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. ABEREVIATIONS AND NOTATIONS

LAbbreviastionsg
PV < random variable
.i.i;d, . independént and identically distributed
‘i:i,d,r;§,s iﬁdependent and identically distributed
random variables
e, d.f, -empirical distribution function .
w.r.t. with respeéf f§
. a;s.ig ' almost surelyl
O g diétributioﬁ function
A.E v asymptotic effective variance
m.g.f. moment generating funection
Néfé%igns
Ufo,1] uniform distribution on [0,1]
B(x) fX , (2#)—1/2 d-xg/z dx
—-Co
"iﬁfb X | The sequence of T.v.s {Xn} echGfges to

the r,v, "X in distribution,

&

X = Y X and Y have same distributions,
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(2)

X, is a sequonce of I,V.S and {an}

is a sequenhce of positive numbers such

that  1im sup X 1/a, 2K a.s,

n = o0

where K 1is some positive constant,

n -0

1im anl/an =0 a,S.

For every e > 0, there exists a eonstent

K = K(e) such

4

P(|X; /a5l >K) < for a1l 1 >'1,

For every ¢ = OJ

P(lxi/aii >g) —> 0 as i —> o,
for every
‘x belongs to A

=f if £>0 and =0 if £20
-0 if £>0 ad ==f 1f £x0

indicator function of the set A
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[3]

e Ki are used for sufficiently large positive constants
without mention, At some places the Vinogradov symbol <<

instead of 0 1s used for convenience,


http://www.cvisiontech.com

CHAPTER 1

INTRODUCTION, SUMMARY AND A SURVEY OF RELATED LITERATURE

1.1 VARTOUS METHODS OF STUDYING QUANTILES

Let {Xi} be a sequence of r.v,s, A&t the n o stage we

define e,d,f, as
Fﬁ(x)r-(#é )Li_fic: 1 <i<n)/n

and the +t1 sample quantile as
Q¢ = Inf {x 3 Fn(x) > t} for t >0 and = £ 5, for t=0,

Most of the techniques of studying the process {Qnt P00t x l}
consist of relating {Qnt} with some suitable linear statisties.
The following are some of the commonly used methods for

studying quantiles

(1) The Direct Methods In The Independent Case. Here, one

can actually find the exact dastribution of quantiles and
investigate their properties, This method is commonly found in
the older literature on order statistics, Recently, Relss (1976)
applied this method to get Edgeworth expansion of the distributions
of quantiles, This procedure is not at all flexible if the
underlying r,v,s are dependent,

AN
(L)
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(ii) Methods Using Set Inequalities, It is easy to see that

{Fn(x) > t} < {9 = =} = {Fn(x) zt}.

These set inequalities are used tc find weak and strong laws for
quantiles in the independent as well as in the weakly dependent
cases (see section 1,3 for definitions of weak:dependence
structures that we will be dealing with), Reiss (1974) uses this
technique and obbeins the BerryEEsseen bound for guantiles in the
i,1.d4, case, The main drawback of this method lies in the fact
that it does not work when we have a linear combination of

guantiles,

(i1i) Methods Using A Property of Uniform Distribution, Lot

{Ui} be a sequence of i,i,d, U[0,1] r,v,s and U

th

If Uy, denotes the K ordor statistics at the n " stage,
then :
N+t |
(1,1.1) U o, = .g v, /2 ovie BT L2 .., m
’ i=1 i=1

The statistie in t

he r.h,s, behaves moré 6F less like a linear
‘ =k € -
statistic, Purther, if X, _ denote the kO

8’

order:.statistics(at
the n'l stage) of 1,1,d, o¥servations :{Xi} with a continuous

d.f. F as the underlying d,f,, then
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o

| Xk;n F (uk,n) ' 152, om0

(we take the left continuous version of F"l). Thusg the relation-
ship (l.l.l} provides a method for investigating'the probabllistic
behaviours of order statistics and their functions, Chernoff et al
(1967}, Bjerve (1977), Csdrgo and Révész (1977), among others,

use this technique, rJuét like the direct'mﬁthod, this also has
theldrawback in that it depends heavily on the independence of

the underiying'r.v,s.

(iv) Methods Using The Bshadur.Kiefer Representatlon of

guanﬁiles. L@t {Xi} beah i.i,d; sequenee of r.v.é with the
underlying d.f. F. Bshadur (1966) proved that if F 1is twice
differentiable in a neighbourhood of ﬁ_l(t), 0<% %'1;'with
théifirst_derivative bounded away from zero and the seéondrbounded,

then

(L.1,8)  Qu= Fh(t) = [5 = F(FLa)I/m (7l e)
+ O(n"B/é’t (log n)]‘/2 (log log n)l/4 84S,

&

 Many of the asymptotic properties of'Quantiles are immediate

from (1,1,2)., Given. below is a survey of the literature on this
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L7]

area of the investigation.

Kiefer (1967) showed that n;B/é(log flog'n)B/4 is the exact
order of the remainder of the répresantation (L.1.2). Sen (1968)
extended the Bahadur's result for the non-stationary m-dependent
Processes, The next importént step on this topie was taken in
Kiefer (1970 a)., .4part from other valuable results, this paper
shows that in the i,1,d. set-up if the underlying d.f. has a
bounded support [&,b] on which it is twice differentiable with
the first derivative bounded away from zero and the second bounded,

then

(1,1.3) sup  [Q = F Lot )[R, (FH(E)) =~ t]/Ft(F“lct)]
-0 <t <1

. 1/2 ' 1/4
= 0(n 3/4 (1og n) (lIog logn) ) 2.5,

-

and this ofdeflis exact, Elcker (1970} gives an alternative-
proof of the above monﬁiohed result of Kiefer (1967). GChosh
(1971) showed that the remainder in (1,1.2) is at 1oast _

Op( 1/2) éssumlng only that F!(F l(t)] exists and is p031t1vo.
Dutta, and Sen C1971) investigated similar representation for

some stationdry multivariate autoregressive processes, Sen (i9ﬁ2)
extended Bahadur's result for étationary pmixing processes with

a weaker order, Recently, Chanda (1976) obtained a representation
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of quantiles for linear processes with the order of remainder
-1/2,

as o_n
3

(v) Hajek's Projection Method,l .Ssigler (1969, 1974)
prolect quantiles.and their linear combinations on the space
of linear functions of the observations and produces very satis-
factory results on the asymptotic normality of linear functions
of order statistics, It appoars thai this technique also uses

the 1ndopendonco of tho undorlylng r,v,s rather cruclalliy.

The above list is certainly not exhaustive and it mentions

PR

only those techniques'which are popularly used in the literature,

Chapters 2 3 and 4 of this thesis deal with some current
probWems on the Bahadur Kiefer roprosentatlon of guantile

processes. These are o f}nuing sharp asymptotic bounds of the
renainders ef the represention in’'the case of mixing r,v,s,
investigation of the behaviour of the asymptotic representation
towards the extremes of the quantile processes and the possible
extensions of these results in the eases where the usual
conditions on the dlffercntlabllity of the underlying d.f, do not
necessarily hold. This thesis also contains results on the
rates of convergence to nomality of quantiles in the mixing
cases, asymptotic effective variances of gquantiles in the

m—~dependence cases and strong approximations of weighted guantile
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Processes by Gaussian processes with appropriate'covariance kernels,
Our theorem on the strong approximations is an addition to the

results in ah‘unpublished work of Csdrgo and R&vész (1977).

1.2 I—~STATISTICS

Linear combinations of order statistics are called L—statistics,
Because of their robustness, I—statistics have been drawing the
attentions of many of the statisticians during the past three
decades, Most of the works devoted to this topic can be classi.
fied into two groups — those which'estabiiéﬁ asymptofic_propert_
ies and those wﬁich study the robustness. We‘mention below;some
important papers in these two areas and the main themes of their

cohtents,

Jung (1955), Govindarajulu (1965), Bickel (1967), Chernoff
et al (1967), Moore (1968), Shorack (197O 1973 1974) and
: Stlglo? (1969 1973 and 1974) are some of the more commonly quoted
papers on the asymptotic normality of D—statistics However, this
list is by no means exhaustive. Some of the techniques used in these
DPapers were mentioned 1n the previous section, Blckol(1978) properly
defined and studied this type of statistics in regregsion models,
Asymptotic normality of multivariate I~statistics (see Bickel

(1965) for some definitions) does not seem to be-known except in
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some simple cases, Rao and Mehra (1975) investigated the asymptotic
normallty of the statistiecs in the case of mixing r.Ns. Rosenkrantz
and O'Reilly (1972) used Skorohod representation to get Berry-Esseen
bound with the order ﬁ_1/4 for I—statistics. In a recent paper,
Bierve (1977) showed that the rate of convergence to normality

is ﬁ—l/g for the trimmed type I—statistics in the 1i,i.d, situation,
The drawbacks of this peper are thst the proofs break down for

any kind of dopondcnco structures and the statistics must necessarily
be of the trimmed type. Coming to the strong convergences and the
laws of iterated logarithm, Ghosh (1972) obtained sn a,s. asymptobic
reﬁreseﬁtation of I—statistics utiiizingthé'ideabf“Moore_(19é8)‘
which vields the law of iterated logarithm as a corollary, In

two recent papers Wellner (1977a, 1977b) &tudicd the strong-
convergences of I-statistics within a fairly general setZup in the

independent case,

Tukey (1949) flrst suggestaed the use of trimmed and Wlnsorlzed
means as locbtlon ostlmators keeping the robustnoss in mind,
Bickel (1965) studied the usymptotic properties of these means in
detail and calculatod the infima of their rclatlvc efficiencies
over the class of symmetric unimodql distributions, The pr1nc1pal
estimate proposed by Huber (1964) resembies the trimmed mean as
far as thelr asymptotic properties are concerned, A formal

asymptotic relation between Huber's M-estimators and the
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I—statistics was established by Jaeckel (1971). Castwirth and
Bubin (1969) obtained some 'maximint type results regarding
asymptotic efficiencies of I—statistics., Castwirth and Cohen
(1970} studied small sample behaviour of I—stabistics, Hampel
(19743 defined robustness in term of influence curves and
 proved that L—shatistics with weight functions which are light
towards tails are insensitive for outliers or 'wild observations!.
4 detailed review and evaluations of some important statistics
with simulated data is presented in indrews et al (1972) Sacks
(1975) produced an ‘universally efficient? type estimator |
considering a 1iﬁeaf combination of order statistics with
estiméfed weight functicn., Gastwirth and Rubin (1975) studied
the effect of serial dependence in the data on the efficiency
of some commonly used Ir-statistics, In their recent works,
Bickel and Lehmann {19275(a}, 1975(b) and 1976) define location,
Scale and dispersion figorouslya Population analogues of
L—statistics with suitable welght functions turn up as examples,
These papers have brought ouit some neat and interesting results
on the statistics., Lastly, we mention an important work of
Stigler (1977). This paper consists mainly of an evaluation of
modern robust estimators with real data and concludes that, a
small amount of trimming is the besl way to deal with outliers.

