measure ¢ ig
7 £ e -7\7 _,__1_,,_“, = oo - = (.\
not finite since W 5 Tos B des= . Let g*(f) Jpe(JJJ( 2y
&> (1+c)

Tt follows from a resvlt of Brown b1J { Tenma 3.4}1)‘ 1V log gr iy

ig bounded since {7 log g(8)] is bounded. Therefeore, Lilog o*{y)

iz bounded. Moreover, integrating by paris one can show that
Uy ox i _ a !
y Lg%?é < =1 for all large y yE€ rd. (4 .27
[ :

1

Let Qs(y) be the generalized Layes estimator with respect to .

Then +the egtimator &(x,y) = (Q%<X>; 53(y)) x€ B2 g BY i

in

generaliged Bayes with respect to the measure H = FX& on E .
Also, h*(x, y) = {(x).g*(y). We shall now show that & (x,7)

satisfies the conditions (2.12) of Chapter II. It is easy to
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see that Alog W*(x,y) = A log £{x).g*(y). is bounded sirce

4!

Alog M(x) < B and plog g¥(y) is bounded. It remaing o

verify  |jp(x,¥)j] i]l(x,y)fi + 4qp for same K, > Q. But thi.

follows easily from the assumption that ‘“52(x)i] < H= -+

and (4+2). Therefore, to prove the adwulssibility of &(x,y. +°

gaifices, By Theorem 2.3 of Chapter II, to show that BP Iv -,
V h*(x

solvable for the equation T,u = Au + = Vu= 0. To

pal h# X ¥

see thig, observe that

(z,y) LI(xy) o T £(x) ¥ ey —FEN .a Lind
(Fe ¥, E’i*{'f,y ,_.- X i + ¥ W} S_ (2 2R T) i b el

outside a compact set. The above atep follows ffom our agmrh |~

¢
tion x -E?§T§§l = (2~m=1) and (4.2). Therefore, by Theos.

8.2+1 of Chapfer II, BPII is solvable for L, = O and hence

8(x, ¥v) ig admissible.
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CEAFYPTER IV

ADMIgSIBLE BSTIMATORS OF THE NATURAL PARAMETER
0F EXPCiiEITIAL DISTRI3UTION

§ 0. Introcuetion and Summery

The main theme of this chapter is a generalization of
fhe results of Chapter II tc exponentisl fawily under.sowme
conditions. Ve show that the method adopted by Brown {1], to
characterize the a@m?ssible estimetors in the normal set up, can
be extended to the problem of estimating the natural parameter
of an expcnential family under guadratic loss function. The
menbers ¢f the exponential. family we consider are Weirstrass
transforms of & ¢-Tfinite measure absolutely continuous with
respect to mdirensional Lebesgue measure. Ve prove & result
which characterizes admissibility of generaiizéﬁ Bayes estimators
in terms of the solﬁability of an exterior Boundary Value Frobiei.
The proofs of most of the results are siﬁilar to that of Chapter
11, So our exposition, in this chapters is not in detail.
However, if a proof involved soze modifications we have spelt

it out clearly.

This chapter contains four secticns. The first gives tie
netations., We have adopted here the notations of Chapter If
mostly. In seetion 2 we pose the problem. Section 3 centains
the main characterizaticen theoren along with other technieal

results which are needei to prove it. IncBection 4 we give

pOLY (.-J.y“b_;-la:tu.l.@;.xu .i.‘.'s.\-‘-u&;ul,l\.»‘-ku',.u, CkiaandiiivSa
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§ 1. Hotation

Let |y be a o-finite measure on 7 with density afx)

with respect 1o tqe m Gimensional Lelesgue measure. Let

-5 e’ '
@:{ & Je alx)éx < 6df . X denotes a random variablo,

)

taking values in & . Assume A is distributed according Yo

2

Lebesgue meapure iag given by

=i

the probability measure F, whose density with respect to the

(-~) e

where & a@ and B(8) is the riormalizing‘function glven by

“alx) - ace [ax] W oL T 1)

gh el ux-eif’ e e e o

~ = [ e (X)d X. We shall denote e by poli.
B(<) '
Chserve thz et the I:Lully ?e_ is an exp_pndntialuf-amily dominatol

kN

by Lebesgue measure. It is also well known that Q-is a couve

e

¥ m ° L
subset of B . - We assume Q = i throughout this chapter. Loo

§ = (51,...,5 ) denoto an eotl,:aate of & = -9-1,...,9 Yoo Yo

taze the l9gs functlo‘ﬁ L(-@-, 8) to be ouaﬁratlc i.e.

L{&, 6) = [lg=s 6“2} Mg -:gilsk fﬁhction--—o:«f 8 1d denoted v
A(e48). As usual, the gemeralized Bayes estimator of & witl
respect to a o—-finite measure F on _Em, if it existsy 1s ;. o2r

by
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I e py(x) B(B)F(de)
¥ pg(x) B(O)F(dE)

GF(X} = 2e . [q(x) dg] uy L.

Let f*(x) = f:pé(x).ﬁ(g) F(d8). Then ﬁF(g) is given by

x i T %)

Let K, denote the closed convex-hull of the support of F
&
and let d(x)s w(x) be as defined in Chapber II.
] i

§ 2. D6 Bagic Prob

We are,intereeted inlstudying the“admiss;bility of egtima-
tors of the natural parameter ® ~under the losg function L(&s 8.
Since the loss functlon 1s convex we can ceeflne our study to noli-
randomized estlmators. Moreovery it follows from Theorem's.l 0, -
Bown [1]s that every admissible estlmator is’ generalized Bayes “n

the set up of thls chapter. "Thus

Theorem Zel I?uﬂar is ankadmissible eetimator for &  then "
there exists a o-finite measure F on E™ such that
6(x) = 6,(x) ases [glx)dx].

The proof of Theorem 2e1 1is similar to that of Brown's.
Indeed, the above theorem (Theorem 2.1) can be generalized to
the case where 4 dis an erbitrary g~finite measurees The proof

Ny
[E I
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of this general result involves a minor modification of the
argument given by Brown [1].

In view of Theoraem 2.1y it suffices té congider generslized
Bayes estimators for our study. Using Stein-Farrell Theorem
(Theorem 262, Chapter II), we have that a gencralized Bayes egti-
wator & isiadmissible i and.ohly if there exists a sequence

of finite measures Gn with compact supports spch that

(1) GQ(SO)f;_l ?or n.x1 g A CE Y201
(11) 1inm ’(R(@:GF)—R(QaBG )G, (d88)= Ile(x)—aG (x| g () alx) =
N =3 OO )
(3. 22

By a computation similer to that in Section 2 of Chapter

wWe can snow

J(R(&y6

F)ua(eaaGn))Gngqa) = 5 Vb @[ =) qu)dx,' (2.2)

gx(x)
where h (x) = §§T“T » Moreovery it follows by an argument

similar to that in Chaptey 1T

“ * :
h (xj = §%éxi) 1 for x| <1 ' (2.4)

and by Theorem 2;8‘of26hépﬁer‘II (Lemma 3.5¢1 of Brown [1])
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lim sUp h (x) = © r
e Jx 8 opft ; l[:al[_‘"}

Tmm§Wehwea51nnmmd.%bap

I(R(Q:GF)"R(@v G, MG, (d@) 3 ﬁﬂ? Il VJ(X)[F f*(xj q(x)dx (2.6)
| je

where J is thé clags of functions as defined in section € of
Chapter II isece J consists of piecewise differentiable func-

tions satisfyingr

(1) =) 21 for Jxllg 1

(2.7
(G0 PR (I U R S N R o ixy=02 . . .

r”%°° fx v ek [lx]pry

Therefore; 5 is inadmlssible if the right side of (2.86) 1is
positive. We shall prove,in the next gections that the conversc
holds under some conditions.

