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CHAPIER O
1w QL UCPION

Though the concept of sorvey sampling is veTy old and has
always been in vogue it is only during the thirties and forties
that a nore systenatic development of the theory of sample surveys
took place with ‘the introduction of ideas like sanpling without
replacemant, probability sampling and stratificeticn. However, a
large nmumber of techniques developed and practised during this
pariod had mostly either empirical or intuitive basis. It was
nuch later that abtention wss paid to the purely thed¥etical

agpect of the develomment of the suwrvey sanpling.

The main problent of sempling from finite populabion
congiats of devising an appropriate 'strategy’ for estinating the
population ‘perameter' so &s to maXxinize the ‘mrecision' subject
to certain 'cost’ consftraints or altermaiively mininize the cosgh

of survey for achieving a given level of precision.

Until recently, survey sampling and statistical inference
theory were viewed ag digéinet fields. 1t was om;},}gifﬁias that
brought & change in this outlook. 4 clear formudation of the
central problem of the theory of suwrvey sampliing is due ho
Godambe (1955). This brings forth similarity betwcen Bhe shatis-
tical inference theory and sampling theory, He also demonglrates
the nonexigtence of ‘uniformly mininun veriance linear “unbiascd

egtinator' for eobtinating the population mean.
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Many traditional sampling tools had proven their valuc
from a practical point of view, but had remained ad hoc procedures
from a statistical inference point of view. The ncw trend in
survey senpling has devised methods for evaluating the traditional
techniques and proposed conditions for optimality of strategies.

Whenever an auxiliary information on a characteristic
closely relatéed to the study variate is available, it was first
shown by Cochran (1946) that this infornation can be uscd to set up
a criterion of optinality. This pronising approach popularly known
as ‘'superpopulation conccpt' is an avenuc through which inportant
new nethods are currently being added to the survey sanplers®
traditional set of tools and it also contributes significanbly
towards the better understanding of various survey sanpling problens
In recent tines tremendous progress has been nade in developing
sanpling <theory and bridging l1e gap between statisbtical inference
and survey sanpling,

We shall now present a brief sumary of the contents of
various chapters of this thesis.

After this introduction we present, in Chapter 1, various
definifions and cxplain baslc concepts which are used in ‘the sequel.

In Chapter 2 we work under a well-known superpopulation
nodel. We first obtain an optinal design ag well as nodel unbiased
linear estinabor for a given design for estinating the population

ncan in the sense of nininun expected variance. Inpcsing a condi-

JdahmrRseededr IRESEEISen wandbateahialinvamentinaicledhecppbshisead
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gogtinator for a given desaipgn for csbinating the populadion ncan
again in the sense of nindmur cxpected variances Wo then ncte
the linitetiona of cclebrated Grps strategy, an ofitiral deaign
unbissed strategy for estinmating population megn in the class of
gtrategles of given average size in the sense of ninimuy avorage
variance, fron the realization point of view. We suggest an
alternative criterion to obtain a reagonable stratepgy &nd show
that the sbtrategy s obtained is as good as any nps  siratogye
We talke up cunparlscn of various cormonly uged stradegies in the

lagt gection of this chapter,

We work undsr a randon pernidfution nedel in Chavter S.

We exardne the cgiination of sy-mebric paranchric functions when
the labels of distinguishable units arc nopinfornative and the
smpler hag no knowledge, whabt 8¢ ever, of any relationship

between fie labels and the values asnoclated with $he wanits. The
prinikive strategles of sinple randon seanpling, sanple noun, asnple
variance and in general symmetric estimators are found Eo play
inportant roles. We, in fact, obbain variouws optinaliéy resulils
giving subjective justification for using sirategies which hitherto
had only intuitive appeal.

In Chapter 4, we obtain various results for two shage
vopulation under two stage randon pernutation riodel which, essen-
tially, are the analopues of thelr unistape counterparisc.

We take up a study under 8 conbinuous survey sanpling uedel

in Chapber 5. The idea of continuous survey sampling is due %o


http://www.cvisiontech.com

-4 -

Cascel and Sirndal (1972}, Such an interpretation makos it caglier
to grasy gsome of the complexities of medern sarvey nanpling and
exact efficiencics of wvarlous gtrategics can often be compubed.We
finally suggest a criterion to obtain a reusonable sivategy and
conpare the strategy so obvbained with some known strateglcs. We
aloo consider stratification in the continuous set up. Bvaluation
of efficiency and comparison of different atrategios are alao taken

up. We obtain sone furthey resydte in Chapter Se.

Chapter 6 is devoted to the problen of egfinafing the
population proportion. lanke (1975) suggesbed a suporpopulation
‘model appreoach te ukilize the awtiliary information nove cffockively
Tor egtimating the proportion. He conpared a few strabogics andoy
fhe provcucd nodels Here we note that dhe medel susgoested by
Iarire (1975) hasg pany inkercsting features, In this chupter we
conglder rodel bascd inferonce ug well ag stuly desipn bascd
inference. Under nodel based sob wp we first derive & few none
exiotence reswlbo and wlien obetin veriows estinutors for proportion,
In design based inferemce we obtaln some opbimality rosulbts In a

roasonable SCHRS0e

In Chaptor 7 weo suprlencnd Rao and Vilayan's (1977) attenps
Fo solve the problen of cstinmaking the variance of sampling sfratee
gles, for egtinzbing pepulation mean, nonnegitively. We nmadnly
deal with the strategy that consists of Midzuno-Sen sampyling design
and ratio cotinabtor. Wo gxkend the techmiques of Rao and Vijayan
of obtaining nonncgative unbiagsed variance estinabors bo nore

meneral strategies.
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In Chapter 8 we have the sane sct up ag that in Chapher 5.
We porsus the study taken up in Chapier 5 and obhain opbinal
egbinators, for given sanpling desipgn, in certain classes of

gotinatorg.

A 1ot of refercnces used in this thesio is given at the end
Each chapter has iis own summary, scnewhat claboraie, &* She beging
ing. ‘The contents of Bectlon 2.4 are published (J. Roy. Statiagk,.
Soce, Scr, B, 43, 1981). - The conbenkts of Chapber 3 are %o be publi-
shed (Metrika, »0, 1983). Firgt threc sections of Chapher 2 were
pregented at the conference organized to honour Dre. C.i. Rag on his
sixtieth birthday ot the Indian Fhatistical Institube, Delkd in
Docenber 1980« The contewts of Chapter 6 were prosented ab the
confercnce ‘applications and NMow Directions®, held in Caleuita
during the golden jubiles celebraticns of the Indian Siatigtical

Institute in Decomber 16831,
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CHAPTER 1

CONCEPTS AND DEFINITIONS

In this chapter we give various definitions and explain some

basic concepts that would be used in the sequele.

A finite population of sige W [<~] is a collection of ¥
units. The size N 1is always assuned to be knowne The units of a

finite population are said to be identifiable or distinguishable

if they can be labelled by integers 1,2,...,N and the 1labsl of
each unit is known. We deal only with thosg populations whose units
are identifiables A label 1 is often used for a physically exiot-
ing unit ‘'w', 1< igN. After identifying unit uy with label i,
1¢i¢N, a finite population is denoted by

U= {1,2'...’N}. v00(101}

Let y be a real valued variate defined on U, taking value
y; on unit i, 1{ i< N, In the abstract scnse synbol NA denotes
*the value of y, the characteristic of interest, for the given
unit 1°' . It is assuned that as soon as upnit 1 is accessible we
can neasure yj without any error. Concretely spealing y; is just
a real number which is a result of measuring unit i, When unit 1
has been neasured the conplete aobservation i.e. data is rccorded as
(i,y;)+ This enables us to introduce what is callcd paraneter of
the finite population. Let,

z = (y'] ] yZ!"‘QyN) .'0(1Q2)

where y;,1<1<{N, are unknown apriori, y dis called parancter of
interest.
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We @ssume bhat the ith copvonent of ¥y is cssocisked wiih

~

uniié i  so thed bthe observabion fi,yi} may be replaced by simply

¥y Thas if y dis khown the componenis of . are in effect

lebelled by their positions in the vector y, y i@ Sgsumed %o be
a point in Ry, the N-dimensionzl Buclideun space. srenuently the
parameter space ig RH' however, other parametric spiaces of practi-
cal importance (z.g. in Chapher 6, Yi's are one-zero variates) are

‘also consgldercd.

Any real valued function of y 4s colled 2 paraneiric

—

function. Infercnce in finite popwlubiom-is usually aboud & parc-

s pr—————

metric function and s¢ldom aboud the purameter y ifselds Igpala-
tion mean is an important parametriec funcéion and is given by
Y = 1 g Vg o» cee(1.3)
SRR

“he inforence abeut the popul@iion mean is nmads on tho bosis of
information obhained from & part of Ue. Deb us first indroduce
some more conceptz. Lot

3= &= eon(ied)
be a ecllectdian of all possible subsets of U. 5 is called gample
space and a typical member o e 85  is called & gample which is
nothing but o subogt of U The number of wlts in g8 l.c. the
cardinglity of o, denoted by nls), ic called ibs saupl: sizc.

4 real valusd gek fwwetion p on 8 zpech bhat
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p ¢ 8=—>[0,1]
eos(1,5)

p(s) >0, 2 1r(s) =1
8e S

is called o sampling design.

However, in practice, it is extremely cumbersome to list down all
possible samples and then choose one at random with the probabili-
ties prescribed by a sampling design. In this conncction Hanurav
(1968) 3emonstrated that every sampling design P can be imple-

mented by some practically feasible'unit drawing megchanisms'. For
a given design p the first and second order inclusion probabili-

ties arc given by,

n(p) =m = T ople)  1LAEN
o9l veo(1.6)

. = M. . = bH i i< N

@) =y = B R 1610

where % denotes sumation over all samples conbaining unit i
s »i

and 2 denotes summation over all samples containing units
swij
iand j .

A sampling design p 1is said to be noninformative if p(s)
does not depend on the y-values associated with the units having
labels in g, se Ss In this thesis we deal only ui&h noninforméa-

tive sampling designse
A design p 4is said to be a fixed size design (F8(n)) if

p(s) > 0 => n(s) =n , seS.
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Glven o design 7 ito average or gxpecied sige (nod ncccssarily
an inkeger) is given by

g nlaIn(a) .
9 3

In froditional statistical inforence there ig dypdcally a
sample of 1 independont obscrvatluns Xq , Xg, e, 0N & randon
varisble X with the hybDothetical density funmetien ©(x,8) which
depends on bthe wilthown paraneier &  and the problen 1o ofton to
gstimate the parameter 6. Though fhe stakistlcecd inforence and
survey ganpling inforence arce not oopeoldng bhoorios, bucause of the
ideneificbility of units the lattor heo come interegting fontures
vl ibo own.

Lek @(y) = & be a generic paranctric functioen. ia gaoti-
ngkor t(aig) for eotinating Q{E} is o reowdl wolued fonction
defined on 3 X Ry -that depends on y  only chrough those coordi-
e ke yi*s for which ie 5. When bhere is no anblguity we may

dencbe H(s,y} by &, or simply &.

o

A lincoar gghinctor is of tho Teorm

ta,y) =b, + T ble,i)y ces (1.7

vhero ba g, b{s,i}, iecss are consrants indcpondent of y-valucs.
ien by = 0 (1,7) 1is called o linear hemogenoous eobinabor.
fopodr "fp,t} vhore 3 is ¢ degipn and + 13 an cztioabor

io called o pampling ghradcgy. The sanpling design Iz used o


http://www.cvisiontech.com

- 10 -

select a sample se S and based on the data {(i,y,) ies}
the estimator (s, y) is used to estimatc the paremcter o(y).

A strategy may be dcnodied by H{p,t) or H itself.

_An estimator t is said to be design unbiascd (or p-unbiased.

for 6 under & sanpling design p 1if

E(p,t) =E_(8) = = p(s)i(s,y) = e(y) ¥ yeR,. .+ (1.8)
P se S = = ~

If (1.8) holds then the strategy (p,t) is said bo be p-unbiascd,
(B, (t) may be revlaced by E(t)). If a strategy (p,t) does nch

satisfy (1.8) then it is said tc be biased and its bias is given by
B(t) = E(t) - e(y).

As in the traditicnal decision theory we inbtr.duce lous
function tc evaluatc the perfcrmances of various sanpliag strateglec
for estimeoting a given paramctric function €(y). We shall consider
loss functicns [(a,8) which are cunvex in a for every value of 6.

A luss function which is used mosi often, squared crror loss func-

tion, is given by
£(a,8) = (a-8)° coe(149)
A(a,8) mnay be interpreted as loss incurred in estimating 6 by a.

Thus if we use a stratcegy (p,t) to cstinate 6(y), then for a

sanple s, thce squared crror loss is given by
2
Ct@s,y) - e(y)]°.

Though we use general cunveX loss functicns (Chapters 3 and 4) here
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we confine surselves to squered crror lose fuicticn siven by {(1.9).

Pur a strategy  (p,t)  the expected lugs or risk, called uean

guuare orror (MSE) ig defined o

o
MEE(r,b,8(y)) = MEBGL,8) = % pladlt_ - 8(y))°© ees (110D
~ ged -

when  (p,t) is unbiased for 6(y) MEE is ecalled variames and ig

denwted by Vg, k) = V(&)

whaora V(&) = T t; in) - 92(;@'} . cenlla11)
S3ed

Glvernl & degien 3 un egtinador t, is andd fo be hotihur
= 1

than anebher csbinstor 4, fur estinating e(y) if
MEE(0,%8,8(7)) CUSE(,t,, 8(y)) ¥ ¥e By era(1,12)

and the gtrict incqualiiy holds in (1.12) for at locwt one ¥ e Ry a
An ogtimator % beloiging to o cluss ©  of emirmbors for
cobinating €(y) is said %o bo best dn € 17 shurn sxises no

other esbimafor in © which io pebter shan t .

A gunpling strafegy (g, ;) is said to be better than

anckhen strategy (u,, EE} for gaotinating 2(y) it

MSE(p, , 6, , 8(5)) & WEB(p,,0,,80(3) ¥ 5 Ry een (1413)

and the gbrict irncgualiny holds ia (1.13) fur at ledsd one ¥, eBRyo

A otrategy  (p7,t") 1o ocdd te be best in o class (T of

strodegies for cotinating €(y) 4f there exdsts no other ghrategy

in T which ic beokber than (lﬁﬂ,t%} . /4
2.
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Let us first get asoguainted with some communly uscd deskens

and eskimatorse
With units 1,2,...,8 associatc numbers Xy , Xp,eeeyXy> O.

(a) A sinple randonm sampling (srs) of size n is a design that
gives cqual mrobability cf selection to all possidle () samples

of size n 1i.ce.

p(s)

1 (ﬁ) if n(s) =n ceel(le14)

0 otherwise .
(b) Midguwno-Sen sanyling oschome (pM) of size n is a design
that sclects samples of size n  with probebiliity propurtiuvnal to

the aggregate size (2 X)) i.c.

ies

X
n(g) = 'zﬁ%r)-}z if n(s) =n
n-1 cee(1415)
= 0 otherwvise
T
where xg = py X; and X = I X.
°  ies i=1 4

nclysion
(¢) Anprobability proportional to size (nps) sanpling dealgn is

onc for which

ni = E. P(S) =-Ié N 1$_i_<_Nc ooo(1.16)

(d) A gencralized mps (Grps) design of average size¢ n for

g2 0 is onc with
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_omxy S
My B epf—— T1€24l

-"(1!17‘}

cand play » 0 = I }E? -&/2 = n};/ ' i’:‘i';‘fz -
; L L~1 +

RES

Hote that for g=2 Onps design reduces to a =ps design of fixed

gize n.. Purther for & OGnps design to be feasible we must have

IT
mex “j ? f’( &
I £

Let us now consider some cormonly used essinabors
(a) Sample mean is given by
r 1 : _
‘:!r = K :'f - n-‘i(-i l18‘}

() The conmventional ratio estinator is glven by

Yy = |
s =iz -
by = g2 eee(1.19)

. 1
e = . T adxa n .
wheT e Yo =0 i and £ 2§ % g soq

‘¢, Tor @ given design p with = = “1(P} >0 Fi=1,2,...,0

the well known Horvitz~Thonpson eséinator is given by

1 ¥y S
t , =3 ) — uaa{‘lug’.}}
BT W e T

<3 @ natbter of cowrge,ationpbts were nade Lo obbaln bosk
soblwbors in different classes of esbinators for esbimating popu-

L Gnonn Tedan f. However, Godanbe (1955) proved 4 very powerful
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nonexistence ¥ssult which was further strengthened by Godambe -and

4 to
For a given design p, an estinaéor ty belonging,/some class

C of unbiased estinators of population mean is said to be uniformly

minimm variance (UMV) estinabor if and only if

V(p,to)g_wp,t) ¥teC and ¥ yeRy. eee1421)

lie now have & result due 5o Godanbe and Joshi (1965).

Theoreri 1,1 (Godanbe and Joshi). TFor a design p ‘therc does not
eXist a UMV estinator in the class of all p-unbiased esgbinatorsfor

population mean Y .

Godambe (1955) had proved the nonexistence of UMV cstinator
in the class of linear p-unbiased estimators. 4s a consequence of
the nonexistence resulls, the intercst was then directed towards
optinality criteria other bthan .UMV. The criterion of adnissibiliby

was introduced to weed out 'bad' esgtinztors.

A strategy (p,t) belonging to a class ( of sitrategies is
said to be adnisgsible in ( if and only if there cxisks no other
strategy in ( which is better than (p,t).

Evidently enough,thc criterion of admissibility is rather
wegk and is useful only in elininating really bad estinators bub is
of 1little help towards obtaining optinal stratcgies. There are a
few nore criteria in the literature introducel in the recent past lik
hyperadnissibility (Hanurav, 1965), necessary bestness (Prabhu-

eicgonkar, 1965}, Roth thege cerikoris yield Hervikz-Thoorann
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coblnator ég 'oRbfirmal® ome. However, appérently, theae cricegric
werg Cuglgned with optirality of Horvive~-Thonpson sgtinafor in nind

&nd conzeqrondly net with a lot of eriticioe

A eoagtruciive sten cowerds obtuinding a reuwgunkble critoricn
of optiralicy in dve o Cuchran (1846). VWhenewer gone auxiliary
infcrmation on & real valued variate % fuking pogledwve valoe Xy
on ondt i, ML 14 W, closely related to the sbtudy wariute y is
uvadlable, 1t is possidle to uge thio dnfornasion far setbing up a
eriierion of optimality. Let un first introduce the coemcoeph of sho-
chaptle  otudy variste. The vector y = (Fq ¢ ¥ s vweedy) of Dojhulte
¢lon valugs is agsuned to be a ronlizasion of & veetur T = (T4 4Ty
vary Tyt of Tandon variubles. £, the joint digeribution of ¥, 1o
agiued to dopend on mmiliary values Xy ,Xogees,X  Ehrough-sone

unknowl P&Tﬂl“le tors.

Yhis concept is callsd Zupcrpopulation ocncepbt. & 'sulel--

sepulation riedel’  or ginply o pedgl neans 2 sheciried ach of con-

Gitions that deflnes 4 class of digtributions ko which " ig

paswod ko belong. I ies nwot pure form che ideu of suporpepulabiun

ig thod the finles vopalosion is‘acmally drawn fron & larger widvoroc

of pupddations. In pany sdboations,nodel sumnarizes und Turmalizes th

reiel naleer®s prior lnowledge about the popwlaticn whethor 1t be
hared on cxrerience or porsondl gubjeciive beliefs. & eriterion of

Cupeiralliy now nay be given as

EE MEE (3,1) = ﬁEP(G“E} eaa (1222}

il

Puisre B, denobes expectablon worebs tho juint distribution £ .
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Afteor the introduction of this new stochastic elenent one
may thinlk of a distribution pr which is a joint cffect of a
design ond a nodel., And conscquently it nay be possible to set up
yet another criterion of optinality based om pr distribution as
E B, (t-)°
’ voe(1423)
where £ = Eg(?)

Though (1.22) is used very widely,(1+23) is nore natural than (1.22)
whenever ‘the intercst lies in inferringebout the supcrpopulation

itself. In sone practical situations 2 is indecd & natural forget

of infercnce, The choice for neasurc of uncertainty (optinality
criterion) scens sinmple once the objeetive of the estimaticn proce-
dure is clearly understood. Though (1.22) is the nost comnonly used
criterion of optinality the critcrion (1.25) is also scen in varifous
studics. A dctailed discussion on these ¢ritoria can be found in
Sarndal (1980a). Cochran (1977) does not discuss the basis for his
procedure to .obbain'reasonable' estiratcrs but apparently he justi-
fies the estinators which rdninize E, (+-2°. It should, hovever,
be noted that when N is lurge there is little to discriminate
between these two neasures of uncertainty. In this thesis we nake

use of both the criteria.

I M(p,t) = M. denotes a necaswrc of uncertainty (cege (1.22)
or (1.23)) then we have o

A strategy (p,t) is said to be betier than anckher strategy
(-p, ’ ”h.l) for estinating the population nean w.ret. the neasure of
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mecrtalmty M if
M{u,t) € Mg, a‘:,l)_
and they are equrlly good iT

M(s,6) ='M(p1,‘t1);

: J % #* % > L3 P L] - b r 1y i - =4 . o
A strocegy (7, t7) Ao paid 6o be @ best siratogy in o clasgs T
of sirategics for cstinading she supulaticn nean if there cxists

ng ovher girategy which is better than p*,t*).

While  comparing different sempling strafepien we nust also
consider the cost of imslenenting strategics (or else census io
aluays an opbincl thing to underiteke). Leé us consgider ;h%ﬁllﬂwiﬂﬂ
cogt functicn.

o, =0 + O 1‘1(5) 000(1‘24‘)
U 1

5]

vhore ¢ denotes cust of sunple g of size n(s) with c, w8
[y

overhead cost and oy “1s the cosé per wilt fur ccllecting the dava.

The cost of a strategy H{p,t) is the cxpected cosb of desig

and is given by

e(H) =¢_+ ¢c n(s)y(s) . eent1e25)

bN
© 1 8ed

Thus dwo strategies are equicpsh If and only if chey have bhe sane
wroectod or average size. Therefore when we dexl wish efficlency
evaludicion and conpurison of sanpling sﬁraﬁegioa”we,juatifi&bly,

resgbrict o cquicost stratoglcese In Chapters 3 and 4, however, we

alse consider a differernt cost funethicon,.
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We now 'pr coent & Tew inportant superpopulation nodels that
will be used in this thesis. As nenticned carlior a nodel is
nothing but a set of specifications which deternines a class of
distributions to which ¢, the joint distritution of T,is assuned
to belonge The specifications nmay range from & crude formulation,
prescribing, for iﬁstame a few noments of the distribubtion ¢ ‘to
a very detalled description (and sometines conplete) of ¢+ Cone
sider & nodel specified bys

E‘E,(Yilxi) =
i=1,2

9 ,s..’IT

T 2 _ ~
v, (Y,ilxi) = E, [(Yi— Px.) |xi:| = 0%} ce (126

Yf, [(Y —BX )(V —BX )‘Xl’ j] = pczxixj ifj;'.l,z,ooo,N

’

1

; 2
where o > 0, P and -3 £ 0 £ 1 are unknown nodel paraneters

and ge [ 0,2] may be known or unknown.

Randon variablecgs Yy 9 Ypyeee, ¥y are said o be exchangeably
distributed if for every permubation m, , Ty, ees,my (1)  of integoers

1,2, 00eyN, Y , ¥  ,eee, Y have the sane joint distribution.
' T T ol

We now define randon pernutation nodel. A clagss of diséri-

butions ¢ osuch that for any fixed and uiltmown numbers T4 T2
cee,yy the randon variables Y‘l s Ypyees, Yy have an exchangeable

diséribution such that

for every permutatiocn n of integers 1 92geee, N

LN J ‘\«(1 .27‘)

SN
L X3
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Uhen randon variables Y‘I 1 Toyene, iy Wie ONO-ZETG variatoo
~ of ‘the - '
then we eén think/following nodel (Lanke, 1975)

Prchb [:Yi = 1 1}21_‘ F?‘Xi o-c(?uga)
0(5(1‘ X = e X,
m— e o § o

n ' o gign *

where B ip wknown purdneser of she nodel (1,28). Nuce that (1,28)
is o cunpletely spocificd nodel.

We shall alse consider a countinuous swrvey samtling ncdel.
The idea of condinwous survey sanyling is due to Casgel and Z&drndal
(1972} in that they try to sdaph Gedunbe's survey santling achs w2
to continuous framework {Sce Sectiun 5.1).

A gostinator t is sadd to be model unbhiased or p-unbluscd Do

the population reun if and only if

Eg(t(S,Y;‘) = EE (T} ¥ g with ZJ(U} > O 0-0(1-.29)
A girategy (p,6) is said o be nedel-dosipgn urbissced or fi-wbiasced
{or fhe populukion noan if wnd only if

2, (8) =B, @ . e (130)

Ve flnally give an optinmelity result due o Ropachandran (1973).

wowe
>

Theoren 1.2 (Rapmachandran) For egtinaiing the population recn Y,

Bl
<

in fhe class of all y-unbiaged shtrabories with piven expected szisze,
there exigbs an optinal ghratepy under the nodel (1.,26) with 6=0

cand  ge [0,27] known in the sense of minimun oxiocdtod veriarce (1.2
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The ortimal gtrategy popularly known &s  Gans  gbrabesy
consists of @ CGrps  desimm and eorresponding Horvisz-Thanpson
gotinator. However, the above existence theoren is of lidsle
preciical inportonce since construcilicon of Grpos deskgns, in oo
practical gituations, can safely be rulel cub. Iz Chapéor 2 we
discuss an altermotive eriseriocn fu oblaln o ‘roasocnable® gwrateg

under edel (14260,
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CHAPTER 2

ESPTIMATION UIDER REGRESSION MODEL

2.0 Summary

In this chapter we work under z comonly used superpopuli-
tion model. We first establish that for a given connasched design
there exists & best linear design as well as model unbiased
agbimator in the sense of nininu expected variance. We then
propose a sufficlent condition for the existence of & best linear
dosign unblased estinetor, for a given design, . again in the sense
of ninimum cxpected variance. Rapmachandran (1978} obtained an
optinal girategy, popularly known &s Gups strategy, in the claas
of all design wnbiased strategies of a4 given average size, Hovwover
in most situwations Gaps designs cannot be realiged. Here we
suggest an alternative criterion to obtain a 'reascnable’ strabegy
and show that such a strategy is as good as any nps strategy.

We thon demonstrate that uasing owr alternstive criterion we get
the same optimal strategy as that due to Cassel et a1 (1376).
Finally, in the laast seclion, we take up the camparison of cordtain

comenly used strategies under the propossd nodel.
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241 Intrgductign

Godanbe (1955) showed that for any sampling design p there
does not exist a best estimator for the population mean ¥ din the
¢tlass of linear p-unbiased cstimators for the squarcd error loss
function. Hanurav (1965) and Hege (1965) pointed out some non-
trivial exceptions to this vhere a best estimator exists. Such
designs were termed as unicluster designs by Hanurave. Godambe's
nonexistence theorem was later on extended to the class of all
p-unbiased estimators by Godambe and Joshi (195). As nentioned
before whenever auxiliary information on a (positive valued) charac-
teristic X closely related to the characteristic y under study
is available, the information can be used to seb up a criterion of
optimality for estinating Y as shown by Cochran (1946). Here
Y19Toseee, ¥y 18 @ realization of random variables Y;,Yp,e..,Ty
the joint distribution of which depends on the awiliary valucs
XqyEpyeee Xy and sone wknown quantities called parancters. This

is termed as superpopulation nodel ¢ .

Superpopulation models have a long history in the sanpling
literatures Cochran (1946) was one of the foremost users of such
ideas. In fact, he was the first to notice that such an idea was
used by Laplace around 1800 A,D. in a sanpling problem. The idea
of superpopulation, in its nost pure form, nay be explained as the
finite pepulation is actually drawn fron a bigger universe. In

nany situations it is nmatural to let a model surmerize and formalise
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omr prior knowledge about the population. Suaperpepulstbion mudels
need nct be Buyesian in the sense of expressing pergomal subjective
beliefs They can be as objective as sune of the nmodels used in
clagsical statigbical theory (Cassel et al 1977). 4 nodel casen-

tially defines a claso of disgbribuiions % .

The criterion of optinality suggested by Cochiran (1946) is™
to nininize the cxpeected voriance, the cxpectatiun being taken under
the distribution ¢« Mosgt often in the literaturc unbiased sbrabe-
ges with ndninun expected variance arc invesktigated, The intuitive
anpenl-of this optinality critcrion was further otrengthencd by
recourse to usual Chebychev®s Incquuldity by Godumbe and Thonpscn

(1973},

Let us conasider one such supcrpopulation nedel. The Jolnt

disiribution of ¥y,Y5,...,¥y dis opecified, though nct complesely,

by first two nenents as follows. Let E, and V, denche the

A E,
‘expectation and variuneco werets the nodel.
B, (Y3 %) = Bxy
i - 1 ‘2’ . B .,N
v . _ 2 g ..a(201 11)
Ve (Yi}xi) = a" %P

EE-[{Yi‘ﬁxi) (Yj-ﬁxj) |5 ,-xj:l = 0 1#jml, 2, 00,

In the model (2.1.1) 0‘25 ¢ and B are urknown parancters of the
pricr distribution ¥ whereas ge }:0,2] may be kiown or unknowile
in nany practical sitwations g is found to lic between 1 and 2.

Hote that (2,1.1) ia o particular case of (1,26) 'with £=0.
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If n(s) denotes the number of units in a sample s and if
the cost of drawing amd inspecting sanple s is assuned to be pro-
portional tc n(s), the two strategies (py,t4) and (p,, t,) will
be cqui-cost if they have the sane expected or average sanplec sizee
Under this convention it is justificd to compare strategies having

a given average sizee.

Godanbe (1955) proved that the strategy H, = (7ps, tg,) is
the best in the class ¢f all lincar p-unbiased strategices of a given
fixed sanmple size (=n) for cstinmating the populatiom nean Y in

the sense of ninimum expected variance under the nodel (2.1.1) with
B ¢> 98

g=2. nps is a design that glves inclusion probability =, = -3(-'1'-
Y
tounit i, 1{id N and tHT :'%\T by -T—cl is the corresponding
ies i
Horvitz-Thonpson estinator of the population nmean. Here n is such

that nax x. < X « Iater Godanbe and Joshi (1965) proved the

1¢ign 71
optinality of the above strategy in the class of all fixed size (n)
p-unbiased strategics under the nodel (241.1) with g=2 amd an
additicnal assumption of independence of Yq,Y,,..e,¥y« In the
literature there are nany sanpling procedures that result in the
rcquired inclusion probabilities s proportional to X5 9 1ig N,

(sec Hanif and Brewer, 1980).

