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ABRSTRACT

In many amimal Lyreinnganesis Sapariments, quaniilalive data on pulalive prema-
lignant foci sre now routincly collected, Moolgavlar ot al. [Carciiagenesis 11:127T1
{19] consideced the analysis of such data from a rat hepatocarcinogenesis experi-
ment within the framework of & btwo-siage mode] [or carcinogenesis using the
assumption that the premalignant clones were spherical. This assumption scems
questionable o many orpans, inclading the liver. In Lhis paper, il is relaxed and
arbilrary shapes arc allowed for the clones, The proposcd method is illustrated by
reanalysis of the dala considered in the eatlier paper, The few analysis yields
parameter cstimates that arc morc plausible biologically than thesc of the original
analysis.

INTRODUCTION

Many experimental carcinogenesis animal model systems are charac-
terized by the appearance of well-defined lesions that arc believed 10
represent an early stage in the carcinogenic process. The oldest example
of such an experimental model system 19 provided by the mouse skin
mitiation~promotion system, in which premalipnant lesions, called pa-
pillomas, appear, Another well-studied example is provided by the
rodent hepatocarcinogenesis system, which is characterized by the ap-
pearance of clones of cells exhibiting specific enzyme alterations [1, 2]
that are readily recogmized under the microscope afler sppropriate
staining. The quantitative analysis of altersd hepatic foci presents a
unique challenpe because the observations are made on iwo-dimen-
siomal sections of the Hver. Threg-dimensional reconstruction of the foci
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requires the use of stereclopical techniques. In the current biological
literature these reconstructions arce uwsually made by using procedures
duc 10 Fullman and Saltykov (see, eg., [3]). These procedures involve
the “binning™ of foci into predetermined size classes and have the
unpleasant property of yielding negative numbers in somc of (he bing 1f
the mumber of observed transections is not large enongh. Nychka et al.
[4] have wsed smoothing techniques to estimate the size distribution of
foei from the size distribution of two-dimensional sections of focl

I previcus papers, we developed expressions for the disiributions of
the number and sizes of intermediale foci based om a biclogical model
for imitiation and promotion [5, 6. This model, in turn, is part of the
two-mutation clomal ¢xpansion model for carcinogeneys, which has
been shown to be consistent with a number of epidemiologic and
experimental data sets [7-9]. Siatistical methods Tor analyses of alwered
hepatic foci using these expressions were presented in [10, 111, A cmucial
step in the analyses was the conversion of the model-derived three-di-
mengional cxpresyions for the number and sizes of foel inte comrespond-
ing two-dimensional expressions for the number of transections and
their greas, This method shares one important feature with the methods
developed by Saltykov and Nychka: it assumes that the foci are perfectly
sphefeal and wses o lransformation due 10 Wicksell [12]

The assumption that foci are perfectly spherical, which has hitherto
been used for analyses of altered hepatic foci, is 4 strong assumption, It
preciudes the use of these methods for the analysis of foci in other
organs, such as the paocreas and the kidaey, in which the foci are far
from spherical. In rodent liver also, many foci appear not to be spheri-
cal. In this paper we develop the siereological methods required o fit
the parametric expressions tor the distributions of the number and sizes
of foci derived from the two-mutation clonal expansion model 1o wo-di-
mensional data without making any assumptions regarding the shape of
foci. We make essential use of a fundamental result in stersclogy that
asscrts that the arca fraction cquals the volume fmaction (sce [13, p
282]). In our context, this result states that the volume fraction occupied
by allered (o is unbiagedly cstimaed by the observed arca (raction in
two-dimensional scotions, whatever the shape of the fod, The intuitive
idea of the method is the following. The wolume fraction can be
computed from the expressions derived from the owo-mutation model.
The volume fractiom cian also be cstimated from the observed area
fraction. By eguating these two expressions, the paramcters of the
madel can be estimated. We derive likelihood methods for implement-
ing this basic idca.