The purpose of this-chépter, aé already ﬁentibhed-in %he
introductions is to show that the method suggested by‘Brown [¢]
to study the admlsslblllty of generallzed Bayes estlmators in
the normal set up can be extended to exponential family and we_
can obtain a sufficient\cpn@ition.for admissibilitY_‘through
the exterior boundary value problem suggesfeci by the calcuiixs

of variation problem = -
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inf £ | TIG P (0 o(x) dx. (2.8)
JedJ

We have already gaen in Chaptef I that the sbove calculus
of variation prohlem is felated to an exterior boundary valuc
problen. We proved that (2+8) i1s zero if and only if BP II isg

' e vV q(x)
: ol s 670 NS o - E
solvable for Lou = fAu + ( %) + e ) Vu =0 pI‘QVlded

a(x). is continuously differentiable. In the next section we

link the solvability of BP II for IL. with admissibility o

iy
GF under goms conditions. '

8 3. Main Theorem

In this section we prove that &, 1s admissible of BF I

F
is solvable. Before we state the theorem we list our assumpiicic.

Assumptions «

(1) q(x) is ﬁbsitiveycontinuously differentiable,
a . Vq(x) B
and gy 1< By
o =y ;-
an) (R < By for xe Ky«

Thooren 31 (Main Theoren)

A necessary condition for an estimator u-dF to be admfesibla

is that there exist a nomnnegative measure F on ' such that
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P(x) = £ pg(x) B(O) F(A8) <6 and 8 = 6,(x) almost

everywhere (with respect to Lebesgue measure). Furthermore

(A} If BPI : o TERLxY - W)
: LD ik ) 1 Lf“'ﬂL‘+{ 7 T @

then SF ig 1nadm1ssibie.

(B) If BpP IT is solvablic for Lf 0 and assumptlons %

and I hold fthen SF is adm1531ble.

A part of the theorem has already been proved. In section 2 w.
observed that if 6 is admissible then & 1is generalized Bay.g
with respect to a o-finite measure Fo Alsoy if BP II is nob
solvable for L, u =0 then (2.8) is positive and hence 5y
is inadmissiblecs Therefore it remains to prove (B). We shall
give a proof of it after proving some technical?resultSm Tho
1eﬁmas that follow are analogous to the technical results given
in Chapter II (8ection 4) and therefore we shall avoid details

wherever possible. We assumes; in what followss that (I) and

(II) hold. = X B i

The first lemma is due to Brown [1].

! (emma 32,12
Given a constant Kl there exists a 0 < K2 < oo such

that for all X Q e B
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& ltx—ell R
g (x) £ K, Ji i(x) dE (3.1}

g Jl<e: +l
Proof + See Brown [1].
The next lemma has been proved Section 4 Chapter IT.

Lemma 3«3  Under assumption (II) there exists a congtant
K% (depending only on -52 and m) such that
p(x) p(8) F(de)

J
o lelkr |
inf - . N i 5
el S opg(x) 8(6) F(de) o

for a1l sufficiently 1argu To
Proof q it follows from Lhoovems 31 ahd 3«3 of Chaptcr 11
that A log £%(x) < By and |opf{0) || g Ix|| + X for all x e E
where BB .and X are coné%ants which depend only on B2 and
me NOWs éppeal to Lemma 4.1 of Chapter II to complete the

prOOfo q.OCEQ

Lemma 3.4 There exist constonts = Kg and X,y (depending on’y

on - Bl gnd Wm) such that

S(u (9)—11- (x)) pg(x)q(x)dy <Kgd [T (x) llgpg*_g(x)q(x)dgdx
| llg Ik 41

where u ig aplecewise differentiable function.

(o
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' A i q{x) Bll[x-G\[[
Proof «» It follows from assumption I, E@T LK e
Therefore, ‘
el 1II %8 |
S(u (8)-u_ (x)) ng(x)q(x)dx < K5qCX) ¢ (9)-u (x))pg(x)e - Cx
(3+4)

Hencesy by lemma 3.2 we have

WY ow )

£ (@)-u (1), () a8 < < LK@ (@) (0?

o, "E’Eplfl e

| X Pgyr (%) A dx
- (365
where K6 :LS a constant dependlnrf only on Bye Nowsy it follorr:

from a lemma of Brown [Lemma 545433 Brown [l]),

f(u (G)—u (X)ng,*_g(X)dX_ﬁK7f £ e (x) [|2
nnu@ 3
Sl ‘ - J‘ . '(3.03

where Ko is a constant depending only on B1. Therefores .-

tm-l p@-t—&i—'i(y) ke

comblnlng (3.4),(3 5) and (3¢6), we have .|

_J'(u (93--11 (x) pg(x)q(x)dx 5 » e
ixa@s s f )IF )
el ‘nnns;mafs i

&
X Posrin (x)dndgdx
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Now fixing £ and 7 and using an argument similar to that

in Lemma 4«4 of Chapter II we have

<Ky £ u @IP ppn(0) ax

(3.8)
In_obtaining (3+8) we also use the fact JE[ < By + 1,
il < 28 + 3.7 sl
Therefore,
Su (G)-gA(X))Z palx)a(x)dx  Hge Ky q@) & 4 o T %

gl Iplkesy e

(x) a7 dE dx

| *Porgsn (345)
and using the assumption (I) again.we have
Fu (0)-u, ) py(a(dx § Kgekg & & F e P
S, lElkB el Inligs e
By lho]
& = ‘po_i_&}m(x) q(x)dndgdzx
: (3.103
S SKip _ y I ! v () ﬂ2p (xis
- lelBo+L llem 3 [w [y Orger

X g{x)dANdEd v dx.

“SOMPIE
\eewd
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Nows using the inequality

~Slr-orgrn 4 [ Sl -0 liCJE e Ik v D
Porgimey () = © ° ¢

we have

llx~0{|(4B,+5)
(3011) £ KlO 13 $ W u, (=) I& (%) © dx (50242
where Kll =( dE)S. (3+3) now follows from (3(12) and

1§ [k=B+3
Lemma 3«2. This completes the proof.

Then next result is essentially contained in Lemma 5.0+
of Brown[ 1]« The proof that is given is a minor modificatio-

of the proof given by Brown.