Hansen and Hurvitz (1943) decnonstrated ‘the profitability of
nps designs and indicated methods to deternine the probability of
sclection which nininize the variance of an estinator for a fixed

coste. Hansen and Hurvitz (1949) also showed that sanpling with
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probability proportionzl to the square root of gize (xi) is nore
officient than nps sanpling under certaXn conditions. Under the
nodel (2.,141) TuJe Rau (1971) studied the Horvitz~Thonpson estinator
of the population mean Y with designs wherein the inclusion pro-

bubility Ty is proportional tou the nodified size x; , 0> 0, 1{1igN.

Definition 2.1,1 (T.J. Rao; 1972). A design p is called a gene-
ralized mps or Gups design if

= I »(g) a xf/z

T
1 a»l

tnd p(s) > 0 => = x}_"g/ 2 . K
ies - xg/Z
i=1

where g 2 O and n, the expected size, is such that
nax mcf’z < Ig xjéf“/z .

i=1

For estinating the population mean Y, T.J. Rao (1971)
observes that the Gnps strategy (consisting of a Gmps design
and the corresponding Horvitz-Thonpson cstinator) is bebter than
the strategy 1-11; = (nps “bHT) in the sense of smaller expected
variance under the model (2.1.1) fur all ge [1,27}. - Later
Rapochendran (1978) proved the coptimality of Gmps strategy in
the class of all p-unbiased stratcgies of given average sizc (=n
say) in the sense of nininun oxpected variance under the nodel
(2,1.1) with g¢ [0,2]] known and the additional assimption of -

independence of Yq,Y¥5,eee,Ye A5 @ consequence for g=2 wo get
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Godanbe and Joshi's (1965) result and T.J. Rac's (1971, 1972)

results alse follow irmediately.

However, it should be noted that the whole-idea of GTps
design is quite artificial and one nust recognize that the birth
of Gmps design is nore on algebralc: considerations rather than
anything else. ToJ. Rao (1971) and Rapachandran (1978) have given
sone exanples of Gnps designs, for g=1, to show the nonvaccuous
ness of the concept. The present author tou knows soric nore cxanple
of Gnps designs in slightly relaxed set up (fixed size and ¥ g3 0)
but all these examples are specific to the (artificial) x-values
under consideration -and camnot convey anything positive regarding
the practicability of Gnps designs. The existence of Gmps

designs, in nost practical situvations, can safely be ruled oute

Let us firgt glve the preliminarics and develop necessary
concepts before outlining the results of this chapters

Apart from model (2.1,1) we will &lso deal with the follow-
ing *transformation' model considered by Cassel, Sarndal and
Wretnan (1976).

1

The joint distribution of Y,,Y5,00,Y; is specified by

EZ (Yi) = My = pag+ by
” 5 o 1 =21,2,.e0,N ‘
V’E,(Yi) = Ui =0 ai -on(2o1 02)

= o2
Ez [(Yi-ﬂi)(yj -uj)] = o"asa,

y 1E3=1,2,000,

oAb i PIERVIL S S NI ST P .
nOLge ‘q"i,' Y N 1;4.";.1."'1: ama ko msaldl ambane ceash Ghad ai ) 0‘.
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1¢i{¥ and = &, =N. #,0", ¢ are unknown paranchers such
that o > Q and--_-mﬁpi“i.

In thig model the choice of a;,b, 3 1414 ¥ is guch that the

irTi
nodcl maker is ready o hypobthesize whal the dransformed varliables
p )
== 4 14i1< N, have common nean and variance.
b

We now define different types of unbiascdnesse.

Definition 2,1.2. 4 strategy (p,t) is said to be

(a) p-unbiased (design unbiased) if

E(p,t) = ES p(a)i(e,y) =T ¥ yeRy
3e ~ -

(b} ¢-unbiased {(model unbiased) if
B, (s, 1)) =E (¥) ¥s with p(s) > 0
{c) pr-unbiased (nodel-desigrn unbiaged) i1

Hext we define what is called a connected design.

Definition 2,1,3. (Patel and Dharmadhikeri, 1977). A design »p
iz said to be comnected if for any two wdbs 1#J:U there oxist
undts d4,dp5,e0e,d, 4 and sanples 8,35,444,8 85 such that
pla) > 0 ¥Fr=1,2,0.e,n” and 5,3 1,1, 7 5,715,1,,..s axd

8, % im-T A

Note that most of the designz used Lun practice are commectfed

designsg.
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Our main problem is to infer abaout the population mean Y,
the other asgpect of inference being the estimation of model para-
meters 4 and P themselves. To compare the performances of
vatious sampling strategies we introduce the following two measures

of uncertainty. For a strategy (p,t) 1let
My (p,t) = B,E(t-T)? eea(24143)
ahd  My(p,t) = EE(t-E D7 vee(24148)
Wote that if (p,t) is p-unbiased then
My (p,#) = BV, (£) + BE, (--T)°_ v, (D c2a(2.1.5)
and if (p,t) is p as well as r-unbiased then

M1 (p,t) = EVE,(T;) -, vg(i;)' .oo(201 06)

Once the goal of the estimation procedure is clearly under-
stood the choice of the measure of uncertainty seems rather simples
M, may be used in the practical situations which call for an
inference about the superpopulation process itself whereas an
inference about a specific outcome of the process motivates the use
of Mqe. Further for a4 p-unbiased strategy M, and M, are effectivel
same. (They differ only by a quantity Vé(?)), S&rndal (1980a).

Comparisons of various sampling stratcgies under & super-
population model wer.ts 2 certain measure of uncertainty has been
one of the main prodlems of interest to survey statisticians when~

ever a globally optimal strategy does not exist. Such,énvestigaticns
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have been carried out by various aubthors in the literature. We

will consider the following stratcgies in course of the discussions.
= (nps, tun), Hy= (nyy tyndy By = (oppp s bpppds Hy = (65, fyg)

where H,; is a mnps strategy, H, conalgts of Midzupo~Sen sampl-

ing scheme and Horvitz-Thompson estimator H3 ig the well-lnown

. Rag~Hartley-Cochran (1962) strategy and H 4 La & Gms asbrategy.

In this chaplfer we fireh prove thet for & given comnected
daslgn there exlsts @ besht p~ @z well us rwunbluscd liaear egtinator
in the sonsc of minimum M, or M, under the model (2,11 wits g
Tnowile Hext we deal with the existonece of an opsimal p-unbiisod
lingar ostimsbor for a given doesign p o under the model (201.1) wrua
& krnown and the ratio 62/52 2ls0o known Wer.bh. the neusure of
weorkainty My . Ve then suggest @ eritorion for obtaining a
strateogy ao an alscrnative to Grps gtralepgy. In thwe claass of 213
lincar peunhiased stra-;!:ggf%asa:l. ct al (1976) owtained an ophinmal
strévegy uader tho transformation modcl (2.1.2) in the sonse of
..... inimm M, or Mse We obke dih the samce strategy by diffoercat argoe-
nenks. Finally we compare the zérategies Hy, HE’ I% and - H4
under she mofel (24141} weret. the neasure of wicertainty My. Ve
Tirgt show fthat the sufficient condition, for H, Eo De superior
50 M, duc to Chaudhuri (1976}, can nover hold, Ve Shen suggest
i sufficicnt condlitien for Hy, %o be bebler then H, which is an
improvenenié over the comdicion duc to Tede Rag (1967). Fartner
we digprove bhe colaim shat H3 ia supcerior te HEE‘ for £> 1 by

Ajgtonkur and Pedgaonkar and then give 2 gufficient condition for
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H3 %o be bebter than H,. We finally make a remark on 4 result

due to Pedgaonkar and Ajgscnlkar (1978},

242 Optinal Egtimators

Most of the designs that are used in practice are connected.
In this scebion we first investipgate the fellowing . Given a
connceted design p does there exist & best linear p as well a8
¢-unbigscd estinator of the populsation mean Y in the sense of
mindinm oxpeeted variance i.c. wel'sts the measure of unceriainty

M of. (2,1.3) under the mudel (2.1.1) with g lnown?

Let ug first prove sone lemmés. For & glven sanpling dcosign

p define the following N X N makrix A ag

_ pls A,
Bgq4 = My — T3Py siids I = 1,2,00e,l0
e (2.2.7)
o vig) i
and aij = - T}ipj ﬁﬁlam s ;fg _.1 ,uo.,

vicre g > 0 5 py > 0 1140 ed dls) = JZ DT
es

Lorma 2.2.1  {(Patel and Dharnmadhikuri, 1977 ; 1978) If the

sanpling design p 4is conmected then Ramike (4) = N-1 where 4 a8

vor by (242413,
Proof Iet C = DyAD,

whor'e 1}1 = di‘lﬁ(}?a{ ,DE, nwey ?N} and DE = ﬂiag(ﬂ-l + T]E, sae ,T}N-} aré.
the diagonal matrices.
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X

ine entries of the matrix C are given by

Cyy = MyPeT, - nf;}f z ;(“‘ i=1,2,¢0e,
h 4 a9l £
and f_}i. = - ]']irrT}-];*. z d(S i#j=1,h, ou.,Na
;] o :i J Erji,j .=

Hote that since 1.7y > 0 ¥ 151,2,..,8 and d{s) > 0 ¥ s 1i%

follows that c,., € U For 1#J=1,2,.e.,Me PFurther iv ig sasy ¢

N * 7
checlk hhat 2 cij = 0 Fi®1,2, .04y and £finally that € ic
3=1
symetric. We now show thot Ronk (C) = H.t,
hul
TIet & be & columa Nwvector of 1'a flien % €., =0
Ll 3;1 ;.‘u"

oo ]

F L= 1,2,e.0k can b writbor o Ce

0. Supnoot now Tivd o

[2V] ~

5

-, A A < Land
0. ¥We ghew hoos o Al

~r .~

i

aone otlior N vector, io such that Cg

niltiple of g« This would cstublish fhatb nank (C) = N1,

Define M = ' nax 2y snd w2 ndn Z; o
18440 1¢1¢H

L]

If possible, lut m < M. Tov Uy = {J sz = ¥}e Them U, iz
nennpsy prover subset of U = {1,2,...,0}. Slnce che destgn

connected there exdat an :i.Q e U1 and & jg g U= U,I anch hat
this palr &, ]

K

bulong to -some sample © with pls) > 0. Feo

wrre 6. 5 4 0.

o i U, =» g, =¥ = ¢, .2.= .3
¥ J € 1 ?.‘j (o icaz:’ 2.3

au0 J sT.T-U.I == zjif.Ma’:-} Gy . 7. > Me

wobh strict ianequality for J = J .

£
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A 3
o
t

Consequently for i =1 Z ¢

itus Cz # 0, which is,contradiction. This proves &halé M ==n

iese 7 1is a scalar multiple of e+ Thus Rank (C) = N-1.

Pinally, since D, and D, erc full rank diagomal mairiccs wo gob
Rmx(d) = Rank (C). = N-1 .

This coopletes the pl'oof of &he lermia.

‘v\]\r} noew ’L“_,I‘Qve the fOllO‘.Jih{, .

MY

Lomn 242426 (Pricl and Dnﬂrrtadh kari., 1978) . Ior & corwsued

sanpling design » rthe following sgystom of cquaticns is conaiston”

A o, - d a o 2 .:7.2 o
R
whore 4 18 given by (2.2.1) wid & is ¢ column N-vector wi ..

[

ETC.O:F . Leﬁt D = (1')1’;2,.-.,-@1:’) bQ

~

Siuce by our previous lemma fank (4) = N-1 the systen (2227 &

concisfent as soon a8 »d =0 waich is indced truec. Henes Lo lemm

:5.

Thoorent 2.2.1 ¢ Tor a given comnecied design p chere oXisy

Teing these two resuliés we procecd o prove our naiul rosiull

&

-~ Es g A N
row li-vechor. Thes pa= 0.

lincar P as well as t-unblased cshinmcior of fhe population o

Weit oiis the noasure of uncerbtainty M, (z,8)  of  (241.5) uvnden ne

nodel (2.1.1) wivh g Inowne

e

£ Wo would, im faet, ecbhbablish th. existence of & unigwe

OC
AN

S
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lincey estingior, for =« given comnected design p, that nininirzes

i (p,8) of (24143) subjoct fo the conditions of

(1) p-unbiigcdness

and (1) e-unbiuscdness.

For @ linear estinitor t(s,y) = % b{s,d)y,, the condibion of

v-mmblisednoss 13 cquivalent to

2 (s, ple) = ¢

83d

¥i 51,2,.-'.,1‘3- .-r{202l¢)

and the condition of t-unbiusedness ig equivalont to

T ob(s,i)x, =X ¥ s with p(a) > 0 . oo (2.2,5)

iles -

i} pra e -k - . 2 = L] , - o~ ™ e 2 ) I '-7'!

Lhe &eienpe now is Go midninize M1(ﬁ,¢) = E EBE(t-7) aubject o Ghe
%

condibions (242.4) aznd (2.2.5) bub Decanse of {2.1.5) it g enough

e rdnirics E‘Igft) subject o (2.2.4) and (2.2.5) sinec T, (D)

does not depend on any rarticular estinator 4.

, X§ % bzﬁs,i (s} .

tow By () =a° =
2 £z 5 93

b ala,d) = Wls,d), 1y =g, ¥y ==,

The problon now reduces to the Tollowing rinimdsation preblene

3

Minircdize &5 q, 7= &aCs,i)Ffs} )
i=1 7 g3 |
L
gupject to (i} 3 ale,Dplsi =1 1 =1,2,...,¥ [ ce (2424
g»i l
|
and (i) © afs,i)p;, =1 Fa with wl=d>0. )
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$ord

We use lagrangian nultinlicrs technique 4o solve & wrization

"Ql"oblel”i (2.2-6)- I—’Cb

i1 ir -
Q= 3 g I a“(s,i);{s) - 23 M [ 5 als,i)ule) -1 !
i= 531 i=l = kgsi -t

~2 = as[ = a(s,i)n -1_j ea (2427

where A , 114 and o , 58 with »{g) > 0 are Lugrengisn

Selving (2,2.67 is equivalent to »j}:,zininizing 0 unconditi:.nully.

e f 3 . AR kY R
_Lib-‘\S,.-a.:’P(S} Kip(sl + as,ig

1¢ig W

17
s ¢
N
]
-
[*Y
S
Lo
o
Q
s”
1
—

sl ies, seS with (s3> ¢.

* e e (2.2.5"/

3
L]
~~
3
-

[
-
s
(]

]
~l

{
o
(]
b
[y
N

After a lictle algebra onc ‘gets

a(s,i) =z, + 0, (1~ = szj)/a(s) eea(2,2,00

vhere 1, = N /a. aud z is & sclution tc the systen of =oud-

e s ~t ) 3 . O td ~ } [ .
tlons (2.2.2) with 3, = x /X and ng o= AT
- ke

Bui by Ienma 24262, the syster (242,2) is consistent as socn &s

Su 2 comectod degigne Furkker is is casy &c check that iho erlue
tlon (242.9) does not dorend on tay purbticular sclusionm g of

I A A A
MPIESSIUN I
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This roves the eXistence ond uniguenesc of the bosh 1inca

5 ug well ag f-unbiuss? ssbinctor for & given conmocelod design e

Exinrle 2.241.

Lot 1 be aay counccbed mps  design of fixed sizme .

Fortunately, for a nps design, (242.2) can be sclved oxplicitly,

vhers agedn vy = xiﬁ{ and 71, = 2y / C“ = 1“3%(1' E/% . 4 solubion
is glven by 2y X ,/mci , for-ith eunbry of 4z 1s glven by
. J 5 1_p .
ki€ Ly a8 X (
T - —%— & &55- I
N ol 541 5ei,3 '8
1% =6 L W€
= i 2 i p{s)
= 1 - Iﬂ{ =z Aoy — T b a S (1‘1:-—1)
' ' ' gyi " 11 gyl
LI
5 1 - R
X gag GCs
- d-.: .

o . . . . \ v 1
And vhus Ehe opbinul cgbimator, as oxyocted, is glven by . B —F.
iega A

The next problen that we dnvestigote Is the foellovlng - Gaven
o desigit p do2s thore oxist & besk inear p-umbiueced cobinator of
ths popwlation mean ¥ under dhe nodel (241.1) with g knewn wnd
fhe ratio 62/ﬁ =k (say) oaleu knownt waCefs The measurs of
meertodnty M, of (2J1.3) 1

Lew ug first stabte o lerma without procf.
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Lorma 242,53 An N XN patrix C = (cij) is nonsingular if.
i
Ciy = I je. | >0 ¥i=1,24ee,N,
ii g L 1T ’

Ve now hawve

"

Thoorem 2.2,2 For a design p with Tti(p) > 0, 141N, ‘here
cxists a best, lincar r-unbiased cgtinctor for the Dopulusion nean

¥ wunder the model (2.1e1) with ¢ and X known werebe thc neasuro

of uncertainty My provided the pareneter k  satisfics
> =(1 eee (222,100

vhore k() = inf 72 and

s x1=8
. TR .
Z=geim = % p(s) > = p(g) &2 , 1€ig ce(2.2,11
83i SPi e+ 3 2.¢
jes J

T ry R - % - o :
Homark 2.24,1  Nute that my, 1L18Y, arc independent of o

e s
-

vherces the bracketed ex'wession in thoe dofinitim ¢ Z in {(242.1°

is deercasing in ¢ F 1 = 1,2,404,5

Proof of Theorcn 2,242 A linear cstimusor is of the $yoe

[

R: b(::s,i}yi . It is casy to sec that obtaining the requircd
iLcsS
cgbindbor is equivalent %o solving the following mininization

_ B 2
Minfndize kx 2 xfF zb(silu(sl+ z- (d)( z b(o,l}x1?)?
i=1 s2i seS ies -

(2,2.55"

2
fe
A9
[N}
[

£
‘g M
o'
—~
o]
-~
[ 23
N?
vl
~
48]
~’
L1
)
-
-
i~
[
AN
e
=y
[
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N ) 2
i @ =k 3 xf 2 b (s, 8IplplauZ (e)( T b(s,i)x)"
i=1 s2i seS ies
3 (s,i)0(s)
_2 % 2 b(s,i)ols
R

whorc )‘i , 1< i<, arc Lagrangian nultiplicrs.

Now sulving (2.2.12) is equivalent to minimizing Q unconditionslly.

ifter differcntiating and simplifying we got

5 xj‘x‘;‘g
L3 1 jes -
b(g,1) = = | A, - x, Ceee(262,13)
’ kxg[ 1 3y, s ;Z-g:! )
- Jjes J

vhere A is @ solubtion to the following systen of cquationSe:

CA = 6 -'.(2.2.14)

wi

&

o
1

m - Xig"g 5 ople)/e(a) 1 51,2,004,0
s?i

e;. = -xxi 8 I p(e)fele) ifg=1,7,..0,1  +e(202415
1] s»ij

and 6, = kxf/N 121,2,000,0

further e(s) =k + = Xi'g.
ieg

-
t

Lot  (242,10) be truc. Ve then denonstrate the following,

)
C.. > E lC..! :\; i=1‘,2’...,N
37 gy A

waere c.,. and ¢.. arc given by (2.2.,15) .

i1 ij
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I\y « - d i"!\
.. - & e il = r, ~x2"€ g 2(s) _ x 3 x,76 % (3
ii R i : els 3 s 2o
J#i s?i AL s3i]
= nl..x?"g g 208) _x g f(f) 5 xi=
L gpiC'S L o218 jpies
sz, ¢ 8l o5 yl1-e
* 531 V87 geg J
> 0 by 2.2.10)

Thus, in view of Lomna 2,243 deb C # G i.c. the systen of cquas

tions (242414) is conoisbent and hes a wunique solubtion.

1wcrefore (242,13) gives the required optinal cssimusnor.Bhis

connlctes the proct.

Renarl: 2,4,2  Observe that the lofé hand side of the cquation

deh C = ¢ can be thought of ag a polyncnial in k of degrec n

(say). Therefore for a given design § there can be ab nost n
velues Kq,kpyeee,k, of k for vhich the best linear d-uwabiused

cgtinator nay not exist.

243« p-unbiasedness of an Optinal ¢- unblusuo Egtinasor.

In Sccticn 2.2 we nindnized EVé(t) wnder the nodel (2.1,1)
subject to” p as well as t-unbiasedness for a given coanccteld
deslgn  pe Nanochandran (1978) obtained an optinal sfraiery thut
indnizes M1(p,ﬁ) in the class of all p-unbianged strategics of
sAven oxpected size under the nodel (2.1.1) with ¢ known avd the
additional asswmpticn of independence of Tq4 Y5y eee Yy e The optinal

kN [ : ey . - 3 b > g me -
RSO BEsid ISR Heb FintzatithidingiwatfmaikideSiibduigieéoRadioeRNasION BREY
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{

QfFicdt ko realime. The oxisience of Gnpe deelgns, in woad of
‘he prackicel situmtions, can sefely be ruled oub. Rapdchandran
rirdmized  IV.(E)  subjceh do she condislons of p-unbiasedinoss andg
fined average size and celod Lo immoze the éondition of f-unblaped-
ness on the cshivabtor so obtalred only to cnd up wiih CGipe  3ira-
tagys Heroc, ag & compromimc, av awsenpe is nads eo oblain &
strategy Tirst by minimising BV, (f) supject fo runblascdnoss

and then naking the skivator 20 abtained v-unbjased. Furehare Lt
is chown that bhe siretogy so obtuinod is as good as the sirdseny
(tps, bppd wereb. the easure of uncertalnty M, o Whe approscl
aispeed hore ¢an alsoe be luwerpreted-as Tollows Whon She nuazsurs

L) 2 .

of wcereainby H, 1 <«

i

proveiate we first ndindnizge M;_, in she
clapg of linesar d-unblaged estinators and then try to obtain &
deslem rhes rwaleo tag estinator so obhtained p-wnbiaszde. F-Jl" Taa o
I she swo mengures of wneerbiingy arc pracéiocally the seme Snd
I oabe consinuwouws sob up (Chankor 5) for c¢ho approach daken hiore,

iy Ig ggquivalent o using: M2 .

e firgd otate @ resule due fo Parkes (vid: Mangagoriaa,

SOEG oy R
i"bf;, el s

fhopien 2.3.1 (Farkag) Ie: B be any nX n mehrix ghen

elilr Bgs=h, m2 0  hag & sciution
or  B'ug< 0, b'z> 0 huga sslukion.
TJore: ‘o' is uged in bhe cxelusive sensi.

We whd prove & lermé foat wounld %o used iu provihg vac naln roonds

GLoowhing section.
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Torine 2,541, Let Xg 4 Epy eve Xy > 0 be such that
. 4 I
X?‘T-‘-‘- nax x"?"? L= = &-1
= 1¢3¢n * n 4o

Then if up,Uy,eee,lly, Uy, 4 are such that for cvery n distinch

labels 1 ¢ i4, lpyeeayi LN

n

2oe -
.E ui + u}T-\—" .5—3_ Xig _(_O 000(20901)
= J=1 J
N ] e o
and %‘_1 X5T oy ¢ Uy, q 2;3_.1 x; > O cevlleaPeli
thea for ceve fy n-1 distinet labelsz 1% 11 ’ 12”"’3'11—1 LN
n-1 n-1
T ow, + Qyr, 1 5 xz‘g £ C
=1 % 3= 7
Proof. Qur i , 1141, velues are such that
¥
&1 ¢ 1 5 x81
! N ;-4 1
. i=
M
= x5V ¢ * x5 . (u-1 )xg"
n = . i
_L-.
N n~-1
¢ = xFV_ % x&1 sfor any set cf (n-1} lobols
BRI e
T<iq,d5,000,2, 4 LN,
4]
5 x?_"" ,
J=n 7
Thus we have for any sct of N-n+1 labels 14 Iosl qeeeeyiygsd
N -
g_1 'g-'.’ L “~ .m ah\’
Xn _(_ ‘E ;si‘ ° .‘\ /
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First observe that, because of (2.5.1) there can be at nost {n-1}

labels for which
2ug 243.4)
* g% % > 0 eeel(2,3.4)

Without loss of generality we call thenm 1,2,...,{n-1). Again
becauge of (2.3.1) and (2.3.4) forat most these (n-l) labels we

can have

How from (2.3.1), we have

2- . .
—ui—uN+1xig Vli;’l-

N g-1 IiI -1 . n-1 ) (5.3.5)
or A D 'X“ b4 - : - I X.J)., aeeeldeded)
i=n : -*n R e i=1 1

Purther fron (2.3.2), we get

uxE . uN+1(“_x_)>— 11 ngR§ - g, K- 2 x )
191 = 1=
j:.,‘§'§(2.5i6)

Conbining (2.3.5) and (2,3.63, we pot

N 11~1 N1
Aoz 28T ¢ wx81. 5 X
i=n * iz L1 I
n—‘E n-1 ¥
g-1 2-g z&1
1]
= Xk I x&1
i=n *

er A< A which is a confradiction.


http://www.cvisiontech.com

- 42 -

Hence A £ 0.

Thus for every set of (n-1) distinct labels 15_11,12,...,in_1< N
n-1 N1
P
b ) X, gs 0.
This provesthe lerma.

Let us now try to obtain our conpronisc strategy. We first
nininige EVi(t) subject to the condition of r-unbiasednesse
Equivalently we solve the following nininization problen

N

Mininize £ x§ = bg(s,i)p(é)
i=1 s?i

subject to T b(s,i)x; =X.
ies

This readily yields the optimal soluticn as

= l-g 2- :
b(s,i) = Xx; "€/ 2 x276, vee(24347)
le8

Thus EVg(t) can easily be ninimized subject to the condition of
¢-unbiasedness. However, the nain problen of interest is to obtain

a design that nakes the estinator with b(s,i) in (2.3.7) p-unbiase
For se8, define I_(*), the indicator function, as

Is(i) =1 if 4ies

L]

0 if ifs.
For convenience let us denote the sanples by 152,000y8,000,Me Als0

let as) = = x°-8 .
ies ¢
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fow the problen of finding & design that nakes bhe egéinator with
b(s,i) in (2.3.7) p-unbiased is equivalent fo solving the following

oyoien of equations

K,

B = b :
- =~ lll(2.3-.8)
z 20
vhere
I,01)  1.(1) I_(1) [ ‘ f .
T Em e e & 2D &
. g
»(2) x5
(2 I, (2 . X
ay  oae aG1) : :
B = . " o= : and 13“% N
1, m 1,00 I, (N : 2
a1ty a ‘ a () ‘1%-11
1 28 p () P
- L |

Caee(203,9)

Ihgoren 2.3.2. Tet Xy X5, eea,Xy > O bo ouch that

N
dak n 1;1 l

Then the agyslicn of equations (2,3.8) is consictent.

Procf. In view of Theoren. 2,3.7 it is éenouzh to show that 3 ug 0

ard ’3'}} > 0 is not comsisiert where Bond b are given by (2..9).
I7 poosible lot there exist Ugglln, conylly, Uy 4 Such that 3B ug o
and b'}ux > 0.

) I N

t - . - 1 oA
E u >0 L= _21 Jixi + gﬂ+1 151 Xi > 0. s (2354102
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Further we have, for any n distinet labels 1,,i,,..4,i,, DoCause

9
¢f Duf0,

—
Pt

12’11 ui * ‘J’N.‘.'i g}[i_g :“_O -o-{2.3011)
=1 %3 =14

low with the ropeated applicaiion of Torma 2.3.1, from (2,5.10) and

(2.3-11) we héve

2t 7 i .
Uy 4 Upy,q Xy g;; 0 Fi=T,2,ses,N

I i
T L PR
i=1 + 1 Bl g1 2

Thig iz a cuntradiction to (2.3.10). This vroves that the systen
(2e243) 1o consistent.

This cnables ug to obtain a design p  that nakes the esbi-
rator (205 .7) p'ﬂm'lbiaSGd.

The proof of existence of o design bhat nokes the estinabor
(2,347} p~unbicsed, in fact, establishes the existence of a fixed
size (n) design that satisfics (R.3.8). Iet py be any fixed
sizc (n) design patisfying (2.3.8) and +; YDe the esbinawer glve

by (2.3.7), Ve now have the following theorer.

Theoren 2.3.3. The strategy (pq,t,) is unique wupto design in

tire semse that M1(p1,t1), under the nedel (2.7.1), is sane for all
Tixed size (n) designe p; satisfying (2.5.8). Further the
stracegy (p1,t1) is as good as the straiegy (rvs, tHT} under

thoe nodel (24141) werobe bhe neasure of uncertainty My .
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It is enough to check that EV, (t) is sane

o5 U -
o o

1T
2 o ; =2 2.7
Ev. (4,) =a° z x8 ¢ T%x%8 p (s)ae)?
¢ i=1 * g»1 E !
=o“ T2 8 p,(s)/a(s)

ges

wvhere d{as) = 2 x?"g .

“igg *

But note that (py,ty) -is p-unbicsed, hence

——

or

>

o]

;76 (8)/d(s) =1 ¥i=1,2,...,0

£ pqls)/dls) = xﬁ'?,f}i

831

i _ o -
5% ps)/as) = 2wl
i=1 s3i i=1

|

wileh is indepondent of choice of Dy =

for all ({31 ;i:.,i} ]

s
5 pyls) /d(s) =-§X E f , by being o fixod size (n)

designe

Thug I'~’I1(p1,t-1} is sanmc for all (4, .I}, Py Dbelng fixed cize (n)

: dosign satisfying (2.3.8).

shrategy (s, fyp) is known %o be

2w 0
o X 5 Xé‘;—'! .
nil i

Farther the value of EVK(“ Tor she


http://www.cvisiontech.com

- 25 _

Hornee. Mq(p1,t1) = M, (Mps , ol
This completes the proof,

Ronark 2.3.1. 48 a consequence of our approach when g1 in the

nodel (241.1) we get the strategy (ny, tg) where Iy,
X

Midzuno~Sen sampling design ond $g =X = ¥y J
izs izcs
conventional ratio estirator of the pepulaticn mcan,

i

For g=2, we, of coursc, get the strategy (nps,byp).

Repark 2.3.2. The approach we adopted is a kind of insurance
ageinst possidle nodel breck-dewns. Sincc the strategy (pg ’T’“I)
ig -unblased even if the model brecks down (pg,6,) renains &b
least pt-unbiascd. Thus the step of obtailning by coven afber
getting the best ¢-unbiascd linear ecséinator is justificd. Howover,
1t nost be noted that the strotegy (py,4y) Jepends on the nodel
parancter g which we assumed 4o be known. Thus vhen g 18 now
known we cannot thinke of getting strategy (Dg,1y Je Theoron 2.543
gives o kind of robustness property of the strategy (noe.typ)
since it is independent of the ncdel pararcter o and is zs poud
as the strategy (pq,t;) ¥ ¢ < [0,2].