The two-mutation clonal expansion medel incorporates two impor-
tant features: (1) transition of tarpet stem cells into cancer cells via an
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intermediale stage in two rate-himiling, irreversible, and hereditary (ar
the cell level) steps; and (2) growth and differentiation of normal target
and intermediate Gnitiated or promalignant) cetls, Suppose that X(x) is
the number of normal susceptible cells at uge s and v(s) is the mte of
initiarion of a normal cell. Once an initiated cell s created, it divides
into iwo initiated cells. dics or differentiates, or divides inln one
initiated cell and one malignant cell (having sustained the second
crtical event for malignant transformation) with rutes of e(s), g8(s),
and pfs), respectively. Since we are not concerned with malignant
conversion of initiated cells in this paper, only o and f§ are relovant,
Mote that all parameters may depend upon the dose of the chemical
agent under investigation.

The required distributional results are derived in the next section.
Following that we present an analysis of data cbtained from an experi-
ment it which rats were administered NNM al vimious concenlratlions in
their drinking water.

DISTRIBUTTIONAL RESULTS

In ordur to present o motivated approach W this problem, we firs
consider a single clone and its corresponding focus in two dimensions
and develop results on the distrbution of (he comesponding arca
fraction. Then we consider the distribution of the mumber of foci in two
dimensions, und in the final part of this seetion we combine the results
to ohtain the results for analyzing data on the number of foci and their
uriy fractions.

DINTRIBUTION OF AREA FRACTICN

The distribution of the (random, but unoiserved) volume fraction of
a single clone can be ohtained, at least in theory, from the results in [5]
ot [6]. But it is not possible to abtain the distribution of the (observed)
area fraction from that of the volumne fraction without any assumptions
on shape. However, al least the first amd second moments of the
{ohserved) area fraction can be ohtained without any such assumptions
{(see [13, pp. 174- 1781} Lot V; and A, denwte the (unobserved) volume
fraction and {ohserved) area fraction, respectively. Also, let ¥, and V;
denote the volumes of an initiated cell and of the tissue block from
which the scction was cut, respectively, Then, under the assumption of
statioparily and sotropy lor the formation of the clones, we have [or an
observed area fructon at time ¢,

173
E[ 4] = ET%] = E[W(1)] x 32
=f, say, (1)
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where W{(¢) denotes the number of cells in a single clone at time &
Alsa, under what Stoyvan et al. [13, p. 184] call the exponential wovar-
ance assumption,

e 5
val[ A= Sf(1- 1), o0, (2)

where A is the tota] area of the cross section. Thesa two resulis, (1} and
{2), suggest a least squares analysis, However, in order to incorporate
the concept ol a threshold size for A; below which the two-dimensional
section of the focus cannot be detected, some distributional resulls om
A, are needed. Onee these are derived, the likelihood method is readily
applicd.

The relationship between arca fraction and the corresponding vol-
ume ifraction can be established by writing the distribution of area
fraction A, as

wa) = "plalvda(e) du, (3)

where Ala,) demotes the deosity of area fraction A, plaqo,) the
conditional density of 4, piven volume fraction ¥} = v, and gs) the
density of volume fraction V. Here lowercase letters are used to mean a
patticular value of the corresponding random variable. Since, for I, =10,
the conditional disteibution plaglf;) 18 degencrate, we consider only
¥ =0 fi.e., nonextinct clones), and glv,) is taken a&s the conditional
density of ¥} given F; > 0. The reason will be elearer when we consider
the distribution for the number of nonextinct foci in the next subsec-
tion. Note that the density glu:} of F; can be obtained from the
two-stage model (as described later). Under the assumption that clones
are spherical, the conditional density pla[r:) can be written down using
Wickscll’s formula [12], in terms of the radii comesponding to 4 and .
To pet around the assumption that clones are spherical, we proceed as
follows,

Mot that, given volume fructon ¥, = r, the area fraction A4, is the
proportion of area covered by the clone [n a random test plane {or cross
section). Thus, the area fraction is zero if the cross section does not
intersect the clone [12, 14] We assume that this happens {that is,
A;=10) with probability | —p}/7; that is, the random cross section
intersects the clone with probability o). Given that there is an
intersection { A, > 0), we assume that the conditional distribution of A,
is given by

I
o
A[li’;’:f-:f""N[”f’rga'};—”f{l_”f)} {4)
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where o* > 0 and A is as in (2). The normality assumption is supported
by the asymptotic results in [15, 16]. The expression for the variance in
(4} is supported by (2) and also by the fact that near the two extremes of
¢ (0 and 1} the variance will be smaller. Then the conditional discribu-
tiom Pla|og) of Ap given ¥ =) is