Lemma 3.5 ¢ Suppose BP II.is solvable for L. u = O. Then {1 o

exists a measure Iy such that sup Ig;£;§?1“ <Bg and BP II
Xe
_ v fg(x) 7 q({x)
is solvable for “Lfi u = Au +( ff(x) + ne) Y Vus= 0.
) ”(Bl+l)d(g) ‘ '
Proof ¢ Define Fq = F+ (8 e de. TFollowing

the same argument as in Brown [1]s it is easy to check that

v (%)
e ot B B i _ )
3 (x) Ih< 33 DS ?3 iz a constant depending only on
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"5

It remains to PTOVE. that BP IT1is solvqble i‘or Lfiu = 0 We
shall show thigy in view 6f Theorem 8-1 of (‘hapter I, by pI‘OVlﬂg
that f‘or each &4 > 0 there exists a plecew:n.se dlfferentlabln

function, .] 1 s sati si‘ylﬁg

7y
A

Jl(x) 21 ror falg1 a3

lin  su Jl(x)“ =k L (36;14-5
r—200 |x|Fr  oF ' by
SV S [P £, a(x) ax <&y (3415)

8ince BP II isg soivable,‘ glven e > O there.. istan R > 0 and

a piecewise differentiable‘fdnction J satisfying

=0 for il 2 AP
) ll j €x) ll2 f.*(x) Jalx) dx < e . T die

Let X' = {x :' d(x) £ 1} and wl(x) ube the“p_rojection_ of x onto
kY, ILet d (’X) = [{:c?#rrl(x) o Since the mapping  x-> (wl(-x).,dl(x))
one to one we can transform the varlables in the integral (3. 16)
to get ‘ A,

oL R R [V;](x) Peeamax = ¢ i (wladl)“
_ l<d(x)<2 0<c‘t1<l '

X ™ (x” ('n'ladl))q(x ('”'l’dl) ><

o~
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where Jl is the Jacobian and dwl is the appropriate sufacc
measure on the boundary of K;. Moreovers 1 < J g'dm"1=(1+dl)m“l.
Thereforé, it follows from (3.17). thab %h@re_is By 1 £ B X2
such that ‘ '

Rl Vj(x“l(wlsB)IF f*(x”lxwlyﬁ)) qfx"I(wlsﬁ)) dry £ & (3418)

With B as aboves consider 7P and et ﬁﬁ(ij be the projection

on kP and dg(x} = Jry(x) = xlls Define
J1(x) = j(vﬁ(x))- exé(—«d@(x)) (3419)

where &« > 0 is to be chosen later. Plainly, 31 satisfies

the conditions (3.13) and (3.14). Write

I3, @ [Pt qx)ax = 5 I I £ Gdatoax
K

+0 T ®IF @qxax (3.20)
Rl

It followss by an argument similar to the one given by Brown [1].
o b
‘that (
5T P () g0 dx S Ky e (3+21)

where K2 iis*a econstant (depending only'oh Bl, B2 and m).
For the second integral on the right of (3+20) we have by changing

variables
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& RT3 g almax
g"xP
- ;’ TSR, LRI, Lt N et I O
gﬁm[lwl(x (wgrd )71 (x “rprdg) )l rgag))
%Jg(ﬁéydﬁ) d‘n‘B ddﬁ ig.823

Where‘“Jg .1s the Jacobian anﬁ"'Jg < (dﬁ+1)m“lg Moreovers it

can be shown (sce Brown [1]) that
| o (Pt A .

P =% - o} x

N7 [vi@fle P o+ 3G (x)) e 8 (3e23)

Nows note that ff(x) = *(x) + 0*(x) where

4C81+1)d(9)

P (x) = & pg(x) ©*(r(8)) e de. It follows by~a-resu1t

of Brown (Lemma 3e¢led, [l]) that
dg(x)
*(x) £ exp(~- —5) f*(vﬁ(x))-

Furthermores a result of Brown (Lemma 3e4el, [1]) implies

| ~(B,+1}d (x) ~(Bo+1)d,(
0(x) g (exp B2 + 2V3) per(z) & L < Bty ool
S | 'ﬁ*(wﬁ(x))

Wwhere € is a constant depending on B and m.

Hence there 1s a constant Cq such that

u(BI+l)dB(X)

f{(X) _ﬁ_ Cl « G fk(wﬁ(X))- (3.24:)
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Moreovers by assumption (I) we have

-, Bag(®
a(x) g e q(m (x)) (3.25)

Thereforey it follows from (3.23), (3¢24) and (3.25)

P jlci) 1% () a(x)ax
ERxP

- = S 3 “5

5 P f*(wﬁ)q(wﬁ)(dﬁ+l)m—ldw

pddg
n(l+00dﬁ , 1.
+ G S S 3Gr,) e () qlr,) (A +1) " dr

B

gdd,

 (3.26)
By (8117) the first integrsl in the first term on the right or
(3426) 1g less than &. On the other hand, since j(x) = O for

Hxﬂ:g Rs the second integral is finite and bounded by an absoliute

constante

Therefore; for « gufliciently small

(B 31(x) e % (x) q(x)dx ds-so-
Em-Kﬁ b

This comples the proof of the lemma. ‘ d
. . Jqec als
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, Lemma 3.6 Let {u k be a SOQUOHCb of fUHCthﬂs Satlszln?

L

=0 for 1< “X“ < 1y un =1 for HXH<13 = g,

flun
<l = n ywhere 1 >e >0, and u =0 for [x|| > n.

r

"Then there exists a constanL ¢L”~(depund1ng ‘on - sJ‘Bg-and 1)

guch that

Ju_(8) pa(x) B(8) F(48)
ing o Pl s K

% fxliny TPelx) B(6) F(A8)

for all sufficiently large n.
Proof o Similar to CorolLsry .2 of Chabter II.

We now come to the preol of the main theorem.; Thes -
argumentiiy similar.to that of mein theorem of Chapter IT and

we shall not go into details. \

Proof of Theorem 3}1 '

Let BP II be solvable for L Au +CE"£#+ *—“)Vu = Ow

,‘Theng by Lemma 3. 5, BP II is 307vable for Lpu = 0. Thereforea
: 1

we have a soquence of 1“urlc:tlor1s {u k satlsfylng L Ty = 0
‘ 1
for 1< lku <ns w, =1 for x|l < 1, u, = e  for
lxll=n (0 <&, <1) and u =0 for |kl >n Let G} be
. & sequence. of fipite measures defined by G (de)=u (@) F(de).

We shall show that
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Tim I(R(Q,SF) - R(&36, )) Gn(dg) = § : e (3.27)
13 0O n .