We now cammont on an optinality result due to Casgsel,
Sarndal and Wretnan (1976}, Cassel cof &l (1976) obiained the
Tollowing optinality reowdt.

Theoorert 2,344. Under the nodel:(2.7.2)

)

GDC
¥ {(¢,t) such that p iz a fixed size (n) deocigr and ¥ is & linear

My (p,6) > Mq (pO , b
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p-uzblaged estinator uxd the sirategy (p_, tapg) consists of a

fixed =sime (n) desigr £, that gives frclusion nrobabllity T

bo undt 1, 1£if W and the estinator

O
Sgng = yiahi © 3 5D
ies 4 et 4

In a criticisn of thisz result Snibth (1976) questioned che
logic behind using p-unbiussdness &s & congbraint. He furnasr
aueried why an optirnality criterion based on both desipgn 3ad nodel

should be subject to the consiéraint hased on the design alconel .

Whether :he inference ,_-,.rmula be bged con Jjush deslid or Just

nodel or both rodel and design has always been a conlbroversial lisug.

I

tne condition of p-unbiasedness is & safe-guard ageinst medel break

=

downs. Here we try to give an &lbermative justifieation fo *b

o

L 4]

optinality result duc to Cassel e al (Theoro: 2.3.4). We naks an
aitorpt fivst to nindnize My (p,t) subject to r-unbiasedw:ss 11

the clags of lincar egidnciors and theon bo obiain & dealgn khat

i

nékeg the estinator so obtained p-unbiaced.

iheoren 2e.3.5. The stratcgy so obbtained is sams ag the ophinal
efrafegy (p, topy), due to Cassel ot al, of the Theoren 2.044.
froof. Wz omit the proof. The technique inwvolwed ig same as in

the zariier results of thia section. The cogvariarce terme in

(2.1.2) do not csuge any troublc.
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2.4 Conparliscn of Strategics

Ag geen beforg the opbimal Gnps strategy is not usually
avallable. Even the albernative criterion thatb we adopked in the
previcus sectlon doon nob yiold wiy globally optimal strabegy
unless g = 2 in the model (2.7.1) In viow of this it is in
order wo ceonparc few well-known siratogiee used for eatinatiag the
povulakion nean. Ceonparisen of oampling strategies under the super
pepwlacion sed up wereb. cortain reasurc of uncertainty, as nomiic

garllior, has been one ~f the nain preblems of inserest ho curvey

’Q

Rk L

U

ticlang wvhenever & gicbelly optinal strategy is nor avaellable

L]

such investigetilons have been carried cub by varicus authors in the

T

P;
Hy ¢ Hy, explained in Section 2.1, under the nodel (2.1.1) wer.de

-

literature., In this section we compare the strategies Hy ¢

the nedcuwre of unceriainby My »

Let p be any design with 2 ple) =9, > 0, 14147, and

5 73 B ;
aij = % pley 1#j=1,2,...,%,. Then the sanpling variaace of %he

CGTLuuQGﬂﬂiﬂg Hervitz-Thonpson eobinator is given by

V() sié[z: & -1 S gy i o] el
e i ifgg=1 4% L
‘ i
In ihds gecfdion £ will dencte § , unless obherwics specifiod.
i=1
The sanpling variance of the Rag-Hariley-Cochran sitrabegy, Bz, L8
glven by R
T I . V2

L]

1 S :
vhere T 1@ an lniogor.
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It is well-known that under the nodel (2.1,.1)

2 |
=M, (H) =3y 5xf (- - 1) (T.JRao, 1967) .. (24443)

F. =
! i) 1Ty
nx,
. = 1 X
iheTe 7y = =% 11N,
B, = M, (1) = 02-~gx£ (_1_.. 1) 52 v({ % f.i-) (7.J. Rac 1967}
ERE R A A
-u-(20¢04)
' N1 N-n ]{i 1 x
whore Hi =¥7 * T3 —}-{-—- and EE V(st = ) is the -sanpling variance
i

of the strategy H, at % = (X;, X5,+.0,%g)e Finally,

2
Ry = My () = 5 = [mxgﬁ-h £x8]  (Hanuray, 1965)
- (2‘4!5)
is'an integer.

vhere n  is such that E

(a) Comparison between Hy ~nd H,

Here we first show that the sufficlent cvondition for Hy Ho
e superior to H,, obtained by Chaudburi (1976}, can never be
satisficd. We then suggcat a sufficient condition which is zu

inprovement over the condition due to TaJ. Bao (1967).

Theoren 2.4.1« The condition D = E(-}c-;- --'.5-];-:-) 30 due to Chaudhuri
i g
(1976) cen mever hold. m; and 'rc;_ are given by (2.4.3) and {(2.4.4)

regpectively, 1£1igN.

Jg =1
. _ n-1 . N-n .'L b B
Prout D= [1 /( _ )- 1/(_-)] ntN""nj Pl 1
dere Py xiz’x and A, = p; ¢ Nen *
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(n1)W°

Hence D =y

Cav(pg , /by ) « Fow pyhy  is ineredsing in py

Heuee 'c’w(pi, 1/9;%) £ 0 or D 0.
Thus the conditicn D > ¢ can nover be satisflied.

Rgpark 2.4.1. In the mmerieal exanple considered by Choudhurd %o
show that D can be positive, we observe that D 1is, in facé,
ﬂegabive.

For N=4, n=2, p; #p,=0.,2 and Ds, =P, =0.5, we bave
I =.25/84.

We now prove the followihg theoren.

Theoren 2,42+ 4 sufficient condliion for = H, to e superior to
1, under the model (2.1.1), for & given value of g2 1 is given by

— ch‘:f:)p'i' {_{’,‘—1) .ui(zoﬂé‘oE)

nzm, = (2-g)v+ (g-1)

Prgof. Following T.J. Rao (1967) we have

E_.F .
2 1 -1 g _2=1 :
- :’( - - - L]

o® 2 A Covipg , P} 73y

Note that 13:%“1/?&1 is nondecreasing in p; for g= 2. and fer
1€ <2 it i3 nondecreasing if znd only if

-1 n-1 -
Py S e

Thus Cov(py , pig"1/hi) ig non-negative for g=2 and for 14 g2
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it is non-negative if

p_(_ .‘:‘lg—'ﬁ:“_‘:l 6-1(2-4Q7)

It is a matter of vorification that (2.4.6) is aquivalent ko (2.44.7)

Jence under (24447} E,-Ey > 0y i.ee H, is supericr to H,.
- Mhis proves bthe theorers

Renarle 2,442. The condition (2.4.63 is an inprovencnt over whe

sufficient conditien due to TWJe Hac (1967) in that n, in (2.446)
ig maller than that of 7T.J. Rac vhencver n.p £ 1. Thig is
because Fao's sufficient condition is based on dhe fact that npy
nust be £ 1 for mnps sanpling to be poszible. He roduires right
hand side of (2,4.7) to be greater than jﬁ whereas if we know that

PS_% an inproved sufficient conditicn in (2.4.6) is obhtained,

Renark 2e4+3. Por a glvén volue of n such that npf1, the

giratcegy H1 is superior to IIE if the paraneter g of the nodel

{(2,1.1) sabkisfies the :I’:‘nlluwing,: conditiaon
g2 g, =1+ p/(w-ﬁ—j%) . voe(2.5.8)

Apain (2,4.8) ig an inprovenent over the correaponéing sufficient
condition due to T« Rac (1967),

Table 2.4.1 prescnts the nininw sanple size, [:nuj + 7,
given by the condition (2.4.6). 1t ulse givaeg the correapending
values of [n T +1 due to T.J. Rac, where [a T] io the largest

imbegor strictly mmaller than n, e
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Zelal

Giving nininum sanple size for Hy to be superior to Hy

i) 10 50

~:;mm_fioﬂﬁ 0.2 0.25 () {0.025 0.05 0u} 01255 (
11 6 * # (7) | 10 17 * * (18)
T2 4 5 * (5) 6 0. * # (15}
1.3 4 4 * (5) 4 7 * ¥ (11)
Te4 3 4 24 (4) 3 5 3] # (9)
1.5 o 3 03 (4) 3 46 7 ()
1.6 2 3 5 - (3) 2 3 5 5 (&)

1.7 |2 2 2 (3){ 2 3 4 4 (5)
148 2 2 2 {2) 2 2 3 3 (43
1.0 2 2 2 (2) e z 2 2 (3)

Iy 100 200

“Eﬁﬁhgl,ong 025 W05 W1 () 1 .00625 0125 .025 W05 ()
11 12 20 * 27y 12 22 38 * (39}
1.2 & 10 1B * (199 6 11 19 % (27
1.3 4 7 12 % (15) 4 7 12 * (21)
Tect 3 5 8 % (12) 3 5 g 15 (18)
1.5 3 4 6 10 (10) B 4 6 11 (15)
145 2 % 5 8 (9) 2 3 5 8 (12}
1.7 2 3 4 6 {7) 2 3 A &  (10)
1.8 2 2 3 4 6) 2 2 3 4 (8)
1.9 2 23 2 3 (1) 2 2 2 % (6)

(1) Tigures in paranthescs are the corresponding velues of En&]+ 1
due to Rav. They are useful only when np<1.

{ii)

-

« Sufficient condition cannct be satisficd aince nn>1.



http://www.cvisiontech.com

- 55 -

() Cerpariscn bevween H, and Hy

Chaudhuri (1976) cloined the folluwings If » < 5,3 is an

“lpteger and” 3(17,{_5_ - %—) > ¢ Shen
i i
Fiy <By < B, 3f g> 1.
T% should be nobod that since ?(-j—i - -]:—i) <0 the clain is irrele-
vant, However the claim A3 < &, whenever g > 1 (4jgaonkar and

. Pedgaorkar (see foobnuhe, Caulhuri, 1976, p.124) can be shown fo be

* incorrect by sinple counber exanplea,

We shall now give a sufficicmt condition four ];-I3 to be supc~

rior to H,. We first have the following lermna.

. _ema 2,24, The functian £(3) = p&1(1p) / (p+&) where 0<p<i,

C g = (ne1) /{N-n) and g > 1, is non-decreasing in p if and omly is

n2 o= N~ (1) (g1-gp) / (a=1) (-0 5 cea(24449)
Proof. Differentiating £{p) we get
32/ ap = - 52 (g-1) (0% bp-8) / (p+0)°
" hore b = (2eg(e@- 1N/ (g1,
Heree 3f /op > C if and only if pg-i»b;"xﬂa £ U
Yo p2+bp-€l £ 0
= [pe-1) + (2-@)v] < [le-1) - vl JEL

= ayn =V (D (emgo) / (-1 (1),
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Thus f is nondecreasing in. p if and only if (2.4.9) holds.
We now prove the following theoren

Theeren 20422, Let % be an integer. Then & sufficient condifion |

for Hy to be superior to H, undor the uudel (2,1.1) when g > 1

is given by (2.4,9) vhere p = naXx D; .

— . I'L-“! - ¢ = N."'n % Y ! = ’
Proof. Let '}‘i =P;i * Tn and pi YD) A:L thon ™y np: o Now

¥i
B,-E
b = 2ol

x&

o _gxf_ Nen [__, g-1 5.8
L S e F R T
*

e [(N_n) (wsxf ~sx s xf Do g @z xf Lz xfy 9_1)]

y—

- i
Ve ;Ihx L{I\}_P)Cov(p_ ,P 1) - (N—-I)COV(pi » :ig/ }\i)]

ﬂ%ﬁ% Covzy, (1en)2{™Y/N).

Now using Lemmt 24441, under (2.1.9) Dy 2 0, i.es Hy is suporior
o HE L]

Tthis proves the theoren,

Table 2.4e2 progents the values of [n; J+1, where [y
is the largest inbeger strictly apnaller than n4 .
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)

Table 2,4,2

Giving the values of EIL] 1+1

N 10

50

B
g\ 04125 042 .

Ce25

0s025

0«05

Ool

0125

T3
Ted
Ted
15
147
1.8
1.9

P M MWW N AT R %
VIR A TR L <A B Vo B I

W AN &~ 1Oy @ % ok %

1

PO R fo MWW g WA

26

1‘

2 RN R LAl e+ T

26

.1

Wos oy @

100

200

2 | o125 Loz
£ 1

+03

o

« 00625

0125

«025

«05

Tel
142
Te3
a4
Ted
Tab .
Ts7
148
1.9

. Y
\H
"]
I~

EAS A TS S U T W AW RS N, |

(SEENCEEC R N e

51
24
15
10

7

4

5
A
3
2

*

52
31
21
15

11

8
6

4

ey
W

LIS SV S E N U

N
=

E R s )

PR MWW

- Ny
aa W

(A Y %1 M B s

W ~1 wo

(i) *{ Sufficient condition cammot be satisfied.

(i1) For any n > En,l |+ 1

superior %o H2 .

such that

n

ig an inéeger H5 is
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(c) A rcmark on Pedgaonkar and Ajgaorkars' result.

Pedgaonkar and Ajgaonkar (19¥8) proved that the Gmps stra-
tegy (H,) is superior to Hy; for g> 1. In fact, much more is
known abcut the Gmps strategy. Whenever a Onps strategy is reali
zable, it is optimal in the class of all p-unbiasged strategies, for
a given expected sample size, under the model (2.1.1). (Ramachandran,
1978) .

et B A

M, (H,)

H]

a2 1 /2.2
'1;2[3(3"3? »2-2x§ | (2.3 Rao, 1971) e e(202410]

The same result can also be proved using the following two resulis
BE; 2 By for g>1 (J JNJK. Rag, 1966)
Ey 2 Ef for 0£gg? (T.J. Rao, 1971)

Hence E52E4 for g> 1.

However for the sake of completenss we outline the proof of the resu
E5 2 B, for oggl?

e (B, -E,y)

g

= J-n g-1 & 8/2 ¥, nxx8
ﬁ-—f(zx Ex -z:x ) - (in )+n2xi

l\

en o mx8T - 227 (1 - By (28220 (n- Eelynnd

=1 i
' 2
= X £x 81 g/2y2, (n-DN g2 e/
-,-ﬁ;_-? [inﬁxi - (2x3") +——ﬁ_-%.— Cov(xg’™ , x/%)
> 0

Bince in the right hand side, the first term is non-negative by
Cauchy-Schwarz inequality and the second term is always nonnegative.

Hence E3 _>_E4 for 0£gslld.
Thus the Gnps strategy is always éuperior to Hy o
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CHAPTER 3

ESTIMATION OF SYMMETRIC PARAMETRIC FUNCTIONS
UNDER RANDCM PERMUTATION MODEL

340 Sm‘nmar,y

In thig chapber wo work under & random permubation model for
the vni-stage set up. When the 1labels are noninformative and the
population is "homogencous' w.T.h. the study variabe, symmetric
cstimators (strategies) are found to fare better than thelr nonsyn-
netric counterparts in the sense of smgller average risk for convex
logs functions. In Section 3.2 we derive some resulés based on
p-tigbributions. We first wrove the "completeness® of the clagss
T*'; {(p,¥) T p is a simple random sanpling and F = 'ﬁ%@' iis ¥i}
in the class ( = {(p,t) ¢t is linearly imvarisnty . It ig knowm
fhat the order statistic is complete for a fixed size design
(Royall, 1968)., Here we shuw that this result cannct be extended
to varying size designg. In Section 2.5 we consider py-distribu-
tlans., We first prove the optinmality of a strategy that consists
of a fixed size (m) design 22d & gymmetric estimator for its
pi-expechation werets any convex loss funciion in the sense of
minimum average risk in the class of all pr-unbiased gtrategics
such that p(s) > 0 => n(s)<m. Thus, when the population is
'homogenccus®, the labels are noninformative and the sampler®s
budget allows him to sample at mosr mn units, we give & subjective
justification for the. use of symmetric estimators accompanied by

eny fixed size (r) . desigm.
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el Introduction

The concept of exchangeability was introduced by de Finedtl
(1957) in probability theory. The nobtion of exchangeability in
infsrence from Tinite populations was Tirst used and popularized by
Erieoson (1965, 1369a,b). He used 'exchangeable pricrs' in lhe |
Beyeslan frameworks, However the concepd of exchangeability is use-
ful in the non-Bayesian framewerk as well. Exchangeodility eXpress
a kind of prior knowledge that the labels of units, though chservab
do nob carry any information aboul the characterigtic valucs £850-
ciated with the unitse. The idea of exchangeable priors approximats
sibuatlons where statisticians believe bthat simple rendom sanpling

would be moot appropriste.

In thischaphor we deal with discrete éxchangeable supor-
population models also known 2z random permutabtion nodels. The
idea which found an carly applicatian in Madow &nd Madcw, (1944) was
brought to notice and shown tu be useful in inference from finife
populations by Kempthorne (f969}. We first develop concepts for-
uni-stage sanpling and later on extend the ideas to two shage sanpl

ing set up.

In ani-stage det up a finibe populabion of sizme N conawrgés
of W Jdigtinguishable units. With cacl unit is associated & dis-
tinct integer called label. Without loss of generality we éssue
that 1,2,...,N constitute the labels. The variate value of a
typical unit is denoted by y;,1<¢ig¥, and g (71T 00 enenyyy) 18

& paramecioric vector. ILet EN be the paranchric spate.
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Let & %be the colicchion of all pessible samples and

$m) C S be a subcollection of samples of size n, 1<m< H. Any
probatility function p defined on S is a sampling desipgn with
p(s) dencting the probabilily of sclecting somple s. An estimator
#(3,y) is a real valved function which depends on y - only through
the y-values of the units with labels in s. 4 strubeoy (5,8
consists of @ desiem and an estimator. The problem of intcrest is
to estimate & symmetric parametric function 6(;{). In parti%ular

ve shall conslider estimation of the population mean Y = %l\'I ‘21 Vi e
.

Let 1, 72,¢ee, 7l be a pernutation of integers 1,2,...,H.
i in Stenger (1979), we relabel the units, assceiating label =i
to the unit originally labelled 1. This change of labels does nod,
howover, affect the variatce valucs of the units, l.ce. with ni is
now assoclabed the same variate value which was assoeelated wilth fhe
it origl.aclly labelled i, If Ty dengtes the paruneter veohor

after relabelling, then

|}

(Tﬁ?‘:}ni 'y; or cquivalemtly (my);, =7

(@)
ivwes the =ith conmponent of =y 1is identical to the ith component
of y» By relabelling, subset s of labels is trunsfomed to ns
where 78 = {rilies} . Let | dencte the set of all N: per-
nutations of integers 1,2,...,N.

We shall asgsume bthat the paranctric gpace ﬁN is a pubsct
of T dinensionsl Fuclidean space Ry und-is an N-£old produci

of some set Z of recl nurbers l.ce.
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;ST e ﬁl\i <===> yi e Z ;vr 1:1’2,00012\]‘
for seme st 2 of real numbers.
Let for (s,y) the cocrdimites y; , 4 ¢ » arranged in non-
Mg = ('ﬂag;g) 5(3"(1) s Y{g),c.v,y{:n(s))) ig called an order ghatl-
ghic.
4 parvametric function 6(y) is said bo be syrmetric if
6Cry) = e(y) ¥Fnel] and ¥y« ﬁN‘

An esbinator t(s,y) is said to be symmetric if it depends on ¥
only through the order statistic g i.0, if

tlns,ny) = tls,y) ¥ ne]] am V;gsffm-

Here,and subsequently, s denotes o subset of labels sanpled Irom
the ‘basle situntion' in which & ucnmit 1labelled 1 hos value Fy -
Prom an estimator + aszsceiuked with stratepy (p,t) =2 symmebric

egtinakor fp is constructed as Tollows,(Royall, 1970,

Ep(s,y} =% t(ns,ny) pirs) /! (M-m)in(m), pl) #0 eae (341,17
g T Y _

where n(s) =nm and plm) = = p(s}
8 e 3(m)
if p(m) = 0 then Ep(s,_g) nay be assigned arbitrary values.
A design p ig said to be symetric if
plws) = p(g) ¥ nej; ond ¥ e,

If p,, 1<¢nmg¥, is a simple randn sampling design of fixed size

m’ iget
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- 1
Pm(s) = (N} if a = 5(n)
I was (3142}
= 0 gbthorwise .

then & Qesign P is gymmebric if wad only if it is & probability
mi}{'ﬁme Of p-l : ]?2,‘«¢c,pN .

“Symmetry of a design p is therefore equivalent to the exdsbence of

B probability vector ¢ = {a;,05,44.,0,) such that
N
p(s) = mi'l e e (s), seb

whebe p., is given by (3.1.2).

¥ bl
Cleoxrly the design p = 2 ¢ p  has on averdge size I ma_ .
- III-;T.*"] o =1 a.

With ¢ we associate another probability vector «F = (afi',cx'”é,g..,a]f

Pt

by defining

5y = 1-(gay - [2je]) for 2= [%jey7]
= 2oy - [:Ejajj_ for i = Ez;jajj-+-1. eea (54143
2 0 ctherwise

where [x7] denctes the larpest inteper not excecding x .

R
It is ezsy to sce that the symetric desisgn p%t = 5. u;l B, has the
n n=l- -
same averdgs sige Z na as that of design » = 2 a_p o Furkher
m_.:.-l T . mnoc
s P2 . e | .
p (84} > 0y p¥(8,) > 0. = In(sg) -nls,}} £ 1. If Zma is an

intcger, say n, then p* =p, ond if' Zma ia not sn integer
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shen p* is a probability nmixture of cand p_ \

i . .

[-J mum] LE mam] T 1;

lote that for the sanpling design p" the sample size doos not -

differ by more than unity which corresponds to the lcast possible

variation to realize the average sample size Sno,  of the deaign
Design p*  is colled a simple randeom sempling of alnost fixed si
Given & design p of average size mn+g, 1{n< N and 0£6 % 1,

we dasocdate, with 7, desims. 7 and p* ag foliows

p(s) = ﬂ%ﬁl ¥ g e 5{n), T<ngN SR 2 N |
() 4
and p*(a) = (1-8)p (s} + 6p_ ,(a) , 88 8" eee(3a1.5)

Let D be the class of 211 symetric designs., Furiher let

6, ={pip(s) > ¢ => n(s)gn} and p = {pip(s)>0 => nia) =n}

From an estinator t  cssociated with gtrategy (0,%),0¢ 8y
le% us construct an egtinator t],; ag follows,Joshi , 19797.

ol
2opl) /G 2 T (3 ,y) o8, c8) .(3.1.6

gnd for s¢ S, tﬁ; nay be dssipned any arbitrary valucs,

t;(sﬁ,g-- =

%Q(s, _3_r) beins given by (3.1,.,1).

We now proceed te an inportant concept of this chapter. s
mentioned ocarlier we will be dealing with the special casce of
cxchangeable models namely randon permutation models. In lite

sinplest forn, the nodel is equivolent o an assumpiion that the -
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b
)

M
b

wits which bear fixed bui uiknown values §q,¥s,+v-,¥y H4ve Deon

Jebelled @t randen i.e. 811 the W1 owavs of Jobelling fhioc saven

T

set of N units are soually 1likely. This refleete the sibuatlion
wien labelg aro used only to identifly whe vxlts and the sanpler
has no knowledge, what so ever, of any relat_onship betwecn The
labels and va2lues of the undts. Tnder hic sct up all possible
dlebinct wvectors gbiedned by pernuting the wvector y  are equlpro-
bable leze cite could say that the fixed bob wnknown nuwmbers  Fq,

Topesry¥y have becn randonly assipned to the T wnlts.

Formally, randon pernutabtion nmodel is a class of distribuiion.
i sach that, for any fixed , wknown nmbeTs  Jq,Voysse, ¥y whe

randan variables Y,,7,, ees,Y. have an exchangeable distrilution

T
s guelh that

E’I‘ob[‘_{i.—.y‘_j(;)’ 1¢1i¢W] =%, ¥ ne]T,

Thus rundon pernutaition nodel expresses the priocr bheliel chab the

labels are uninformafive.

Though thoe randon pernutation nodel can be viewed in bwo
vars nemely the undiis which bear fixed bubt unknown values ave
12pelled ob rondan apd the fixed seb of ¥ waluves are Zssigncd to
the anies of randem, we weuld, for the anclysls in this chapéur,

adopt the former choracterizaticn of the randen poarmnlabion modal,

or a stra “hegy (g,t)  we now define various cxpectabions.

—
T

—-cxpee ation (design oxpectaticn)

Ep(t(a‘f},x)) = Ep(h) = X ( )ﬂka,}r)

uEu
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(b)) t-expectatian (nodel eXpectation)

B, (k(s,y)) = B, (4) = g, 2 t(s,ny) ; p(s) > O

(c)

pt-expectation {(nodcl-design expectation)

. WY = -
EpEQCt(S’Z)) = EpEa(t) i

|

p{edt(s,ny). «.a(3.1.70

)
o
T s

5

i

We essunme 2 losa function [{a’, ) which is convex in &

for cvery valuc of &.

et us now define average risk for a

strategy (p,t) for estimating & symnebric parunetric funcéion

6{y) corresponding to & convex legs function [(a,8) as

w— 1 LI ' )
RCE,Dyy) = gy 28 0R, )

p(a) (Lo, ny) , 8lyd)- N & P 0 )

Definition 5 .11

an estinctor 4+ associcted with stratery (p,é

is said to be linetrly invariant if - & ig linesr il.c. of the type

Hls,y) = B bls,Dy;

ies

and ¥ s with p(s) > 0, 2 bls,d) =1
i

34

al

Let JT; and ( bo btwo classes of gtrategics such thad
T CT.

Definibion 3.1.2. T, is s2id to be complebe din T i® for every

strategy (p,t) s-TTET; there exists o strategy (p’,&’)e:T; sueh
that

R(p",8",y) < Bip,t,7) ¥y o By
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In this chapier we denmeonstrate opbinglity of symnetric
giinatorg, mder randen -pernubation nodel, in < reuscnable seinse.
¥e Tirst deorive scone resulis based on p-dictribuiion ond then

moceed to obtain resulis bosed on pr-distribubicn.

3.2 IEgtination of the Topulation Mean

Royall (1968) proved the following result regarding ihc
conpleteness of order stotistic.

Theoren 3.2.1. For any Ffixed size design p, the order statishic

is completc. d.ee if for a Ffunction @in., ¥) of order siablgiic

and

[

‘15 p(s)pln_, vy} =0 ¥ yefi-q bhen gy ,¥y) =0 ¥y & T,
8 i e P o [ o r—

¥s with pi(s) > 0.

=

We statce yebt cnother resuld,

sheeren 3.2.2. Tor a sirategs (p,%) for c.bimsting B(E)

R(tp ’ p,;f) S_ e (t-,'_':‘,y) ¥ ¥ e RN --&K?j‘ !2.1)

ard ﬁ(‘_[:':‘_! . 5’3}-) =3 ﬁ(:!'. 1"_)"3-) et yCRN 0-0(3 0212)
r Y :

C(3.2.1) is due to Royall (1970) and (3.2.2) iz dug éo Joshi (1979).
The interpretation of Theoren 3.2.2 is that for a given design there
is (pin ir uoping syrmetric cgtinators over non-syrmetric ostinators.

However, once & ayrmebric estinotor is used there is no additional

gaan by syrmetrizing the acconpanying scnpling design.

In this section we consider estirmation of the populaidion

)
%

y..
i=g "t

=] -

nean Y =
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Let T = {(p,t) 1% 4is linesrly invariant and p is

arvitraryl

* # o= e E . » - .
and T = {{p",7) 1P is o sinple randon sanpling cf almost

Let ff{a,&) be strictly comvex in a:1I, an open imberval, and
let the second order particl derivative 32}1 (a,8)/ 353«2 exigh for

21l ael and be conveXs veelB0243)

Por the following Thooren 3.2.5, Coroliary 3.2.1 and Corcllay
3¢242 we assuie that [(2,6) soatisfies (3.2.3) and the paraneiric

space EN ig N-fold product of the cpen'interval I.
We now have the following,

¥
Theoren 54243 T is complete in T.

Proof. PFirst we observe that ~:r a strategy: (p,t) if + i

lineary invariant then % =y. et t(s,y) = © blg,id)y; . For
s ios i

a somple s such that n(s) =n omd pls) > U, we have,

& plns) 2 wvins sTi )y, Ty, & plelbins,ri)
T ies leg * o7

n

E 3? [ p(u-}) E b(a.uial.i '[*’1—1) {(Ter1)
ie 99 E:S‘:r'f 1351

i

n-1)1 (?N-m_) fp(d = Yy
jen

gince % b(s,i) =1 for linearly inmvariant esbtinesbor & .
1&:8

Wow usding (3.1.1), we gek, %p =¥
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By Theoren 3.2.2, cenbining (3.2,1) and (3.7.2), we have, for
Ay strategy  (p,t), for amy comvex loss function und for any H-fold

-

product space By,
ﬁi%p’f"fﬂy} ii{“{t’pgy) :J\yEé-N‘ -di('ﬁigoﬂr)

Pollowing Stenger and Gabler (1981) we can establish thaf for o

gynnetric sanpling desien p

H

E(:‘;"’ !y) ( P(B“,L,y) y E'E-T' Iy (3!205)

Conbining (3.2.4) ond (3.2.5), in view of the fact that for any

‘Unearly invariant  {(p,%), t. 5 ¥, we get thak for a linearly invari-

ant ghrafegy  (n,8)

ﬁ@,?f%,y) S.. f{(ﬁ,p,y) ¥ y‘zﬁ}ﬁ *

- . » . . * -
This estublishes bhe comploteness of the class of strdtesies { in

the supercluss of strategles {  for any convex loss function subis-
Iying (3.2.3) and the paronetric aspace E‘.‘H, the N-fold product of

opent inderval ¥ .

Corollary 3.2.1 For o given n+6, 14nd<l wnd 0g6< 1, for
astinating the population mean Y (p gt ¥} dis the beot stratemy

in the class of strakeydces ( = {{p,t) It dig lincarly invoriank

1+9

arnd ES n(s)pls) =n+ 8y for any loss function satisfying (342230
in the sense fthot

Ry, me,y) nin ‘E(t?p,y) y’gef{m
Q ’r‘,sT
vhere p. . is oimple randen simpling of alnest fixed size nes .