; a?
P(ﬂﬂ”f) = {I = I-'%'Ij)f{ur-n} + U}Fsﬂf‘[aﬂ Byl TUf“ = Uf}] frar = by {5)

where J'{_, denotes the indicalor functhion and &, ) the normal
density with mean x and variance o *,

There is the problem of derectability s0 thal a section of a focus with
area less than a threshold area (&, say) is not observable, Alsa, for
reasons discussed m [10], some sections with arca larger than an upper
bound (4, say) are not considersd. To account for this, we need o
caleulate the probability that a focus is detectable, that is, the corre-
sponding area fraction lies between 8 /A4 and A /A, Let A(-} denote
the distribution function af A Then, using (5) and (3} and appropriate
normal probabilities, we obtain this probability of observing a nonex-
tinct focns as

2
[Fi(A/ A) = TT(87 4)] = Jffff‘*”[m[% 7%, o1 - o)

8 a5 @2
_fb[z;f:?' Ja%i'f“—”f}]]g(“f}d"f! (6)

where @ u, %) is the distribution function comesponding 1o the
normal density #{-; u, o *}. The density of an observed area fraction 4,
can how be obtained as

ol g e, (@ £ AY (1= 6) gl div s
[H{a/A) - H(8/4)] (7

for 8/A=<a, =A/A Note that any least squares tvpe of method
requiring only the first two moments of 4, cannot adjust for such
truncatiom constraints in the observations.

To tind g(u. ), note that W,, the size (number of cells) of a single
Initiated clone, is related to V; by

w,=wv) = pExw| (8)
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Then gie:) can be written approximalely as

Yy
8(8) = o), (%)

where py(w) denotes the conditional probability mass function (p.m.f.)
of B given W, > 0 {nopextinct clone).

Let ¥* and ¥ denote the probability gencrating functions (p.g.t.’s)
uf the sizes of a nonextinct clone and a clone (extinct or not), respec-
tively, and pl¢.5) the probability of cxtinetion of a clone at time ¢
originating at time 3. The p.g.fs ¥ and ¥* are given by

-1
# g+ Gl 1—u)’

wie,su)=1

where git.s)=exp[ — [(oln)— Bludddu] and G(z,5) = [Jal(udaln, 5) du,
and

T+ T — i)

1—p(t.s)
(see [7. 17 Note that the probubility of cxtinction plt,5) can be
obtained from this expression for ¥ as 1—[g(¢,s)+ (¢, €))L, Using
the cxpression for P one gan, at least in theory, obtain the p.mf.
pwiw) and hence gle,} from (9). Ilowever, when the parameters of the
two-stage model, numely +X, o, and S, are independent of time, the
results simplify. One can check that, in that case, the pon [ Tor the size

ol a single nonextinet clone at time ¢ iy (1]

P[W,(r}=m]=—ﬁ(%], m=1,2,..;0<8<1, (10)

where
i3
d=—=p{t
ﬁP{ )
with

B —Bexp[—{a— B}
o — Bexp[—{a—g)]"

This is a logarithmie scrics distribution with p.gf,

log{1— )
log{1— 6% °

pley=p(1,0)=
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IISTRIDUTTION OF NUMBER OF FOCS

We know that the distribution of the nomber of nonextinct clones at
time ¢, N(t), 1y Poisson (A(r)), where [5]

A(:}=J:v{.s-}X{_¢}[1—p(f,sj]ds.