It follows from section 2

| (g¥(x |
J(R(_@,aF)—R(g,sgn))Gn(d@)zfll-xc\(fg%;;“)’llg-éﬁ(x)}f*(};)_ I*(x)fq(x)dx

(3.28)
Therefore, to show (3.27) it suffices to prove
Lin  § llwf,,c(x))n SRy 09 aldex - (2+29)
222 Jilin
| i
gx(x) 2 S o o . , f '
1im J H.V(“%;ng) e £ (x)q(x)dx = 0 : . (8.30)
A3 b | ,

Consider (3.29). It follows from Lemma 3+6 that there exists

a congtant Cl such that

2% (x) o
I <n e - :
g*(x) o fﬂ‘ '
<¢ T G M aldax (3.31) -
el
Nows by lemma 3«4 we have
(3e31) £ C, | v un(X)||2 J *(x+ E) df qg(x)dx (3.32)

b |kn e llkcot1
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gince *{x) < f{(x),_ where fﬁ(x) is given by the measure

F, defined in Lemma 3454
(3.31) g C, I H’Vun(x)u2 J ¥ (x + g)dg  q(x)dx
lxlkn  lEjkegrl ,
<oy & 1 Vu P HG a@) ax (3.33)
[lx|in | 't

' - ‘ > = Ui f*tx)
T Y 3 +he ot n_méLﬁ——
The Stﬁp‘QB'BS?,fOlIOWS from the fact that | () | < By
(3+29) now follows from (3.33) and' the solvability of BP IT

for L.u = O Therefore it romning to prove (3+30). This"

¥
followsg along the same lines as given in the proof of tie“
- B el
main theorem of Chapter II if we observe a(x) = (e L  J°

The latter fact is easily seén to follow from assumption (I).

This completes the proof of the theorem.
q‘eod.

§ 4. Applications and General Comments PR S

In this section we consider, briefly, some statistical
applications of the maiii theorer of this chapter.

The problem.of characterizing generalized Bayes estimstors

- ot Pl i . .
of the natural parameter under quadratic loss functions in

exponential families has been studied by Strawderman [5]. He
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has obtained necessary and sulficient conditions for a givel
estimator to be generalized Ba yes. The results arc qguite
analogous to that in the normal set up (See Sbtrawderman and

Cchen [1]). We have nothing to add to this.

Using our main ﬁheorﬂm of tﬁis*ohépter'We caﬂ 1ist5mﬂny
crlterla (as we have shown i SthlOH 8y uhapten Il), for the
admlsslblllty of a glVen generalized Bayes estimator SF’
through f*(x)lq(x). indeedy; all the results of scction 8;
Chapter Ilﬁxcan,bejs?ated and proved in the set up of fhis
chapter (OF couﬁse; under the assumptions (I)andtII)).f The
proofs ére similar. Wé give below arcouple of regultg o§

that sprtp

‘lThe first result is in spherically symmetric cases.
AsSume'the‘iensityr q(x) and the measure F :ére'spherically
symmetrics
Theoren 4;1 Y Under the assumptions (I) ahd (I7)y a neceggsary

and sufficient condition for &y Yo be admissible ig

‘ - zdr =o0 .. (441)
o *(r) alr) r@" ‘ '

Proof 2"N5te that (4.1) implies that BP 1T is solvable for
LART) “4(_" anfil‘ corvarsely., How apneal to Theorem 3.1l.

%
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Benmark 4.2 « Observe that assumptions (I) and (II) are not

needed for the necessary part.
The next theorem is Tor the general case.

Theorem 4.3_: Assume (I) and (II). Then a sufficient condici

for 5p to be admissible is

s R L) PR 3 ey 4.
X "'m -+ o 92
7(x) q(x) = N

for all sufficiently large |lxjjy where & is a dinji function.

Proof +  (4+2) implies that BP II is solvable for L

Leu = O.

and hence the theorenme.

" We can also consider the problems treated in sectiong
3 and 4 of Chapter III in this set up. 8ince the results ave
analogous and the proofs are similar to that in the normal

set ups we do not pause here to do so.

Finally, one can give a lot of examples of exponentiai
distributions which satisfy the conditions of this chapter.
For example, q(x) = ”X“R: or e“xll. The class of exponential
distributions, we consider in this chapter, though fairly rich,
doeg not cover alle There are many exponential distributions
which do notlsatisfy our conditionsf We do not know how to

prove a result similar to Theorem 8.1 in such cases.
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CHAPTIZR Y

i

A SUFFICIENT CONDITION FOR ATMOST * -* . .«
1 ATHISSIBILITY OF ESTIMATORS

§0. Introduction and Summary

We present in this ohépterf gsone gufficient conditiong ‘o
almost admisgibility of generalized Bayes estimators, under cun~
dratic logs function inaterms,offsolvabilit§ of an exterior
bbundarysvalue problem. Uging a theprém of Stein [6], on alwoss
qulSulbllltj of an estimator, Zidek [1]-obtained a gufficient
condition for almost admissibiiity for dimensioh m = 1 by rela~
ting 1t to a one dimersional calculug of aTlutIOF probleu- Ve
genex al&ze his result to arbitrary dimension under some condit o -.

We have also generalized, under some condltlons, a regult of

Karlin for exponential family to m dimensions.

This chapter cbﬁfaiﬁs tﬁree sections;_ Section 1 is on
basic notatlons and prellrln r ese In section 2 we study the
adm1381b111ty of the eStlJatOrS of & function the natural par=-
meter of exponentlhl family urder sore pOﬁdlthHS- 'In section 3

we present a generallzatlon of a rcsuﬁt of- Zldek to m  dimensiofic.
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g1 Definitions and Preliminaries e

Let (JC,iE) be a measurable gpace and X a random vafisb?
taking its values inxﬂﬁﬁ"Aésume X'his distributédraccording o
an unknown but unigque member of a famiiy probability disgtrib:tio

Pe indexed by a parameter s3t [}ﬂ EY.,  The problem ig tb ot -
mate a vector valued funciion z(8), :6 ~> EY, with quadratic
loss function L(&,t) = ||9 —‘t[]z, tEE . Ve asgume that the
fanily .{Pe e 966?} is dominated by a o =finite measure. L on
(gﬁﬁS)- Let pe(x) ~denote the density of Py with respect to
Be Asgsume pe(x} is jointly measuradle in its arguments 6 and =.

Lgt'TTkm a cefinite’measure on the Borel subgets of @% satigfyi.o

A
=t

SO+ g@)F)pglzx)n(a8) < = awe. [wl (

Then the generalized Bayes estimator 5. of g(8) with respect

to Tlexists and is given by

J g(@)pg(xT](as)
5. (x) =
J pg(x)Tae)

a=-e [p] (12,

Let 8 be an estimator of g(8). We denote its.risk e
tion by ER(®, 6§)« 6 1ig called almost admissible with respect to

T, if &, is an estimator of &(8) satisfying R(8,5,) < R(8,5)
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=
for all 966@ then R(0,6 ) = R(e,a) aeCe [lﬂ clearly, any
Bayes estlmator is ﬁlmObf qdml &bie with respect to its pr*a
Tor a result g1v1ng cond1t10n~ under Jhlch.almost admiggibilis-

1mplles adm18510111ty see Zidex [1].

We wilI.aSSQme,’th:qughout this chapter, that T is abigo-
lutely continuous with respéct to the m~ dimengional Lebesguc
Leasure, hw‘and.,é§=€Iﬁa Let. w(6) denote the dénsity of Tk
Then - the formal posteriofi distribution of ©, given X ='i, hasg
. a density with regpect to A and it will be denoted by p (8/%).