Tl+4
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Corpllary 5.2,2  TFor a given integer m, 1< m< ¥, for estinating

the populatiocn mean Y, (‘pr\_ , ¥} is the best strategy in the class

TI; = {(p,t) '+ is linearly invariant and I n(s)p(s) =m} for
- ST

any loss function saticfying (3.2.3) in the sense thab

R(y,p 2} = min__ H(s,p,y) ¥ ysRyp
~ (p,t) e o ~ ~

Remark 3,2,1 Stenger (1979) congiders the following symmetrigatio
Given an egtinmater &, he defines

5
F

‘E(SQ’E’) '—'%Ei '{:(TCS,TEE')- -.a(3§2*6,'

For a linecarly invariant strategy (p,t) for any convex loss funcw
tion and for any U-Told product space EN’ Stenger (1979) proves
T hat
nax R(y,Dp,ny) £ max R{t,p,ny ¥'y;;ﬁN. cee{3.2.7)
TCETT - Ks-ﬂ' ..,, ”
Fowever, ncote that, for a linearly invariant estinacor &  Doth
types of symmetrization %p of (3.1.1) and T of (3,2,6) yicld

semple moan. Hence using (3.2.4) Tor the casc of lincarly invariant

strategy (p,4), we have,

ﬁ(i},_‘fy,g) £ ﬁ'(t )Py Y ’FiraffN.
Furéher R(§, D, ) =R(F,5,y) ¥reT] and¥ ye Ry -
Thereofore we have,

nmax R(y,p,ny) £ max R{t, »,ny) Vy"*ﬁl\r'
ngﬁ TEE.-” -

Thus Stenger's (1979) resmlt (3.2.7) is a particular casc of (5.2.4)
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Bentrk 3.2.2. The abovs Tesulbs arc vroved for lincarly invariand

psfinators., 4As a mabttor of facs, for any denign p, for cséimating
the population mean T, the only cotimator that is gymmeiric as

well ag lincarly inveriant ia the sample ncan ¥.

Proposition 3.2,1. The family of sampling digtributions of ordor

giasigiic generaked by bhe class of 211 symmetric dosigns s cone
plete Lo if

Ep%(nq, ¥) =0 FpeD and Jye f{-?{
then #n.,,7) =0 Focd apd Fy«R .

rocf. The proof follows Twom the fact that for smy fixed sigzo
fe8bgn, In particular, for p ., 1&mdLl, the crder shatleiic io
cavleece  (Lheoren 3.2,1, Royaii, 1968).

Romark 5.2,2 Az a consegquene: of oho above ~Troposition samplco
mcan ig the only csbimator thas is dea3ign unbiascd for overy syrmo-

tric sanpling deosiou.

afesr proving the complebeness of ordor stasigiic for dhe
elass of Tixkcel sime designs a matural question that arises io tha
‘tovs tho sanme reasult hold gven if we relax the condition of £ixed
size 7' The snswer fo this guestion iz ‘no' and can he sech ag

followss

frovesibion 3.2,2. Lek ¢ be any varying sizc design i.c. shore

are liegers g and n,, 1&m, #n, K, with 1-’(751)3" 0 and play)> 0.

Fhe erder statigiic v, 1g not canpledo for p.
ed
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Prgof. Tet ¢(ng, y) be a fonction of the crder statiskic defln

for every ¥y EZRN, as follows

#(ng,y) =any, ¥ scSh,) and ¥ yeRy, afo

plng)
-—aﬁq"(“-']' ¥ seSl, and ¥ yeRy

Pt

= 0 ctherwise .

Clearly ES p(s)b(ns, y) 20 ¥ yeRy
5S¢ ~ = '

s ¢ iz noh zoro identliczlly.

This proves that the order sktatistic is nob complebc for varying

slre senpling desdgnise.

3«3. Egtinadtion of a Paranctric Funcéion &(y)

In Section 3.2 we derived a fow reanls based on p-dighoibu
tigne. In this section we obizin sonce results bascd on pr-disérds
buailon.

Supposc for & findes populailon the mean valuge of cerwain:
characteristic iz fio be cshinatcd and according to prior kuowledd
thc population is ‘honcgenecus’ w,r.h. the study variate. Furbhed
suppose that the sampler®s budget allows him to sample at mosht n
wnitse Then what is a 'reagonable' strantcey for hin? In praciicg
orie invariably goes for a sinvlc randon sanpling of sigc o and
ganvle ncarn. Though this strategy hes an Ineuitive appeal, firsi
non-inboidive Jjustification wes given by Joshi (19793. He proved

that the above otratcgy iz the hemt in the clasns of all p-unbiascd
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gratogica (p(8)> ¢ = n(s)<n) in the sense of nirdnuwm average

Eisk for any convex loss function.,

Here we generalize the above result. We prove optinmalicy of
g chrategy that consists of any fixed size () deaign wnd a symmebric
sstinator for its pr-eXpectation in the class of 2ll pe-unbiascd
strategies (p(s)> 0 => n(a) {m) in the sonse of ninimm average
rizgk for any conveX loss functiun.

Let us first prove a lomma regarding the completconess of

gder gtatistic in the pr-distribution sensc.

loma 34347. For any fixed giwe (n) design p, the urder statistic

is complete in the pr-scnse l.g. if
EE #{ng, V=0 ¥ gaﬁm then

@('qg,g) = 0 ?z'eﬁﬁ anrd ¥ 5 with p(s)> 0.

CProof. Nete that,

I ——

EE#ng, ) =q, % 0(e)glng, np)

T T ogs3

1
= b ( , )a
@BBS(E)E s L

Since the corder agtatistic ig complets Tor P, 27 the pegonde los

comploboness for a fixed size €m) design p in the pE-Scnso Now
follows e
Herz we cansider a comvex loszs funeticn [(8,8) -and an

ITeld preduct sopace EN .
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i) t) =E B_(F o > atrategm
1) BE () B, (£) for any otrategy (p,t)

. . EE ¥
(ii) g F1(*&,?)

3 3 ,F.*
(ii) EQEE (h?)

it

Y

p o I
' and fur any qee, .

= g plade, (s, ty)
el g Plede, (s, ny
S CEY: 7
o4 N gy DTN
n=1 (HJ ge S0
- g o) g (o, mydning)
n= (3:1) geSm) Tni (H-m) ()
1 N
=5 E 2 ule)tla,nry)
"=t a5

. e
==, 5 % q(a)t (3, =yl
BT ges pro e Y
- 1 5 *
s —— 3 % {gz,v)
N .y b 2
(n) e i
1 T RO I
=% _x S T tp(e’k’g)
(m 8e3(m) k=1 (k;%'ﬂkf_ﬁ '
% plk

E 1 5% _(a,7)
k=1 (0 ee8(0) F !

EE (t).
S ED

ihis proves ithe lemma .
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fo prove yot ancther lemma hefore golng fo cur naln theoren.

loms 3e5.3. For dn‘y gtrategy (p,5) with »pe 5, and gee,,

fir cetimating any syrmetric funcidon 6(y), we have,

N — - - ; -
R{tp . qﬁ,g) £ R(t? , D ,2‘-) < R_(t.,p,zr} ¥ fEﬁN

.PI'uL'Jf.
Rol, 0 =g, 7 2 ale) ALt5(s,ny),6¢)]
T ged

I

—%;-“ 8 )lj_t (’s,y) 8(3;'):]

n)'SES(ﬂ o

)

< 7 bl ,([t (s,y‘ e(y)j (ginca [ is cuiwex)
k=1 () ueS(k)
= R(tp » D, 7).

CThe procf i now conplote using (5e42.4).

— £l ’ . . -
henark 343.7. Webe that R{t_,q,y) 4is sane for all qe p_njf ¥efice
1 i.J 4 e %

We are now in & posdiion do state and prove our nadn theorone
b &
conen value of Ean (%), ae P, » and suprosc that &(y) is the

L ~

paranetric function of Interost. let H o= fu,t) i pe 8, and

ve any funckion of order statdebic ng. Let &(y) be the

EPEE (t) = 6{y)}. We now have
Thoor For estinating 6(y),

ﬁ(‘t*,q,g) = nin R(t,,_,y.- ¥ye

1‘11; }En fad

where q 1o any deaign in e

0
=
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Proof. The proof follows frun Lermas 3341, 3.3.2 and 333

Corollary 3,3,1. Strategy (p,,t") is the best p-unbiased
strategy in the spbclaés of p-unbiased stfateges of H,, in the
sense that for any convex loss function (o, » t*) minimizes fhe
average risk R(t,p,y) 4in that subelass.

Froof. The proof Tollows from Theorem 3.3.1 and the fact that

(o, » t*) 1o p-unbiased for e(y).

Corollary Se3.2. As special cases of Corollary 3.3.1 we get

(a) (Joshi ,1979). Por t* =3 . 6~(¥‘ -";'Y'. Therefore for estimati
¥he population mean, . (p_, §) 1is the best strategy in the su
class of p-unbiased strategies of H .

T

-'=-1-f b (yi-i'r)z’,e(y-)r-sznﬁjg (yi-'f)z.
D=t jeg 3 ~ -1 i=t

(b) For t* =s°

Theorem 343+1 provides a subjective justification for the

use of symmetric estimators.
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CHAPLER 4

GSTIMATION UNDER TWO STAGE
HAMDOM TERMUTATLION MODEL

+ SLEIJII]E.I"E

‘In this chapter we deal with two stage random pernuéation
rodel defined for an LX M complebe array of which the present
wplation i1s asswmed to be a truncation,.,  VWhen the population is
'hemogeneoua® and the labels ate noninformative, symmetric estinmators
tre found to fare bebter than nonsymnetric estipators. In fhis
chapter we first define order stabistic for a two stige sanple &nd
prove its completencss, in the pt sense, for fixed size designs.
We then prove the optimality of 2 strategy that consists of a fixed
size (k,m) design and the over all sanple nean, for egbimabing the
nepulation nean, in the sense of mininun average risk for convex lose
functions in a class of pr-unbiased strategies (p sclecis at nost
-k primary sampling units (psu's) and at nost n  secondary sanpl-
ing units (ssu's) per sampled psw). PFinzrlly, we establish the
optinality of a strategy consisting of an alnost fixed size
(l+ 8y, n+ 8, design, 0% 8y, 0,41, and ;, the nean of neans per
sau in a clasa {(p,y) :p scleets, on an average, k<t 6, pou's
and, 11+ 85 ssu's per sampled psu} Tor estimating the population
ngan agadn in bhe sense of mininum average risk but now for the

squared error loss function.
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4e1 indroduction

In the previous chapter we obtained certain ‘opéimal’
strategies, to ostinate symnetric paraneiric functions, under the
randon pernubation nodel all in unistage set up. In this chapied
an attenpt is nade t¢ c¢bbtain some similar results in btwo stage

sanpling set upe.

The problen of finding ‘optinal' stracegles in two stage
sanpling seb up has been discussedl "in literzture with great deal
of interest, notably by Scott and Spith (1962, 1975), J.JlK. Hag
(1975), BellhousesThonpscn and Godanbe (1977), J.N.K. Rao and
Bellhouse (1978). In some of thoge studies various two stage
exchangeable superpopulation nodels have been invoked to obtain
*optinal' otrategica. J.NJle Rao was the first to present a
discrete exchangeable superpcpulation nedel, also called randon
pernubaslon nodel, for two stage set up. Here we adopt the two
gtage randon permubtation nedel suggested by Bellhouse et ol (1977
“hey established 'optinality' of a strategy that consisés of
scaled sanple nean and 2 design that nakes it p~unmbiased in the
class of all fixed size strategies. Fssentially it is a generall
zatlon of a result due to Godambe and Thonpson (1973) that eska~
blishes optinmality of a strategy that consists of a nps design
and Horvitz-Thonpson estinator, in the class of all fiXed szize

atrategies, under ‘exchangeablliity' for uni-stoge saapling.

4 finite two stage pepulaticn T conslsts of L prinary

stapling units (psu's), conelsting of My,M,,...,lMp Secondary
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senpling units (ssu's) respectively. Without loss of generalily
we assume that {(1,1) 1§=1,2,...,1;, end 1=1,2,...,0} 1o te
set of labels. Variate value of 2 Sypleal undt is dencbed by

Yy 1< ] gMi : 1ifL. E""f (yij) denotes the parangiric array.

It is convenient to represend populaticn charsacterdsiic in
the generally incomplete DLXM array y = (yij), where

‘M= mEX M, . y is wiknown before sanpling and y.. 08y bve
1£i$ 1, h 8 R 1]

ey Teal numbers.

Two stoge sanples and two shage sanmpling designs for U
ney be defined ‘through corresponding LXM conplebe or rechangully
population say U°. EBffectively we are assuing the existience of
scne additioncl units at hypothetical level so that each of the
psu’s consists of M asu's. A two shage sanpling design is one
iiet selects & svbset of prinary units at first stage and condi-
tional on this selection, it seleckas sets of secondary units at the
second stéige independently from each sanpled psu. Let S Dbe the
cvllection of all possible two sbage sanples Ffor the conplete
LXK population. " Iet S(ny,n5,e..,n) (T § Ybe the colleckion of
snples that comtadn ng , 05, .00, ggu'c from ¥k different psu’s.
If{0= (1,3)13>M;,1444 T}, then o sunpling design for the

original populabion U lia defined as
‘p s s—=—=T[o0,1]

£ ps) =1
geS

and p(s) =0 if s conk&ing o label in Q.
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Let  plng,ng,..s,ny) = L pls) ceu (427270,
5e8(1y N5, e ve,n,)

(iven a two shage sampling desien p for U (implementable

design) we associate @ design D for T° ag

}:J(Il-l !112!' . o,nkl
elng,ny, .. .,:nk)

IJ(S) = y 3 E S(n.i ,112,“-,1‘3}:} -ll('@--o‘] 02):

vhere c(n_],ng,...,nk}_ is the cardinslity of ‘3(1’11«1125---:1’11)*

If (ny,n5,.e.,m) is such that there are r distinct values it

T
frequencies dq,d5,ees,dy, 121 di=k’ then define
= L (4.1.3)
I(n1,n2,.-.,nk) = T svaldale
d; $
iLT'I *

The capdinality c&n.;,nz,...,nk) of S(n,,ne,...,nk)' is given by

= (& ‘ M \
G(n-l fnzf-t‘,n]{) “-(k) I(n'l sngr'-“;nk)i‘ﬁ-‘] (nl) * ces (4ol o4

Clearly D 4is a design only at the hyvothetical level. D
is not inplementable for U unless it is complete, We would viey
7 as a design for U asscciated with an implementable design b
for U

An esgtimetor 4(s, y) is a real valued function ‘that
depends on y only through the y-velues of wnits with labels in s
A gtrategy (p,t) consicts of an estimator & and a fwo otage

design p. The problem of interest is to estimabe the mean of a

charseter fur & two otoge populdation.
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Let (n(i,3)) denote & permutation of complete ILXM array
of labels  ((1,3)), 1£3<M, 1<14 T, obtalhed by first permuilng
the rows of {(i,7)) and then permuting the labels within each row
independently. We shall relabel the units asscciating label n(i,3)
to the unit originally labelled (i,3j). This chunge of labels does
mt, however, affect the variaste values of the umits, l.e., with
#{i,j) is now associatod the same variate vaelue s bthat associated
wih the unit originelly labelled (i,j)a 1T ny denobes the para-.
pefric array obtained by relabelling, then

NRZEICW MR LT

ivee the m(i,j)th component of Ty is idenmtical o the {1,3)Eh
componerntt of y. Relabelling transforms set s of labels to
s = {n(i,§) 2 (1,10 e s} . Let | be the collection of all possible

Li (M E.)I’ = A (say) pernutations.

We now proceed to define two sbage random permuvation mobel
Tor the case of LXM complete popuvlation. In 3%z simpleost form
the two stage random permutation model means that the wiits which
bear fixed but unknown values ¥i4 " have been labelled randomly in
two sbages, first the psu's are labelled at random and then the
gsu's within each of the psu's are labelled ab randam ivdervenn-
dently i.ce 21l posgible X ways of labelling the given LXH
popudation, in two stages, are equally likely. This roflecis the
sitnation when labels are used only f¢ identify &the uniis and the

sampler has no knowledge, what so sver, of any relationship between
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labels and valusg of the units. In this set up all possible
distinet TXM arrays, obtained by permubing first the rows of
g = (yij) and shen the wvalues in rows independently, arc eqaiprna;s
bable. Equivalently ane could say that there are L sets of
fixed but wknecwn numbers which have bpeen associated o T psu's:
at random and the values in these sets are ass¢clated to gsu's

within psu's al random independently.

Thus two stage random permutation medel is & class of
dlstributions ¢ such that for any fixed bubt wnknown array
y - (yij), T34, 134T, the random variables Y., 1 < J <My
1< 1< I, have an exchangeable digiribvution such that

Frop [Y-ij T,

We adopt the Lollewing formulation of the two stage random
permubtation model, for the anzlysis in this chapter; all possible
A ways of labelling a given LXM population in two stages, are
cgually ¥ikely., However in practice twoe stage populations are
mostly incomplete. Let C ={myy i ne[[} where 7,y iz &
truncation of 7y obtained by dropping the portion corresponding
to labels in Q. The assumption ombodied in the superpopulation
model is that the actual incomplete population is o point from C .
Mote that bo define two stage random permutation model we dndrodus
necescary hypothetical ssu's and obtain a compleie array. Two
stage randon permutation model is defined for a complebce crray of

which the incomplete array is assumed to be a truncation,
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Thic definition of ftwu stage random permutailon model has

been adapéad from Bellhouse eb ol (1977).

4 twoc stage order statistic for se S{nz,ng,...,:nk} is

defined ds followse.

We shall let n = (nw) be & kxn Iinccmplete array of
sampled values of ¥y, where n = max 'ni , stlisfying fhe
= 1{i<k
Tollowling three condibiions
(1) for each u, the values 7,4, nu?"""”unu correspond to

the sou's from the sume psu

(i) Tor sach m, Ny 2 Tgo 2 ree2 qmu

end finally,

(iii) starting at the bottom right, rows arc in increasing lexico-
graphic order, il.es. if u<dw and there are ny aumd n,
entpdes in the abth and wih rows rospectively and
n = nin(y , 0, then lock at the smallest m calirico fra

each of the rowe and leoft them bo

her 2 Mg e g

then elther Ny = T
c%*msts vy 4 m such that nuvo > nwo and T = D fer all v,
if any, greater than Voo
' ig

This/a generaligation of thg two stage order stasisbic defined

for v =1,2,...,m and n; 2 n, or there

for sanples s e S{m,m,...,;m) by Bellhouse et al (1977).
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Exanple 407141

Let k=5,n1=3,n2$4,n3=n4a5,n5w6.

Let the cobservations be

2 3 2
5 2 4 1
5 2 2 6 5
1 6 2 1 T
6 5 4 & B 5 _
uging (1i) we get
B 3 2 27
5 4 2 1
6 5 5 3 2
T 6 2 1 1
{B B 6 5 ] 4 _

and using (iil) we get the order statistic as

8 6 6 5 5 4
6 5 5 3 2
52 2
5 4 2 1

7 6 2 1 1|

An egbimator +t(s,y) is said to be symmetric if it deponds on ¥
anly through the order gtatistic Mg i.ce if for all ¥y |

t(ng,ny) = t(ns,g} ¥seS and ¥ ne ]| -

Here,ard subsequently, s denctes & set of labels sampled from the

‘basic situation' in which @ unit labelled (i,j) bhas valus Jjy-
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bdesien p defined on 3, ngd nscessarily implemeniable, is sald

o be symmebric if
pg) = p(s) ¥ a8 and ¥ ne|.
i3 mentioned earlicr with an implementable deaign P we assoclasg
sdesign P on S glven by
p(2) =% L p(ra) , 0c 8.
E“Ulear]_y, by construction itself, T is a symmetric design.

Lonsider the followdng classes of implcementable designs

1 _
8oy ® {B3P(8)>0 => s comtains at nost Kk psu's and at
iy ~
most m ssu's from each of the (k) psu'sy.
G oy = prple)> 0 ==> g contuins exuctly k psu's and ab
(ko) |

mogt 1 ssu's from each of the k psu’s}.

Ple,my © ppla)> o = 2 containg cxacily k psu's ond

cxactly m osu's from each of the k vou'sy.

Given a strategy (p,t) delfine @n estimator f,p as Tollows

$ (s,y) = ] % p(ng)s(na,ny) if 32 plrs) #0 eee{de1,5)
PR moplne) T . n
T

and 35?(8,1) may be assigned any arblirary valuwe iT % »(us) =0.
' B

Parther for a strategy (p,3), pedy .y, define
R

t;(s,y) ) . | p(ng,ee.,n ) 1 285 Togr) .o (4560
T e g gn TGO 01 SR
- 1=" 5,Cs
15—

if s SCm,m,.n,m),
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and t; (s ,':Z) may be assigned arbitrary values for samples not
belonging to S(m,m,ese,m), where plng,,.s,n9), I(ny,.c.0,ny) and
Ep are given by (4.1.1), (4.1.3) and (4.1.5) 'respec\ti'vely and

by is a summation over all possible digtinct setsg of

(n.’,..o’nlc)'
integers {n1,...,nk} ¢ 140, <M, 1<iLk.
A strategy (p,t), p implementable, is said to be p-un~

biased or design unbiased for the population mean if

s ple)tls,y) =3 * o ¥ let
pis)t(s,y) =5 ‘s incomplete y
SeS. ' M =1 j= Vi3 -~

L
where Mo = I M..

Recall that for a complete LxM array y we defined

~

C={n y?neT[} . Now for each of thesc truncated arrays,

(A in number) m y ;. n e [[, we can think of population mean.
The model or t-expectation of population mean is just an average
of these A population means. 4s a matter of fact, what the mode
says is that there are A &ncomplete populations (not all distimg
and the population which we car sample from is one of these incom-
plete populations occuring with equal chance. Clearly the t-exped
tation of the population mean is given by

b4 .8 Ts s -00(4‘01071

A gtrategy (p,t), p implementable, is 'said to be Df-un~

biased or model design unbiased for the population mean if
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: 1
E 5 == I I pls . = ¥
E?é p(‘t( y IN=x s P(' Nt (a,ny) ¢(y) ¥y

where @(y) 1is given by (4.1.7).

We assmme & loss function A(a,d8), of real variables & and 6 ,
vhich 18 comvex in 3 for all values of Q.

For a strategy (p,t), p Implementable, to estimate the
population mean, the averdge risk correspending fto convex loss

funetion £(a,8) is defined to be

Rt,p,9 =52 2 p)fls,1y), 6(z) cee(441,8)
- T ged - -

vhere 8(y) 1is given by (41.7).

Note that the average risk (4,1.8) is based on 7pr dizbtri-
tution. [ Compare with M,{p,t) =EE, (T-EE?):E of (2.1.4) and
. — 2 ' :

i, (p,t) = EpEg(“i:-M,f) of (5.1.5) ],
Por sguared error legss function it would De

J;'Z 2 p(s) [efs,nys-olyi>.
™ — e

sed

=

Ihe risk based on pr-distribution has been used in the liwerature
by various authors ec.g. S8rndal (1978, 1980,a) § Cassel ck al
(1977}, J.N,K+ Rao and Belithouse (1978), just to menitlon & few.

1,2 Eptination of Poprulation Mean

In the preceding gection we introduced a transition fron
inconplete sebt up to complete sob up., Our problem is to estimatbe

the population mean efficiently, efficiency being judged by the


http://www.cvisiontech.com

- B6 ~

average risk (4.1.,8) based on pt-~distribution. If the sampler can
afford to select at nost k(L) psu's and at most m ssu's from
each of the psu's selected at the first stage then what is a
'reasonable' strategy for him? In this section we attempt fo

answer this question.

We first state a result regarding completeness of order
statistic ng Tor the two stage simple random sampling.

Theorem 4,2,1 (Bellhouse et al, 1977). For the design that select
k psu's by éimple randon sanpling without replacement and then
selecis m ssu's again by simple random sampling withoubt replace.
nent from each of the sampled primaries independemtly order statist
is complete. i.e. if ;b(ns y 3~r) is a function with zero sanpling
expectation for all possible :Z then it nust be identically zcro.

We use ‘the above result.to prove the completeness of the
order statistic ng in the pg-sense, but now for any sampling

design q ¢ p(k,m) .

Theorem 4.2,2. The order statistic ng is complete in pr-sense 4
any sampling design q ¢ p(k,m) i1.0e if for a design g ¢ p(k,m)a
P(ng, y) is a function of order statistic with zero pg-expectatio

for all possible y then it nust be identically zerc.

~

Proof. Note that for a q e P (1 o)
9
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j}i 5 2 . als)g(n, ,my)
T ozeS - :

Eqﬂi, (ﬁ(ns , ;3))

1

il

T gl{s) b @(ﬂs'., ny)

Si‘-S( 1 ---,Ll) T

] ) 2
= - I q_ a) L ﬁ(ﬂ ' E) T e
l. QES(W, ,o--,ﬁ’l) UES(II ﬁ?--o,m) (1{:} (;)L

Sp— 2 glng,y)
= e Ng s ¥
CGYODT seSGaymeen,m)

The conpletencss of order stabigbic, in the pt-sense, Ifor any
Qe p(k n) » DOV follows fron the fact that the order statisgtic is
camplote for the two stage simple randon ganpling in the p-sense
(Theoren 4.2.1)a
Wote that the definitions of pr-expectation and averzge

rigk can very well be appliocd to deaigns which are not inplenen-
table. This is casy to see becouse, afterall, any implementeble
design is dofined on S only. Wikth thig in nind we prove Ghe
following results.

Lgrnt 4s2.1  For all y and an inplenentable girutegy (0,6),

ﬁ.(tp v Py y) ﬁ(t s Uy y’} 0-0(4'231:’
ii.l?d E(;p'-{:‘,g) ':ﬁ(—mr’ p,z) -#o(‘iol?cz}
Proof. m(t p,y) = I s"*(s),([*f:. (s,my), e(y):]
7w Bsa
‘L R
) 2 n{s) ,f[t (5,737, e(y)j

k"1 (n?,n.,nk) uES(:ﬂ.l,---,nk' i
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= g P 2 p(s) z ,(I:%p(s,g),e(z)] ( A 3
k=1 (n‘l’.'.’hk) SSS(IL],QQQ,IIK) S‘S(!*,o.'o,‘nk) c n1’n2’..°nk4
L ’ -
=M E z 2 9(s) AL t,(s,3),0()]
k=1 (n1,0.l,rl1{) SSS(IL],...,nklg)

C=1 ﬁ(ip y P, y? , which proves (4.2,2)7]

L _ p(ns)t [ t(ns,ny),0(y)]
L k§1 z 2 Ap(s) 2 2 p(ne)
(n1,...,nk) SsS(ILI,...,nK) T - (since { is com
L
= % % z g p(s) AL t(s,ny),0(y)]

T k=1 (n_],...,nk) SE:S(IL‘,-..,nk)

ABG,p,y) -

Rl

This proves (4e241)

Though we started with an implementable design p, we can
conceive of design D e Lemma. 4.2.1 says that symmetric estinators
fare better than correspending non-syrmetric estimators and for a
syrnetric estinator there is no additional gain by synmetrizing
the accompanying designe

We now prove,

Loma 4.2¢2 For a strategy (p,t), v e 8 ) ? and a design
\i- g

q e p(k,m) , Wwe have,
- * e r
R(tp,q,z)S_R(t,p,z) ‘Vg A 000(40203

Proof ¢ Let Pae.n) P two stagc sinmple randon sanpling, on the
, «

complete LxM set up, that selects exactly k psu's at first
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stege by simple rovdom sunpling and exactly = ssu's, at secomd
stdge, from each of the psn's gelected, by sinple randon sanpling,
irdependently, Tes a(k,m) be @ bypieal sanple that contaiune n
ssu's each from k different psu’s. Using couvexity of the loss
fmction [f{a,8), we have,

plny,. ...,nk}

Q,([*h%;(s(k,m),y),e(y)ji o Do E
” Mseeeste? T(ny,eee,n) ¢ )
Prre et i-l:-[‘l !

s ALE,(s,,6(0]

SsS(XH,.--,'nk)'

g (C a(e,n)
where Ep and 1:; are given by (4.1.5) and (4.7.6) respectively.
Multiplying both sides by 1 and taking samation over

c(ty »ee,nm)
all pessible samples s(k,m) & S(m,ss.,m) amd noting that in the

HMen, .
swration a gample se S(ny,.. .,mkl GeCUrs -ﬁ‘i (m nl tines,
we cbtain,

2, vee,my .1.. oy ¢ ADE e, .87 g b z P(s),(]_h (s,5),9(7 ]
seey saS(“,...,a) (g, .-em) saS(n_l,...,nl)

Ihis proves that
o— L o=
RCtﬁsP(km)sy) "( ,P,y) ¥y
‘ 2 i i
Now using (4.2.2}, i'orra deslgnr q e P(k,m)
Rt ) = T )
: tp'q’f - (tp’g(]«:,m‘)’z ¥y

gince a = p(k,ﬂ') .
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" - -
Thus R(t,,q,¥) SR, P, ¥7.

" —~

“his completes the proof of the lerma.

It is easy to see that if a strategy (p,t) ; pedpy y°
k J

ig pr-unbiased for the population mean then a sirategy (q,‘b;)

also pt-unbiased for the population mean ¥ Qe Plic.m) *
L )

Ist § be overall semple mean and H ) be the class
9
of all pt-unbiased sanpling strategles (p,t), pe 5(1&: ) i.0e
’

H(l{,m) = {(p,t} ipe 6{k;m) and EPEE (t) = 9(2)} ’

We now have the followirng theorem,
Theorern 4.2,3. For estimating the population mean, (q,¥) ‘is

best strategy in H(k ) in the sense that
¥

F,q,y =, min Bt p,p) Yy
(p,t) e F e,

where q 1s any deslgn in ®(e.m) *
il

Progf. The proof follows from Theoren 4.2.2 and lermas 4,2,.7 amx
el o224

We prove yet ancther lepma before going to our main theoren.

L 2 1ele3.
R@ogem 1) CBG pgame ) 3 o e

Proof. y(s(k,n),y) can be expressed as an average of

y(a(k-1,m),y) as follows,
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¥ yle(e-1,m) , )
a(-1,m) (C 3(k,m}

Wl

7(aCk,m) , y) =

lNow by comvexity .of the loss funcition f{a,8), we have,

([Feem,yeg ¢ = A Gteterm,p,e(]
- 8 (kc=1,m) C alk,m)

Hence multiplying both sides by W , taking sumatien over
' 'm

211 samplss s(k,m) and noting that a sanple s(k-1,m) occurs

(L-X+1) (g) tines, we obtain,

AGF paemy s ¥ £ 8T 2q a0 ) Ty
dence the lerma.

We now have pur nain result.

: 1 ~ . 1
Let H\’.k,m%} = {(p,t) tpe by,

e, and EpEiﬂ. (b} = Q'CX)} .

Theorgn 4.2.4. For estimating the population rean, (q,¥) is o
best strategy in H1(1£ ) in the sense that «for all y ig nind-
' o

nizes the average risk l.e.