The 10 per cent trimmed mean turns out to be the recommended

P fer vy

AL I
aegtimator for use. yﬁgﬁ;___é??ﬁ?;>\
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-

One chapter of this thesis is devoted to the problem of
finding an asymptotic representation of L;statistics vhich seems
to provide an unified way of studying the statistics, since many
of the asymptotiao pzoperties are immediate from the representatiomn,
We alsc have results on asymptotic effective varlances, probabilit-
ies of deviations; uniform snd non-uniform rates of convergence
to normality and matching of weight functions with underlying
d,f,s.

1.3 SOME WEAK DEPENDENCE STRUCTURES

In this section, we define the processes that we will be
concerned with in Chapters 2-7. We also mention the relevant

papers on these processes,

Let {Ki o ]l < } be a stochastic proéeSs with

BP =o(x $i=xaxb).

a €

(1) m-Dependent Processes, The process {Xi} is called a

m—dependent process if, for all K,

sup : 'sup. - Ip(a B) — P(A) P(BY| =0

ae Bes
—00 : k+tn
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whenever n >m , Processes obtained by considering finite

linear combinztions of an 1,i,d, sequence of r.,v.s provide

simple examples of m—dependent processes.

- (i11) (Mixzing Processes. The proéess {Xi} is called a

¢—mixing process if! for all K,

sup sup  |P(B|4) — P(B)| < d(n)
AeBE  Be B

o0 h&n
P(4) > 0

where {¢(n)} is a sequence of noﬁ—negafive real numbers such
that | |
1> 0C1) >6(2) 2 ......

and
1im  §(n) = 0.

T 00

The notion of {rmixing was first introauced by Ibragiﬁov
(19569}, m—dependent processes, certain Markov processes and
certain chains of ininite order are well—known examples of
(~mixing processes (See Ibragimov (1962)), Also, see Billingsley

(1968) and Kesteen (1977) for examples of {—mixing processes,

Ibragimov (1962) explored the weak convergences of normalised
sums of {~mixing r,v.s., See Serfling (1968} for some generallsa-

tions, The strong eonversances and the laos of itorataed lagaeithm
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for such processes were investigated; among others, by Iosifescu
(1968), Reznik (1968) (see Stout (1974) for closing up a gap in
the Remmik's paper), Oodaira and Yoshihara ((1o71), (1972)),
dyde and Scott (1973) and Mclish (1975)., BRillingsby (1968)
derives wealk invariance'pfinbiples»for samp1e gsums and empirical
processes of {~mixing r.v.s (sce also Sen (1971) for an improve
ment of one of Billingsby's results), Philipp nd Stout (1975)
gives strong apnrox;mathns of normalised samplo sums by standard
Brownian motion, Statulevidius (1974 1977 a, 1977 b) provides
Berry"Esseen bounds and probabllltIOn of deviations for
normalised sample sums of such processes. Ghosh and Babu (1977)
obtained exact asymptotic expressions for probabilities of

moderate deviations for some stationary ¢mixing processes,:

(1i1) Strong Mixing Processes., The prcéess {Xi} is called

a strong mixing process if, for a&all X,

Csup  |P(ANB) _B(A) P(BY| < «(n)
AsBE  Bem

fn

where fﬂ(n)}‘ is a sequence of nomnegative numbers:suéh?that

*_1 2x(l) >2«(2) > s..ae.

~and ) p
lim {n) = 0,
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The idea of strong.mixing'was first intrcduced by Rosenblat
(1956), Ibragimov (1965) showed the strong mixing property of
Gaussian processes with suitable kernels, Examples of processes
vhich are strong wixing but not ¢-mixing can be cbtained using
the results of Ibragimov (1961) and Kolmogorov and Rozanov (1960).
Ghanda’(lQ?é) claimed-to have established strongmixing property
of the linear process ‘{Xi} defined by

(2, /5, ) o 8 &) 8. X,

where {Yj * ~00 < J <00 } is a sequence of i,i.d, r.v.s and
{ai :'ilg O} is a sequence of real numbers such that

Z af <o Later Chanda's result was found to be in error and

1 .
the corrected result appeared in Goredtski (1977),

Most of the papers mentioned‘éBOVé in the context of’@“mixing
processes also explore the corrospondlng properties of strone
mixing processes. We would like.to include the paper Deo (1973)
in this lluu.-'“eo (1973) provides an interesfing proof of
Davydov 1noqual1ty (see Lomma 2,3.1 of thls thesis) and studies
the weak convo“genco of empirical procossos in the strong mixing

Cases,
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(iv) PFunctions of Mixing Proeesses, Let {Yi v =< i ‘5“%

be a (~mixing (Strong mixing) process and {Xi} be defined by

Xi = f( * e Yi'_'l’ Yi, Yi+l, ;oo)
Lo, o] ‘
where f 1s 2 measurable function from R to R, Then the

process.  {& }is termed as a function of the $rmixing (strong
mixing) process {%}. Tt is usually assumed that

(1.3.2) 1% ~ BB ), s o)
b 0 _ 3
where B =0(Y, ! a<i2b), r is some positive number and

p(n) — 0 as n —»oo

For example, if { } is a sequence of mixing r. V.S and <
{Xi} is defined as in (1,3,1), then the process {Xl} omes_ln
this category. If tho condition (1,3,2) holds then the studies
of functions of m1x1ng processes and of m1x1ng processes proced
along similar lines. As an alternative to Goredtski's result, |
one can study linear processSes by consifering them as functions
of independent r.voslsatisfﬁing (1.3.2) (under minor conditions
on {ai} and {Y’I) with the additional advantage that {Yi}
can be‘gllOWe& to be a m—dependent process, 3ee Billingsby(l968)l
for some non-trivial eiamples of'functioﬁs of ¢mixing r,v,s
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and some interesting results on them, Philipp and Stout (1975)

and Philipp (1977) contain some strong invariance principles for

functions of strong mixing processes,

1.4 A SUMMARY OF CHAPTFRS 2 — 8

In Chapter 2, we conclude that in the {rmixing case, when
the mixing coefficlents satisfy  the condition I §-/2(1) <o

the ordersof the remainders in the r.h,s.s o {1.1.2) and

(1,1.3) are the same as the exact orders in the i,1i.d. case

obtained by Kiefer (1967, 1970 &), Since, an i,1,d. sequende of.

r.v,s 1s a particular case of {rmixing processes, the orders -

that we have obtained for @—mixing processes cannot be improved

upon further, in general, However, our results do not exclude

the p0531b111ty of the existence of some (~mixing processes

(obviously not an i.1.4, sequence) for which the orders of thc re—
mainders are sharper than the exact orders for the indépendent

case, Thils problem has not been settled yet, TFor both stroﬁg

mixing processes and functions of {rmixing processes, the orders

. are shown to be n—3/4(log n)l/? (log log n)l/4 and ﬁu3/4

L/4 _
(log nXlog log n) a,s8, in the r.,h.s.g of (1,1.2) and

(1.1.3), respectively,
Chapter 3 deals with the representation of quantiles with

non—uniform error bounds, The problem was posed in Kiefer (1970 a,
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1970 b), As was expected, the order of the remainders get sharper
and sharper as one moves towafds-the sample extremeé, In proving
so, some stability results on welghted cmpirlcal and quantile
processes for weakly dependent r,v.s are establishod which seem

to have thelr own importance.

'In Cﬁépter{é "the results of Chapter 2 are extended to-
general dlstflbutlons satisfying the same conditlons as in _

_ Bahadur (1966) and Kiefer (1970 a). We &lso pay attcntlon to the

nbehav1our of Qntn where t, —> t as n."“%uﬂ t e (O 1)

Nextly, we take‘up the representation of quantiles for distribut-
ions which fail %6 satisfy the usuél conditions on differentisabil-
lity, 1nc1ﬁded inlthe domain of our resulits are the distributions
) which have only right derivative, only left derivative. or have
both the éovlvativoe but they are unequel, - Our approsch consists
o of roformulatlng the problems in terms of uniform distribution
and then extending the rosults to the cases desired, In the last
section of this chapter, we have some results on strong approxima_
tions of weighted guantile processes which utilize the results

of Chapter 3,

The asjﬁptétic‘representation of Imstatistics isrstudied in
Chapter 5, The representation linearises the Dﬂstatistics except
for negligible remainders, In the proofs, we use the idea of

Moore (1968) and our results of Chapter 3,


http://www.cvisiontech.com

(19)

We investigate the rates of convergence to nomality of
nomalised gquantiles of mixing observations in Chapter 6, Non—
regular cases (i,éo when the underliying 4d,f, is not differentiable}
have also been taken into consideration. When specialised to the

1/2 logn for {-mixing

regular cases, the rate is found to be n
processes, The second pfoblem taken up in this chapter is the
asymptotic effective variance (as defined in Bashadur (1960)) of
sample quantiles of m—dependent observations, The corresponding
result for sample sum of m—dependent r,v,s which is needed in the

proof 1s also obtained in this chapter, The results help in

justifying ‘in part the use of sample quantiles as estimators.