Let Ee(-) and Eﬁ

denote the expectations with respect to ¥,

and the formel posteriori distribution. We assume n(8) > 0 ¥B £ i

féhe:!res‘ul'lt:srof fhis éﬁapter will be consequenées of the fol-
lowing theorem due to Stein [6]. & proof of this for dimengion
m=1 is given in Zidek L[1]. | |

Let &8, be the sphere of radins r with origin as gentre.
Letﬂ Jr denote thgﬂclass of 21l non-negative real valued func-
tiong j on E& satisfying 3(8) > 1 on S and :

S 3(8)R(8, 5_) m(8)de < e

Theorenm 1.1 The estimetor 5n is almost admlsslble with respccu

-—

o H if for every Sr and € > O, there eXlsts J€dJ, such that

Ly

n ol s Eﬁ(j(é)(g(e)‘— s Y BE () < e i S S
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where E is.the expectation with respect to the ¢ finite measure

D) (8)26 dpe)m

! i ' r ——

Proof:- Suppose’s 6 “is mot alhost admissible with respect %o || -
Let”so be -an "(-‘gstima"grlﬁsughﬁ th&t E(e, 50) SR(G,SE)- with strict .
inequalityiheiéﬁngJOhwa set of pOSitivetTT megsure. Then there
ex1st constant d > 0, a get ‘Bé and sphere Sr 2 such that

T (srnB ) > 0 and R(6,,8) - 2(s 0*8) 2 & for ec Bye Now,
choose € </d o (Sr(}Bd) and 2 j€Jr satisfying (1.3). Then

€< dn(s,NBy) & S (R(8,5_) = R(8,5_))i{8) };f(e_)de

Sr" Bd_

< S R(8,8 )i(8) m(e)as
-inf [ R(8,6)3(8) n(B)ae (1.4)
Sut the right side of (1.4) is the ieft side pf (1.391 ‘Therefore

(1+4) is less than E, which is a contradlctlon. This oompletés

the proof of the theorem. . e ‘ gasc ol

§2+ Alnost Admigsible Estimators in Exponential Family

'the
In thig section we considexr/ exponential family and obtain

‘a sufflclent conditien for almost admlss1b111ty of estlmators F

interms ‘of" Db?vabillty ofan exterlor boundary value problem..
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il

Let- u be a ¢ = finite nmeasu rethQC =-Em.,'Let

pglx) = B(e)e*® ang é%“‘&@ ET@j-: J 9% rax) ¢ = i. ég is,

in general, & convex subset of E'. We assume '5 E'. .Suppose
we are 1nteresied in estimating a contlnuous vector. valued fu.c-
tion g(8)~ 8 n(Hell) where h is a real valued functior. To

!

T'+ be the meagure with density

e : : Y - : ' . ek
m(e) = ekp‘[ézﬂw'Lzl(t~)d~t]/ﬁ(e) . (2
Suppoééu _ )
e B(G)exen(.e)de- < ® g.e [p] 2 ~ € =)

Then T  4s a prior measure. HMoreover,

T(p(0)e¥ n(e))= (x-g(8)) B(8)e™® n(e) (213}

Therefore, if

(e)exe

w(e) => 0 ag 8 - w (2.4
Then the generalized 3ayes estimetor of z(6)with respect to T7 ;-
given by & _(#) = x. Thig follows from (2.1)and integration %i-

parts.

_Tgeerem 2 1 Under (2.2) and &? 4), X is an adm1881ble estir~tor

of b(9) 1f BPIEE is solwable for the elllptlc equatlon .

L 'Wr+¥i Vu*O g
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Prooi;~ We apgpal'to-Theorem ol Let Sr= be, following ths
notation of Theorem 1.1, the sphere of radius v Let JC.. .=
a continuougly differentiable funciion vanighing outgide a ¢o. -

pact set. Then

* [ £(8) (BT p(0) 560100 .
OV% (JZ}g) . ‘ 8x ., . e ie ) ' . (22}
S e *3(8)n(e) as

" Integrating, the numergtor of {2.5);=by ?artslwe-have

2 BX /. g
' [ V(iT(e B(e)n(e)de
COVE (j2ig) = J (.1 e "("'“)‘"Tf'("’ )‘“*_-‘“ . ‘ (2
e J e s(e,n(e)ae

N
e

Hence

3= “(9)e” 6(9)ﬂ(9)d9| /X 2
fe“s(eme)de i/

s{lle ok (2, e) H/F (; >} ill

. : (-’7)
'Applying{Schwarté ihe@ualiﬁy t0 theﬁxight g;de 0f5(2-7)gWe.h9YG

/x

{‘ J‘Vg (e)e Bfe)n(S)ue
f e“}X (e)w(e)de

(J){

s

» 4E{ Slvi@lf e n(e)B(G)de }
i. ;& n(e)s(e)de T

j alviaferibkdd Wvaldmfin éop (2afip
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Thus, we have related in (2.3) the alwmogt adnigsibility of X wi'
& calculug of variation problem ie . ¥ is almost admisgible .or
£(8) if for every r-

~

inr Slivie) P n(e)ae= o0
ol
jeT

——

where 3; = 47 JE€JIL, i(8)=1 on Sps J  1s continuously diiic~
rentiablé} The calculus of variation problem in (2,9) can be rela-
ted %o BPIT for Ln &é follows. TFirst observe that, by Theorem
541 of Chapter I, (2.9) holds if the sequence of functions 3}
satislying I J (x) =0 for r<Hxll <n+r Jo(x) =1 fox

|| x|} <r and jn(x) > 0 for =l > r+n, converge uniformly n-

-

compacta to 1. HNow, sinee  BPII ie golvable for L, ‘there

exists a sequence 6f fugétions {1&11, satisfying Lnum = O For
1 <llx[l<_n+—r, un(x) =1 for [ x| <1 w(x) =0 for
|[x”_2_n4-r,'cdnverge‘uniiormly on compacta to 1. It follows “i0
maximum modulus principle, that un(x) 4 jn(x) ¥ x. Therefore
jn(x) converges to 1 uniformly on compacta. Hence, if BPII ic

solvable for L, then (2.9) holds for every r and X is almogth

admissible. This completes the prooflof the theorem. et ol

Remark 2.2, Note that, since g(8) ie continuous and the undei-
lying family of distritutions is an exponential family, R(6,5) is

Qontiﬁuous in 8. Therefore it follows frowm Theorem 2.1 that X
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1s algo afmisgible because the prior measure JJis equivalent -

Lebesgue measure.

4 one dimensional version of the above result has been
obtained by Zidek [1]. We shall now apply-the above theorenm %o
study the admissibility of estimators of the meszan vector of t:re

exponential family.

Assume is sphierically symmetric. Then the normall7¢fu

function ﬁ(e) is also spherlcally symmetric. The mean vector
Hell

of the exponentisl family lsﬂgiven by 'B%ij)':’:ﬂ%gﬁ“ géllelf
Ve want'MJobta1n61ouff¢c1ent condition for the admlSSIblllt} G

the estimators of the Form T_ELR s A D> 0.