ﬁc?, Ci,?) = , rin 1 ﬁ(”ﬁ *,p’y) Jg'y
~ {p,6) e Hep 1) ~ -
T

vhere ¢ is any design in Plr.m) *
: oL

Theoran 4.2.4 can be interpreted as follows 2
‘1T on certain considerations like resauwrces, precision etc, the

%sampler can takre at most k psu's and at most n ssu's fron each
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of the (<k) psu's then the overall sanple nean coupled with any
fixed size design in ®(e.;m) is a best strategy in the class of

¥
p¢-unbiased strategies, for estinating the population mean, in the

sense of nmininun average risk.

Let D, © p(k be a design that selects %k psu's with

,m)
inclusion probabilities proportional to their sizes, Q1 , 1< igE),
and m ssu's, within each of them, by sinple random sanpling
independently. For this design p o sanple mean is p-unbiased for

the population mean. Hence we have the following.corollary,

Corollary 4.2,1. For estimating the population mean, the sirategy

(po , ¥) is the best p-unbiased- strategy, in the subclass of

H1(k n) Oof strategies that are p-unbiased for the population nean,
4

in the sense of nininum average risk,

Proof. Follows fron Theoren 4.2.4 and the fact that (po , ¥) is

p-unbiased for the population mean.
For a given sanple that has ssu's from k psus 1let

k
5 yi 0-0(402O5>
i=1

=

-—
-

<y

where Sri is the mean per ssu for the ith psu in the sanple.
; is same as ¥, the over all sample mean, if the sanple is from
S(myngeee,m) iece it contains equal number of ssu's fronm differ-

ent psu's sanpled.

Let, for 1<{k<L, 1&n< nin M 0£6,,06,% 1
’ ’ 1$_iS_L i . Y1 9 V2 4
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")

.§{k+e1 B+ 9,) be the class of designs, inplenentable, that select

on an average k+ 8, pou's and n+«48, asu's, on an average, Iroo

gach of the psu's sanpled, independently. Further let

Hy = ((2,¥) v 0T, '
(k+8y yme8,) e,y twe (evey m+92)}‘

gggcr@ 442,5. (ag,y) is & beot strategy in H‘%k*e»; vaE) in

the sense of mininun average ¥isk for the squared error loss func-

. - w 1 il o ’ '
tlon, where g &5 any MQ;ementable design in 5(1§+Q1 ) T4 ) for

vhich the asasccizted hypothetical design (4.7.2) is
. o
Hices, , vy = 1769 [“-92)?(1{,;3) * 82P0e a1 ):]

+ g'] [(1'“@2)1)(1{*'1 ,T_'l) + ezp(}:-t-'] ’m+1 ):] l--(i.guéj

Mrst we stzte & lerma due to Stonger and Gabler (1981).

A Beguence h‘I ,hg,...,h?; of real nunbers is said to be

strictly comvex if for 1 = 2.3,...,N-1

Lgre 4.2+4. (Stenger arnd Gabler, 1981). Por a strictly comvex
secuence  hq,hpyees,hyy @nd a probability vector @ = (o ,a,,..0,0,)

N N N
ii‘[ “ihi > iz-‘] a5y __,(4,.;3..7)
+

Equality holds if and onmly if o = a |

L% is given by (3.1.3)7].
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Proof of Theoren 4.2,5. 1In -roving the theoren it is encugh %o

consgider conplete ITx M array and btwo ghage symeiric deslgas o

that beeanse of (442.2).

& Gypical symetric two stuge design v, for Lx M complet
array, nay be thought of as - for the first shage a probablility
mixture {og,5,,000,0.)  of synmotric designs that oelect exactly
1,2,e0e,1 Du‘s respectively cnd for the second stage, within
cach selected prinary, a probabvilily nixture (ﬁ,l,ﬁg,...,BM) of

syrsiotric dosighs thaé select exactly 1,2,...,M gau's respecbivel

Tet p be a twe stage symnetric design for ILxM conpleie

array such that

L M
I oila, =+, and 2 JP. = n+E, .
i=1 i 1 j:1 J 2

It is casy to cvaluwwhe Ry, p,y) fTor the equarcd errcr loas

Tunction =nd is given by,

?
_ L , . 85 M
Y LR k| N W o 1 1
RGp = 3 ooy [G-Psd e 5 2 0 (—--—-):l
] -’N i=1 R £ L b i j=1 :l ;] M
L M IM
5 1 = Z2 o= 1 = 1 -
whare Fe=r B (Y.~Y)" Y.== B y.., Ysz= L 5 7..
Speoor B h Y TH 2, iy VD Ty geq Cad
> 1 ¥ 2 21 = |2
5 =+ I 8 5° = £ (y..-T.0°,
W Li=1 i? i Mo ;]"':1 i) hy

Observe that the gequence 1, %, %,...,%, for any intcegsr H -~
is strictly comvex, for

1 1. 2r 2
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hence using (4.2,7) of Lemna 4.2.4, we geb

2
= = Dol Lye2, 5 ¥ a1
Bl,e.y & joq U1 [(E"L’)Sb AT 321 Ej(E'E)]

o - 4 - e s, - — *
and the equality is attained if and only if p = p(k+e1,m+62). of
{4.246).
. Thig conpletes the proci of the thecren.

Thus in this chapter we have given a subjective justification
to use, for symmetric estimators, the classical fornulae based on
grmetric deslgns, but now for any design, when the only prior
knowledge available 1s the 'exchangeability® of the unlnown variade

values of fthe units.
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GHATTER &

ESTIMATION UIDER A CONTINUQUS
SIMVEY SAMPLING MODEL

5.0 Summary

In th&s chapter we take up & study under a coniinuous
survey sampling model. We first show that there does nolt exist,
in general, a globally optimal p-unblased gtrategy under the
proposed model in the sense of minimum expected varisnce., e
then suggest an alternative criterion %o obtaln a4 'reasonmable’
gtrategy and investigate the properties of this ‘reasonable'’
strategy. Next we compare certain sampling strategies under ‘ihe
proposed model., Finally, we deal with the stratified set up and
compare & few more gtrategies. A few related optimality resulbs

are obéained in Chapler 5.
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5ol Intreduction

x

The main objective of thic chapiter is to present a different
apralytical treatment of sampling and estimation for appropriate
mefels., Assuming that W, the size of the finite population, is
very large, a stage is set for wmoving from the finite seb up to a
censlinuous framework. 4 continucus variable feormulation is sub-
stituted for the usvally cumberscme finite populabtion algebra. Such
formulations (Cassel and Sérndal 1972, 1974 and S&rndal 1980), are
an attempd to steer Codambe's survey sampling set up in coxniinuous
terma, Such an interpretation makes 1t easler to grasp some of the
complexities of medern survey sampling theory; exact efficiencles
of various sampling strategies can often be computed.

Consider & population of infinitely many pairs  (yix),x},

[

x> 0, such that the Joint distribution of y(x), x > 0, is
wknowns Tor convenience we assume that y(x), x > 0 ars defined
o some probability space ({2, A, %) . We further zgsume that
the distribution of X, whose observed values arg x, is conbtinuous.
et F{x) Dbe the probability, asswicd known for every x 2 0, bhab
& does not exceed x and let

X
Mx)y = [ £(uidu.
o

In the conbinuovus set up, the label of & populabion unit is
2 continuous index = A, vhere for convendence ie 0,1« 4 more
specific ordering is imposed on A by identifying the label A

with the Ath quantile of the X distribution, so thaf A=F)
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or x = F1(A\). Having drawn and observed  one unit the data is
recorded as (y;(M),N) or, equivalently, as (y(x),x). In the

latter case, the unit drawn is identified by its x-value. The two
functions y4(¢) and y(.) are related by y;(A) = y(h(A), where
n(A) = F"1(A) is the inverse function of F(x), The problem under
consideration is to estimate the population mean for the variate Y,

namely,

%

oo 1
ny = E.(Y) = J yx)EEIax = [ y(w(n))da. eee(5e141)
o o)

This,incidentally,defines the cperator E X

In the continuous set up in the presence of auxiliary variabl
X, menbers of a sample of size n are identified by the vector of
labels drawn, A = (}\1,?\2,...,7\1,1), where 0L A;£7, 1<ign, or by
the corresponding vector X = (X4,%X5,ess,% ), where A = F(x,),
1£i<n. The y-value is observed for each of the labels drawn and

the data is recorded as (y(x;),%;), 1£ign, or (y&),x).

Let B be the Borel o-algebra of R} = {x:ix;20, 1¢ign} .
Any continugus probability measure Q on B is called a gampling
design. Q(x) is the probability of drawing a sample such bthat the

awxxiliary variate value in the 4ith draw does not exceed X5

1¢ig¢n. TLet qx) =4Q)/ dx . Phen q(y) can be expressed as
n ,
a(x) = p(x)f(x), ‘where f(x) = TT1 £(x;). We shall refer to.the

function p(x) introduced here as the design function giving rise
to the sanpling design Q(x). Since a unit can be identified by its
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%value, the samrler can chouse she function »(X) suitably.

Now, the case vhere M.g_c =1 4:'5 sR;, which ccorrespenis
i the mathematical statistician's standard assuption of *indepen-
fent and identically distribubted’ observatlons X, 1¢idn,
represents unrestriciéed sinple randen sémpling from the popuwlakici
al then qx) = 2(x). Otherwise, alx) £ £(x). In gemeral, gl
is the density gererated by the randomization device 7(x). Godunbe
and Thompson (1971) wsed the ternm "freguency distribubion gencrated

by randonization' with a similar connotation.

The marginal density of the ith  component of x 1S

given by

ey . .

g, .} = [ alx) Tlax., 1¢ign. S R )
iy . LA B
R J#Fi
n-1
The expected X-value in draw 1 is _r. xqi(x}dx « Shrndel (1980)
s}

gave an example of & design function p(x) that produces draws
with correlated labels.
in this chapter, we consider & speccific superpopulzuéion

rodel induced by fhe probability space (), A, %) . This model
is essentially & class of distridbubions satisfying the followlng

Y(x) = BxP « 2(x) , x 3 0
vhere for every fixed x > O

E,(2(x)) = 0 am EE{ZQ{X)) = %% cee(521.3)
and for every fixed x#x' 3 x,x’ 2 O

Ea(Z(X)-Z(X')) =g,
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where ¢°> 0 and B arc winown whereas b O and ge 0,2

may be known or unknown.

Any particular infinite population value, y(x) =Bx? + z(x),
is to be interpreted as Bxb plus a realization of the randon

variable 2{x).

Any function t of the observed data, (y(x),x), is called
an estimator of my, %he population mean (541.1), whereas (p,&?,
a design function p together with an estimator *+, is called a
s‘bra“heg.‘ Note that specifying p 1is seme as specifying the
correspending sampling design; therefore in a straiegy we way
specify the design function or .the corresponding sanpling design.

We now give the definitions of various types of unbiasedness.

(a) 4 strategy (p,t) is said to be p-unbiased (design~unbiased)
ir

Ep(t) = | t(y(g),&)p(g)f(icjdg =] y&xIfxlax =ny
RY R’
1

for every real valued F-integrable function y(x).
This,inoidentelly, defines the operator B, ().

(b) A strategy (p,t) is said to be t-iunbiased (model unbiascd)
if
B, (6(¥(x),x) - my) =0 a.e. [

where Q is the sampling design correspending to the design func-
tion p(x).

(c) 4 strategy (p,t) is said to be pr-unbiased (model-design-

-

O I 2§
cojacan) 17
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L B, (h(7(2),2) - B, (uyd) = 0.

3
For the comparicscn of variows sdnpling strategies we
introduce the following messures of uncertainty., For a strateay

(0,6} define

£ = B £ }C >
M.l (Q,t) «-_Jng(i'--—mY) bo-(b--lo‘@)
21y - i 2
and Mgcpﬂt) = EPEE‘\IE—;U'Y) -t-C_EQT 05)
W J = o =E '.r,__ ; [P, . --
Whare oo Fi(m'ff) =5, ijf(xjf (7 )A% o (5.1.67

Ve assume that Y{X) is square integrable wl.T.te the
woduct probability (Fxz). Ia actually compubing M, (p,t) or
Mylp,%}, we, in fact assume that the populstion conforms %o the
nodel (5.1,3) with b=1 uznd ge [0,2] nay bo known or unknhowile
e also assume that F, the digbribubion function of X, is a

ggrma dist sibubtlcon with paramier a .

We 2lso congider stratified sampling invclvf;.xlg 5 strata.
Ludt 1s gaid e belong to hth stratue if its x~value belongs
o the interval Exhﬁ , xh), where O0=X <Xy <Xy<aes Xy =
are the given stratification points. For the stratificd sampling
ve have to modify our basic set up accordingly. FPor the hth
siratun define £ (x}, the restriéﬁ'io.n of £(x) to the inécrval

I’:xh_1 , Xy ),.an8logous bo £(x) on R7, as

il

fh{x} :f(‘x)fWh it xe [th s Xy )

= 0 obtherwise
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X
h
where W, = F(xh) - F(xh_1) =;€f f{du.
he1
One can now think of a design function ph(x) for the hth

stratun, where X=(Xy,X5,eee,X, ) ; m belng the mmber of units

P

to be selected from the hth stratum. The sampling design can
now be defined as q_h(x) = ph(x)fh(x) where

fh(X)‘ = fﬁ :fh(xi). 'Phe overall stratified sanpling design is
~ 1=t |

L
then given by ] qh(X) .
h=1 ~
We will be using some of the designs and estimators gultbe
often in our discussions, which.are given below.

Simple random sampling (srs) corresponds to the design
function px) = 1. ppxg/2 i8 the sanpling design that corres-
. n
ponds to the design function TT pi(xi) with pi(x)axg/g. The
i=1
continuous analogue of Midzuno-Sen sampling scheme correspemds to
n
the design function p(x) = 1}-1-1 xi/m, where 4 =E,(X), let us
dencte this by By ¢
Given a sanpling design qx) the Horvitz-Thonpson estima-
tor takes the form

g B . .
.y 21 yxIE(xy) [ aq () see(54147)

Finally, the usual ratic cstimator takes the form

n n.
'Q‘,E, S AR I‘TP(X; ) / n X, - w0 {5,1,8)
) i=i i ) B


http://www.cvisiontech.com

- 105 -

Ag nentioned eariier, bthe nain purpese of the conhinuous

" variable formulation as to understand some of the complexities of
the finite populetion sanpling thecry. In thig chapber wo first
obtain  conmtinucus versions of the results derived in Scetion 3
of Chapter 2, We then compare certain sanpling strategles unter
the model (5.1.3), We finally deal with the stratified set uvp.

 Sone of the related results will be obtained in Cheior Ba

5«2 p-unbiagedness of Optimcl f-unbiased Estinatcr

In this secticn we Tirst note that an attenph to nminimize
iy (p,%) in the class of all lincar p-unbissed stratogles Tuils
mliess g#2 in the model (5.1.3). (43 menticned carlier we assune
that the population conforns to the model (5e1.3) with b=1 where-
as ga-EO,ﬁj ndy bte known or unknewn). To strike 2 conpronise we
iry to ninimize M1(p,t)a égé;he cless of all linear g-wnbiascd
sgtindoors and then.abtain/tha%nﬁzkes an csbimttor so oblained
p-tnbicsed. We further show Ehat such ¢ strategy is &5 good ds thoe

strategy  (ppx, tygp).

We had adopted the sanme approach in Chapber 2. However bthere
va ninimized, as the first step, a part of M1(p,t) {or couivalently
Hg(p,t)) subject bo ¢-unbiasedness and then obbtained & design bhak
nide the cstimator so obbained p-unbiased. Here we are rduimizing
“the entife quantity MT(p,t) in the cluss of lineur g-umbiased
estimabtors. The next step is, of course, to obtain an approprifte

design. Further our compronise strabegy happens bto be an andlogue
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of its counter-part in the finite set up. An additienal advantage
over the finite set up is that we are able to find the functional
forn of the design that makes the best f¢-unbiased estinator p-un-
biased. This, when the finite population size, N, is very large,

justifies the approach adopted in Chapter 2,

A linear egtinator t is of the type

n )
t(Y(X),X) = I ai(X)y(xi) 000(50201)

wheTre 24,8500 -y8, are B -neasurable functions.

The condition of p-unbiasedness of & linear strategy (p,t) can be

given by

n

Z ¢.(X) = 1 S ¢Ce (F) 000(50202)

i=1 *

' n
, : = - : : . ‘ N
vhere @, (%) J'+ 1ai(3c)p.(>~c)j'!;]'1 f(xj)dxj , 1€ig¢n eee(5.243)
.n—

If ¢;(x) is sanme for all i=1,2,...,n sey @(x), and also con-

tinuvous then the condition of p-unbiasedness reduces to

gx) == 3x> 0. eee(5.2.4)

1
n
Now for a p-unbiascd strategy;/ (p,t)

My (p,t) = EE t2-Bnd .
Under the nodel (5.1.3),
EE t J‘ [ ajz.(gg)xf] p(x)f (x)dx

2 n i
dtidh ugjn [ %3 (X)x, _‘ nl(x)P(x)ar .
hn st -~ el o D
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et vg first try to mininize

f [  al(xxg :l () (x)ax cer(5,2.5)
Ry s T -

n

\SubEOCt to the cOP«ditiGﬂ' (5-204)t

thserve thut by Couchy-Schwartz inequalliy,

n n
I af (X)P(}")W flx)ax, [ p&) TT f£xdax,

1ML Uy L Eer L Lh 373
- i : i
Rﬂ-—'i J# 31}”1 i
e tope T s |
2 [: a, (X)plx £(x. dx] .
R;l_‘]l i#i 3 3
= 1@ , uvsing (5.2.4)
n- .
[ a2ep@) 1T flx,dex >_.2___.——f{xi)
or ar(xX)plx X. L2 .
pt T T iFi 4 Tt ()

-t

vhere  qq (x5) ds given by (5.1.2),

£{x,)
and the equality is attoined waen a;(x) = Ea"%fﬁ ee{54246)
Tiow
n 5 _ ,
] [ £ al (x)xg:lp(:c)f(x}dx =1 [ x8f 8l
i=1 R R+ -7
n n-1 n
131 e )dx:]f( l) s
1 £2(x,) |
> & 5 x£ Ax;  eeef5.24T)

i=1 p+ in a; (xi,)

ant the equalify is attained for a;(x), 1<ifn, glven by (54246) .
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Now note that (5.2.7) depends on gq; (x;), 1< 34 n, hence there is

a scope bto minimize i% further,

Again using Cauchy-Schwurtz inequality

2 2
i x81 X) gy i) qi(x)dx _>_[ J xg/zf(x)dx]
+ R+

Rt 4
2 2
or J x8 g. X ax » [ Ef(xg/z):]
rR* 1

and the equality is attained for q,&) = x8/%¢ (x) /Ef(Xg/Z)-

Thus (5.2.,5) is minimized, subject to the condition (5.2.4), for

the strategy (ppx®/°, typ)e

Unfortunately, the strategy (ppxglz, tHT) does not minimize
the second term in the expre‘ssion for EpEEtg, unless g=2e. 0On
the other hand there are certain strategies Tor whick the second
term is minimized but they donot minimize the first term. Thus for
g < 2 we opt for a strategy optained using new approach and for

g=2 we have the following theorem.

Thegrem 5.2.,1. Under the model (5.1.3), with b=1 and g=2,
(ppx, typ) is the best strategy in the class of all linear
p-unbiased strategies weret. either measure of uncertainty M (p,t)

or M2(p,t)o

Proof. The proof is immediate. Note that for & p-unbiased stra-
tegy M4 (p,t) and Mz(p,t) differ only by a constant term indepen

Ie o

Ceul ol Wae LeTuuaygye
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As mentioned before for g< 2 we try to minimize M,(p,t)
sitject to the condition of t-unbiasedness and then try ¢ obbain
2 design which nakes the estimator so obtained p-unbiased. Since
ve have agsumed the square integrability of Y(X) we.r.b. the
wroduct provability Fxt the order of integration, in the follow-
ing steps, can be interchanged,

The condlition of g-unblasedness, ander model (547453 with

b=1, for the linear estimator (5.2.1) can be given by

n | )
it ay()xy =4 =B (8) YxeRy vee(522,8)

Nete that EE f:-z;..mY)‘?

\2
By EgEfp(f)(T'“mY)

it

EgpGOE, (4 -my)° s

1]

. ) 2 . L .
ence it suffices to minimize E, (F-my)° subject To (5.2.8).

\ \ 2 _ a2 2 _
HNow Ea{t—my)_ -—EE(L‘( * Ty - Etmy)

ti

n
B aiCEJY(xi)EfY(K)

iote that EF, (bny) £ 5o

It

n
i§1 ay (OE E ¥ (e )YC)
n
j_§;1 a; (RIBLE, T (x, )Y)

i

_ a2 !
et B (V(x)¥(x)) = 3%Gx aes. ()

Il
=

Henoe B, (fmy) a; (X)E (3 % X)

i=1
2 n }

b &y (ﬁ)xi ohd
i=1
2“2

B

1l

P (using (5.2.8)}.
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- . s 2 . ‘ s g
Thus it iz enough to minimizoe L, ® gubjeet to bthe conditien
(5.2.8). Bquivalently, we have to solve the following minimization

mroblem:

1 .
s i s 2
Minimize 5 as(xxf
s e {5.?.9)
n
Subject %o b ai(g)xi =i,

The optimization problem (5.2.9) readily yields the following

solution
)8 _
al(}:) L = s 1'_(_15_11 ) 0--»(5-2-1&3
n xf’g
i=1
Hence the estimator
) n .
P ox;m8 A
i=1

minimizes M1(p,t) in the clags of all linear v-unbiaged cohbima-
tors. However, qur main problem of interest is to obtain a design
for which the estimator in (5.2.,11) becomes p—unbitsed. Following

theoren glves us a required sampling design,

Theorem 5,2.2. There exists a sampling design that makes the

ostinator tg in (5,2.11) p—unbiased and correspondc to the desigy

fimetian

=

pg(X) = A [

—~—

|

. red
xg“"] 5 xo-f e (52242
i =1 = i=i 4 i ’
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]

. 1 f
where & = by -—-t—-

Proof. It is enough to check the following two condibierst
(1) [ p ()T(xiéx =
g 87 T
n
(1) % v () TT o6, = 1
and (ii 2§ a{xijp (x | filx.1dx, =
istopr Y B~ gEy 4
-1
where - a,(x), 1{1i¢n, arec given by (5.2.10).
Yote that
[ p (x)f(x)ax = & 7 ( z x56) TT x e ax,
gt 8- r; 1
i |
A n o At e '“K
= ] (= X g) 1T X. g
(Fa)n R+ i=1 axi
n
= _A - n (|G+g-.;)n-1 ]a'+i
(la)”
= fina [ E—a+ “1. ]n—1
= 1,
1-g
X, n
And ] L p (x> TT £{x )dﬁ = BZ 1-g ] axy g1 Wsﬁ%’i&@ de
+ n — g ~ i J * j
R 5 xe-8 JF R |
n-1 ;24 71 n-1"

fl

o (BT g.']_”f"'*

- Ta

]

-F: r W=a).
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Hence the theoren.,

Thus we have obtained a strategy (pg, tg) where . is

the best linear t-unbiased estimator and p is the design for

) g
which tg is p-unbiased. Here we had assumed that b=1 and

ge [ 0,2] known in the model (5.1.3).
We now prove aur next theoreme.
Theorem 5.2,3. Under the model (5.1.,3) with b=1 and ge [ 0,8]

the strategy (bg,'tg) is as good as the strategy (ppx, tHT) Wl of

either measure of uncertainty M,(p,t) or M,(p,t).

Proof. Since both the strategles are p as well as g-unbiased
M, ‘and M, differ only by & constant.

2 .22
N = -
ow My(p,,t,) Engitg B u

2.2
E — K

i

L
&
‘R

u
B
o
=

no
LB
. P
eyl

i
L}

s

i

o%u? [argd cee(542413)
n .

On the other haud,

2 rareT
At Tom .
My(ppx , tn) = "Z‘ :g (S&rndal, 1980)

MLl i ;T At A fha nranf
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cgorgllary 5.2.1. In particuler when g£=1, we got the glrategy

(9, tg) &nd vhen g=2, we, of course, geb che strategy

ppx, bypd

‘Bemark 5.2.1. Obscrve that since the shrategy (p_, tg) ig
p-unblased even if thoe model brezks down it remains pr-umbissed.

B

Thus the afep of oblaining the design pg even afteor geuving the
best linear g-unbiaged estimator, a kind of inswrance dgeingt fthe
posaible model break downs, is justified. However, bhe ghratogy
v, tg) depends on the model parameter g that, comrrary to

our assumption may be wkrown. In vhich cage the swrdtegy t?ﬂ,‘tg)
1z not feasible. Theorenm 5.2.3 statos that the strategy (pmx tHT)
is as good as the strategy (p e ) ¥ ge [0,2). Purther the
strategy (ppx,tHT) is 1nﬁcpcndcnﬁ of the model paramcter g.

This gives a kind of robustnesg property of the strategy (ppx,tﬂm).
Thug when vhe parameter g is ot koown the ciratesy (pﬁJ tg) can

be substituted by the cqually good sératesy (ppar, T ).

53 Comparison of Strategics

‘In the provicus section we saw how the attenpt of cbfaining
4 bast sanpling strategy war.t. the measure of uncertainty
My (p,5) onder the medel (5.1.3) fails. Owr compronige strobegy,
foo,1s not globally cpkimel umless g=2 in the medel (5.1.3).
In view of these obgervatlans we conparé certain well-lnown straw
togiea used for estimating the population mean. . Comporiscn of

sampling strategics, in the absence of globally ophinmal strategy,
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under the supcrpopulation set up, weTete certain mcasure of uncer'-
tainty, has been one of the main problems of intcrest to the é\n‘vey
statistictans. Such investigations are carried oub in the finite
set up by various authors*. In this section we compare some af the
strategies, introduced in Secticn 5.1, under the model (5.1.3)

with b=1.

Sérndal (1980) studied the strategy (srs,ip). He notes
that the strategy (srs,tp) is not p-unbiased and when b#71 in
the model (5.1.3) it is not even pi-unbiased. Here we note that
the strategy (py, ty) consisting of Midzuno-Sen sanmpling design
and the conventional ratio estimator is always p-unbiased and even
if the model parameter b is different from 1 it remains at leasgt
pt-unbiased. Apart from this advantage over (srs,tp) we shall, in
fact, prove that the strategy (p,, tg) is always superior to
(srs,tp). Iet us first prove the following lemma.

L’a 1

g . -
‘ “Sx; & - = -1 \
-—-?l.}i—-- e 7'1 .U x;1 = rﬁaﬁg} J_g'i'd- (ra)n ‘ -0(50301’
(5 x.)° i=1 [nacg

R

i=1

Jd = [
R-l-
n
where m is a real number.
Proof. Consider the following transformatioen
x.l -‘=|J1(1-u2), x2=u1u2(1-03)... N

Epag = Uqigeeetn g (-ug)y Xy = dglpeeety gty -
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for this transformatian,
OS_L}.’(‘?@ a:’]ﬂ G‘S_ﬂii‘l i=2,3,ue,n‘

Ihe Jacobian of the frangformation is u,, n-1 2"2 sesess I g Hence

;, L L uq (1 - uz):l
: ‘.‘l
0 o

- , (s Jy |
2} u1 [U‘? (Tmuz)u.iue(1uu3)u-(u1-.un)] .

ey
LU
Y

n‘in,-Q

Py g, Tﬂdul

1
= [ u'lu%mwug—m-'l du, Iugn'j Ya-1 (1-L12)g+a-1du2

Q

uﬁ(:ﬂ,_.E}ﬁ-? - 5) auS... I uiiﬂ (1—un;1)ca1dgnﬁi

o,...'i -

—u) T Ay,

O‘“_,_.__\ Ou_,...‘.

i

pursen [{-13e [gea [in-2ja la
e+ g
Enm-g |t1’1—15“

L I N W

B

BLEL
53

= Ina+e-m [era (]’E:)n“'!

[narg
Hence the lemma.
We now have the following theorem. -

Theoren 5.5.1. Under the nodel (5.1.3) with b=1 and e [0,7]

the strategy (py, tg) 1= aluays superior to the strabegy
(srs,ty) w.T.b. the measure of uncertainty M,(p,t) of (5.1 W5l

Proof. ILet p be any design function then

-
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ey _mow r A2
Mp(p, ty) = B R, (b - B

= E?Vz‘tﬁ {Va denotes variance under the
n rodel &)
z x%
_ 52&-&2 E i=1
P 1 2
{% =x.)
i=1 *
For px) =1
n
5 xf - & b :
B [i:ﬂ - = 0 f'—J—x : e—mxi 'II}T 1 ax,
. n —\n 1 g i i
PL (s %02 % gr (3 22 i=1
i=1 * R L

@

1n lna+ =2 jo+n (ra)n-*l

(T)® [no+ g

uSiﬂg Lerma 5.0.1 with m=2 .

e 2 211“:_:;4(1/]’& - . NN
Thus 142 (..;;.S,tR) . - U;—b (g‘f‘nﬂnﬁ (‘g_'_na_ (g‘fu alsg Sar.lﬂ.hl, 198(}}1

n
Similarly for p(x) = & Xi/nﬂ_, using (5.3.1) with n=1, we get

i=1

. . 02 2 [g+a /]ﬁ' : - :
Mz(p}qv%) - e (g+nﬂ—1) .. (54342)

Now let 7 =M,(n, , ) /Mylars, i)
then n = n‘a/[ ner {g=2)] vee(5a3.3)
This shows that (PM*‘ER) is always supericr to (srs, tp) .

Remark 5,3.1. Thus apart from a safeguard ageinst model break-
downs the strategy (py, tp) is always superior to the strategy
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(srs,tR). Note that for g=2 +the two strategies are,in fact,
equally good and for g< 2 lim n =1, wherc 7 2ig given by
== oo

(523.3)s Tris is true otherwise also since 1lin
n—>msm= i

) — 1 as n—r= i.e. for large values of n bhe Midzumo-Zen

I
I X, = & 1
= L ©

ganpling design is approximately equal %o the simple random sampling.
In ouwr next theorem we compare the strategles (i, tp) and

(ppx,th}.

Theoren 5.5.2. Under the model (5.1.3) with © =1, we have for

22 2 and g+'a«-1 > 0

MI.(DM tﬁ} ;;-*- Mr{ppx t‘HT) according as g _>.- r =1,2,

Proof. Since both the strategies are 15 as well as y-unbiased it

is enough to prove the result for r=2Z2.

How observe that using (5.2.13) and (5.3.2) we get

Mo 0y, by /M5 (003, b

it

nle+g=1) flgrne-1)

it

T+ (n-1)(g1) / (gtna-1) .

Now for m > 2 gine-130
and (nw'i)(é-‘s[) ¢ according as g z T

1.

i 1

Thus M (p]v %’R) Mg(ppxt ) according as g
Hence the theorenm.