In Chapter 7, we study probabilities of deviations-inthe.
specific case of trimmed type L—statistics, The problems are
tackled by utilizing the tools which lead'to-the asymptotic .
representation of quantile processes. In the independent case,
these problems can be solved by using some other well—known
methods also, but the present method enjoys the property of being
flexible enough for weakly dependent structures also. Nextly,in this
chapter, the arguments leading to the results of Chapter 5 have
been employed to calculate uniform and nonkuniform.rates of
convergence to normality of L—statistics., The results on non—

uniform rates of convergence to normality lead to in particular
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the probabilities of moderate deviations, Lp versions of Berry -

Esseen bounds and convergence of higher order moments,

Finally, Chapter 8 deals with the problems oﬂamatching weight
function wifh the underlying d,f,s %aking the asymptotic relative
efficiencdiés as the measures of performances. 4 general result
of this chapter. asserts, roughly; that a Irstatistics which gifes
less weight to the sample extremes performs better when the
underlying'd,f; F has heavyrtails than in the opposite case, The
."variOUS terms appearing the stétementijust made are defined in
this chapter and the problems are formulated in precise mathemati—
cal language, When speciélised to trimmed meané, these results
are also 'in accord with the récent data work of Stigler (1977),

The contents of Chapter 8 are published (Sankhjg,fﬁgr. B,
39, 26.35), A wesker versio. of theorem 2.3.2 was presented in
the joint meeting of’the Institute of Mathematical Statisties and
the Indian Stﬁtistical‘lnstitute at New Delhi (December216 =8,
1977) and the abstract ‘appeared in the IMS Bulletin (November 1977
issue). The contents of Chapter 2, in the present forﬁ, have been

submitted for publication.

Before concluding, we remark that the above summary is meant
to provide only an outline of the contents. All chapters that
follow have an introductary éection where the problems‘and the

- nature of the solutlons are described more explicitly.
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CHAPTER 2

REPRESENTATION OF QUANTILES FOR MIXING PROCESSES
WITH MARGINALS U [0, 1]

2,1 INTRODUCTION

Tet {Ui s 1 21 } be a strictly stationary sequence
of r.,ves, Iet En denote the e.d,f., that is

E (x) = ( #* U; £% 1<1iZgn)n,
i th . -1 |
We define the t7 . sample quantile E '(t) as
E?Qt) = "inf {x: %ﬁx)i'ﬁ} for t> O
= EL(4) for t = 0,

Kiefer has shown (sce Kiefer (1967) and Kiefer(1970 a)) +that
if {U&_} 1s a sequence of 1i,i.d. r.,v,s with U; unifornly

»

distributed on the unit intervel [0, 1], then

(2.1, msw al R (®| = 22/ 574 aan’t as,
n => oo I

and

(2,1.2)  linswp v R, = V4 4,
N~ e

o)
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where
=1
R (8D = (B (t) - ) = (+ = E (4))
< sup ()
"n 0<t<1 Hig (B |
A, = 274 (log log n)a/%
B = n73/4 (log n)1/2(iog log n)1/4.

In this chapter we shall show:that the ‘a.s. asymptotic
orders of |R, (t)} and R, are still naintained for certain
P-mixing processes, We also éstablish'slighfly weaker orders for
]Rn(t)| and R, for strong mixing processes and functions of

d-mixing processes under suitable mixing conditions,

It may not be out of place here to nention that Sen

(1972) has obtained a weaker result, namely for t e (G 1),
R (1) = 0@>/% logm) - a.s.

for @-mixing r.v's satisfying the condition

5 P(1) exp(rdl) K
1=1

for some A > O which is a much sironger on the nixing coeffi-

cients +than that we assume in the next section of +this chapter.
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2.2 QUANTILES FOR {=MIXING PROCESSES

Wo Tirst state our results for {-mixing processes.,

Theoren 2,21 Tet {'Ui} be 2 strictly stationary 0-

nixing process with P(Xy £t) =t Zfor 0t <1 and setisfying

(2.2.1) s V() <
j=1

Then, for 0O < t < 1,

(2.2.2) ELT () -84B (9)-t] = 0@ *(log 10g mPH  a.s.
Thecren 2.2.2, Under the conditions of Theoren 2.2.7,
(2,2,3) SUp {E"q(t)*t+E (t)-t] = O(n"3/4(log n)1/2(10g log ) 174
o<t B 2
e o aoso

In view of Kiefer's results for the independent case,
it follows that the orders of |R ()| and R, cannot be improved

in gencral for (Q-mixing r,v.s.

To prove the theorems, we start with some lemmas, The
proofs are given in some detail as the same argunents will be used

in the subsequent sections also,

Define, for 0 <L o, B <1,
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‘ (2«;)

(2.2.4)  x;(s,B) = I(min(e,B) Ty & max(e,B)) - [e-B] .

(Recall that I(A)' denotes the indicator function

of set A4 )

Iemma 2.2.1. Let - { Xi} be a sequence of Q-nixing r.v's

+,

satisfying (2.2.1), If ¢ is measurable B ond n is

nmeasurable Iﬁ;+n (n > 0), then
Ejg|T <o, Bln|® <o, T2 1, r+sT =1

imbiies :
[B(en) - BOEM | ¢ 200@N Y E {15l i

where ||

|, denotes usuel I, norm, Further, if P(|n] > ¥} = 0,

then ,
[E(en) = BGOEM| <& 2K §@). E(|g ).

The lerma is due to Ibragimov (1962). See Billingsley
(1968) pp. 170-171 for a proof,

We will use the following moment inequality in the

proof of the next lemma,

Iema 2.2.2, Under the conditions of Theorenm 2.2,1,

Bl 3 (e, )% < o w®/?

Mg
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for & 2 2, where the constant ¢(6) is indepcndent of o, P

and u,

Proc?, Terns 1.9 of ITbraginov (1962) states that if {Y&}
is a stationary scquence of Q-mixing r,v,s with =2 @1/2(1) { o
and Ein{a { = for gsome & > 2, <then

| ¥-[6 £ c(8) wd/e

E|
1 B

i

g

where the constant ¢(6) does not dspend on u. A carcful
exanination of the procf supplied there acertains thaﬁ"rc(a)
depends onlj on O, § and M > O, where E|Y1I6'<‘M° So our
lemma follows immediately for, |x;(a, a+B)] < 1 for all

i>1 and 0<£ a,8 € 1.

Termg 2,2.3, et {Ui} be as in Fheorem 2;2.1, Then,

therc exists d > 0 such that, whenever 0 < o < 1, 0 < B £ 1-a,

b¢Pb, 1TCugllN, H>0 and 0<D<b¥ %" ye have

g 4 o1
(2.2,5)  P(] ® =x.(a, a+B)] > 2d4D) < K. N + Koexplgp” N~ b~ ).
j=fe] T = 2

Remark 2.2 1. 1f we drop the assgumption that U1- has the

distribution U[0, 1] .and assune only that there exisis
0%ty <ty <1 such that il

P(U; £8) = s whenever s e [y, to]
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then the proof of the lemria acertains that the inequality (2,2.5)
s1till helds 1if

ty & mnin(e, a+p) ¢ max(e, a+f) £ 15

This remerk comes in use in the subsequent chapters.

Renark 2,.2.2, proof of Lerma 2,2,3 alsc implies that the

comdition 0 <D < wN'Y/24

can be replaced by a slightly more

general condition, namely

0 ¢ PP | > 0 fixed,

but the constent 4 appearing in the statement of the lemma

depends on €

a

Proof of lemma 2,2.3, Without loss of gencrality, we nay

assure that H =0, b > B> 0, We first present the blocking

proccdure which will be used repeztedly in wvhat follows, Tet

!

p=pl), 1<p<u k=k(w = [opl We write

b k+1 k ‘
Boox (e, a+f) = B g, + T IFY() ¢ Y® (w)
i=1 3=1 J J=1
‘ where
2,2,6) > : 5 )
(2.2.6)Q 55 = B Eppeyayeg (500 My = Rpyper (0
e 2 tlyes -y 45 and t, = 3 w.{a, a+f or O
959 ¢ T+ i=2k’.p+"fl ) ‘,

according us u-2kp > 1 or not,
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For the present case, we tnke p = Eu1/?j o 1L ez,

the lemme will follow if we show

P(Z » a) < the desirved bound in (2,2.5)

for 7 =Y, ¥Y'{w, -Y(), and -Y'(u). We consider only

the case 7 = Y(u) since the proof of the other cases asre similar

o

On letting z = DN“1b'1 and - g;'=.giI(|gi[ < 2"1), we

obtain
| k+1 sl O
(2.2,7) PY(W > ap) < PCT g, > aD) + 2(Y(w) # £ ¢, )
- = i : i
i=1 i=1
st g k+1 p s *
£ PC 2 g >adD) + = POlesf > 27 ),
i=1 i=1