Note that if (2.2) and (2.4) hold with n(6) = () then 52
lg the generalized Raye estimator with respect to the meagure |

7(8)d® « Thug we have thn following result.

o A | ' , A+l
Theorem 2.3; Suppose (2s2) and (2w4) hold, for n(8) = B (8).

Then a sufficient condition for _X%%a_tp:be adnissible is BPIC

be solvable for. Lﬁtlﬁ-O;‘

Y

Proof; - Pollows 1mmed1ately from Theorem 2 . 1 and Remark 242,

£8 a corollary: to the above theoren we have

Qorollazy 2:4; suppose (2.2).2n2 (2+4) hold for () = 6*1(s..
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%%-to be admiggsible is

i

Then a sufficient condition fox ‘§

The above corollary is a generalization of a result of

Karlin [1] to m dimensions. Te proved the regult for one dimen-

I

sional cage. Moreover, Karlin doeg not assume that is'gene—

=
—|

+

. ralirzed Payes whereas our method needs this assumption.

Gﬁe@g Ping [1J has congsidered estimators of thelform a+box,

b };bahd hég given_a:éafficient condition for their admissibilit
in the one”diméﬂsional cage. . His sufficient Qpndition,is gimide-
to that of Karlins. One can generalize his result toj m dimeﬁ~
sionsg similarly.

We would like to rote that our set up is quite resirictive

' : 5 I~ m
on two counts. Firstly, we have assumed that Y= FE . We havc

already observed that ﬁ§ is a convex seiy which may not be winolc
of E'. The reason for this assumption is that we.do not kmow
how to solve an exterior Houndary value problemw on an arbitrany
convex set with an unbounded'boun&ary. JIt ig not: even clear huvw
to formulate a boundary value problem on sguch a domain. However,
we can treat the case of esﬁ}m%jio; of themeanlfgctor':ﬂg%%%-
more genarally and this will be-done inrthe next section. ‘

Secondly;5we have confined ourselves to estimatorg. which: are
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generaligedBayes. We do not know whether an aditissible egtinm toi
ought to be generalized Baveg in our set up. However, for dile. -
gion m = 1 one ¢an show, usiig the results of Fafrell [2] tat
an adnigssible estimator of _:g;%% is generalized Bayes. Ve

- 5w
prove this result below. HThe proof is essentia}ly.contained in
Parrell’s paper (Farrell [2])- The notation we use below ig for

this proof only.

Let {R,’E, i) be a™-TFinite measure space on the real line

K equipped with Borel $-algebra. Congider the family of all
exponential digiributions with density i(x,a0l= B (w) extﬂ‘with
respect to u where O :={f)° S eX{UdLKx) < «'} and

(w) SeX¥ (dX}- Plainly Q{:Iﬁ is an interval. The upper
and lower end p01nts, say w®w and w, of & may or may noi belonz
to 0 and (g) may be fihi%é or + = (finite or-=). fThe lorse
function is W(w,t) = (B%“§3b ‘t) .We agsume that the end poir i«

wand ® do not belong tc Q. i.e. 2 ig an Open interval.

Theorem 2.5: 4in estimator & is admissible only if & is gere-
ralized Bayes i,es 'there exists a measure T on (R, & ), not
necesgarily finite, s.t.

S “ﬁ-(—? £z w) 4F(w)

8lx) =TT O A (w) = :"’"[“]f

We give the proof of'this theoiem after a geries of lemmag.
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Tet V1(ubt) e a%:w (tyt)e Obgerve that if &% is a deci-

sion procedurc 3ayes with respect to a probability measure -\ on

2, then t¢ support of o* (i, ) satislies the équation
= [ V,}(w,f) f(};,w)-.?\(d;w_)
for almost all x {M]F

+1ulIt

Define the noxma1171ng function V(w) = ]EE%_%

is easily  checked that if Ec:(~“> DQ) is a compact set, then

7y (e, %)
VTTﬁ" is upiformlyrconﬁimuous function of (w,t)€QX E.

Throughout we asgune that

v

S V() £ (k) h (W) < o aves xlp]

This assumption is equivelent to the supposition that a Bayes

o
procedure hag finite risk. Alego, note that “%4%% is a monotone
N

: _ : Rl {4 .
function and llm EE%“%'& c gnd 1lim -g = =~ oo,  TPherefore
W B =Pl o ¥ Db "
Vi(wt) v, (@ t)
" 1im — 2 nd im =
Yy =t ed Mmooy,

—>w
We need the following‘fesult of Farrei (3] in our prdof.

Theorem.Z.G,[Farrel]

A decision procedure. 6 is admigsible iff
i) & is non~randomized

ii) there exists a sequence of decision procedures - 5 Bayes
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with respect to finite measures kﬁh'having compact supports

Dy (n 2 1) such that D, 70 eatisfying

(ii)(a) there exists a compact set T4 Q, inf A ,QE&'>1
e n> 1 = o

(ii) (D) for every compact set &, sup hn(E) < o
- ; L il | =

(e) I(R(fi?’&) o R(m’lsl’-l)) '}\-n(dw) -> 0

(a) R(uaéﬁﬁ = R{w,8) ¥ w.

Define a sequence of probability measures on Q by setting
S () B ) ;
z,,fjl(X,Ji,) E:Z-g) £ V(&J) f\X, t’,t}).\.n‘\d &))

where k (x) = [ V(w)f(x,aﬂhn(dw) and M ’s are the finite

measurces given by Theorem 2.6. Obtain a compactification Q% o

£ such that @* ig metrizable and Q is a Borel subset of Q% as in
Farrel [2] and extend the meagures Jin(x,%) to @%. Denote the
extension of l%(x,') by itself. In futurec we use only these

extended measures.

Let T (E) = [V(w)A (dw). Since sup A (E) ¢ = for
E Vn ' on o=»1 i . N

compact E, there exists a subsequence 'Hi~‘SUGh that F, converge
3 . 4

weakly to a o-finite measure !, the weak convergence being withr
respect to the class of continuous functions on  vanishing out-
side compact gets.  Assume witiout loss of generality that

o

E, F!' weakly (in the above sense).
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1

Lemra 2.7; There exists a subsequence‘{ni} such that )

L% {xy*) +¢-}th,~}sgweakly‘fofialmostaall--X Eou 1z

2

‘Proof: Obsérve that jjn(%,') (n £;1) are continuous bilinesr Forwms
on the Banach space ;1(R,ﬂ3,uu) X ¢ (Q*),:Wheré () is tas
Banach space of continuous real valued fumctions on 0% equipped
with supremum norm. Since L (R Qg, p) 1s separable. the unit ball
of contlnuous blllnear forms is sequentlally compact, Now a stan—
dard diagonalization arguzent along with the fact that u is

o -~ finite gives the result.

Lemma 2.8; For almost all x, ylpd

' k, (x) ..
lim inf > D3
w5l - R LN ‘

Proof;- Tlainly PO

¥k, (x) _ £(x, w)
E;T?T.H é HED] }’(u, dw)

If Q is a finite interval, then the résult is trivial. If @ is ac
infinite interval the argument’is similar to that in Temma 4.2 of

Farrel [2]. W52, oo 0= LS el G R R IR

Terma 2.+9: j)(x;wﬁ) > 0 for almoét“alil x[u].=

Proof:

el AT
¥

Cage (i) @ 4ig a finite interval with-end points & and o .