A traction of these N(t} clones, sav N,(¢), are cut by the random cross
seetion, wnd the cotresponding transcetions have arca fractions lying
between &/.4 and A /A with probability H{A 7 4)— H{& / A). Thus,
wie have

N{#) ~ Poisson{np (1 1),

where
) AL H(ASA) - H(8/A)]. {11)

See [10] for a similar result. Note that, for time-independent parameters
{(rX. 2, and g), the Poisson parameter Al ol M) simplifies:

lﬂg( aaxp[(ﬁ :ﬁ)i‘] — BJ]

1
ﬁ(f} e FXE

{12)

NUMBER OF FOCT AND THEIR AREA FRACTIONY

I addition to I, the data for cach animal should ideally consist of
tddoaony, und G ny=0), a4, where ¢ denetes the tme of
observation, 4 the corresponding dose level of the agent under consid-
eration, a the value of A (arca of cross seetion), i, the observed value
of N{r} (number of observed transections of foci), and a;...., 4, the
corresponding areas of the transcetioms. For cach f o« /a is the
vbserved area fraction of the ith transection. Here V., V. ¢, and J are
assumed known and nonrandom, the value of & is random but known,
and (1., a,....,4,,) are the random quantities of interest. In the follow-
ing, we develop the likelihood function based on the conditional distri-
bution of (#,, 4, /d,...,a, fa) given A~ a.

We developed in the ‘preceding subsection that N,(¢) fellows a
Poisson distribution with parameter m.{¢) [see (11)]. Note that, given
Nitl=un., a /a,...,u, /a are independent and identically disiributed
with density (74 Thus rhe likelihood contribution from an observation
with #. foci iz a product of a2, + 1 Lerms; Lthe first lerm is the Poisson
probability of r, foct with parameter (), and then cach of the 7, fosi
contributes a term af the form (71 The total likekhood is obtained by
taking the product of contributions from all observations.
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AN EXAMPLE

We consider the N-nitrosomorpholine (NNM) data analyzed by
Muoolgavkar et al. [10]. Experimental details can be found in that paper
or in [2]. Briefly, a number of rals were administercd NNM at various
concentrations {0, 0.1, 1, 5, 10, 20, and 40 ppm) in the drinking water.
The rats were killed at different ages, and cross sections from their
livers were examined for ATPase-deficient foci. Following [10], we take
the lower detection limit & to be the ares of 3 crele with radius 60 pgm
and the upper truncation limit A to be the area of a circle with radius
500 pm. The data then consist of 1654 transections in 162 rals. The
paramelet cstimates are rather insensitive to changes in the detection
and truncation limits.

Since, in this experiment, exposore ko a single apent begins at a fixed
age and continues at the same level unti} death or until the animal is
killed, the parameters of the madel are assumed to be dose-dependent
but constant In time. It 15 convendent (o consider the mean number of
cells per unit volume of the tissue, X, say, instead of X(s) {10]. Then
+ X, may be interpreted as the initiation rate per unit volume and is
relatcd 10 » X of (120 by »X = v X, » V. 1t should be noted that the
parameter » 15 not individually estimable as it always appears with X,
and 50 we treal vX, as a single parameter. The parameters of the
mirlel, namely X, (the initiation rate per unit volume) and 2 and 8
{the division and death or differentiation rates for the initiated cells,
respoctively), are reparamelerized w »X ), @ — 2, and B/a as this
gives better numerical stability. The first two parameters are made dose
{d} dependent by v X (d) = ¢ + oo and (o — BNd) =B+ by d. Likeli-
hood ratio tests showed no evidence of dose dependence in the parame-
ler B/ a, as noted also in [10]. Thus, we have a total of six parameters,
namely ¢, ¢;, b, B., /o, and ¢ 7. These parameters are estimated
using the methad of maximum likelihood, where the likelihood function
tor the observed data is constructed using the resvlts of the previous
gection.

In this example, we have three cross sectivms from the liver [rom
each rat. Unfortunately, the volumes of the tissue blocks, Vo, were not
measured. For the sake of this illustration, we take V. to be same for
all rats, having the approximate value of 1.43 cm®. This value is abtained
by Laking the average over all sections of A7/2, where A, is the area of
the crass section for the ith observation. As m [10] we assume that Vi,
the volume of an initiated cell, is the same as the volume of a sphoere
with radius 12 um. The effect of misspecification of the values of ¥,
and o i discussed below.
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The choice of V, and I does not seem to affect our conclusions
substantially. For example, if ¥y is changed o P with 5 kept fised,
then pumerical results show that o« — 8 temains unchanged, X,
chunges o

. Vh:
rX = % vX,,

ic

and 1- § /a changes to

(-84

13

(See [10] for similar results.) Similatly, if V. is changed to I but V. is
kept lixed, then o — 8 and pX remain uwnchanged and 1 8/a

changes ta
(-£]-5H0-E).