Now, using Markov  inequality and lerma 2,2,2 with 6 = 60, we get

k+1 .
2 B(egl > 27D ¢ Ge) o) 2% ¢ agwt
i=1

Another application of Markov  inequality giveé-'

i k+1 4 k+1 ,
(2,2,8) PO 2 g, >aD) £ exp(-zaDd) Rlexpzr . )).
i=1 g=1 %

P

. ; * N * ¥ * )
Since |z gi[ <1, ¢lp) = ofp °Y ana (51 ve er By ) is a
stationary sequence, we have, by repeated application of the second

part of Lemma 2,2,1 with h = E(exp(z zf)) + 2e P(p),
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: Kl
(2.2.9) E(exp(z = N M)
1

e B( exp(z E; 1)

- M1

| ¥ 1, 1
3 B( exp(z g,)) E(exp(i% t3)) * 6e0(p) E(exp(wﬁ t5 V)

i~

8 k=1 *
3h B( exp(z 2 g ))
1

| PN

. < 31f

1728
2]
Y

Clearly . '
: * '
ho= 1+ [B(z ]| + 0" B(ED) + o™,

It follows from Lemmas 2.2,1 and 2,2;2 that

- p-1 . .
E(a?) = pV(x, (e, 0€p)) + 2 ii1(p—i) cov($1(a, §+B), x1+1(%, a(+8 })

o1/ 2 ()

0 ovag

{ pP + 2pb
=1

= 0(pB) = O(pb)

) ¥
Since log (1+x) £ x for x> ~1 and ]E(£1)l £ ZE(Ei)a
we have

(2,2.10) n¥ = exp(k log h) = exp(k log(1 + O(zzpb) + o(k‘1))

exp( O(uz B) + 0(1))

P

& Ky exp( Ky 32 y b"1).
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The desired result now follows from (2,2.8), (2,2,9
and (2,2,10) on choosing d = 8 + X;. This cempletes.the proof

of this lerma,

Lerma 2,2.4. Under the conditions of Theore: 2,2 1, there

cxists a constant ¢ > 0 auch that

(2.2,11)  limsup 1A'  sap  [E(¥) - ] <c a.s,
n -> c 0<tL1
where ), = w12 (Log log n) /2
Procf,  Tet h(m) = max |E_(j/n) - (j/n}|. Since,
Iisn
sup [E () - %] < h(n) + nfT,
0<t< 1 |
it suffices to show that
(2,2,12) lin sup K£1 hin) < ¢ a.s,

n o> =
To prove (2,2,12), let & %be as in (2.2,5), n, = [exp( [T]

A {n ¢ n.insny } and let A(r) = Anr. Observe that

i~

1 =1/2 -
5 n,(r+1) 1/ £ Bq -1, n./Jr .

Define, for ne A,
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td
1

n
me [y e
. {1<3<r i=n +1

n o .
¢, = {max | % x(—F— > ¢ YPo> 2dn N, )
- 1£j<n i=1 2
and
H, = nax E (1) - > 24 a(x)
4 {1$35? | Hp T r | }

Now, Bonferroni inequality and (2,2.5) with
(i) H=0, N=n, b=1 and D=1, A(r) gives that

P(Hr) = O(r'g) (iiy H =0, N =

L n, b=7T/r and D=n A,
. s e e N =

gives P(C.)) = 0(n™") and (iii) H=mn, N n - D,
b=1 and D= Jn, gives P(B,) = 0(m™%). It is 1mmed1ate

fron these estinmates that

(2.2,13) 2 B(H, T (B, U G < =
r=1 nep
o2
Notice that {n.ln'} is 2 non-decreasing sequence

and that for 0 e < B LT,

xi(O, 8y = =x, (0, a) + x4 (a, B) a.s.

S0, fqr n e A, we have, outside E, U By U Che

that h(n) < 64 A, and hence (2.2.12) follows fron (2,2,13)

and the Borel-Cantelli lemna.
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Terma 2.2.5. It (2,2,11) helde, then

1im sup At sup iqu(t) -t Lec 8,8,

n->c T 0KHLT
Proc?t, Pron (2.2,11) we have
P( s~ ch, < B (s) Cister,, ¥se [0,1],

for all sufficiently large
and henece
P(E,(t - cry) <t < E (t+er), ¥ s e [0, 1],

for all sufficiently large
Consequently

P(t-chy ﬁ_E£1(t) L trery, ¥ s e Lo, 13 ’

for all sufficiently large

This proves the lemna,

We are now ready to prove Theorens 2,2,1' and 2,2.2,

Proof of Thcoren 2,2.1. Clearly, for 0 £ t ¢ 1,

R (8] < [B, BZ1C8) = t] + |E, BZT(E) = B (8) - B (1)

and , .
W =T . I =i
|2, B (%) ~t] <& E, E_ () -~ B (B, (t) - 0

) = %
) & 1
A =Ty

+ -t],

g ]En351(t)-3n(t)-351(t)+t1 + ]En(t)+E;1(t)—tuEn(E"1(t)~O)|
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Therefore, in viow of Lerma 2,2.5, we have, with

probability 1,

(2,2,14) R ()] & 3 sup B (x) - B () - x ¢+ 1|
L R R T T

!Jlﬁ[zmnl ] = A n Il

R, (£) + (3/n)
for all sufficiently large n. So it is cnough to show that

1

(2.2.15)  1imn sup a-' R.(t) < X a.s.
n o n -
n —-> o
where a, = nf3/4(log log n)3/4. Procf of (2,2,15) > is similar

to that of Lerma 2,2.4, Let n,, 4, 4, »{(r) bec as in the
proof of Lerma 202,Q;, u(r) = 2ea(r) and let a(x) = 2{3 nr'anr°
Define, for n e i, o
B | ,
B, = { max | Z x; (%, t+ju(r)/r)] > 24 a(x) }
13&r i=n,*1

n - | s o
_ ) [ege u(r) M
Cp' = HaE 1 ii1xi(t [nu(r) r s ¥ % I
131g [2enn ] +1 ‘ i
> &ﬁ dn%l}
and ' |
H' = mox 1 ST x (%, £+ Ju(r)/r)l > Qda(r)}
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Here also, we estimate the probabilitics of these events
using Bonferroni encquality and Lemma 2,2.3, More precisely,
teking H=0, N=mn, b=ulx) and D = a(r) in (2.2 5)
we get P(H, ') = ofr” 2) ; putting H=n, N¥N=n,,-n,
b=u(r) and D =alr) in (2.2.5) we cbiain P(B ') = O( "2)
and finally, choosing H =0, N =mn, b =u(r)/r’ agdi_D = 2Jc na,
We gaé.that p(C, ") = O(nfg). These estimates imply fhat

SR v T g < <
r

From this and the Borel-Cantelli lemna, (2,2;15) follows.

Remark 2,23, In the independendent case, sup iEnEET(t) _—
< n~1 a.s. But this does not hold, in general, for O-mixing
T, Ve B0

Proof of Theorem 2.2.2. From (2_2,14) we have that, with

prcbability 1,

(2,216 sw [R,®] ¢ 3 ow sup  |B.(x)=E, (£)-x+t]
% 0<t¢l  |x-tig2en, o

for all sufficiently large n, ILet

b, == nf3/4(10g n)1/2 (1og‘lqg,n)1/{"

E1/bﬁ] +1 and vﬁ' = [2¢ a /b ] + 1.
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Uging sorne elenentary inecual
J

)

ities, it follows that

sup sup E,(x) - B () -~ x + 4]
<t |m-t]geen, ¢ -
< sup  { man JE(t + b)) - B (t) - b | + D
£ max sup B _(t + jb) = E (t) - b, | + D
15]4v," 0Lt n n n n n
Hax nax [E. ((£+i)b) - E (fb, ) - Jb,| *+ 2b
=~ s n n n**"n n n
31w+ Aswy
= RS+ 2b_  (say)
= R.‘n =Dy sSay

So, 1t is enough to show that

e . -1 %
(2.2.17) lim sup b Ry < K a.s, i
n -> =
ipplying (2.2.5) with H =0, N=mn, b =2c\ and

D=2Jcnb, ond Bonferroni

s o
PR, > 4Jc av, )

I~

2n sup

sup
0gsg1 [{L2eh,

tl

O(nfz)a‘

inequality, we get

B(|B, (s+8) - E,(s) - t] > 4062 b))
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Thus (2,2,17) follows with K; = 4Jed + 2 from the

Borcl-centelli lammz, This completes the proof of Theorem 2.2.2.

Remark 2.2,4. Note that
T, -1 " .
1B - 8] 1B - 8] ¢ JE-s] = 00D aus,
1 /2 :
whenever |t - 8] = O(n 1/T)a So, from the above proofs it is

clear that Thoorens 2,2.7 and 2;202 still hold if EET(t) - kn

: 1, =172
is replaced by ¥ (tn) -~ t,, where b, - t] = O(n / Y

Remaxk 2.2.5. In particular, theorem 2,2,1 sharpens the

result of Sen (1968) also Tor the m-dependent case,

2.3, QUANTIIES FOR STRONG MIXING PROCESSES

In this scction, we study quantilc processes in the strong

nixing case, We prove the following theorcms,

Theoren 2,3,1, et { Uy } be a strictly stationary

i}

strong mixing procese with P(X; < t) =t for 0 t<£1 and
(2.3.1) Cam = (e

for some J > O, Then, for every 0 < % <1,
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i 2
(2.3.2)  ELHH) -t o+ B (98] = 0(a~3"*(1oz m)° (Log log m)™*)

a,s,
Thecren 2. 3,2, Under the conditions of Tncorem 2.3.1,

. i > 1

L . - 7

(2.3.3) sup |B () -teE (t)=t} = o(n*(1log n)(log log n)™)

n n o it
0<t< ] TR

9,5,

To establish these theorems, we obtain some lemmas
sinilar to those given in the previous section and use thern in
the same way., The following lemma of Davydov (1970) 4is used

repeatedly.