Rgnerk 5.2.2. The &bove theorem says that when the sampler has to

choose between the above bwo strabteglen, there is a clear demarca-

tion of the range of the parameter g of the model (5.7.3). If
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there are reasons to belisve shat the parémeter g is less than -
unity then he should go for the strategy (py, tg). On the other
hand if he speculates g to be greater than one then surely he

should prefer the strategy (ppx,tHT) to (py, tp).

Remark S5e3e3. Thedrem 5.3.2 is in complete agrecment with a
result due to P.d. Rac (1967).

In the next section we compare o few more strategies in

the giratified selt up.

5.4  Stratificd Sempling

In this section we deal with fthe stratified sanpling involv-
ing 1T glrata, introduced in Scection 5.1. We arc basically
interested in comparing certain strategies in the strabificd set ug
Sirndal (1980) proposed gstrategy (SrSt!tst) where sreh is the
stratified simple random @dmpling and the es.inabor t;- is gliven

by
2 ¥y { 1)
‘h - E ‘L‘I .y LN 5 '4“

waere W, = F(x ) -F(x, 4), 14h¢ L, and letting n, %o be the

1.
number of units sanmpled from hth sftratum, 1{hg7T, hz"P' m =1,
ﬁh is the sanple ncan for the hth stratm

- 1
¥ = = kX y(}t.) 1$h$1’ - 1-5(5.4l2.}
N A |

One may think of strategy (prxst,t;,) where ppxst denobes the
gtratified pm sampling and the estinator t?{i‘ is given by
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e b} W, == & — --.(5-403}
ECRNE S
X
. 1 B
wnere Mh = E’—- J- Xf(if)dx- tt¢(5-4.4}
h X, 4

I

It is easy to check that the strategy (ppxsﬁ,tPT) 18 p as well
8s i-unbiased. For this strategy let us evaluzfe IM,(p,t). Iet

T,y demcte ith -unif in héh stratm, T¢idn, ond 1< hgL.

#*
M,(p,t) = Epvi(tm.)
2
2 o“x8
L .4 B 7 ¥y
= Ep p Wﬁ -gh L —'Q—L
h= Ty, i=1 :;hi
5 :
5 L W K h .
s g = h h f }:g 1f(:{)dx * ---(514“5)
n=1 - ®n  x
h-1
_ _ nwhﬁih
for the allocation n = —p3—= , 1{hg]T, ceo{5.4.6)
* 021-': PN
Mo(ppxst brp) = == 7 x&F £ (x0)ax
' o
-2 2 m
-_ U;:" a+g'1- . t..(5l4"7)
-+
For the optimal allocatian,
X
o Do ed
]’.'.Ihd Whﬂb I Xg f(X)d:{ ’ 1$hiL, ---(5o4‘.8}
4
h-1
2 L h 2
* = E— . - g_.'l ) ".J{;_)ﬁ : e
Mg(ppxs_t,tm} = [ h3=1' (whuh thwlx T{x)dx) _J cefSed.9)

¥e now have the following fheorem.
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Theorem 1 Under the model (5.1.3) with b=1, ve have
(a) for the allocation (5.4.6)
¥*
M, (ppxst,byn) = My(pox,tyn)
and (b) for the allocation (5.4.8)
*
M, (ppxst,tyn) & My(px,tyn)
where the equality holds if and only if g=2,
Proof. Proof is immediate.

We now proceed to comment on a result due to Sarndal (1980).

Let us first evaluate My(srst,t_ ).

_ 2 2 2
My(p,t) = B [V, (60 + B b ) ]_s u

£
L we Py
_ 2 h g 2] . =4
=B o) b4 Z X + ( E X,) - B = -
PL petmist By noy " #n"m, 4
I W, *n i X
=02 3 B J xBr(x)ax + S = a [h xXf(x)ax
h=1 I,h. Xh_.,! h=1 hn h—‘1
X
h 2 .
- xf<x>ax>]. e e (5:4410)
*n-1

Por. the proportienal allocatiofi, m =nwh , 1¢hg¢ L, we have

X
h
My(o,8) = T ‘“*ﬁ .3 nw [ Pr@ax- () xf @)
a h=1 X1

oee (5 04l1 1 )
Sirndal (1980) mentions that for the proportionally allocated sira-

2iPi22 randoa 9zanls (.:A.hw?.wh\ o and vrder ‘movimmm tenefit from

......
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gratification’ (many strata with optimally located boundariea),

2.2 Py
M (SI‘E%G t ) = Z £ Q+EL 9--(515‘3’.12)
2 * Vst no s

fowever, it is easy to check thal the coefficient of 3% in (5.4.10)
as well as (5.4.11) is always positive., This follows by Cauchy-
khwartz inequality. Hence even under ‘maximum bsnefli from strati-
tication’ (5.4.12) cannot be true. This automatically Lnvalidates
the camparison bobween the strategies (ors,tp) wnd (orst,t )

due to SArndal (1980)., Instead ws have the following theorem.

Theorem 5.4.,2 Under the model (5.1,3) with b=71 and g>1 for
the proportiomal allocation the gtrategy (srst,t > is inferior

bo both the strategies (py, ty) and (opx,t,p).

:Pz'ﬂf}fo'-, Usj-'ﬂg (505.2) and (504011) wWe g‘e‘iz

MQ(SrSt,tst) . 2—1
Voo, %) 2 0t o
2Py r 'R
Terefore Yor g2 1 (g, tg) 8nd hence (ppx,tpy) wre both
superior to the strategy (sret,b ).

The agpect of pt~bigs introduced due o0 paaszible model
failures has been considered by SHrndal (1980). He adveowtes a
‘conservative' approach to use p-unbiased or approximately p-un-
based strategics. This is a safeguard against model brealc-downs.

811 the sgtrategles considered in this chapler are, indeed, so.
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CHAPTER 6

ESTIMATION OF POPULATION PROPCRTION

6.0 Summary

For the comparison of certain sampling stratggies for
estimating the population proporition Ianke (1975) suggested the
use of superpopulation model approache. ln,this chapg§§ we gpserve
that the superpopulatidn.model.suggested by Lanke (1975) has many
interesting features which remained wnnoticed. Here we conaider
both the aspects of inference namely model-baséd infererice “and
nodel-~design~based inference for cshtinating the population pro-
portione While dealing with the model-based infercace we firot
obtain some resulés regarding the nonexistence of ,egkimalors
satisfying certain conditions for the only parancter cf the pro-
posed model. We thon obtain estimators for the samc parumcter
using diffcrent principles of cstination like ‘maximunm likcelihood'

generaliged least squares', 'lcashk absoluke value' ckc., An -
attenpt is nade to comparc all these catinators in a ‘reagonable’
sense, Finally, while considering the ro}e of designs we obtain

some optimality results in the sénse of nininum expecied variance
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6,1  Introduction

In pracitlice sometines we are intercsbed in eséirabting the
total number or proportion of waits in a popwlation possessing a
parficular characterisbic. Mauy of the resulis of surveys o
censuges are of this nature c.ge nmber of uncnploycd persons or
rreentage of people happy with the present govermrceat cor percen-
tage of poople aged sixty and above elic. Such surveys alse sinplify
neasarenenta’ since a questionnaire can be fornulated so as o
introduce a classification that is answered by sinple ‘yes® or 'ne'.
Even if the original neasurements are rore or less conbinuous c«ge
respordent's income to the nearest integer, the percenmbage of

population having inconce 5CCC &nd nore can be tabulatbede.

In the gereral supcrpopwlation nodel approach when the chara-
stgristic y under study is roughly continuous and in addition an
amiliary information i.e. the values of an amxillary variate X
taking positive values x; ,1¢ 14V and closely related to the
sbudy variate ¥, is available a suitable nodel 1s assumned and a
criterion of opbinality dis set up for estinmating bhe poruwladion
nean. However, when Y;'s &are ong-zero veriates it is not possible
to relate the awxiliary information with the study variate in fhe
yraditional® way. Nevertheless it is possible to set up a reason-
able sort of dependence of y on X.

»

Tet  ¥{4¥pyerey¥y Dbe @ realirzation of ¥ 'indcependent one-
zero variates ¥y ,Y¥,,ses,Y having @ joint distribution {hat is

specified as follows *  We assime Bhat the valucs of a posiéive
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valued nonstochastic variate x are available as pize necasures.
The mcdel hypothesizes that the probability of success for ith
variate Y; i.es Prob[¥;=1], 1<igN, in sonc way depends.on
the awxiliary values X5 1{i¢ N. A recasonmable form of dcpendence

is

Prob [ ¥; = 1[x; ] =Bxy, ~ 141N

i

]

or EE(Yi‘xi) Bxi
2 . i=1,2’¢,.’N (6.1'
E, [ (v - %)% %3 7 = Bx, (1 - Bxy)

EEE (¥; - Bxi)(Yj - Pxy) |x; ,xj] =0 i#] 21,2000,

where B, 0 B¢ 1/, 3 = nax X. , is the witown nodel para-

X 3
SR P RS
meter. Model (6.,1.1) is due to ILanke (1975). He used the model to

proportion
compare certain sampling strategies for estimating the population/

Y = -11\? iI-E; ¥; « We note that the model (6.1.1) is interesting in
itself and has many appealing features. Here an attempt is made to
explore the model more extensively. WNote that the modcl (6.1.1),
unlike usual superpopulation models, is completely specified in the
sense thalk the joint distribution of ¥,Y,,...,Yy ig completely
knowne. In this chépter we ‘hake up model based inference as well as

examine the role of designs in estimating the proportion.
An estimator b is said to be model unbiased for B if

E, (b(s, X)) = p ¥eelo,1 ] ; pia> o0,

WAHSYGUY 81l SFeawmaiol' v &g s8id w0 oo moder wibabucd 1on bae
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sopulation proporéion if

E, (s, -T =0 ¥icLo, 3-}—_‘_1 p(el > 0 .

4 strategy {(p,t) 1s said to be design unbiased or p-un-
tiaged for estimating bthe population proportien if

E(t) = E pls)t(s,y) = ¥ yeReo
ge S ~

To compare the performances of variouns sempling stratgohes we 1ge

the following measure of uncertainty
£y = Y :
fote that the measure of wicertainty (6.1.2) is sume as (2,1.3).

6,2 Model-Baced liferconce.

The. prediction approach allows a model an esaential role in
inferencee. Whon the porulation botal is expressed as the sm of

the nample tokal % ¥y ~and bthe total of the ubsampled residuum

ieB o
¥4 the problem of egtimating E1 ¥y i3 recognized as one
ifs | i=
o predieting the sum of the unobserved randem variables I Y.

idés
The assumed model plays & role to link the observed and unobserved
ralucse From fthe observed values an inference is made abeub the
rodel which is then wvsed *o predict the values of wobscrved varia-

tees (Royall and Hersom, 1973).
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Following Royall's prediction approach we may usc

\g? ¥ ¥y ¢ » Zox, to estimate Y where b Ls an escimate
ies igs *+
of the model parametor B based on the sample actually drawne

Usually b is baken to be the gencralized least square cséimator
(glse) of B ©based on the sample. However, since VE(YDL)’ in
(6.1.1), also involves the same parameter B all known ‘nice®
results camnot be applied as they are. We first prove a nonexis-

tence theorem,

Theorcm 6,21+ Basged on a sample s such thac xi< X, ¥ icgo

there does nct exist an estimator b of § satisfying

0L b1/, e (6.2.1)
and B, (b) =8 ¥8e[o0, 1/x . vee(64242)

Noto that bxi is the cgtimated probaviliby of success for
the ith variate, 1<i¢N and (6.2,1) assurcs that the cstimated
probability lics between zoro and onc. (6.2,2) is the condition of
unbiasedness. Thus Theorem 6.241 statcs that based on a sanple 8
of the type indicated above no unbiased estimate of £ can lie -
within the bounds zero and 1 /xm .

Proof. Without loss of generality (wlg) let s = {1,2,...,n}.
Hemece 0 < x; < x  for 1< ign. Let
B= y= (y1,y2,...,yn) ¢y; =1 or 0, 1¢ign}. If possible

lot there oxist an cotimator b of B satisfying™(6.2.1) and

Woletle TS CUILLLLON \Eecel) tonmalms echHaG
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n V. 1-v.
E (M = I bl T () t01-8xp) 7F vpelc, 1/x ]
| 7B i=1 7 ~

In particulur for B =1 /xm we have

n X v x, 1=y
P vy T GDRa-gh et
yeB T i=1 n hud ul

n Xe V. x, 1=y 7
Fow mote that 0 ¢ TT G I.d) "1 ¢ 1 wyer stmeo
I
O('xi(‘Xm ‘Vi=1,'2,.o.,n¢

Hence in view of the condition (6.2.1), E,(b|F =1/x) =1/x

]

if and onmly &f by} =1/x_ ¥ yeB. 4nd onmea by} = consiant
the conditicn (6.2,2) camict be sasisfied. This conbredicis the

existence of b satisfying (6.2,1) and (6.2.2). Heuee the theoron.

Now consider 2 sumple 3 such that Xy = EL for gome

-
r (31) wits and x, < x_ for rensining unlis in the sanrle.
fi - ey ey - £ hy = ” = X Faw e =
!Lgaij:l w1g cogune r'-lll-ri-l! 8 — i1 * 1'2,, 'R ,n} . Ki }L2 L }CI' Km

and x5 < X for v+1 £ 414 au. If r=1 then we have khe

Tollowing thooren.

fhegrem 642,2. For T =1, based on the sunrle s, ¥y /Xm is the

orly estirs tor satisfying (6.2.1) and (6.2,2).
frogf. This follows fron the conpleteness of Yy /:{n « Mext for
2¢r{n-1 we &ry tc find cstimaturs of B satisfying (6.2,1) and
(6,2,2). Consiler catirgtors of the following typos o
(i) b1 Y-I ’YQ’-.“’YI.) {thaﬁ dGDGIﬂS Gnl',}i" GT.I. Y1 ’YE, QQO’YI,)
gatisfying (6.2.1} and (6.2.2)
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and
(i) b2(Y1,Yé,...,Yn) satisfying (6.2.1) and (6.2,2) such that

T Vi, . 1=y
Z oeoe Z bz(y1 ,yz’tuo,yn) .-I:T (Bxi) (1"'Bxi) = B v 5 EEO' 1/xm]
Yo ¥ i=1

and ¥ (Fp,q9Yp, psoees¥y)e
First we give a nontrivial exanple of an estimator of type (ii)e

Gxanple 6e2e1s For n=3 and r=2 define,

Y3)=Y1/Xm if Y, =1

2¢

Y2/xn if Yrj =0

- 2 Vs 1=y,
clearly by(Y;) =3I 2 b2(y1,y2,Y3)iT_f1 (Pxg)"*(1-pz) %

1 Yo

B whether Y3==1 or Y.3=O.

Y3 1".7'3
Further b2(Y1 ’ Y2) = X b2(Y1 ’ Y2 , y—j)@XB) (1- ﬁXB)

I3

PRy /%, + a- Px5 )YZI/xm

- 2 Yy 1-y;
and = £ b,y(y.,y,) ] (Bx,) *(1-8x,) =B.
21 27 .1 i i
¥ ¥o i=1

Let C be the cullection of estimators of type (i) and

type (ii), we then have,

r
Theorem 64243, -r;‘-c- I Y, is the bost estinefor in C in the
n i=1

sense of ninimum variance under the nodel (6.1.1).
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T -
Progf. Prom the conpletcness of crder statisiic ;Ez Zq Y, &8
1 i= -
the best estinater of type {(1). Furither any egbinator of Gype

T
(ii) con be inproved upon by 3 Yi aince for any fixed

TX .
n i=t

Tpeq s Ypepseess¥, 1F is essentially an estingéor of byve (D).

Let €4 ((LC) congist of eatinaturs of &ype (i). We bhen
have the following
The 642¢4e There exigts nc linear colinator pubside 01 satisg-—
fying (6.2.1) and (6.2,2).
Procf. If possiblsz let thore exdist a lineer esgbimabior b of P
oubside OC, subisfying (6.2,1) and (6.2,2),

n
A lincar egtinmator b is of the tyre b = 21 aiYi' In
i=1 -

view of D2 0 we have a; 2 0 ¥ i51,2,s0e,n and since b{C,

we nust hive ag > O for sumc J such thut r+1<j<¢n. Purther

n
the condition (6.2.2) is cquivalent tg _El'aixi =1.
L=
n ' 1 -
Mow D{i,%eae,1) = 5 a, and T &, > — becduse of (6.2.2)
=1 * i=1 1+ ¥

buat this contradicts (5.2,1). Hence the theorert.

Renark ©.2.1. There nay, however, exist nonlinear catinators oub

side C gatisfying (6.2.7) arnd (6.2.2). Ii is alse cagy 4o check
that the clags C of esbinators is not conplcbe. Cunaider the

Tollowing

For ne«?% and » = 2 lob
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L]

b(1,1,1) = b(1,1,0) 1/x,, 1(0,0,1) =a, 1(0,0,0) =0

L1satx -x)]7 2x)

(1_¢x3)/‘2xm, 0<ag1/x

b(1,0,1) = b(0,1,1)

L

L]

v(1,0,0) = b(0,1,0)

and B = (Y +Y,) /2x .

It is easy to check that bg¢T and it satisfies (6.2.1) and (6.2,2)
For a = .1, %5 =1 and x =1.1 the range for P is

10 _ - 1680 _
0L P &T7 =.9090 and for 0< B K ygFg = 9037, V() < VE(B).

Here we note that the main reason behind the various non-
exigtence results is that thg,_uparamgtric range for the probability
of success for the ith variate is [0, x; /X _] and not the
matural range [ 0,1], the two being same for x; =x . If we
interpret ﬁxi ag the egtimated value of Y5 rather ‘than the
estimated probability of success we may be willing to relax the
condition (6.2.1). Fu,;c'ther estimation of B is just an inberme-
diate step in the estimation of the proportion. So what we nush
demand is that the estimate of the proportion should not exceed one

This in turn gives bounds for B as

0¢ B < Wam)/ X-x) e e (64243)

N

where X =‘E X, Xg = _8 X; o
i=1 ies

Even after relaxing the condition (6,2+1) to (6.2.3) we can
have similar cxistence and nonexistence results in the lincar set uj
Going a step further even if we relax the conditicn (6.2.1) ccmplote

we still have the following noncxistence theorem.
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Theorem 6.2,3. For any semple s such that X; # X for at
leust one pair (i,3),1#j: s, thore does not exisht wiformly
nininum variance linear unbiased estinator of B under the model
{6!1 01}i

rogfs  The proct follows from the fact that the opbimal cholce

of linear egtimator depends on the parameficr @ .

Hemark 6,2.2. If Xy =X ¥iecesg then uniformly minimun variance

linear unbiased cstinmator exists and is given.by %; Z $iu
, " des
Parther, using completeneds of order statistic, it is the heot un-

tlaged csbimator of B  4in the sensc of minimur variance.

We now proceed to obbtain varicus egtinmators for ?. Ag
nentioned earlier the model (6.1.1), unlike usual superpopuiabicn
nodels, is completely specified, hence we can think of naximum

likelihood egtinate (mle) of B.
(2) Maxirum likelihocd estimator.

Let o= {1,2,...,n} and £{y) = Prob [y, =y, , 7 <3< n]]. then

n N oy,
f(y) = TJ (ﬁxi) i(?*»ﬁxi) i and

L= 1log?t = X . logx, + { & Jlogt + I (Tey.)log(l-Px.).

If y; =1 ¥ieca thoen the nle 43 given by by = (Hn)/&=x ).

Otherwise |

. _ 2
3, 1 B no (T-y )% 521, ] =B n oz (1-yy)
£ == N Y. ~ L and - = - =y I Y. = I .
B gt T g T T2 7 T 525" T g (1opxy)?
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Hence for 0 £ B £ 1 /%, s L is & concave function

where X = max Xi .

00 1¢i¢n
yi = 0
A\ I n n Bxi(1~yi)
Now 2 =0<=> I y, = 5 i 37,
1 T i=1 Ji i=1 (1-Pxy)

vs é (6 0“206)'

Olcarly (6.2.6) has a solution in [0, 1/x o)+ Hence in view of

concavity of I and the condition (6.2.3), the nle
) « —
by = min [y, (N-n) / K-x_)]
ol

iore byel0,1/x 7] is a solution to (6.2.6).

(b) Generalized least square estimator (glse).

is given by

Under many superpopulation models, the best lincar unbiased

estimator (in the sense of minimum variance) is obitainable using

the principle of weighted loast square cstimation.

We chall sce,

however, that the same principle does not yield a lincar estimator

in case of model (6.1.1). This is because of the fact that in

(6.1,.1), Ve (Y;) too imvolves the parameter F.

Let s

1,2,¢e.,n} and wlg 1let a typical samplc obser-

vationbe y; =1, 1< i r and »yi‘a O, T <ign.,

2
n (y, -Bx.)
T’ n ‘Sh . .s t&- o 1 = 2 “ - 0 .
he ¢ glsc is obtained by minimizing Q i1 Bxii1-i3xi5 -t

Por our typical observation, Q simplifics to
r 1-Bx. n Px

= i 1
MU T T g TR

2 e
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2% g -—2—1 g —--—---»-?Xi and
e B - TR +
ap i=1 B%%;  iar+d (1-3:{1)

2

4 T 5 n .?.’xi
ap i=1 'BExi i=r+1 (1-5:{1)3

learly Tor Fe [0, 1 /xmo:i’ 82Q1 /"SE’E > 0+ Hence @ 13 &
onvex function of B for Be [0,1/x |, Further

2

3Q, r oy n v fx, (6.2.7)
= O (m} a — E L 60 L
T 1=1 %4 derel (1.8x)°

It 1s easy to check that (6,2,7) has & unique solution in [ 0, 1/x, _k
Ikus in view of the condition (6.2.3) and the convexiby of Q; the
gse is given by

_® .
b, = min(b,, (H-n) /&E-=x_))
T
ghere b, = Co, 1 /xmu:l iz & solubkion to (6.2.7).
¥e now conaider yet another interesting estinmator.
[e) ILeast absclute value estimator (lave)

To our knowledge, this particular principle of estimabion
hag not been used in the model based inference sc far, Consider a

semple 8 ag in (b). This principle is based on mininmization of
n

Q = 151 dyy = Bx;|+ For our typical sample observation, we have
r a
Q, = & {1-Bx, | + & BX,.
2% g PRl 2 M
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Let ng x1 < 2$ooc$x « Define 11 =E1 /x.] ,m?’ for 2&1‘-"4_(_1‘

.—E1/xt.1/x 43 amd I, q=0o,1/x.]].
1
1

H

e+

Clearly 1, = Lo,=).

cr

Now for Pel,, we have,

t-1
Q,(B) = 2(t-1) - r+B[: -5 x]_h
2 i=t g BRI

Thus it is easy to check that - ;nin Q2(5) is attained at 1 /x1
el

and for 2¢tLr+l, gnln Q,(B) is attained at one of. the end poinds
el
t

Nun

of I,. Purther we have the condition ¥ ¢ %—"ﬁs . Tot ¥R eIy

* ) )
Define It‘ = {a o a.e:[t and a g %_'-}% } » Even for the interval

Iy _rmdn 0,(P) i atiained st one of the end points of I, . Thus
0

min
Pl

$¥x,

we conclude that Q2(B) is attained at oné of the points

1 1 N-n <
0 ’ir R ir-1"“.’§t and ms . Thus for a given sample one can

)
casily obtain the lave.

along with above estimators we consider some more estimabors

ag follows.

b} lei
| N-n iz
b4=1se=min[m—s,-—§-iT—
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5 -X -
S et x‘-—i
les +
Nenn 1 i
b -:m:.n[——_— - I —
6 jf;“xs’rn:i.es i

7 L L X-:x:s’ i_xs jeg W™y 1

lobe that the wmbtruncated “D5 . eorregponds to the ratic estimetor
for the population proporition and wntruncated b7 correspands to

the nean of the ratios estimator for population proportion.

We now compars the variocus estimators listed above.
Por a given populstion of N units, values Xq,X,,see,Xy and a
valug ﬁD of the Par@metﬁr. P let - Jf1 iygg.,p y.-,..,ym be the nmost
mwobable y=values l.c.

y; = 1( i Bx; 23 (K3, TLigH.

let

For an estimator b, 1Lrs ?,fsr be the sample for which
min |b.(8) % x; -
88 T igds T
giea’ (b, .51_), 14rs7.

yit ig attained. - We compare the ‘strate-
i pf =

. . y ] ? L]
For the given values of x,l,xg,.._..,xﬂ and BO a "begt

gtrategy is one Tor which 4 = By (s ) Z x5 - 2 ¥; |

1 5_1‘ < 7 if s, i¢ s,
iz attained. Here we consider four different popuiations. Popuia-
tion 1 consists of arbitrary x-values whereas populations 2,35 and 4
are samples from Gamma population £(x) with paramcter «=0,3 and B

respectivelys -

f(X):-e"qu"?fra, X2 0,020
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In all the examples we have N=10 and n=3. In the Table 6.2.1
a row following the most probable y-values gives the 'best' strategy
and the correspending value of A.

Table 6.2.1

St

T | m‘. Popuiéii&n 1 o | l
54 |+ 1 2 3 4 5 6 7 8 9 1o

x, 12 3 5 6 7T 7 9 9 10

i '0.05_1 yy ©0 o o o0 o0 o0 0 o0 © ]
by = 000 85 - (2,8,10) A = 0.00

| 04066 Y3 0 0 0 0 0 0 0 1 %1{ 1‘

b, = 0,056 8, = ’1(5,6,"10)' A= 3.06% 107 1

| = 0.080 yy © o o o o 1 1 1 1 f
by = 0410 | s;_- (3,5,10) A= 1.91-:;1‘0"6

0.089 Ve 0 0 0 0 1 1 1 1 1

9.54% 10-1 J

Ng
I
o
®
—h
-
&
L
~~
N
-
\N-
-
m
N
=
il
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Pable 6. 2,1 {(Contd.)

Popnlation 2

"y

!

Byl oa 1 2 3 4 5 6 7 8 9 10
xg 7T 7 11 48 76 88 . 1oc 140 170 190
.0027 yyu 0 ©0 00 ¢ -0 0 0 0 0 1
-b3 = 0,00 35 = (4,9,10) 4 = 0.00
0032 yy © © o o o 0o 0 0o 1 1]
by = 40024 8; = (£,8.10) A = .0028
0043 yy ¢ © ¢ ¢ ¢ o o 1 1 1
b, = 004 s, = (5,6,9) A= L0142,
Population 3
x; 2 66 75 B9 92 101 15 122 122 143
+QC36 #yi "] 0 0 C O 0 o 0 o. 1
by = 000 8; = (1,8,10) A= 0.00
20042 VA G 0 0 0 o) 0 0 1 1 1
g = #0027 gg = (1,3,8) A= L0109
0051 yy © ¢ o ¢ ¢ 1t 1 1 1 1
bg = 0051 55 = (5,8,10) A = 0025
L0061 ¥y ¢ ¢ o 1 1 1T 1 11 1
by = 6.72x 1077 8y = £1,4,5) A = T.25% 107
0067 7N B B B 1 101 1T 11
= 9.13x 107 g = (1,2,5) & = 9.54x 107

L
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Tablg o 0201 (contdo)

Population 4 {
sy 2 1 2 3 4 5 6 7 8 9 10
‘ x; -48 64 64 66 68 87 94 9T 100 112
«0046 3 © o o o o o 0 g O 1
bz = 0,00 85 = i,4,10) A = 0.00
0051 3 © o o o o o o o 1 1
by = 0.00 sy = (1,2,10) A = 0.381
B i
0053 ¥s ©o o o 0 0 0o 0 i 1 1
- L
bs = 00038 85 = (5,6,10) A= 00038
-
<0062 yy o o o o o 1 11 1 1
e
by = 40056 S = (1,9,10) A = ,0476
0081 y; o0 1 1 1 1 T 11 1
; by = 0122 8, = (1,2,10) 4= 9.54x 101
St

For all the populations considered above the cstimator bs
seems %o fare well, especially, when the parameter P is very small

However, the study presented here is not <quite conclusive.
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6.3 BRole of Desizns

S¢ far we ccnsidered inforence based oniy on ihe model. We
“now introdoce sampling designs so as to get strategies for estimabiing
the vroportion. To compare the performances of various strategies

- we usc the meadsure of wicertainty (6.,1.2). Let

:D:{P:?(S))Om) bH xi/"fti:j{}
iesg

vhere wy = 3 p{s) is the the inclusion rrobability of the ith
- g3

umit, 1 £ 1 £ ¥. We now have the following theoren.

Theorem 6.,3.1 TFor a design pe D there exigts a best egbimabor

for the population proportion ¥ in the class of 2ll p-unbiased

lincar estimators in the sense of nminimum M4 (p,%).

Proof. A linear estimator is of the type t = 2 b(s,i}yi .

ies
Inder the design p the condition of p-unbiagedness is cquivalent
to

b b(a,i)P(S) = 1/N ¥i-= 1,2,oai-,N- ‘-it(603n1)
gai

Fgrther, for z p-unbiased strategy,(6.1.2) simplifies fo

My (o, 8) = BV, (8) ¢ BE, (6) - BDE - v, @) .

i
Now E7,(t) = £ vi{x,) 2 bg(s,i)p{s}, [vx) =Bx(1-3x)]
i=1 831

N wix,)
> % i

= 31=1 nib?

using condition (6.%.1) and the Cauchy-Schwartz inoquality. The
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equality is attained for b(s,i;) =1 /Nni‘ ¥i and ¥ s, PFurther
for this choice of b(s,i), by virtue of the fact that peD the
condition of modcl-unbiasedness is automatically satisficde. Hence
for any design peD the Horvitz-Thompson estimator is ‘the best

lincar p-unbiased estimabor in the sens¢ of minimwm M, (p, t).

Corollary 643.1. In particular, for a design giving inclusion pro-
babilities proportional to the size measures X;'s (rps design)
the Horvitz-Thompson estimator is the best linear p-unblasecd

estimator.

We now go on to the stratificd set up, Let N units be
grouped into I strata such that Xpi = % Yie Sh , the hth
stratum. In this set up, Ianke (1975) compared the simple random
sampling with replacement (srswr) and probability proportionalﬁto
size (pps) sampling scheme for proportional as well as ophtimal
allocatione. In the stratified set up we firse ’ob‘i;ainhan optimality
results Fix an a?l.location n ,nz,...,nx.‘ such that hi1 n, =1n.
Let D1 be the class of designs such that peDy selects on an
average n, uwits from hth stratum, 14 h<¢ 1 and the selection
of units from a stratum is independent of selection of units from

remaining L-1 strata.