or @ changes to o = (V1 /7 )a,

The maximum likelihood estimates of the parameters and the corre-
sponding 95% confidence intervals (based on the nhserved informalion
matrix) are given in Table 1. The 95% confidence intervals based on
profile likelihood and computed using the algorithm of Venzon and
Moolgavkar [18] are similar. The estimates obtained by using the
original analysis [10], which assumed that the foel were spherical, are
also presented im Table 1 for the sake of comparison. The estimates of
a — f# range from C.O0RY per cell per day in the control group 1o (L0237

TADBLLL ]
Maximum Likclibood Exvimates with 83%% Confidenee Intorvals

Arhitrary shape assumplion Spherival shape assumption

Farameter  Estimale Confidencs interal Estitnale Confidenee inlerval

e 39125 (2.541,5.978) 12008 {K.571, L65HO)
o2 32484 (2.323,4,525) 15,90 (14860, 23. 7500
b 00030 LA RFRTILL L)) 0723 CO.O0045, LB 10
Bs GOO03T  (OLCKHI33,0.00041) D26 (0.DO0Z3,N00025)
Bfa n9L14 {0.8577,0.9461) (1.9065 (0.9950,0.9975)
hE 03563 (N.1734,0.3682)
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cell”’ day™' in the highest dose (40 ppm) group. These values corre-
spond to the estimated cell division rates of 1.1 and (1267 cell ! day !,
respectively. The background ccoll division rates, as derived trom direct
measurements of labeling indices (see [19]), are approximately 0.025
cell™! day ! Thus, the estimates in this analysis arc biologically more
plavsibie than those (2057 and 5.029) obtained by a reanalysis of the
same data using the method of Moolgavkar et al. [10]. The estimates
presented in that paper held 8/ a fixed at (299, which was not donc in
the reanalysis. Under the assumption that a typical cell {normal or
initiated? has radius 12 pm, 4 cubic contimeter of the tissue contains
approximately 1.38:10% cells. As the estimates of »X, range from
3.9125 to 133.8485 day ! cm™?, the corresponding estimates of v tange
from 2.835x107% cell™' day™' in the control group of 0.699:1077
cell ' day™' at 40 ppm. All these estimates, however, should be
accepted with some caution as thev depend on assumptions ahout the
volume of a eell (novmal or initated) and, in this cxample, also abaut
the volume of the tissue blocks.

The likelihcod function was numerically maximized using the Davi-
don—Fleicher—Powell algorithm (200, In order 1o caleulate (6) and (7
tor evaluation of the likelihood functon for different parameter values,
we used numerical integration. We used a ¢combination of Legendre—
Gauss and Laguerre—{Fauss integration schemes {see [20]) for this
purpose over a range beyond which ¥} has nepligible probability (since
all of them are very smali compared to 1). The idea is to come up with a
suitable integration scheme (hat is stable enough with regard (0 minor
changes and covers almost the whole range of relevant volume fruction
{V;) valucs, To caleulate the truncation probability (6), the Legendre—
Gauss scheme was first used over a range with a lower bound corre-
spemiding to the volume fraction of one initiated cell (1, =1, / ;) and
the upper bound corresponding w that of 1NN initiated cells, and then
the Laguerre—Gauss s:heme was used with the lust Gaoss point located
at ¥, =0.001. Resnlts were insensitive to the latter choice. For the
calcutation of the density of an area fractton a; [to be precse, the
numerator of (7)), we used a similar combination of Legendre—Gauss
andd Laguerre—Gauss schemes except that the middle point was a
chosen us a;’%, which is an approxmation to the point where the
corresponding integrand, as a function of v, has a maximum. The
stability of this numerical integration was monitored by computing the
integral of g(e), given by (9), at each iteration of likclibood maximiza-
tion, Stablie resuits were obtained with 40 Gauyss points for cach intepra-
tion involved.