1

Lemma 2,3.1. Let X, be a stationary sequence of

strong-nixing r.v.s. JTet X and Y be twe r.v,.s measuruvrla

o8 5 Il = . . -
w,r.t, the :o-;lelus 13, and TB. ., s respectively, Let

1 1 'l

+ 87"+ 1 = 1 and 1let

r, s, © 2 1 be sach that ¥~

i| Xl and u|[ Yil, ©be finite., Thon

2.3.8)  |BED - B D] & 10@@) IR, 1Yl

Purther, if || X1, <=, I} T, < e, thon

[eo)

(2,3.5) IB(XY) - BE(X B ¢ 4@ | X, §l Tl

See Deg (1973) for a proof,
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Lemma 2,.3%,2, Iet {Yi } be a sitaticnary strong-nixing

sequence of bounded r.v,s with mean zerc., If

(2,%,6) t 0% am) ¢ =,

n=1

then for &6 =1, 2, 3, ..,

2.3.7) B | 26

i

Y, |

I M

< a(s) n®

where d(8) depends only on the bound of Yy, 68 and {u(n)} .

1

=5 loTeninh It is easy to check that

. r n % 0
28 ;
E| £ Y.| ¢ (28)! n = |E(Y.Y;, ... Y. .. .
i=1 1 - R 0 11 l1+12+‘°°+126—1)l

where 2' denotes sum over the set A defined by

26w

A = {(i19-°-9i25m1) H ij > 0 are integers and jiT ij < n} L

We now divide the set A into (2%"1) parts as follows,
Pix 1 & jq < ... <& 26-1, Corresponding to this choice,

define
¥

A(j‘l’ecu, j6) ={ (i1’eo.,i26—1)_sA ‘: min (ij L] aoo,"ij )

1 &

¢

> the rest of the ij‘s } .

We congider two casecs,
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Case 1. et J§q =1 and lot |Y, ] £ B, 2.8 Taking

= = " 5 5 . i G 2.3, i
% = T and Y Yl1 coo Y11+12+°°°+126_1 in Lerma 2,3%.1, it

follows from (2,%.5) that (taking a0) = 1)

; IBCE. Yy ooo¥e v a2 )
oS o QR

A(j’],nnn,ja)

g 4 N2 > S ey

A(j1’000935) 7

*

25 5 oL B 651
< 4w ( TTC 31 ) = (i4+1)°7 a(iy)
o @ ) —
£=2- lj "'"1 .11""0 i >
£
= O(n6_1)

The last step‘follows from 2.3%.6.

fase 2. Suppose  Jq # 1. 'Then there exists £ such

that £, A1 & (Gqseees 350 S0 by (2.3.5),

IECY Ys  oc. Y3 . I% . o i
‘ O l.! l1+°°“+lx_1 11+.°°+lf" - 11"' o + 125_1

25 sy .k
< Ay e NolBTa v, .0y Tijeotigy

¢ i JaGp ¢ “(igep) |


http://www.cvisiontech.com

(39)

while summing we supply the arguments of case 1 .for m(il) and

'd(if41) scperately, This cstablishes the lemma .

For technincal reascns, we present two lemmas for the
strong mixing cose, which arce sinilar to Lemme 2.2.3. The
cxponential incquality of Iemma 2,3,3 provides us an upper
bound for the fluctuations of empirical processes, It is also

used in proving ILemma 2,3.5.

Temma 2,3 3. Let '{Ili} - be as in Tweorem 2,3.1, Then

there exists a ©° > 0 such that, whenever 0 €.a <1, 0< b £ 1-o,

o)

b <P, TSugl, H2C and 0<2 <b 32", 4o nave

d . .
(2.3.8) BC Y = x; (e, a+p)| > 2eD)
i=H+1
LK exp(-BDzN"T b"T/g) * Ky N‘“Bo
Proof, The proof is similar +to that of Ierma 2,2.3,

Without loss of gencrality, we mey assume that H = O and
3 .
b2 P >0, We split the sum = x; (¢, a+f) as in (2,2.6)
oo 1=t : ,

taking p = p(u) = E 2‘}13,/) 2 where ) 1is as in (2,3,1),
We shall show that

P(Y(a) > P D) < +the desired bound in (2.3.8)

and conclude the lemma as in the proof of lerma 2.3.3


http://www.cvisiontech.com

(40)

=-1/2

1—1 * ""1
Iet z=DN 'b and £; =%y I(ie;l L2 ).
Once again as in (2,2.7),
k+1- * 4 3 .
P(¥(w) > ¢D) & P( T g, > PD) + kP(|gq] > 2 )+ Plgy g > 2 Y,

i=1

Using Markcv  inequality, Lemma 2.3.2 and the condition

2 22/15

D £ bl s WE have

(2.3.9)  xkB(Jgq] > 27+ By, > 27D

< D) aeso) 2290 p20 = o™y,

-

et h = E( exp(z QT »). It 'follows from (2.3.1), (2.3.5)
and the fact that |z g, | < 1 (so that 0 <h ¢e) that

K+l
(2,3,10) ECexp( z % g5 ))
1
k *
< eB(exp(z = ;. ))
1 2
T

< e E( exp( = g; Yexp(z T gy )]
¥ 1

- TAC AN %
£ e(hE(exp(2z 2 g )) + 4 e a(p))
1

o e e WS o+ 4 e OL(p)(eik sl e s en= 1

i~
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< 305+ 12 k & agp)
= 3 0% + 0(1),

Using (2.3.4) with r» =4, s =4 and % = 2; we conclude that
5:2) = p T (p-t ' ))
a(g1 = pv(x1(a,a+5) + 2 ii (p-i) cov(xq(e,a+p), x1+i(a,a+ﬁ

p-1 |
< pB(I=B) + 2 1 (p-1) oV/%(1) (BO-pN1/?
= i=1 " )
= @(b1/2 B).
8o
' 2" 2
(2,3,11) h & 1+ |E(z 21 ] + O(E(z" €7 ))
< 1+0E"EED) < 1+ 0k b/P)
' Finally, by Markov inequality, (2.3,10) and (2,3.11),
k+1 _ k+1 o
(2,3.12) P( = g, > D) < exp(-zfD) E( exp(z © . ))
i=1 ¢ i=1 t
< Ky exp(-z°PD) exp(k log h)
< Ky exp(-zfD "+ 0(22 RADD
< K exp (-8 p° !B "1/2

The result follows from (2.3.9)

and (2,3.12) on choosing P = 8+Kg.
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Terma 2.3.4, Under the conditions of Theorem 2,3.1, there

exigts a constant K1O > 0 such that

(2,3.13) lin sup AT] saup B (1) - t| £ K4 8,5,
no>e 0 ogte1t  ° -

vhere A, = n~1/2 (log log n)1/2,

‘The proof is omitted, since it results by using Lemma

2.3.3 in the same way Lemma 2,2.4 does-by using Lemna 2,2.3.

Lemms, 2,3.5. Tet { X } be as in Theorem 2.,3.1, Then
there exists a °  such that whenever 0 ¢ a <1, 0 <& £ 1-¢,
e <P<e, 1<¢ugy, e>u /1% H > 0o and

c Y60 2 ¢ 210 o
’ H+u _
(2.3.14) BE e~z 68, @B >R e @)
i=H+1 T ?

Proof, We take, without loss of generality, H = 0,
(98
e > 0 and split the sun 3 x;(¢, #+f) as in (2,2,6) taking
' i=1 |

p = Q(u)-= Eu7/1o ], This tine we take 3z = Q(Me log M)—1

' * ' ' E_
and define g5 = €3 IC ez £ = 1)° Here also, we shall
show that

P( T g > f,Q) £ the desired bound in (2.3.14)
=1 . . ; ;
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and conclude the lemma similarly, Once again we write

e+t B+l 5 1 -1
(2,3,15)  P( ii1 gg >0, Q < P(ii1£i) * kP(leq] > 27 DR (g 4227 )

To e¢stimate the last two terms in the r.h.s. of

e, N= [/

d s -3 -
(2p) and D= (202)™1. The condition D~ < b R/ or

(2,3.15), we apply our Lemma (2,3%.3) with S

Lemma 2,3,3 1is met becamse of-the restriction that Q2 > zM59/6O°

Thus, we have using (2,3.8), that

-1 -
k Ple,| > 27" + B( trar > B )

< K (k+1) exp( a(zen wT/10 /2y 0(™)

1]

0(%{‘4)

in view of the restriction that Q2 < e3/2 M13/10, We estimate

k+1
the probability F( = g; > Po Q) as in the proof of Lerns
i=1

2,3.3. The only diffcrence is that we use a sharper estimate

2
for E(e, )}, namely,

E(z,1 Y = 0(p e log M),

We obtain this as follows.
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i

(2.3,15)  BGS) = p Vi (s, o+B))

p-1
+ p B (1—i/p)cov(x1(aga+ﬁ), X1+i(a’ a+B))
ii=1 ‘

or1 10g u
pw * pl ;}

_ g
- + j} | _ )cov(x1(d,a+ﬁ),xTﬁﬂa,ﬂ+ﬂ

b~

i= [2Y T10g M+

( 7 is defined in (2.3.1)).