L
Theorem 643.2. For a given allocation Ny,N,,..e, 0y 7 21 n, =10 ;
. h=

there exists a best strategy in the clacs of strategics
H={(p,t) 2 pe TD1 and t dis p-unbiased} in the scnse of minimum
M;(p,t) and is given by (p, , to) R
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vhere 1 is a design that glves incelusion probabilisy

T viE:Sh, S_hf._]:l and tCi = % --ﬁ-yh cee{Be342)
h h=1
| - 1 . _ T
with. 7, = Eh ii . ¥; + the sémple mean for the hth siratunm .
h

Propf. For & p-unbiased siratepsy (p,t)
- _ . T2
My (py8) =BV, (#) « E[B (6) - pT° - v, (D,
Wow following Godambe and Joghi (1965) for any design b
EV, () > BY, (b pyp)

vhere %pm 15 the Horvitz-Thompacn estinater and +° is any other
p~unbisced cetimator. For any peD; under the model (Gelat)

1 1
BV, (byp) ==, 2 w{x ) = _—,
T T 5, i
Using the condition T . 7, = AU 1< hgT, and the Cauchy-
i: Sh . ‘
Schwarts inequality ane casily gets that
L . ﬁ -

1
EV, (4,0 > 2 owix
g HE e =1 k' T
ird the cquality in attained Ffor the design p, «of (64542)s Now
the Horvitz-Thompson estimator corresponding t¢ p o is nobthing
other than t . Further it is a matter of venification that the
estimator ¢, 18 model unbissed. Homce (p_ ,t ) of (643.2) is

thoe best strategy in H.
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Coroliary 6,3.1e For L =1 and x; =X ¥i=1,2,...,N;

(o ¥) is the best p-unbiased strategy for a given average size
n in the scnse of minimum M4(p,t), where p , mow is a design
giviving constant inclusion probability n/U to all the units

and y is the sample mean 1 5 Ii»
RDies i

Remark 6.5.1. After obtaining the optimal strategy (v _, %)) of
(64342) for a given-allocation, onc may think of an overall optimal
allocation., However, as expected, the optimal allocation wikll

involve the model paramcter B .

Remark 6.3.2. In view of the Theorem 6.3.,2 both the stratcgles

considered for comparison by Lanke (1975) are 'inadnissible’ ones.

6«4  Some Further Results.

In the same spirit, as in model (6.1.1), we can think of
random variables ¥ taking finite cr countable values. For
instance Xy may be the incane of ‘the ith individval and y;
may be the mmber of luxury items he possesses. In such a
situation we can think of  the following two models.

Let Y4,¥5ye0s,T Vbe independent randam variables taking
values 0,1,2,... with Poisson probability which depends on auxi-

iiiary variate value x; as follows :
"Bxi T
Prob[¥; =r]=0c F(Bx))" fr: T =0,1,2.00 and 121,2,,00,0

0.0(6‘.401)
B> 0.
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Under this model one can show that the mle and the glse of B
are rgiven by

oY S e A

ieg * Y 1571 ‘

S and e respectively.

5 X Y x
ien i ieg 1

In the second case we assume that Y, , ¥,,...,Y; are independent

and

9,1,2,4»00

]

Prob [ ¥, =r]= (1-px)Px)" r
tl-(6l402)
'] T

: ,2’0-&9,1'4 -

C ¢ B ¢ /xm i

Y

The model (6.4.2) can also be studied clong sinilar Iines.
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CHAPTER 7
NONNE GATIVE VAL ANCE ESTIMATIQ -

7.0 Summary

This chapter is devotcd to the problem of estkimation of
variance of estimators of population mean nonnegatively. We mainly
deal with the strategy (py, tg) that consists of Midzuno-Sen

sampling scheme and the conventional ratio estimator of the popula~-
tion mean. - However, analogous treatment can be given to some other
strategies. In this chapter we first propose a general class of
estimators, that includes all known estimators, having the necessary
form of nomnegative unbiased variance estimators (muves) (Rao and
Vijayan, 1977). We also give sufficient conditions for the uniform
nonnegativity, which are weaker than the conditions known hitherto,
for the various proposed estimators. Chaudhuri and Arnad (1981)
listed down different variance estimators proposed prior o Rao-
Vijayan's (1977) result regerding the necessary form of hnuye and
demonstrated that for none of the estimators the sufficient condi-
tions for the uniform nommegativity can be satisfied. However, they
tacitly ignored the fact that none of the estimators they considered
satisfy the necessary form of nnuve, the notion which was well-known
by then. After noting this we see how the use of transformation on
auxiliary values obviates all the problcems of nomnegative variance
egtimation. Next we consider biased nomnegative estimators and the
aspect of reduction in mean square error (MSE). Ue then sece how
stratification technique can be employed to improve the chances of
obtaining a uniformly nnuve retaining the advantages of the ratio
estimator. We conclude the chapter by extending Rao-Vijayan's
(1977) technique of obtaining nnuves to more general strabegies.
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g Inbroduction

-

In thie chapter we conelder the vrohblem of vbiaining &
pane getive estimacor of the variance of an estimator of finite
gopulatian maean. This . problem has received a great deal of atten~
fion in the 1literature. Among others TJJ. Rao (1972a, 1977),
thandhuri (19754, 1979), J.N.K. Rao and Vijayza (1977), Chaudhuri
md Arnad (1981) considered the problem of esbimating ncrmegatively
ihe variance of sirategy (py, %) thot consisbs of Midzuno-Sen
pnpling scheme and the convenbtional ratio estimabor. In this
thapter we maanly consider the estination of variancse of the
sirategy (py, tp). However, an amalogous theory can be developed
for the strategy (nps, ty,) that consists of a wps dezign [fci ,
the inclusion prowability of t¢he ith wnit proporiional o i%s
pize] and the Horvitz-Thompsen estimator.

Cousider & finite popun.ation of size . Ieb y. be the
velue of a real characteristic y on unit i, 1< 24T, A Drimary
mroblem in survey sampling is to estinaie the ncan ?’?“%T F‘ ¥y of
the variate y. When values Xy 1¢£igd, of a recl vordicle X
wvhich is positively correlated with the study variate y arce
avieilable as size measurcs it is advaniagsous bo nake us_e',of those
values for selection of units as well as estinagion of Y. (7 » Ty?
is one such stratcgy; however, the maln drawback of this strutegy
is the nomavailability of uniformly nomnegative umbiascd variance
estimator (mnuve). Here we decl with the problen of obtaianing

awmegstive unbiased varisnce cstimstors for the strategy (myy, tg).
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The probability p(s) of selecting a typical sample " s of

n distinct units under Midzuno-Sen sampling scheme ic given by

;p(S) = XS/M1X ...(7‘1 01)
where x_ = I X X = IZ\’T X and M = (N'r) r=0,1,2
8 j.s i jeqp 1t T ‘n-r’? '

The conventiongl ratio estimator is given'by

ty = Xy /% e (7a1.2)

= T =4
where ys—-iie-'syi and X..Ni1

Clearly the strategy ( ) is unbiased for thec population
Py s ‘

mean. Further its sampling variance is given by

2
. L X Iy 2
\I'(pM, tg) = V(tg) = ﬁM-.T sf:S Ei‘- Y. eee(Tel1e3)

Rao and Vijayan (1977) gevé an alternative expression for V(ty),

Vi) = = = a, x.x. (G2 -S4 e e(Ti1e4)
2 X 1 . ‘
where N-a 3 = D i=1,2,¢e.,N.
117N g1 %s ree
2 X .1 .
alﬂ N o o &= o z - 1 i# :; 1 2 ses N . ooc(?.1 .5)
1J M‘l syij Xs 3 > ’ ‘

The problen of .obtaining nnuve hzs been considered by
various authors. T.J. Rao (19728, 1977) and Chavdhuri (1976a)
proposed a few estimabtors for V(tR) and also- gave sufficient

conditions for their uniform nomnegativity. However these
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wndibions cannod be sakigfizd wmless Xy =X, = ...=2Xy . JWdLK, Rac
ad Vijayan (1977) obtained nccessury form of smuvre. They urolosed
two estinmatows having the meccssary form of nnuve and ziso suggested
wificient conditions for uniform nonnegativiby. (By wniform non-
egetlvity we mean nomnegebivity for all yq, ¥oy-es,yy @0d for

31l samples). Iater Chandhurd (1879) proposed & fow more cstinahors
maving the nocessary Form of nnuve. He also gove conditions for
thelr wniform nermegativity. In &his chapber we prodese L general
class of nnuves and explore vesrious avenues to improve the chances

of obteining uniformiy mmuves.

7.2  Nomnesative Unpiascd Variance Egbtimtors.

Vijayan (1975) found the necessiry Torm of mmuave for the
‘Borvitz-Thonpscn estinator of population mean for ony Jdeailrm with
fixed sémple sige n; the method, however, 4s noted by Doe and
Mjayan (71 877), is applicable ec amy linear ofracery (p,5) aoc in
the following thecoren.

Theoren T.247 Rag and Vijeyan, 1977). fFor o lincar sirabegy

N 0]
{p,t) if MSE(p,t) = T £ g&..¥..,, Dbecorcs zero when the rasius
‘ i=1 j=i 137173

» 1£14 T, are all equal for some kuown constanis wy (#0),

{14 N, and dij"s are idependent of y-values then

(1) MSE(z,t) reduces to

i Ve -
— E d.- § W .(""g-" b """"1) [y 7.2;1
Ll gon AL LT v, ( )

e
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and (ii) a nonnegative quadratic unbiased estimabor of MSE (p,%)

is ‘necessarily of the form

Yy Yi.2
2 d- -(S)W W.\m™ = _J') '00(702.2)
i< jes T3 vy Wy

where ~dij (s) are independent of y-values and

2 d,,(s)pls) =4,
sy ¥ 1)

Using the above theorem it is casy to see that the necessary form

¥ i>#j=1,2.’000,N0

v of nnuve for the strategy (py, ¥3), is given by

W =- o oa mx GoIh?ses L..(T.23)
i< jes J i J

where aij(S) =0 if s}i or sjj

a d by a, = Q, . | =1 2 e N
nd 5313 i3 (s)p(s) ij i#] = ’
2;5's are glven by (7.1.3), § is the collection of all M samples

Here and subsequently, in Section 7.2, p(s) denotes the.probability

of a sample s under Midzuno-Sen scheme given by (7.7.1).

We first list down various estimators, having the form
(7.2,3), .already known in the literature. Note that an cstimator
v in (7.2.3) is completely specified by aij(S)’ 1£J=1,2,c00,0;
s& S. Therefore it suffices to specify the form of 8 4 (s).

vy ol 8y 5 (s) = aij/nij cee(Te2.4)

where 'ﬂ;ij = i.p(S) i#j=1,2’ono,N
sxJ
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"?‘2 +* aij {S) - — I‘ng (XJ - n_1} uao(?.goﬁ)

Ca -
: o N~
V3 . aij-(S) = sz a8y ~ .n:ij een(742.6)
Bhuru Sy = & + N—E
ij i
Gy —s
b = adkd __N" ‘ ' ¢
v4 ' &ij(S} = nij- EEETET . cea L7273

istinators (-;?-\2.4) apd (7.2.5) are due %o Reo and Vijiyen (1977) and
sstimators (7.2,6), (7.2.7) amd (7.2.8) are dwe to Chaudhuri (1979}.
¥e propose yet another egtimator before introducing a general class

of estimators.

2 —2
VG : aij (S) = éﬂz b ITE-_‘." .---(7.2-9)
& ij

¥e now define & general class C of estimators having fom (7.2.3)

w. .{8) n, . (s)
Das.(8) = e, — ij ~ Al
i ij Low, . (a)pla) 2 o, ",
spij N s;:'i.j uij(sjg(s)

s {7.2.10)
Where ’ Llij (3) and wia- (B), i# j - 1,2,00-,'}]., Je S are real
tonstants.
The estimators (7.2.4) to (7.2.9), as can be seen ecasily,
are particular cases of (7.2.710). For example sebtting

'_wij(s) =ﬁg_;{3)- and uij(s) =ul#0), 4#3=1,2,,..,¥ { 5¢8
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we get (7.2.6). PFurther note that a comvex combination of estima-

tors satisfying (7.2.3) also satisfies (7.2.3).

We now turn our astention to sui‘ficiént conditions for the
uniform nonnegativity of the various proposed estimators. Lo
satisfy uniform nomnegativity, attempts have been made to obtain a
set {aij(s)} , i#3=1,2,.0.,8 s 5¢ S, satisfying the following
conditions :

(1) aij(s) <0 i#j=1,2,.04,N 3 83¢8

eee(Te2.11)

and (1D T a,.(s)p(s) =a,. i#j=1,2,...,N.
syij 1 +d

However such an attempt fails whenever -any of the aij's are posi-

tive. This is because of the following lemma.

Lemma 7,2.1 The following two statements are equivalent.
(a)\ 4 a set {aij (8 ¢ 1#3=1,2,...,0, se S} sat;sfying (7e2.11)
(b 83 £0 i#j=1,2,ee0,N,

Proof. (a) => (b)

aj_}(s) £0 Ti#gj=1,2,0ee,N; 58
— 2 . . , = . e i ‘-'-'-1 2 L Y :N'
> s’ijala(s)p(s)s_ 0 <=> 3;,£0 ¥i#gi=1,2,.0.,
(b) => (a)

8,5 £ 0 T<i#jEN. Define aij(s) = aij~[M2p(s) 1Ci#jLN, ses.

Hence the lemma.
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In view of the above lemms it is interesting to note bthat the
sufficiens conditions (7.2.711) can be further relaxed. In the
following theorem we &lsc glve a sot of necessary conditions for -
the yniform nonnegativity of an estimabtor v haviig the form

(7.2.3).

Theorem 7.2.2 (2) A sebt of sufficieni conditions For the exis-
tence of a vnifcruly nnuve is given by « For any n distined labels
1,2,e0s,n (s8y) from among the labels 1,2,...,0

I’
2 b, L. o+

b . <0 oo (T02.12)
k=1 kil '

fn-1g.1 =

S

tor any (n-1) aistinet pairs (i, J,), T4i.<j.<n

with bij = aijxixj. .

{b) "A set of necessary conditions for the uniform nomegabivity
of an estianakor v in (7.2.3. is given by I Jor any n digtinet
labels 1,2,...,n (zay) from among the labels 1,2,..:,N and &
label i, 1< i<¢n, there can be ab most (n-2) labels Jj, 1{j#isn

+* o
guch that aij(u)xixj > 0.

froof. (a) TLet (7.2.12) be true. Define ry = y;/%; and

bij(s) = bij /Map(s) then

- Mgp(s)v(s) = z bij(ri--rj)2

id¢ jes

Because of (7.2,12) there cen be at most (n-2) distinet pairs

b P be

(1,3) : i< jes with b,. > 0. Tet b, . . ,
!J ] j i:] 11;]1 ‘! 12323 ) ‘!“rl_1;]nu1
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all positive, i, Cdp e s, k=1,2,400,0~2; furbbee withow Loss of

generality let b, = max b o Therefore
’ $131 T 1grgn2
(a)v(s) ¢ (3 b, ;) )2 ( )2
- M,ypis)vis) £ Z b, s r, - I, + Z R . =X .
2 k=1 Yide 1 dq i ¢dpes de e
k> n-2
Now there exists a label ie s, i #14,d; such that bi1i and

”bj1i are nonpositive. If not then ¥ ice s, 1#11,j1 either

b= > O or b
=> There are at least (n-2) distinct pairs for which bij > 0,

i< j e 8. Purther b"'l 31 is also positive. Thus, in all, there

are at least (n-1) distinet pairs for which bij

0. (Note that b

ij - bji ; i,j=1,2,oco,Np)

> 0, 1< je s,

This contradicts (7.2.12). Therefore

(s)v(s) ° [( 32
_‘,Mpsvs_(_[b..+2 z b, . T, -1
2 e

+ [bj1' + 2 k-8-1 bikak:l (r -r )

+ remaining terms which are already nonpositive,
since (a-b)2 ¢ 2(a-c)? + 2(p-¢)?.
Now using (7.2.12) we get v(s) > 0.
This proves the sufficiency.

(b) Let v be any uniformly nnuve. If possible, let for a set of
labels 1,2,...,n (say) and a label i, 1<i &n
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bigj-(s) > 0, 1Li_#ign

vhere bij(s) = aij(s)xixj .

Wthout loss of generality, let i =1 and min <T-;-1‘j)2 be
<ign

. HNow

2
z b, . (8){r.-r.)
i<jes % 14

i
<
Pain)
4]
S

|

¥

a

121 b, (8) (@, -r.) " + b b {B) (T r )2
j=2 13 1773 ¥ I i i

2¢i< Jje g

n ,
)2 T by (a) + B ba-.{s}(ri;rj}‘?.

2 (zq-r
T2 e 1 2¢i<jece

Observe that the first term in the above expression depends on T
wvhereag the second term ip imdependent of Tie Therefore for
sufficiently lawge v, the first term can be made to dominate the
second term i.e. v{(g) can be made.negatives Buf this leads to a

contradiction. -Hence the necessity.

Coroliary 7.2.1 A set of sufficient comditiens for the uniform

nomnmegativity of an estimator v of the form (7.2.3) is given by?:
For & sample 5 = {lqydp,e0e,i ), 8285 and for any (n-1) dlstinct
pairs (ik’jk}' ik £ ,jks g, k=1,2,...,(n-1)

N2

2 I b, (8 +b, s (80 ree(Te2.13)
kel 9k 1pa19n.9 '

where bij(s) = g, (s)xixj .
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Remark 7.2,1 Note that (i) of (7.2.11) clearly implies (7.2,13).
In other words the set of sufficient conditions (7.2.13) is.less

stringent than the set of sufficient conditions (i) of (7.2.11).

Though the conditiohs (7.2.13) appear rather involved thoy
can be verified easily. For a given sample s let

bi131 (s) > bi2 j2(s) 2 .02 by (8) ; 4, <J =8, be

n-13n.1
thefirst (n-1) maximum values. Verifying (7.2,13) is equivalent
to checking 4if the following is true o

n-2 ()
2 % b, . (s) «
k=1 dk

Remark 7.2,2. We may think of modifying class C to ¢ ag fcllows.

v ay wi.(s) |
c = aij(s) —Hi—a-(gmg)- if aié L0
831] cee(7.2.18)

game as (7.2.10) if 85> 0

by (s) £ O,

n-19n-1

1

where the constants Wij(s) are chosen to.be nomnegative whenever
84 £ 0. The advantage of (7.2.14) over (7.2,10) is that whenever
2 5 £.0, ay 5 (s) are alsc nonpositive in (7.2.14) which may not be
true for (7.2.10).

Remark 7.2.3. An analogous theory can be developed for the

gtrategy (nps, by -

Remark 7.2.4. Armab (1979) and Chaudhuri and srnab (1981) consi-
dered various unbiased estimators of V(i) along with sufficient
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conditions Tor their nonnegailvliiy, proposed in the literature Ly
varicus authors prior to Ruo and Vijayan's (1977) resulé regarding
the necesgsary form of nnuve. They proved that for none of the
estimators they considered the proposed conditions for uniform

. nomnegetivity can be satisficd (x; g constant). However, bhey

- tacitly ignored the foet that none of .the estimators they considered
have the necessary form of mnuve (7.2.3). It is a maldter of simple
- verification ¢hat for n=2 none of the estimators agree with the
- umdgue mauve. in view of this it is no wonder that the suffilcient
conditicng for the uniform nonnegitivity are nob satisfled for any
of the estimaiors they considered. FPurther, if the main cobjective
is 4o obtain uniformly mnuves then there is no point in studying

the ecgtimators not having the necessary form (7.2.3) of nnuve.

Remark T.2.5 It is intercsting to nobe how a proper fransforma-

tlon on auwxiliary variate helps in getfing u . iformly miawes. Leb

I
7z, = X;+d be new auriliary variate., 1f 2 = 2 gz, and
z = L g,.8:c5 then
3 Jesm 47 !
2 5 __‘1__=__}§1+N<i 5 1 <X+Nd -1
M1 5 i Zg M1 5%i; }Egﬂld - xsmﬂ'ﬁ N-1

where X._ = nin X
s S
o 8ed

- Thus for a Midzunco-Sen strabtegy based on new variaste =z(d),

a2 d = [m-1X- 1 )xsoj/(mn) all the a;:'s, 1#], become

negative and that ensurcs the existence of uniformly nnuves.
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In using the new-Midzuno-Sen strategy we do not have any
idea about the change in efficiency, However, it is worthwhile to

use new Midzuno-Sen strategy if loss in efficiency is insignificant.

7.5 Blased Egtinmators.

Nonnegative variance estimators can be easily constructed
from any unbiased variance esgtimators.by replacing the negative
values by some nonnegative quantities. Clearly such modifiéd
egstimators would be biased. An often used modification is to
truncate estimators at zero. However such a truncation is not
satisfactory when true value of variance is significantly large.
Here we consider nonnegative estimators obtained from unbiased
estipators by proper substitutions for negative values. For some
of the substitutions we actually establish that there is indeed a
reduction in MSE.

To find proper substitutions we make use of superpopulation
model. Following superpopulution model is reasonable in.situations
where the ratio estimator is éppropria.‘be. Let 4 ,yz,;..,yN be a
realization of N random variables Y¥,,Y,,«..,¥y with a joint
distribution ¢ which is specified, though not campletely, by the
first two moments,

Etf, (Yi) = 53(1

2
Eg(Yj.ani) s O xi lt'(70301)
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where o2 >0 and @ are unknown parameters of the model and

:Eg denobes the expectaticn wer.t. the nodel €.

Hote that mudel (7.3.1) is & particular case (g=1) of fthe model
. (2¢1i1)-

Bzsed on a sample g9, the least squere esgtimator of X
Y :
under the model (7.3.1) is given by EE,E, i.e. the rasio esti-
3

mator tp is the least square estimator for PXK. Further,

_ Tyve _ 22
Vi (bg) = B (5 - B = 0" X7 fx_ ..

The least aquare sstimator of 5% under (7.3.1) is given by
1 1 Ty . 2
o= (y, - ==x.)".
n-1 jeg *3 1 xg7i

Therefore the least sguare estimabor of Vk(ta) is given by

¢ 1 1 g 2 -
W(B) = ---—XS _Il—? ifs -—-xi (yl - -—--KS Xi) a.-un(l -3.2)
the

- Rap and Vijayan (1977) considered/following substitubtion. Whenever
any nnuve is negative, replace it by the least square eghimator
{7T.3.2) of the model variance, Vﬁ(tR)* of the ratic estimator. We

shall actually domonstrate how the use of this modification results

in a redoction in MSE. Correspending to the esbinator v,, Rac and
Vijayan (1977) considered the following modificaticn @
vis) = vy(8) if v,(s) > ¢©
D.'c?.3'3)'

= w(g) if v,(s) £ 0

where wvy(s) amd w(s) are given by (7.2.53) and (7.3.2) respectivels
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the
Let’ us consider / fcllowing modification which is almost ‘the samc ag

(7.3.3).
v (s) =vy(s) if %—- < §:1
S ...(7.3.4)

h]

= ip 3=l N-1_ X N1,
= a w(s) if 53¢ o el < nz i 0<a <1
= w(s) if 'ff_l% S_ %— )

g

We consider yet another modification.

*¥ . X ]
v (8) = vz(s) if ;c; £ -IB’I-:T
X.x N.1.5
= 8 N-1 - X , N2
= 58 D G W(S) if e 14 n:f-3§ = xs 14 o --0(70305)
0 < 68 <1
X-x
- S s N..2 _}S_
R W(S) it ‘m _(_ X .

s
We need the following lemma to demonstrate the reduction in MSE.

Let X and Y be two discrete random variables on some
probability space as follows,

X - X1 ’XQ’TfT’XI"XI‘*"]’.."xn

Y=y1,y2,ooo X owe ’yn
such that Prob [X=x, J=Prob[Y=y,] = Py, 1&1<n.

Let xi‘_<_0 for 1<ig{r and xi>0 for r<i{n and yi>\0
for 1<ign.
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lefine o new random variable § on the same preobability space as

=X if X >0

L

Y if X< 0 .

the
(learly 72 has/Tfollowing distribution

b = VAP S TRLE RN PR e B "‘rxn

ITOB - p-] ,pg, tot’pr,pr+1 » ao-,»?l_l »

Il
Iet EX) = & p.,x. =4 be positive.
i=f 4+
X) = T o (x )2 (3 = B (g a)Pa T p, e )?
Let ¥V = E p,(x, -4 and MSE(7) = © p.ly.-&4)"+35 plx, =),
i=1 i1 i=1 lyl i=r+1 + i

; for 1£3i<» then

lemma 7.3.17 In the above set up if ¥ &-%
MEE(Z) £ V(X).

froof. x; 0Ly &-x; Tor 14igr and # > 0.

Hence |yi-i$|5_.u-xi, Tgigr

2
or (y;-#)7 ¢ wax)D®, 1¢igr

T 2, T 2
=> B op (g -#)" & 5 p,lx;-H)

|

=> MSE(Z) £ VX) .
This proves the lemna.
We new prove the following thecrem regarding the reduction in MSE.

Thgoren T.3.1. For the modifications v amd v** given by (7.3.4)
and (7.3.5) respectively we have,
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(@) MSE(v') ¢ V(v,)

(®) MSEG) ¢ V(vy)

where v,(s) is given by (7.2.5) and MSE and V are taken wer.t.
the Midzuno-Sen sampling scheme (7.1.1).

Proof. (a) Observe that

5 xix_(ﬁ- T3y, g Ji_ 42,
i< jes D Sies *i 8
Therefore v,(s) can be expressed as
@S- D, s o2,
2 2
Nxs J.es X3

Also simplifying w(s) we have,

2
(S) - A ""j"-' - 2 .
! N (n 1)x [. 8 jes *i ysj

Hence w(s) £ - v,(s) is cquivalent to

X2 XMl X,
(n-1)x2 = 7 Fg 1T 7 X

N-1 X
o n3liyx e
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Thos uging Lemma 7.3.1, we have,

MSE(v' ) ¢ T{(v,) .

n the same lines we can prove

MSE(v ) £ T{v,) .

v,
fenze Ghe theorem.

We empiricelly investigate the relative performaénces of the
sstimators v, 14r<6, defined in Section 7.2. 'le clivese four
populations, numbered 15, 23, 24 end 25, consldered by Huo and

Vijayan (1977). Ve consider the cases n=> and n=4.
* *
lable 7.5.1 gives the values ofRE, PR, RE and B where
RE(r) = V(v }/V(v,), FR(r) = Prob[v, & 0], T¢rec,

¥*
RE (r)

MSE(VT)]MSE(vi). and finallw,

B (r)

fl

{Efv;) - V{?R)IJJI:MSE(V;}] 1/2

with v;; ()

[

v,(a) if v.(s) > 0 )
T<rge,

i

w(g) if v, (s) £ 0
w(s) is given by (7.3.2).

Our imvestigations indicuce &hat the estimator v, is
most efficlent in the sense of minimumn variance 2uad probability

of it being nepative is also very small, Estimstor v, is closely

followed by the estimator Vg o
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Table 7.3.1

Population no.15

N=10
n-» 3 4 ~
ry| RE PR RE® B* RE R RE" B*
1 ] 1,00 0409 1,00 0.13 1.00 0,06 1,00 0.09
2 | 0.84 0,13 0.98 0.21 0.58 0.18 0.77 0,31
13 1 0,74 0416 0u85  0.21 0451 0. 21 0463 0631
4 | 1.37 0,00 1,35 0.00 1.90 0,00 1,83 0400
15 | 1.10 0.07 1,10,  0.12 1415 0,05 1.16 0410,
6 Oe56 0.17 D72 0.25 0.29 0.28 0.43 0.42
#_ Population no.23 N=
1 1 1.00 0402 1.C0 0403 1,00 0.00 1.00 0.00
2 0.78 0009 0‘88 0014‘ 004’8 0‘16 0062 50.31
4 1132 0400 133 ¢ 00 1438 0«00 1438 0.00
5 | 1.0 0.01 1.09 0.03 1.15 0«00 1,15 0.00
6 Oo4-9 0.18 - 0061 0025 0.21 0.32 0029 0048
Population no.24 N=38 #
1 }1.00 0,04  1.00  0.05 1.00 0,03 1.00 0.04
2 | 0.85 0+09 0.9 D12 057 0.16 069 0.26
3 1 0.77 0.11 0.8% 0.12 0.50 0.18 0458 0.24
4 11,31 0.00 1.2 0.00 1445 000 139 0.00
5 11,09 0604 1.10 0,05 1.13 0403 1.14 0,04
6 0.58 014 0,66 0.18 027 027 0«34 0.78
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Table T.7e1 {(contd.)

s — e e —_ 3
Populaticn no.25 =8

n-'h v 3 ) ;:- b Y

ry! RE R E" ¥ | =3 IR o v |
IF y

I T o0 0409 1.00 D14 1.00 0.06 T40C Uel3
|2 ‘ 9065 On‘]{‘i" 0081 U025 Oa "?9 On22 \“J:lr"-?? Ol"‘w

1 1.24 0402 1,34 0.0t G.79 006 J.GT Gel2

5 1'1107 (.06 1.07 0.13 1.15 0,06 T4 Cel4

) Q.45 Jel Cuith Ga35 | Q.11 0.22 ﬂ}? U3 %

T-4 U8z of Siratificetlon

In this section we see how the princkple of strusificstiorn
helps in goibing nnove. As mencioned in Seciion 7.3 che model
(7T.3.1) is reasongdble in situvaticns vhere the ratio emilnator 1s
apnropriate. If we stratify the population into T ghrata and usc

Midgono-Sen sanpling schems and the ratioc estimator within each

strrlium then for 'optimal allocation® therz is & gala dug o sirae-
Jification i.e. the above stratepgy is superior uc She overals
¥ilzune-Sen strategy  (py, bp) - in the zense of smellor oxpeoied
variance under the modéi (Te3e1)e Bauivalenuly we urc using the

mersurc of uncertainty Mq(p,t) of {1.22) which is glven by

My (2,8) = BB (6 -7 R CRD
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where Ea denotes expectabtion under the model (73.1J.

We further establish that if the stratification is done so as Ho
make the straia homogeneous w.re.t. the x-values then bhe' ghances

of getting a uniformly nnuve a&are inproved.

Let the population be divided into I sbraka of sizes
N1,N2,...,NL respeeisively. Let

-
Lol

= - A Xi
h i Sh

Xh=

Saa

where Sh’ 1< h{ L, denotes the hih sitratum.

Consider a strategy Hy(ry.. ,tpg) Phet consiste of a design *hat
selects units independently from differcnt strata employing Midzuno

Sen sampling scheme within each stratum and the estimator

tpat =.h§ + by eeo(75442)
vhere  tp, = Xh 12 yi/iz Xy 1<hgL
8

with 8 denoting the set of labels of the units samplced from the

hth sfratum, 1<{hgI.