To assess the fit of the model, we compare, in Figure 1, the empirical
(obscrved) distoibution function F{x) based on all the obscrved arca
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Fic. 1. Empirical {observeal) snd model-based fexpecied) cumulative distribution
function of area fraction.

fractions with the model-based (expected) distribution function F(x) of
ared fraction calculated as

_ E st B2 () ¥ P area fTaction of a focus < x}
Fn(x] - Eallnbs.":(i} E
_ 1 o H{x)—H{8/4;)
T i, "V H(B/ 4) ~ H(5/4)

il s,

where »,0(i) denotes the value of N, the number of rangections, A;
that of A, area of the cross section, and P, the probability distoibution
under the threshold and truncation constraings at the time and dose for
the fth animal. Fipure 1 gives evidence thal the model describes the
data well.

IMSCUSSI0N

As we remarked in the previous sectivn, the threshold and truncation
constraints do not appear to influence greatly the parametar estimates.
If these conatraints can be ignored, it is immediately possible to use a
least sgquares method not requirmg the distributional assumption (4), as
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discussed earlier. It should be noted that when observations on only the
number of foci are available, one still necds assumption (4) to vse tesul
(11). However, without the threshold and trancation constrainis, we use
AMOEVH?] for the Poisson paramcter nstead of »,(¢} {see (11)], and
hence {4) is not required. Sometimes only the total area fraction of all
the foci taken together may be reported. The truncation constraint on
the area of a single focus does not extend to the toal area of all the
focd, making it difficult to analyze such data. Without the threshold
consideration, this problem does not arise. One can then analyze such
data using results similar to (3, (4), and (5}, where ;1% 10 be treated as
the total volume fraction of all the clones taken together. The distribu-
tion of the corresponding random variable F; can then be obtained
ramm that of the total tumber of initated cells, B say, which in the case
of constant parameters, can be proved to have 3 negathve binomial
distribution with

Pu{w) = (K}Hf : )[5)[1—5]K w=0,1,2,....

where P=8/1-8) Q=1+ P,and K = — Al0)/[logll - §3. One may
wanl to uge i least squares type of method as well, without requiring {4)
and using (1) and (2) only, in which case one can check that « and f
arc new catimable but only @ — 2 is.

MNote that assumption (4} is central to the whole analysis. We believe
that this is a reasonable assumption in the absence of any knowledge
tegarding the shapes of the clones. However, the estimates are not very
different when (4) is replaced by a uniform distribution or a beta
distribution with the same mean and variance. Normality in (4) is a
reasonable choice having an edge over the uniform distribution in terms
of plavsibility and over the beta distribution in terms of computational
difficulty.

W have not considered the thickness (T, sav) of the cross sections
In our analysis, assuming it to be negligible. Clearly, this will affect the
probability of the eross scelion inwersceling the clone. Ag in [14], the
probability of intersection given B =1y can be assumed to be [vf7 —
T, S VI - T, VISL

Although the analysis presented in this paper gives more plausible
estimates of cell division rates than an analysis based on the assumption
of spherical foci. the estimated division rates still appear to be too high,
as remarked in the Example section. We should emphasize, however,
that pur assumptions regarding cell volume (V) and volume of tissue
block (¥} cerminly affect our estimates. For the analysis in this paper,
we assumed that the radius of a sinple sltered cell is 12 pm because
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this was the assumption that was made in the onginal analysis by
Moolgavkar et al. [10]. If, however, the radivs of an zltered cell is 1aken
to be 14 pm as reported in [21], then the estimates of cell division rates
are substantially decreased. For example, the division rawe in the foci of
eontrol animals is estimated to be 0.063 cell™! day™' as opposed to (11
cell™! day™ . Also, our estimate of the volume of the tssue block ()
is likely to be an overestimate because of the way the sections werc cult,
which also resalis i overcstimation of the cell division rate, 85 notad in
the preceding section. As discussed there, information on the volymes
of the tissue blocks and of a single altered cell in addition to the areas
of cross sections is required for a proper analysis using the method in
this paper. Experimentalists should be encouraged to record this infor-
mation.

Finally, the model for cell alteration and clonal growth used in this
paper is perhaps the simplest biclogicul model for these processes. The
assumptions madc by this model, such as homogeneity of division and
death rates within foci and the independence of these rates of the size
of foui, require further investigation.

This work has been supported by NCI grant 47658 and by an American
Cancer Sociely tnfernaiional Cancer Research Fellowship from UICC (o
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