-
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¢4 H ’ 2 sggme Ay el L N ‘
Suppose })(X,Q) = 0 on an x~get of POsSltlve p-Teasure.

Then

I (w,‘t) (n,t) V., (w %)
( - - 1 ’ -
0 ‘”——z—&;’j—-; )j(x, th) = {2 (JTM M‘(}s_, Q(b) +%{U} %‘l—\f‘(“u‘ﬁ ﬂ(x, G W)

w, u)
+ [ m,l\,: J)(x,dw)
£

V (m,t\ -

Swgc(_ -n-(m-r -1 at and +t1 at w, we have

Wiz, ,}_le,) =M%, {g}; ) ona x get of positive p-meagure .

It follows from a result of Parrell (Section 4, [2]) tha:"t this is
not posgible in our get wup. _
Cage (ii) Q- is an infinite interval.

If @ # - (&= -+=) then by Lemma 4.3 of Farrel [2]

1 (=t ) = G 4 Yz, {$) = 0) ”‘]ﬂere:co:re ik )}(X,Q) = 0, on a

nen-null x-get 3}(}:, .{_m})F 1 -—f-OO}) = 1) Then
(w,t) .
fl) (x,d00) + J ‘“'f("*vm Wx,dw) = ¢, A contradlctlon.
i G

Lemra 2 .10 For almost all x(u) lim sﬁp' Kn(x) < o,
' n>1 '

Proof:, It is well known that the n-eéessary condition (vi) of
‘Theorem2u6,proved by"Farreli EB] and the eonvexity of the loac

func tlon imply that thele exlgts a subsequence {6 of {épi_ given

in Tueomemz..b,such that 6 = WOLA_K 1limit 5 « There ig no lack
T => o o

of generality in: assuming ianj\ to be {6n} » It follows frou

e
-


http://www.cvisiontech.com

lemmas 27 , 2.5, and 2.9 and Lemma 3.2 of TFa rrell (2] +.at

o5

there exists an oper set WL Q “having compact elosure in 7 .\SL’{QL,!
that L4 |
0 < liminf U) menp 2 (U)
., - -
st g < il&:? 5 ¢

for almoszt all :sc'['p,] « Since sup A (U) { o by Theorem 2.6 we
' a2

have limsup Kn‘(:x':}' < & for almost all x[p] .‘

Temma 2 .11 TPo:r almost all x[nl ana 3.11 te (-—OO 00)

I lim [ flx,w) & f f{x, ») F' {34 w)

n=> c Q
. , V ((U:'{-) - V {wt)
1T r}z»;-nolo .I .“"\f'(‘d?)“ £x, w)dF ,l\dw) f “v’(““j““‘“ £z, w)F (dw).

The limits are finite.
Proof: We shall give the proo# of II. Proof of T ig similar.
If Q= (w w) is a finite interval then f(x,®) is a bounded

contin11ous"'functi01q of w. Since F => F! weakly the result

ol
. Vl(w, i) _ : ' .
follows (Note B L is bourded continuous) Suppose now,{? is an

infiniteinterval (—o, ). Then for any 0 < A < oo

A V(w,t) e - IS il LY v(m,ﬁ) ;
S TW £(x, w) ¥ (dw)--> .i -—m-j-— f(X, w)I‘ (dm)

~A

P b Vg e
d ¥ o ‘{'A V_! (m,*t)f(x, w)F(dw)
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LR

We complete the proof by establishing uniform integrability i.e.

L 5 |v ((U _t\ i :
(¥*) lim  limsup [ A0 R _
A=>oo ne>»o0 A w‘)“" L H Xy ) “n ( dw) G

Tet X be the set of x jé.t.‘(*)vfails- We shall show that
n(X) = 0. Suppose not. Then there is an x 'sete pu(x' =) > 0,
and

2 V(%)

1lim 1lmoﬁp i ?f(xi w) F (dw)> 0.
4w nese a | V(W) . B

Tut

But for y > x',

o [V, (ayt); AT
¥ S 1 NEL IS
" Yen) (X m (dﬂ)) < SUp [ -“i'f'rﬂ) 3 ]
f f(y’w) (dw) .
A
Yow taking limsup and letting 4 ~> o we find, since
o
- i i
sup 3_ X!~y => 0 as A => =, that

w2 A Vo

(o]

limgup S £(y,w)F (dw) = =.

7L => 00 w0

This contradicts Lemma 2.10. Therefore u(X) = 0. The other casgu~

Q= (=%, w) and Q= (w, =) are similar.

We now compiete the proof of the assertion that if 6 is

pdmiastble then it is seneraliged Ravega !,
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Proff of Theorem 245 .

Let*'ﬁ1c:Rf~be~the measurable set with p(F,) = 0 euch
that for x ¢ P, +the convergence:in Lemma 2.5 takesz place.
Let E‘ifR. be the null set such Titat if _igﬁF and t€ supror

of &§(x,*) there exist sequeﬁcesjﬁnlf and i L % ’ t n, € supporth
( )t ;~\ tsa (See Temma 2.1 of Farrell! [23 Tf ‘

{ -1 T 0 r er a ] <

3
-

support 5, (%, *) and i, t and also convergence in Lemms 2 .3
. i i g g

holds. Therefore

V,(wt ‘ S LIIC RS
1 ’ n“] s hY - . :
0 = e e, | AL tw) I d
f (*-“\- KX;\) ni(m) - and
V1(hhthi)m o Tylot) Fol by T 2.
gince - = wniformly in © v Lemma 2.11.
_“7.((9) Ji (L"j . - iy &
We nave
T, (b s ) N Vilet) '
- . 1 i nl___ AT AN "t %
0 = ilil;lw f "“‘""vm” f(x,w)Fni(dw; = ‘fﬂ__(..._j_._. f(}{, (dw,

1l

SV (et £(x, ) F(dw) -

Thig CO%Zpmw—s the proof.
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g§3. A 5uf1101ent ondltlom for alyost admlgs;bllluy

e L s TP PR

In this section we study the almost admigeiblity io tiwo
general get Uy and give a sufficient condition,under some g vucti,
uging an exterior boundary value problem. Our result is a . -7 -

‘l L] N i H - i -} » L]
lization of a result of Zidek [1.) to m—dimensions.

We assume throughout thig scetion that &= E® and the
préor measure fT is abgolutely continuoug with resgpect 1o thc
m~dimensioral Lebesgue measure. ILet the density =(8) of [| be

pogitive everywhere and once continuougly differentizble.
Let (s,0) denote © in polar coordinateg. Define,

j T llm e 11 PM)E‘_@:L‘_L: Baliall
s o ) (x) n(s,9)

It

¥M(x,6)

Nn
=
o
Pt
&
4]
R
.
P
I
t

and h(t)
Furthermore, we asgume

T 1most all x fpl, the set {8 : pe(x) > O} has nou-~

empty interior

IT h(t) is once continuousgly differentiable.