We ostimate the first ternm in the r.h,s. of (2,3.,15) by
Cauchy - Schwartz inequality and the sccond by (2,3.5), . Thus
we have

E(E?)

O(p BY o+ O(p B log M) o+ 0(1)

i

0( p e log M)
The proof of this lemma is complete,

It is worth noting that the only reason why it has not
been possible to get the sharpest possible orders in the strong
nixing case is the appearance of log M terr: in the estimate

of E(g?)o
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Proof of Theorenms 2.3.1 and 2.3.2. The proofs follow

fronm the Lemmas 2,3,4 and 2.3,5 as in the previous section

2.4 QUANTIIES FOR FUNCTIONS OF ¢-MIXING PROCESSES

et {Yi g 32 T } be a staticnary sequcnce of

r,v.s satisfying O-mixing condition

(2.4.1 = o %, s> o,
Let g@g denote o-field generafed by Y;(a <1iZ b), Define

U, = £(%, Y,

n 1’ LRV ] ): 1'].2_1

4

S 1l
Uy = E@, | B )

b1 i 11101
and
ElX, = Xt £ P@,
For technical reasons, we shall be assuning that
(2.4.2) Pl = O(e™M) | A > 0,

With this dcpendence structure on the sequence {'Up} we obtain

the following theorems on giantiles,
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Theoren 2.4,71. et § Uy } be a sequence of functions of
P-nixing w».v.s as described above satisfying (2,4,1) and

(2,4,2) with P@; £ ¥ =1t 0Lt < 1. Then, for all 0 < t < 1,

rEzq(t) -t + B () - t] = 0(n‘3/4(10g n)1/2(10g log NG
a,3,

Theorcn: 2,.4.2, Under the conditions of Theorem 2.4.71,

sup ]Eg1(t)~t*En(t)-t] = O(n_3/4(log n) (log log n)1/4) a.,s,
0<tL1
Proofs, It is plain from the proofs in sections 2.2 and
2.% +that once we have the exponential inequality similar to that
in Lomma 2,2,3% the representation Tesults follow without
using the dependence structure of the underlylng process any nore
So, let us conclude the apove stated theorems proving the following

lerme,

Terma 2,4,1, Let { Ui} be as in Theorenm 2,4.1., Then,
there exists a constant a > O such that, whenever O £ o < 1
: B . f 4
0<b <1, -b<BLb, 1Luck b2N, §1/8¢ p ¢ o/t

where CSJI = §5/4(4+5), we have
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i H+u
(2.4.3) PO 2 x (s, a+f) | > 3 a D)
i=H+1

< Ky, exp(~BIP(Nb log W)+ x,, WA,

Proof, fnee again we take H =0 and P > 0. We define

q = l:u(']/@);-ﬁ-l] and

x; 5, o) = D(eal WS a+p) ~ P(a L0448 a+f), F 2 1,
Clearly
. u
(2,4.4) PC1 = x;(ey o+f) | > 3 a D)
i=t -~

L PO g X-qfq, a+f)| > 2aD)

(xiq(a, 0+B) - x; (o, a+p)) | > aDd))

To estinate the second term in the r.h,s, of (2,4,4), let us

observe that for any q 2 1

(2,4.5) E xiq(a, a+B) - x,; (e, o+B) |

¢ 2B| I(e ¢ x; < ovB) - I(a & Xy, < a+h) I

+

2 [pqa)

i~

P(B) ]
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wvhers

A {Ui e (o, a+p ] U, g’ (o, a+p ]}

1q

i

H

B !

{jﬂi £ (a, a#p] 'Uiq e (a, o+ ]}
Now E '

P < B, ¢ (o0 /3@ ¢ (U, ¢ (a+p-01/P(g), +p])

+ PV ~ Uyl 2 91/?(q))

S_ % p;;A/gﬂ('q). |
The last step follows from Chebychev  ineguality and the
definition of ¢{(q). |

Similarly one shows that P(B) < 391/2(q) and hence
(2.4.6) Lh.s, of (2.4.5) ¢ 12072y,

This estimate along with Chebychev inequality, Minkowsky

inequality,.the;coﬁdition bl > N1/8 and (2,4,2) yields that

P( lg'] lXi(G, C.H-'B) = Xiq(a’ c.+l3)1 S g D) p O(N_4_) .

Therefore, if sufficies to show that

u — ] : . a
(2.4,7) (2 x; (o, a+B)| > 28D £ Ky oxp (~8D°(N b log M™Y.

i=1
u
Powards this end, we split the sum 2 xiq(a, a+p) as
i=1
in (2,2.6) +taking p = 2q and replacing xi(a, at+f) by
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Xiq(a’ a+B) throughout, If we chcose y = D(N b log n)~ .
if follows from the condition D < b /% "1 that lyes 1 &2

so that we need not truncate ;'S unlike in the proofs of

previous cxponential incqualities,

Cnece again, by Markov inéquality

K+ oy @l k+1
PO 2 g. > ad) < expl-y a. D) Elexp (¥ = £.))
3 & = i
i=1 7 1
Following the proof of (2,2,9), one has

k+1
E(exp (y 2 £3)) < 3h
-1

k

where h = E(exp (y £4)) + 2e0(p), The choice of p and the
condition (2,4,1) dimply that x0(p) = 0(1). Rest of the proof
is similar to that of L-uma 2.2,% except that we nced to argue

th;t

]

(2,4.8) k E(g?) N b log N).

Making use of Minkowsky Iineguality and the cstimate

(2,4.6) it follows that

(2,49 [z

lq(a, a+p) s £ I‘Xi(as-“*ﬁ)lig

R EN G I N RO

1/2

g + O(uf1)ﬂ

A
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In the following statenents, we express Xij(a9 a+f)

by X; 5 and  x; (o, a+p) by x; Tor brievity.
2 5 2 2 D
E = E( % x, = pE X5 2R | —-) E X.
(e3) ( : qu) PE Xjq * 2P . ( %14 %ig
Can~" log W)
< pd o+ 0L 1+ 2p Z |‘x1q]lz HXqu2
P t=2
. 2p } (] Byxg |+ B, (g ) #3y  Gg g )
i= [ 1 log N_|+ 1
| b
= 2D 1B xq%5 ]+ 0G™") + 0(pP log M)
i= [an~" 1log NJ+1
D
;> LB xx myy0 |
i= [4n~ " 1og W1+

* B oxg(xy-x, Ci/2] Y| 1+ 0(pP log WI+0(k
p .
S 3 > 12y 1o gy 110"/ 2202

i= (o~ 1og M| +1

+ O(pP log M) + O(k™)

Qb bptimizaidn us 1!(17"1“
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Using +he cstimate (2.4.6) and the condition b > X', This

yields (2,4,8) completing the proof of this lemma,

Renarke 2,4.1, A close examination of the proofs reveals that
_76)

the conditions 2 @1/2(1) { e and P(N) = O(W suffice to
show that Ry = O(n<—1/2)"€),e > 0 a,s, which is enough for

many statistical purposes,

n

An Ixample. It { e Qi + M ve 2 8 } is a

sequence of wn-dependent procesgs and

,Xn = a1 in + s gn_1 £ .

where {ai} gatisfies the condition a;  « sl o om the

seguence { Xn } fulfils the requirements of the theorems of this

scetlion,
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CHAPTER 3

RETRESENTATION OF QUANTILE PROCESSES
" WITH NON-UNIFORM BOUNDS

3.1 INTRODUCTIION

Tet {U; ¢ 12 1]. be o stationary sequence of r.v,s
having marginals as U [0, 1] . As in the previous chapter, we
define
(3.1.1) B () = (U <x 1&igm/m 0Lxgl
and

L :
(3.1.2) Rn(t) = E_ (t) = t + En(“t) -y

where E;1Ct), 0<t <1, is the quantile process. In the
preceeding chapter we obtained a.s. asymptotic bounds for

IR, (¥)| which are uniforn in te [0, 1]. It is natural to
expect that the order of |R (%) would be sharper when t

s o penr the extremes of the interval [0, 1] than the uniforn
order obtained previously, This phenomenon was also noted in
Kiefer (1970 a) and Kiefer (1970 b) but it was left there

as an open problem, In the section 3 of this chapter, we present

sone representations with non uniform bounds,
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This kind of representations appear to be helpful in
studying the samplc extremes, weighted quantile processes and
lincar functions of order statistics., These applications are

prcsented in chapters 4 and 5.

In scetion 2, some stability results are proved for
weighted enplrical processes both in the independent and dependent
cases, These results are needed in the proofs of section 3, Tﬁe
resulits of scetion 2 are also useq in the proofs of asymptotic

represcntations of I-statistics presented in chapter 5. .

For simplicity, we use /L, and AL, for log n and

log log n, 7respectively, in this chapter.

3.2 SOME STABILITY RESULTS FOR WEIGHTED

EMPIRICAL PROCESSES

With E (), as in (3.1.1), 1let

V (%, ) = [E (-] /(t(1-t)" , 0<i<1, 0Leg1/2
(3,2,1) and
' Vn(S) = sup IVh(t, e) ]

O <t< 1
We first establish the a.s. results for the asymptotic

fluctuations of 7V, (e) when 0 < & < 1/2,
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Theoren 3,2.1. (i) If U, } is 2 sequence of m-depedent
B

r.v,s and ‘0 < s <1/2, we have
(3.,2.2) Vn(S) « n /2 XK;ZQ a.s.,

‘ (ii) If { Uy } is a sequende~of @-mixihg
r.v.s such that @(n) = 0(n” }) Y > 2 (vhen Y ='2, under the
additional condition that Z @1/2 (1) <0 ) and "
_ 0ze <1l/2=1/2( Y+ 1),
we have (3,2.2).