Now the variance of the strategy (py,tp) =H; (say) is given by
(7.7+4) and it is easy to see that

(1) LK m), o Ji_ T2 (7.2.3)
T Z - I z a eonlTatred)
207 T he1 W g ges, BRI 7y

(h) Xy 1 1 .
whero 8y =W T I -l 1&1#35_:_1?11 and 1<{hglL

‘\iﬂ( ) fmTMe m tu
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with n. , 1T{h<TL, denoting the mmber of undts sampled from fhe

kth stratum and X_ & I X. .

h iss.'l

Under the model (7.3.7)
Il

™o - 3 ! 2
MEG‘(H,I) = “13 _ a.‘i;jxiija(yifxi' Yj/x';}}
4
2 3 x, (1 /%y« 1/%,)
%o OF b 24 + 1/x
N
2 _
= - n a N ) I
T iy 135577
S mplifying we gat,
B, () = (F- o /ni® . e {Todol)
3imileriy we have,
) 2 LomE .
F Tr H = -"'g 2:‘; “"'""'""—' L }!{.] lr.a-{. ‘QI?'ISJ
L

It is eagy *4o rie *hat *he optimal alloestion (bhat minininzes .

L
(7.4.5) subject to the condition 81 n. = 1) s glven by
h= '
ng a (II K ) . ll!(qtﬁ'-s)
h h'h '

Under the cptimal allocation (7.4.6) we have,

2
F = Fal - —~ "X ] l‘/:l'?
B, V() m-,én“ﬂ) %] (72547
The following ltheorem egiablishes fthat there is indeed & guin due

to strotification.
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Theorem. T,4.1  For the optimal allocation (7.4.6) the strategy
I, is superior %o the overall Midzuno-Sen stretcgy Hy werot.
the measure of uncertainty (7.4.1) (i.e. in the sensc of amaller

expected variance) under the model 7.5.1.

Proof. Comparing (Tet.4) and (7.4.7) we have, for the optimal
allocation (7.4.6),

2 L

= 9 L 2

EEEV(H,I)-V(Hg)] ---z[mc - (= /EX ) ]
nll h=1

which is aluays nomnegative by Cavchy-Schwartz inequaliby.

This proves the theorem.

We now give an example to see how stratification helps in gebting

a uniformly nnuve.

Example T.4.1. We choosec & population, numbered 15, considored by
Rao and Vijayan (1977). We rcarrange the units in  increasing

order of x-valuecs.

i 1 2 3 4 5 6 7 8 9 10
X 75 101 125 163 254 254 326 359 442 559

Consider the case n=4 and the estimator v, given by (Te2e5)

Note that Xs =nminx =464 and X = 2658.
o geS S

np1X

Therefore the condition X, 2 {7 is not sabisfiecd,.
¢

However if we stratify the population into bwo strata of sizes

N, =6 and N2=4 then X1 = 972 and X2=1586.
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The optimal allocation (T.4.6, 4o the nearest imvegors ia given by

Further X = pin x_ = 176 and x_ =min x_ = 685,
T wely 7 C2 meS,

i
2
]

Let vy, be the analogus of v, in ke stra:ified sed up.

ny -1 =T ) _
Ubsersye tiet X >'ﬁ":T and -Kﬁ ? | S are bosn swsisfied-

ThereloTe v, is uniformly nonna'dtive whereus . v, méy net be
g0. Though %he allocailon n1==Lp==2 ig & 12661lc differont from

the optimal allecation, we have for n, = n, = 2
B, [ 7(E) - V(> 0

"hug in this section we have scolr how the stratificotion vechnlgus
imoroves the chances of metting 2 uniformly nnuve arnu at the sans

tine retains tho advantages of the ratio csbtimabor,

7.5 Fxtengion ko Positive Definite Matrices.

As cbmerved by Rac and Tijayan (1977}, anslogous troabtmaut

»r

F |

can be given to any linear strafegy (p,t) with MSE(p,t; = 5% dijyj"ﬂ;
ij "

vhere D = cdij) is an Nx N nonnegmiive definite muerix. Howover,
i* T lLappens to be sbrictly pesitive definite thon btholr cvohnmics
cennod  be applied to get mnuve. In this section, we Cedl with
poositive definite matriccs,

Herg we shall usc the following nobabions. Lok (G Dde ax’

sore veckor and X be any nx 1 veclor then
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X is positive, x> 0 <&=> x; >.0, 1gign,

~

X is nomnegative, X > 0 <=> x; 20, 1£ign,
® is semipositive, X 2 0 <=> x > 0 aad %X # 0.

We first state a lemma due %o Gale (vide, Mangusarian, 1969, p.35).

Lemma 7.5,1 (Cale, 1960) Given an mXn matrix 4 cxacily one

of the following is true.

(@) 4z ¢ 0, 22 0 has a solution ge‘Rn
. | vee(Te5.1)
(b) A4x20, x>0 has a solubion Xe€R_ .

~

Using above lemma we prove our main lemma,

Lomma 7.5.2 Given an Nx N positive definite matrix D' there

oxists & vector X e Ry such that x> 0 and Dx > 0.

Proof. In view of the Lemma T.5.1 it ig enough to prove thal for

a positiv. definite matrix, (a) of (7.5.1) is aot true.
If possible let bthere exist & 2 O such that
Pz L 0.

Premultiplying both sides by gz' we get

z'Dz
But this is 2 conbradicbtion since D i3 a positive definite matrix.
Thus for a positive definite matrix, {(b) of (7.5.1) is wrue L.ce
thore exists a vector X : RN such that "X > 0 and Dx > 0.

Hence the lomma.

Let (p,t) be any linear strutegy for estimating the
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N N
4 - e 1 ™ -y A it} . L — L w .
pcpulation mean T = i:‘l y; wakh MSG(p,t) = MSE(L) = f b dijyiyg
where D = (ﬁij} je an Tz T neoitive definitc mutiniX.
By Larma T.5.2 there exigts & vector X% > ¢ such that
Dx > & Lot Px =g (sayl.
] Vs ¥
Define G = - I i .:af:-,L.:ﬂ.uC;l - 3;1)2 . vae(T5.2)
i¢g=1 A Iy Ay
Sinplifying we geb
¥ N y;
D= 2 E 4, .y ¥v. - B ==¢
i=1 js1 237475 4a1 Fg R
N 12 c.,
or MSE(t) = Q + ) "-—K——J—' e ---CT-SUB)
i=1 3 '

Yo may new vhink of ostimuting MSE(R) unbiasedly by

¥ ¥i ©s .
nae{t) - Bod. L (s)x,r.GE - =T T s coo{Te5e4)
3¢ gas TOULEE XS g F

vhere dij(s) ars such thak

3_5 (s) = 0 if ajfi or 33]
(a} . .
and 5 ) = d,. 1#3=1,2,.0.,K
! 53‘313 vls id ¥ 't !

further w, = £ pls), T¢ig¥.
4 334
Note that the second borm in the right hund side of (7.5.4) is

alrsady nonnegative. Thorefere a set of sufflcioné condiiions fer
the nomnggetivity of the estimstor mse(d) in (7.5.4) can be

gven ag follows &
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For a sample se S, for any (n-1) distinct pairs (ik,jk),
ik < Jpe8

n-2
- (s)x., x. +

ol =

- A A &
*n-19n-1 *ns1 In-d
Let us now consider an application of the above technicque.

Exapple 7.0.1. Consider a strategy (q,t,) that consists cf a
sampling scheme with varying probabilities of sclection in n draws

without replacement giving a selection probability q(s: to a
typical sample s and an éstimator &y = yS/’NM1q(s) (Sharma. 1970)
We now see how the above techrique can be used Hto obtain

nnuve for the strategy (q,ty)-

Clcarly (q,t;) 4is unbiased for the popwlation mzaa ¥ and

its variance is given by

W
Vit = I 3 .YV
1 i=1 j=1 137473
where Noag, == I == -1 1=1,2,...,0
BRI (7.5.6)
N, = =5 Z  or= - 11fje1,2,...,1.
.LJ M1 sBij q S L B | 9

Note that the Midzuno-Sen strategy is a particular casc of the
strategy (q,ty) with q(s) = x /M X . also ngle that the mutrix
A given by (7e546) is positive definite except for Midzuno-Sen
strategy. For if A is nonncgative definite then therc exists a

vector X such that AX = 0. Hence for the vector x the
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estbinator §; Decomes constent L.c. xs/fEM1qis) = A (congbont)
or q(s)txxs i.c. qs) 1is a Midzune-Sen sampling design. On
the other hand for Midguao-Sen atrategy A 1s knom Yo be nonne-
. gabive definlte. Thus A I8 nomnegatlve definiie 4 and only if
(q,%4) is a Midzuno-Sen strategy.

For positive definite matriz A, we rewriic V(ﬁ1} Sy

~
¥ "3 Vs N yie.
V('tai} - - by i _!}i ( 1 E:l)g N —-"-"‘E':-:—-'%"- -r.(?bEi?)
i< g=r HVUE j izt i

vhere x > @ is such that Ax =c > 0.

o

Exlstence of such an x is gwirericed by Lomma 7.5.2.

We estimate the variance {7.5.7) by -
>
75 ¥ NERSY ,
v(t1) S P al.(s)xix.fxﬁ - fi)g + B == = {7 5.8
1< jea = 5 ¥ zes T4

where a.j(s) = ¢ AT Ej';f.:.j_ or 5]

and E El_;jﬁs}q_({a} :'-ai‘_i 1#331’2,1;:4,}!.

g®ij ”
a,.'s arc given by (7.5.6) and =, = T gqe), TLiLT,
i i -
g7l
2

( Ii %1 . .

Chaerve bhatl z == 1 already nomnegabive. Mrihzr wo
ige "1 71

E‘I y. 2 . )

freah - o x :X. ( """‘1} amlogous o V( ey ill ’:!’.3 -4-.} N
L ¢ g HTVIR T |

Finally, {7.5.5), with d; (s) replaced by & CHJ will work

ag & set of sufficient conditlona for the uniforn nam“u& gab ity L
the catimator (7.5.8).

Thus in this chapter we have cxplored various Dosclbilitic:s
oI iNProvaing whe caances or geobbing nommegutive varduncc ostlmatoss.
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CHAPTER 8

OFTIMAL ESTIMATORS IN THE
CONELNUOUS SET UP

840 Summggz

In Chapter 5 we took up a study under a conrinugus survey
sampling model. Here we work in the same set up. In ihis Chapter
we deal with some of the problems which were left oul in Chapber 5.
Under the regression nodel we use 'expeched variance' as the cri-
terion for the comparison of strategies. Here we have an oppor-
tunity to note how bthe practical problems in survey sampling can
be viewed in the abstract set up. We see here how the problems of
obtaining certain optimal estimators can Ye treated s tho opbtimi-

zation problems on Banach spaces.

Ir this chapter we first investigate ‘hethsr thore oxists a
best p as well as g-unbiased linear estimator under the proposed
model in the sense of minimum oxpected variance for a given design.
We then find conditions for the existence of a best linear p-un~
blascd estimator aguin in the sense of minimum expectod vaciance
under the proposed model for a given design. We also give cxamples

to get an idea about the optimal estimators.
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8,1 Introdnction

In Chapbter 5 wo presented & different apalytical treatment
of sampling and cafimation. In this chapter we esssntially pursuc
the study taken up in Chapber 5. We use the séme basic set up as
that in Section 5.1. Here we give & ‘continuous Greatment® to the
problems considered in Section 2,2, We assume baoic knowledge of
Functicnal Analysis (Luenberger, 1968). In this chapioT woe see how
& problem of obtaining an ‘optimal' estimator gives rise to an
interesting problem of opbimization on Bunsch spaces. The results
rresented herc show how the practical problems in ourvey sanpling
can be viewed in the absbéract set up. Such resulis have their own
acadenic appeal. To avoeld froquent back refercnce we repreduce

the essemeial park of the basic set up given in Section 5.1,

Consider a population of infinitely many pairs (ylx),x),
x> 0, delined on a probabilicy space (), A ,r) =ouch that the
Joint distribution of y(x), x » 0, is unknown. Phe distribution
of X (kaking values x > G)??ighassumed_ﬁo be continuous and
known , is glven by 3

x
Fx) = ff(aldu , x 2 C.
[#]

The prodlenm wder consideration iz to estinmate the population mean
for the variate Y, nanely,
ne = Ep (1) = [yG)f(xlax.

o]
-
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Any coubinuous probability mecasure Q on B, the Borcl
c-algebra of R = (% T x> 0, 1¢ign}, is called & sampling
deaign. If q(x) dn(x;/dx tzen q(;:f} nay be expressed &a
q(:ﬁcﬂ) = D(th'(x) whaore 1\1() = Tl' f(xi) o(x) is called desigm

i=1
function giving Tise to the sampling design 0(x).

Here we consider a specific superpopulaition nmodel, nanely
regression model, induced by “he probability space (2, A ,&)

T{x) = B P

» 2, x 2 0
where for svery fixed x 2 0

B (7(x)) = 0, E (2°(x)) = o%E cee(Ba1.1)
and for every fixed X#x', x,%° > C

EE(Z(J{)Z(X“)) =0
where o > 0 &nd B are uninown model paranmeters wheroas b > 0
and ge [ 0,7 wmey be known or unknown. Note tha: the model
(B.,1.1} is same ag the nodel (5.1.1).

We agaume that YE) ic sqguare inbegrable war.is the produch
probability (Fx ). To judge the performance of @ stretegy (p,t)
we use the following meaaure of uncertainty

: 2
M-] (p,t) = EEEP(t-—UY) » ) 1.40(81102)

In actually computing (8.1.2) we &assume thub fhe populution
conforms to the model (8.7.1) with b=1 and ge [ C,7] krown,
Yote that the measure of uncertalnty (8.1.2) is sanme as &.1.43.
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In this chapter we try tou investigate the following s

(a) For a given design does there exist a best p as well as
rwunbiassd linear estimator, under the model (8.1.1) viih bs1 and

g known, w.v.t. the measure of uncertainty (8.1.2)2

(b) For a given design does there exist a bost p-wiblased linear
estimator, under the model (8.1.1) with b=1, g known aud the
ratlio 62,/ 8% also known, weret. the measure of uncertalnky

(B.742) 7

1
In this chapter ¥ "will denoke Y - mnless obherwise
i=1
Be2 Two Exigbence Theoroms.
A linear ¢stimateor ¢ is of the Torm
t(y(x),x) = T a, (X)y(x,) el (82,10

vhere ai(iz), 14ign, @re B -measurable functions. "he condi-
‘tian of i-unbiasedness Jor the linear ostimator (B.2.1) is given
by |
T ai(E)xi =t =B, () ¥x ER; . eee(842.2)
And the condition of p-unbiasedness for a strategy (p,t) where p
is a design function and %  is glven by (8.2.1), is given by
#a,z) =1 ¥Fz20 -+ -(8.2.3)

wherz & = ("3'1’3'2!“"8‘11) , #a,z) =2 ﬁi(g, z) .

: i1
amd g, 2) = 1;{* a; (x)p(x) ;'l;['i £ dax . e (842.4)

N1


http://www.cvisiontech.com

- 174 -

We Tirst attempt to solve the problem (a) posed earlier.
For a p &s well as g-unbiased linear strategy (r,%) the measure
of uncertainty (8.1.2) takes & simpler form, namely

M, (p,8) = 02 I (2 a@xPpx)re dax « %2 _pnl.  ...(8.2.5)
\ % I R :

R
n

Thus for a given design function our préblem is to minimize (842.5)

subject to the conditions (B.2.2) and (8.2.3).

For a design function p(x) define

n...
qy(xy) = J p(x)£(x) TJ ax, - eee(Be2.6)
- Ty Y

Rn—-‘!

Tet us assume that the given design function p(x) satisfies the

following conditions.
For some Ffixed u > 1 and for every i = 1,2,...,0

k|20 /01 g q; (x) integrable
ces(B8s2.7)

2v=-1 / v=-1

and |a; () / 2Cx) | is f£(x) integrable.

The nurber v is chosen as close to 1 as possible sc that the

conditions (8.2.7) are still satisfied.

Let ai(gg) be B-measursble, 1<ig¢n and q(x) = pfz:)f(:r).

Dotine U= (& % |a;(x)|%° is q(x) integrable, 1<3<n)

v, =&t |alx) [2 is q(x) integrabdley -

Vo= (b(x) @ [b(x)l2 is f£(x) integrable},
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Note that with usual'.'Lp? norms U,7,,V, are all Banach spaces.

Let V=7,x7, and 7 " be the dual space (the spaca of all
bounded linsar functicmals on V w.r.t. usual Lgmnorm) of V.

(learly V =V.

Let o(a) = | (@ af x)plxdrGoax

= ]
-+
By

e s
-
I

ot

1]

Ix)(= ai(gbxi-*w)

oy
[AS]
-~
U
~—r
i

= I1(x)(¢(§ s X} - 1)

tua
—
&
“onns”
t

(1, (&), Hy(e))

where I(x)

!

1 if x ¢ R} I,(x)

1 if x> ©
and

0 otherwise O if =< 0.

n
U

We are now in a position to formulate our problem as a familiar

nininization problem on vector gpaces.

Minimise ¢(a)
” ces(B.2.8)
gubject ta H(a) = &

where ® is the gero veclor of V.

I% can be checked that ¢ and H are infiniicsly Frlchet
differentiable. To solve (B.Z2.8) we make use of the Lograngian
multipliers technique. The Lagrangian corresponding to (8.2.8) is
given by

L(a, 7) = G(a) + v'H(a) vee(B.2.9)

™ *
where v & V =YV.
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It is known that if (a_, V:) is the unconstrained nminimum of

(842,9) then & solves (8.2.8). Now (8.2,9) can be wriltten as

I(3,v") = | (Sai(x)xf)p(g)f(gt)dgg-Z I+?~(;5)(Zai(g)xi—'“)}?(i)f(f)df

N X
Rn ®a

-2 1 vx)(g,x)-1f(x)ax
R+

where v = - 2(Mx),b(x)), AMx) eV, anmd BX)eV,.

Let 6L(a,v* ; h,w ) be the derivative of L(a, v ) with the

increment (h, w ).

*

Setting 6L(a, v’ ; h,w) =0 ¥ (o, w)eUxV we get

H(Eﬂ) = Q.
dnd ¥ I& e U
[ ¢ ai(:f)hi(x)xg)p(ic)f(zf)d{ - J 7»(:5)(2 hi(:j);:i)p(g.)f(ic)dx
R} RY | -
n n

- X, xIFE)AX=0. +..(842.10)
R* ~
Note that [ b&x)g; (b, x)£(x)dx = [ b(x,;)h; (F)p(x)£(x)dx.

R Rn

Hence from (8.2.,10), we get, ¥ hicf) e U, = {&as \a(x)igv is
a(x) inbtegrable},
I+hi(3§)tai(f)x§' Nx)x; - b(xi)] p(x)f(x)ax = 0 ; 1¢ig n.

4

g _
Hence ai(ic)xi = %.(E)Xi + b(xi) . -00(8'2011)
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Now using the constraint (B.2.2) we get

E#U’- X b(:{i)}!;_g ] d{f’} 11'1(802;12) :

[\

ax)

1/% xi"g .

1

vhere d(x)

Substituting the value of a(x) from (8.2.12) in (8.2.11) we get
. _ } ;g . ) 1&% - 1m8 . . v ‘2‘
ai(f), = b(:zci)xi + [~z b(xj )xj N %7 A - (8.2.13)
From (B.2.13) we get

n

+ai(§)p(§) j-l;ri f(xj)dxj =Db(x,) (x5 ri(xi)wxg“‘gg ¢, (x; ]
R

n-1

1-g _ = 3P (%
Xy b(xj}cij (xi, 2 }:E'{Kj }dxj

e (84 2.14)

g J
J#i g+

vwhere ri(xi.). = qi(xi} /f(xi),ci\xi} = I{*‘ d(f)p(g)jgi f(xj)dxj
B |

n
at)oCz) TT  £x dax .

%) ‘
! ~ x#1,)
2

= |
+
Hn’

n
. . - 1-g {
Now observe thab jii é* X b(xj)cij (e 4 x4 08 Gy )ax,

n
5 x8 blx)e, ; (xy,3)F (x)dx
J i:g* J

b8

= x'\-8 b(x)D; (x5 , x)F{x)ax
R+
1
wheTe Di(}:. JX) = I c‘j(x

Xx) .
* 3

i!‘
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Substituting this in (8.2.14) we get,

P32, %) = b)) r, (x) -xz‘gg'ci(x)) s ux '8 c; (x)

-x""€ [ blww'E D, (x , WE(W)av .

R+
Now using the constraint (8.2.3) we get
-8 2-2g 1-g
T=pE [x8sr,(x)-x Zoeg(x)]+ ux'"E B ¢ (x)

- x1-g f b(W)W1_g D(X,W)f(W)dw . 000(802Q15)

R+
where D(x,w) =% D, (x,w).
Observe that ri(x) - x°-8 ci(X) > 0 for 14ig¢n.
Hence (842.15) can be campressed to the familiar Fredholm equation us

n(x) = b(x) - | K@, )b (w)aw .e.(842,16)
R+

where m(x)= [1-ux'~€z ci(X)j/[x"g 2 ry(x) _x%-%8 3 c; (x)]

and K(x,w) = Cxw' =8 D(x,w) ] /EZ ry (x) -x°%8 3 Ci(X)]‘

Thps determining the Iagmangian multiplier b(x) is equivalent to
solving the equation (8.2,16). If b(x) 4is a solubion to (B.2,16)
then by substituting it in (8,2.13) we get n fFfunctians a1 ,8,,
«eey8, « We now show that this & 4is indeed a solution to (B.2.8)
Treating IL(a, v*) as a funotional in a we note that the second
derivative witﬁ the increment h,h azh(g, va ; 8,h) >0 ¥FheU
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&l ths higher order derivatives are uniformly zero. Hence uging

faylor‘s expansion, namely
Lia+h , v*) = L(a, v*) + 8L{a , v* th) + 6°L(a,v* ; L, h) /2!

GmL(:'?:,v% a,ﬂ...-,g)/mﬁ ---(8-.2;17)

- .

=
my >
ve get for a, L(a) ¢ L(a+h) ¥ hel.
4 a4 natter of faet, depending on sclutions to (8.2,16), even if &
is not unique, amin using (B.2,17) it is clear that the velue
L(§,v*} is same for all of them, i.c. we may get different vectors
5 leading to the same value of the Tunctional I(g,v ).

We now atate a theorem (Hochstadt, 1973) which can be wvsad

to solve {EB.2.16).

Thoorem 8,2,1. If n(x)eV, and | K°(x,wfx)IGH®y < =
4

Ry,

hen  b{x) - A Kx,wblwf(widw = n{x) eee{B.2,18)
R”

has @ unique soluktion if and only if

d'i(B.zri‘] 9}

[
o

blx) - A | K&,w)dbw)f(v)dw
R+

has omly the trivial solution »{EX) = C.

If (B.2.19) hzs at leazst one nontrivial solubtion then (3.2,18) w_J‘.ll

" have a solution if [ mAIE(IAx = 0 ¥ A(x) satisfying
R+

L£&) = 2 [ Rly,x) G fwddw = 0.
R+
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We are now in a position to state our first existence theorem..

Thegrem 5,2.2., For any design fumetion p(x) patisfying (8.2,7)
and for which (8.2.16) hes 2 golubion there exists a best » as
well as E,-—unbiase& linear estimator under the model (8.1.7) uiwh

b=1 and g kiown w.r.t, the measure of uncertainty (8.1.2).

Example 8,2,1. Tet us consider an exumple so ¢s o get an idea

about the above result.

¥

Tet p(x) y P ox2-8 ]n'T (x,) (8,2,20)
2 p P = A X p‘ X, . eeew *=a
" i=1 * i=1. %

where A is the normalizing constant and p(x) is sueh thais (8.2.7)

lg satisfied and x1-8 pi{x) omad xg/'p(x) belong to V.

Por p(x) glven by (3.2.20), we have

2ory(x) = Ap(x) [lna1dnny + x°"8 M 1, 2oz = ap(dng,
D(x,w) = nln-1h, ap(X)o@@, Kx,w) = xw "€ pGw) / &,

and m(x) = A4xg[p(x} - A%

where Ay = | %76 pl0r@ax, Ay = (] pGITEE)T,

R R

Ay = hp [ ROOTGIAR, Ay = (alasTI AT A = i / (DA,
R

It is easy to check that A0 = nh kg .

The equation (8.2.16) reduces io

A xB ‘
b -3 W78 BT (WA = Stey - AgX - ee e (8.2,21)
R'i‘
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Tet by = [ w8 pl)b(wfGi)dw. Then
R-i'

Multiplying both sides of (8.2,22) by x ~6 p(x) cond insegrating
we get
byel = Ayl = Aghy o e r kBe2423)

This shows that (8,2.23) has a solution if and only if the right
hand side of (B.2.23) 13 zero.

Note that A M - Aohy = d Bt T
ore that A% = A5 T D gh ~ () h,

= n('nj)-AgAM (1-nirhs)
= 0.
Thus by = 1 is a solubtion o (8.2,23) and hence
blx) = /A, ¢ h4ngp(x) - Ax o o sclubion o (8.2.21)
where 1) 1is any real number.

Substituting b)) in (B8.2.13) we get 2 unique seb of 2 funcbions
§1,§2,...,§n . i.0. they do not depend on any particular cholee of
ne Thus for plx) in (8,2,20) the best p as well as r-unblased

estimGtor is given by E ﬁi(gg)y(:{i) where for 1¢ign
- ) 1- .
8y (%) = h4/p(xi) + [p-% Xj/p(hj):] Xy € dlx) - v a(B42,24)

Regmark B.2.1. In prticular, for p,(xi) = x§'1 , We goh

g, ) = .u-x;“g a(x) and fuarther if g=2  them & (x) =4/, .
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We now proceed to solve the problem (b).

For a p-unbiased linear strabegy the measure of uncertainty

(B.1.2) takes the form

M, (p,t) = o2 (s af(f)xf)p(gg)f(:g)dgw B2 1 (3 ai(§)xi)2p(§)f(§)d§
Ry Ry
2
- EEBY .

Let o°/8% = k. Our attempt is to find a best linear p-wibiased
estimator for a given design function when k is known. We assume
that .px) satisfies (8.2.7).

Let Gy(a) =k [ (= af(x)xf)p(x)f(x)dx + [ (= ai(x)xi)zp(x)f(x)dx.
+ ~ -~ + ~ -~ o~

®n Ry

Thus our problem is to

Minimize G1 (a)
~ om e (8‘ 2.25)

subjecet to Hz(g) =6
where H,(a) is same as in the previocus problem and € is the
zero vector of V,.
The Lagrangian correspending to (8.2.25) is given by

Li(a, v*) = ¢ (a) + v'H, (1) ces(Be2426)

where v ¢ V* = Vé.

1% is easy to check that G, is infinitely Préchet differentiable.
Procecding on the lines similar to that used in, solving the previ-

cus problem we get
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= 1 =5 . x1=& w18
a, (x) = k77 [ )xi® - x,7F e(x) 3 b(xj )xj ] eee(3.2.,27)

wkere b(x) = V, dis the Lagrangion multiplier and
e@) = 1/ (g~ 32 Xi'gﬁ- To debermine b(x) we nake use of the
‘constraint (8.2.3). Lot

(x ) = A4y (*v: )/f(x ) (x x Y= | plxle(x) ',gzl' f(:c/t)dxx

".'.j i + ~ ~ L #S
>yd
RnnZ '

li
Py

¥ ¥ 3
e (x.) = | er. (X, x)f(x. dax. ¢ D, {x..,x) : .. (X, %),
1775 Bt 171 3 LA S B J#L ij i

D (x,w) =% Dy (x,w), r(x) = % r;(x), Bx) = T c](x).

From (8¢2.25) we get

#; (@,%) =1 [ p()x8(r, () - x576 o) (x)) ~x'7E [ bGow' "8 D (x,w)

+

B
f{w)dch
How using I gylg,*) = #(z,x) =1 we get
px) - § K (x,wp()fwiaw = o {x) s e (B42.28)

R+

where
v 5 1“8 Dw { ) h )
K (x,w) = 28 ‘de-” amd m &) = lﬂg .
r(x) -x“7F B(x) r(x) -x""€ B(x)

How to sclve the eguaticn (8.2,28) we make use of Theorem 0.2.1.
Thus if  b{x) is a solubion o (8.2,28) then by substicubing it
in (B.2,27) we get & vector & Az shown in first problem, we

can indeed wnrove that ,5' iz 2 g luilon to (B.2.25) and iF there
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is more than one choice for &' the correspunding value of the
functional I4(a, v*) is same for all of them. Thus we have our

second existence theorem as followse.

Lheorem 8,2,3. For any design function p(x) satisfying (8.2.7)
and for which (B.2.28) has a solution there exists & best p-unbiased
linear estimator under the model (8.71.1) with b=1, g known and

02/52=k known ; weret. the measure of uncertainty (8.1.2).

Let us consider an example so as-to get an idea aboub the

above result,

Example 84242

n
’ 2_
Let p(x) = A(k + = x578) TT plx,)
~ i=1 1 T3q TTH

where A 1is the normalizing constant. Let p(x) be such that

(8.2.7) is satisfied amd x|

It can be checked that

"8 p(x), x8/p(x) belong to . Vs e

€ g
w G = = = = (say)
nAp (x) (ich, + (n‘1)>‘2)7‘1n_2 M Sy (say

(0-1)xu'~8 p(w) _ , , 1-g |
(ichy + (n-1)2,) = Mxw "% p(w)  (say)

and K' (X,w) =

2

where M = [ p()E(x)dx amd A, = [ x€ p(x)r(x)ax .
RY R*

Thus the equation (Be.2.28) reduces to

1

b&x) - Ax [ w8 p(b(E(Waw = %xg/p(x). eee(842429)

R
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Letting by w8 p(b G £(r)Aw,; multiplying both sides of

=
H+
(Be2.29) by x1-8 plx) and imsegrating we get b, (7 - .14??) = Doy 4

o b = Ayl /(1 - Mro) o, (moka R, < 1}

Thus B(z) = - ijg,fp{:c) + AghyHx £ (T Aghs)

- g - e C&n.\ -
AsxS S a(x) s agx (eay)

il

Substitubing in (B.2.,27) we get Tor 1<£ign,

N N, 55
ai(gg) = ?uﬁflcp(xiJ v Xy e(x) ]:?\5—- My Ex:j /fkp(xj ) vneiBelalC)
Tpus for the above p(:;g) the best linear p-unbiused estimator is
given by 4 éifg}y(xi)

;]
where &;(x), i=1,2,...,n;arc given by (B.2.30) .

Rggn&rk _B_ﬁgngn in particulx, or gZ= 2 and p(xi) = xi ;i , We ggf;

5:{ (x) dindependent of ¥k, namely &, (X) = AT
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