Then, we have the following theorem.

-r A

iheorem 3 .1: Under assumptiong (I) and (II), 5 1s almost

admissible for ‘6 if BPIT is. solvable for I, u =d4u+ (-—- & "Pﬂ)m»\,.
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Proof: We use Theorem 1.1. ZILet qr in the notaﬁlon of Theo

m o
LN L

141, be the sphere of ra@iuﬁ o with centre as the ovlgln. et

3 be any nonﬂegat*ve, COﬂthuGlslj d1¢ferﬁntnable functlon Va

shing outside a compact set~swoh.that ‘1(9) ~on 8,. .NO“,‘
congider ' . | R
| | e v, (x)7(n)dn
Covl(§25n) = J"w:; QUCREE ) (341)
a2 T WY R : f 129 (X)r(n)dn
Expressing v, in polar coordinates as (r,d) we have
e 1 52 P TR
loov? (3 ;n)|li RO V;L"kr,ﬂ)lids)x
| o - M
' o) (x)n(r ﬁ)drdﬁ _
uw-a It (z.) 0 _‘ (3.2
Jopp () n(n)dn
The right side of (3.2) can be written as
7 el & P x5 i s 40 z)as 5%)
THY i) (S r@ =8 lipe,. gy(x)n(rghr)dsad. (345
. 5 o8 il 4 ‘(I‘,g) *-—,- .

Therefore,
I covX(,mll € 271173 (5,1 | (o)

(il g~ sl 2 o gmn(p)aryptag/s) -
= N i —— dsdf

(3.4)

£ = Q(S¢/X)fp;(X)n(Q)&Q


http://www.cvisiontech.com

(1511

where p{(s@/x) is the posteriocri dens}ty and according to a coa-
y o
vention that will be adopted here Eﬁﬁéégéﬁl =0 when p(&/x)=".

Mofeover,'note'that the bracketed quantity in (3.4) is Faal

M(x,, 8f) and 1t is well defined in view of the assumption (I)-.
Hultiplying and dividing the integrand in (3#4) by sm—1. and

applYing-Schwaftz inequality we have
P : 2 me- w2
[Foovk (3%,m 02 <afll 73s, )11 ™ i, s8) I p(oft/x) dsagt
f 2 m-1 . l
[ §%(ssf)s p(s@/x)dsad.

covE (52,112 |
[loovy <7 4 CTsoll® Date, ©) Po(t/x)at

<
1X: '.2 — X r 2
E; (57) E; (37)

[ 2 (#)p(t/x)at- _
=4 []] Vj('t)!!2[M(x,t)}2p(t/x)d;t : (3.5)

since E}é(jg) = f "jg(ié)P(e/X)_-de-

Hence, % _
ook (2,mle.
£ ACATIRAY 2y _gg.‘_f[n{ 738 R(t)n($)d ¢ : (3 46)

2 £
B (§°)

since E[M2(x;t) E(t/§§3 = M?(x,fs-n(t)pt(x)du(X)-

Therefore, if for every € > 0 and 1 > 0, thepe exists 1
such that . S0 |
AvgelPue)n(e) e <c
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and -3 2 1 -on S, then 6. 1s admigsible by Theorem 1.1.

Tnis implies that '&_ - ib almost.admissible if

e JHTI N Fr(ojre)ae =0 . s <t (B
3 &Iy
where Er ={'j: i is cohtiﬁuously differénfiable, S 1 on
s P Si;u@nd i -vanishes outgide.a*cmmpact sbﬁ} .

We have already seen in section 2 (Theorem 2.1) the above calcu-

lus of variation prodlem is related to BPII for

Lu=Au + (‘l-n"ﬂ + Z5)Tu= 0 and (3.7) holds if BPTT is solve-

ble for Lﬁ11=“01 This® comoletes the proof.of the thedﬁem,"

Qo el
In addition to assumptions {I) and (II) if n(8) is bounded <*ie.

we have the following resilts .

Theorem 3.2; Agsume (I) and (TI).. Turthermore if .h(8) is bouu-

ded then a sufficient cordition for almost admissibility oif S

is that BPII be golivable. for Lu=4Au + ‘-—ij"}- ST ="

Proof; Observe that if h(®) < M .for some I > O, then it

follows from the proof of Theorem 3.1

llcovE(5,m)ll2 T '
g < 4 [1175(85HE n(8)R(0)A 0

E}é {37) L -

E

canslviellP nerae . (5.8)
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S

Wow, 1t follows from Theorem 3.1 of Chapter I, that

~

int [l 7i(e) | n(e)ae = o

JE€ Jr
: ) 7 5 .
if BRPIT" ig solvable for Lu= oHu + ¢%L Vu= C-
Combining this fact with (3.8) we have the Theorem. Ge€aCo

We can uge the above theorem to get a sufficient condition
for the admissibility of generalized Bayes estimators of the mea»
of an exponential fomily even if the nabtural paranmeter space ig

. . = m . N . C
not the whole of E . Thig iz shown below.

Let p be such that its support is not contained in an~
lower dimensional .set. Congider the exponential family of digbtr -

butiong dPn(x) = B(n) eﬁX'du(x where

sk (o g™y o B3N 400y 2 ke B e SVB(D) s
€ g —.{n- B () =Je ap{x) < ﬁg- Let &(n) = g{%} be

the mean vector. .Siﬂce the gupport of u is not contained in =
lower dimensional set, the second derivative‘matrix of 1oglﬁ(¢}
is pogitive definite. Tgerefors,rt@e mapping n a'e(n) ig =1
and smooth (i.c. continuously differentiable.) Tet y be the
function such that @(e(n)) = 0« . Using 4 , we can transfor: w .

underiying the probability dietributions in to another expon:niial

family with parameter & - as follows:-
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w(&) ex

Therefore estimating the mear of { fq;, ig gawe ag estimatin

paraneter € of j}g l . licreover, any prior measure]; oa i}

i E

e
be carried over to EQ'. Trerrfore, any generalized Bayes egliia-

=V ] 5wt S o : : N . o
tor of “E%%%l ‘1g generdlized Bayes estimator for . How,
m

A ) . i . s N -
suppose*jq is an open set. Then it is easy to show that gy = &
Therefore, we can uge Theorem 3.1 to get a gufficient condition

for the admissibility of the generalized Bayes estimators of
=VE (1 ~ Wb a8
—EE( if - Y!ig an open convex set.

A i

-
8

We end thig chapter with a few comments on Theorem 3.%5.
zidek [1] gave a gufficient condition for almost admisgsibility
when m = 1 by rfelating the problem to a calculus of variaiior

problem. Our theorem is a gonerglization of Zidek’s Theorem *-

Y
A

m-dimensionss However, our assumption II is more stringent bt .
zidek’s for m = 1. Thig is because we relates the aduisgihil -

a\

problem with the calculus of variation problem (sbép (3.5))
and obtains a condition for {3,6) Whereas.we‘go a step~furt:c
end relate it to the exterior boundary value problem congequentl.’,

it is easier to verify his conditions that ours.

T . B e iy, e S i S
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