(ii1) If { U } is a sequence of strong mixing

r.v.s such that a(a) & e—hn  A>0 and 0 e & /4 we
have (3.2.2),

Since .the proof proceeds along the same lines as in
the last chapter, we omit the details, The proof hinges crucially
on the following ; B "

Lemﬁg,3,2,1 Irrespecﬁive of the dependence structure of the
process { Ul}

1

1]
n |
1

B! g 4D =0 = 1-m0 - iy sl sude)

for all sufficiently large mn, with probability one.
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Proof,  We shall prove only the first part of the lerma

since the secoond follows by symﬁétryO* B& Markovfinequality,

s ) 30 -1 —1 p=3/2
(3.2.3)  PB(E (3xm LAy My | )‘>.n ) L3R M.

_ _ &k (1 _ . o
Let n(x) = 27 and U, = mln{lj T n} R
ffl%ows fron Borel-Cantelli lemma and (3.2,3)
1

n(I‘) > -3(1’1(1') X

that

3/2 -1
n(r) Kxn(r) )™ for all sufficiently large
with probability one.

r

Further, for n such that n(r) < n < n(r+1)

(1) (1)

S c1 e el el 32
Uh 2 .Un(r+1) 2 3Calr+1) xn(r+1) x‘n(r+1)) 2, 7 Xn xxnj

for all sufficiertly large r with probability one, This proves

the lemma,

Iet us concentrate on the proof of (i)
theoren 3,2,1,

part of
- The- following cxponential ineguality would be the
nain tool in the proof. ' ”

Defing, for O < a, B < 1

x; (2, B) = I(min(e, B) < U; < max(e, B)) -
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Tom 3.2, 2, Iet { Ui} be m~dcpendent r.v,s, Then,

there exist 4 > 0 and K, > 0 such that whenever O @ <7

| R
~a £ BT -, Bl LDb>»0, TLuf¥, H>0 and 0 LD <MD
for sone 0 £9 £ 1/2, ‘one has

S H+u o v W : e o 1
(3.2.4) PC YT xi(o, o+B)] > 2dDb < ¥y exp(~8D7NT ),
= "1 -~

i=H+1
Proof. Let us take, withcut loss of generality, H = O,
S el A y e I
b> #>0, We divide the sum 2 x,(s, a+B) as in (2.2,6)
i=1 \

with p =n so that the alternative blocks arc independent. Now,

by Markov incquality,

‘ F= .e.‘ k+1
(342.5) P(Y(w) > a&DDb ) & cxpl-z @D b ) E( exp(z % £5))

| -
where z = b ek b

e 3 T

Using the facts that jze¢;] < n and E(gf) < XK,ph,

we obtain
' o T 2 .1 | ik
(3,2.6) Lh.s of (3.2,5) £ 3 exp(-dD W) (E(exp(z £4))"
5 e 2
< exp(-dD"N" ' + k log(l + O(z"pP))

< K exp(-8 D° W)

by choosing a appropriately. Similarly, onc obtains the
inegualitics for -Y(uw), Y'(u) and -~Y'(u) to complete the
proof of the lerma.


http://www.cvisiontech.com

(57)

Proof of Theorenm 3,2,1 (i) Iet us fix 0 < 8 £ 1/2 and

show that

(3.2.7) sup B (8) = 3] 720« a VR 1% as,
o<tL1/2 | n.
which will then imply (by considering the r.v,s {];Ui} and noting

zhat the proof works for the left continuous version of Eh(t) also)
hat ' | | )

sup B () - t] (=072 0« a2 )2 g g
1/24t<1 ;

and these two together will complete the proof of (3,2.2).
We write & = 1/5 in what follows. ILet us divide the

interval (0, 1/27] into three parts as follows

(Op 172] 9= N Eat0 kg U I

n2 n3
1 -2 I it
wheve Toq= (0, w AL ], I = (TGS, A ] end I o= (057,172

lemma (3,2.1) implies trivially that

sup {{ Vh(t, /2 =6) | : te I, }~K nf1/2 111/2 a,.s.

Therefore, it sufficies to show that

(3.2,8) sup { T, (8, 1/2 =8)] 1 e I, a2 gg1/2 as,
and

(3.2,9) sup { [V,(t, 1/2 -8)] “te Is} < w12 (g% as,
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To prove (3,2.8), we divide the interval I , into

subintervals of length nfB_ and observe that
AT L -1/2 +&8/2 .,
(32,10 sup { |E (t)-t] 3 s te I}
5 ] - Q a’)- fl ol _- ’
< max {|E (s)-s| s R %< g = x 11n2+n 3,

nﬂ1x;2+2n“3, e | n-""]x;l2+ [x;lan.s_'_.]j n"B} + n‘-‘l/.f
Pix ébme value of - & as in the r.h.8, of (3.2,10). PFronlenna
3.2.2 (with D = (Nzn)1/2 8=1/2-8/2, u=N=n H=0

s)

and B = b

P( [En(s) ~s| > 24 5 A tos s /e 12/2) & n®

From this, Bonferrcni inequality and the Borel-Cantelll

lemma, it follows that
, | _1/2 . 4/2
sup { (%, 2-8 1 teI,}« nVPl/% e

since /% ¢ £21/%  forall te I (3.2.8) follows.

29

Comming to (3.2.9), ve divide the intervel I,

into subintervaels of length 1~ and see that


http://www.cvisiontech.com

(59)

o —1/2+& 1/2 -6 ‘
(3,2,11) sup IEn(t)~t[ t _ﬁ{rmnc |2, (s) =8|/ s 2
tsln3 :

LSO, = - = 1 - =172
8 = 5, R w L R [T e oI

Now, we.define three sequences. of events as in Lemma 2,2.4,

let n, =.exp(JT) (so that -E(r+1)~1/2 < n, -y, $ nfr),

'Af = {]1 ! n. X a¥in, }, }For ne A, define.
_ {
n

B(nj' :w{ ama? I ] . £ x;(0, 8) | §3/2\+6 > dp;/2 b
s=[£ +3j/r ST A :
1¢3< %721 |

H(r) = { “‘: nax | "B, (s) - s | g=1/2 %6 5 o9 n;i/2xx;£2 }
o= 3/x 42 ;
1¢3¢- [x%/ 2701

and | .

cm) = max [T,(2(3), F -0)= V,(z'(3), $-0)] > 2any /%]
1€3< [n/27)+1 ,

where _z(j) = 'X;a + /ol and  2'(3j) = X;a + [ r4a/nj e,

We show that all the threc sequences of events occur only
finitely often., This would inmply that { r.h.s, of - 3,211
2 (el n71/2 1{;/2 + nfj/g }.oqcurs only finitely oftem a.s.

which proves (3.2.,9),
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We estinate the probabilities of B(n) and H(r) using

 Bonferroni inequality and Lemma 3,2.2, In Lemma 3.,2.2, we take

b=1, N=nr+1 _-__-nr,'Hznr’ D::n;/2’.e::1/2 = for

Bw) end D=1, N=n, H=0, D=n’/?g)/% ana & =1/2 -6
. =2
0(z™"),

1}

for H(r) +o conclude that P(B(m)) = O(m™°), and B(H(r))
Pinally, ‘coming to C(n), we note that for 1< J & [w2]+1,

7 (23D, 5 =0) - V(2" (D), $ -6

< 21En<zij>> =5 20 o= B (z'(3)) + z'(j)]/(%‘(i)){}é =
+ 20B, () - 2| L™/ 47 P @2 ]
LKy BpE@) - 2(@) = By @) ¢ 2 @)/

+ K |E (2(3)) - 2| / x

where the last inegality follows from the facts that

12(3) = 27 (D] £ r—4a’ [(Z(j))<-1/2}+5_(z.(j))(—1/2)+51 <K r-2a’
z(3) > r%, 2'(3) 2 @ and a ¥ 1/r > 2.

In view of these inequalities,

P(C@m)) & mn max LP(E, (2(3))-2(3)-E (2" (2" (3D ]
1€ [ny2+1 - |
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The first term in the brackets can be shown to be O(n °)
by teking b = r"4aA, N=mn, H=0, = Kf1 n;/g r/2 and
o= 1/2 in Lemma 3,2.2 and the second tern can be shown to be

1/2/¢

O(n ) by taking b = Z(J), H Sl H = 0, D= 5 nr and

8= 0,

Now, the stated assertion follows from the Borel Cantelli

lerma ond Bonferroni. ineguality.

Protf of Theorem 3.2.1 (ii). The proof is similar to the

above proof, The probability inequality to be uscd is stated

below,

Temma 3.2,3. Under the conditions of Theorem 3.2,1.(i1),

there cxists a constant & > O such that whencver O L aX 1,

(BT q' ] <b>0, T<ugh, H>0 0£6L1/2

and 0 <D LB N 1/2(7+1> ) for some J> 0 (fixed),then
H+u '

(3,2.11) P(| = i.(a, a+B)j > 24 ﬁen) < KﬁN’4 *+ Kg exp(—8D2N-1)
i=H+1 * - .

: This lemma’is proved by initating the proeof of Lemma
2,2,3 and by choosing p = uj/\y+1) . The condition
e < 1/2 = 1/2(Y+1) comes in when considering the interval

Iom (cne starts with e = %,_ §T?%TT - 8).
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Proof of Theorea 3.2.1 (iii) . Once again, the proof follows

v imitating the proof of part (i) using the following exponential

bound,

CLemmg 3.2.4, Under the comditions of Theoren 3.2,1 (iii),

there cxists a comstant 4 > O such that whenover O £ @ £ 1,
e B<1—u, B <D>0, 1 LusN, H2O0 0Le<1/4
and 0<D <B4, y> 0 (fized), then (3.2.11) holds,

This lemma is proved by imitating the proof of Lemma 2.3.2

Sone rore results on the stability of weighted enmpirical

processes are presented in

Theorer 3,2,2° (i) If {Up } is a sequence of n-dependent

v (o, 1] =z.v,s, then for any J > O,
(3.2,12) v (/2 o« /e 2 a.s.

(1i) TIf | U_ 1is a scquence of OQ-mixing r,v.sS
n 5 .

with @(n)'= O(O"Qn), Q> 0, then for any J > 0,

v (1/2) K 172 £§/2 +/ a.s.

To prove (i) vpart, we use


http://www.cvisiontech.com

(63)

Lemma 3;2,59 If { U } is a sequence of n-gdependent

Wi 0, 1jl‘r.v,s and ¢ 1is a sequence of positive. constants

4

such that crldi(g ne, is non-decreasing in n  after certain

n onwards and nec, 2 1, then

(3.2.13) ' En(on)” £he, K(n a.s,
Proogf,  Define n(r) = 2. With H=0, N = n(r),

o = i, B = 4 e e 1/2 1/2
B.= Cn(r) . b = Cn(r)xxn(r), o = 1/? and D = n(r) Cn(r Kx (r)

o in Lemmg 3,2,2,.we,get
P( nlr+1) §$Qn(r))7 >‘ (4a+2) n(r) Cn(f)_ixn(r) )

& B nﬁ-%$°n(r)) = My, Oy 7 Cd n(r):cn(r)‘lzn(r) )

O(rf2)g

so that n(xr+1) E%Cn(r)) expeeds (4a+2) n(r) Cr) Kxn(r) on}y
finitely often a.s, Now (3,2,13) follows,since

() & nGD Blepry) & (4aen@ey )
< (4a+2)n oy LA,

for all Lh(r) < n £ n(r+?) ond r sufficiently large a.s.
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Proof of Thooren 3.2.2, (i) . We will odbtain (3.2.12) with

Y = 1/2 and indicate at the end how the same proof works for any
¥ > 0, As remarked in the previous theorem, 1% is enough to show
that

sup ]En(t) = 15| =172 « nfq/g £ a,s,

0<t< 172

n

Once again the interval (0, 1/2] is divided into

three parts |
0, 1721 = (0, == P00 @ G P 0D T Yy B

That supremun of |E (t)-t] t~'/° over the first imterval is of the
desired ovdexr follows from Lemna 3,2,1 trivially, As for the
intervel (n—1 £ 1/2] , we divide it into subintervals of length

n"1 and note that

n’

(3.2.14) . sup B, (1) ~ ¢ g=1/2
A e 8 < T2

""1 2 . =3 - —'1
< max {IEn(S)—S]S / . 81 1Kn, n ?Kn+n 9

. n—1£n+ [:'%4'1]11—.1 }+n—1/2

Then, as before,we apply the cxponential inequality of Lemma 3.2.2,

Bonferroni inequality and Borel-Cantelli lemma to get that
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: - . = ~1/2 ,1/2
sup { 1B (-] 1t e Ly, 1720} « o7 gE e

Finally coning to the second interval, we break it
. L ) ) _ ) =
further into threc parts (n 1 Xn1 KKHB/Q, n 1] , (1 1., L K;Il/ .
(n"1 11/2 y n"1£n] and use the Lemna 3,2.5 . UWe consider only

the interval ( o~ K;/g, n"jxn], The other two can be handled

sinilarly.
B T -G R E e LA sl A N S W CORY
> - = -1 172 3,
¢ V2RV Dect e n Y € VP
in view of Lemma 3.2.5,

]

Por gemeral 0 < ) < 1, the interval (™ nqun]

has to be divided into the subintervals (nf1, ng, (n—1£) n_112)],

@ L3 i

Proof of Theorem-3.2.2, (i), Once again, the proof is

similar to that of the (i) vpart. Essential tools and the

changes arc mentioned below,
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Terma 3.2,6, Let _{ U:} be a sequence of Q.mixing

v[o, 1] wr.v.s with §1) K e~ 9> 0 Then, there exisis

a 4> 0 such that whenever, 0 ¢ a ¢ 1, -a < B <1~ |BlKb>0

1¢udl =nd 0<¢DLN B/ *(Log W7,
we have )
u
2
PC| 2 xi(a, a+p)| > 2d b1/2D) < K9 exp(~8 D N—1),
i=1
. This lemme is proved following the proof of Lemma 2,2.53
with p = 9“1,1og,u, One does not need to truncate the r, vis. €4

in the proof of this lemna.

Temme 3.2.7. Tet '{ Un.} be same 25 in the previous lemua,

If Ch satisfies the conditions of Lenma 3,2.5, then
En__(Cn) " K oy )tn LA, a,8,

The proof is similar to Lermo 3,2.5, One uses the

probability bound given by Lemma 3.2,6,

In the main arguncnts of the proof, we divide the interval

(0, 1/2]] into three parts (O, o 1;1 1153{2] “11-1 xz—B/h Xn

and (n."1 n’ /2] We divide the internal (n"1 Kﬁ, 1/2 J as
in the proof of the (i) part and note the inequaiity (3,2,14),

For any value of s as in the r,h,s, of (3.2..4)
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P(n]En(s)_s| > 23 al/? 81/2£3/2) = O(nna)

by using the Lemnma 3.2,6 with N = n, f =5, b =sf
A z -1

p=n'"? £1/2 (so that the condition D LW H'/° (log M7 is

net ), Tor the rvest of the proof, we mimic the arguments of

the (i) part,

Remarkf3,2 (e The proof givén for Theoren 3.2.2 (i) also

shows that under the same condition
| S ~gh
(3.2.15) sup B (9)~t] (s(1-t)° « n° A5
n logn<t< fen™ log n '

We remerk in passing that not all the results established
in this scction will be used in the next sectiion, Some of these

results are to be used in the subsequent chapters,

3.3 " REPRESENTATION (FF GQUANTILE PROCESSES WITH
NON-UNIFORM BOUNDS

As mentioned in the introduction to this chapter; we
present herc some a,s., asynptotic representations of quantile

processces which show jthe behaviour of tho remainder mnear the

boundaries of the interval [0,1], The result for m-dependent

Bl Ll
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Theoren 3 3,1, If {Ui} be a sequence of mn-dependent
r.v's, thcn
‘ >
(Bn5 00 = sup Et(1-t):§"1/4|E;11 (t)-t+En(t)—t| & nzlog n
% <t < n-1 |
i oo @alBy
Remarks 3.3.1, It nay be mentioned that this kind of

representation is not possible in the intervals (04 n't] - and
L -I-l-"—l 1) since E(s) = E'T(1I/n) for 0<s <n”' and
g 2 “n n i =

E;j (s) = E;;(‘i}..ﬁ'ﬁ) sfor - fen” .<..‘ 5 <1 and it is known that in

the independent case

g (™) (187 (1-n"")
lin sup —_— = lin sup = 1 a,s,
n => o log log n n -> o log log n

(sec Robbins and Siegmund (1970).

We start with a lemma which gives us the estinmates

of fluctuations of weighted quan‘tileﬂpr.dces‘-ées',

Lemna 3,3,1, If {U;} is a sequence of n-dependent,

v {0, 1] r.v's then
e Bt 2 ! w7

1/2 =1/2 |B, (t)-t|

3 3 .
(3.3.2) 1lim sup sup. n 775 <K a.s,

38, OCRM An._lf‘.p ’-*.'ﬂ]"’!f—.]'/ iy (t(1~t))

{fr— - 11
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Proof, Tet us prove that

(3.%.3) sup'{ (E;'(t) Tt!t"i/g; n-1,_1og n<tg 1/2}

&« n—1/2 121/2 a,s,

Then, a gimilar proof will give
sup 4;1_t)'1/2;351(t) 4] 2 172 <t < 10" log n)

& n—1/2 ,{‘]/2

a
n '.SG

and (3.3%.2) will follow at once fron these oy

Remark 3.2.1. guarantees the existence of a constant ¢ > ©
such that
172

(3.3.4)  Unsw. . . osw - a/ ARV B 0= Ce
Y o Leiser e 1

N e mT LS B 1/2 ,
- e 9 a.s.

Therefore, for all sufficien'ﬁiy large n and & € En"1 L 1727,

5 = 081/2n-1/2x11/2 < En(s) {5 + csv2 n"V? /(;1/2 S .

(the null sct is same for all s). Hence, for s e |"_-_c_33n"‘l n,‘!/?]

and n sufficiently large, whiw C =
- /
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(%3,3,5) E (s-c gl/2 ~i/z K;/E) ¢ s - o sl/2-1/2 X;/g

+ (s s/? o172 xnvg) VL x;l/g & ok
and . ‘ |
(3.3.6) E (s + 2c G172 ~172 ‘111/2) s ge2 o g1/2 o172 ‘:1/2

ote ¢ 2o VT (YRR V2 (112 5 s,

with probability onc (null set being independent of s), Obviously,

(3.2.5) and (3,3,6) imply thot

(3.3.7) aup o G R A O Ay A
2 -1
en L, Ltg1/2
Furthermore
EE(e™n™ ') +en” 't
sup iEZ ()-g t-1/8 ¢ B e
nf, £t<en &

« w2 gl/e

since (3.3,7) implies that EZ' (c'n'g) « n'f, a.s.

Thus (3.3.3) holds., This completes the proof,
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Froof of Theorsm 2.3.1. Let us cobserve that
(3.3.8) sup (B () tem (1)-t] v /4
-1 5
nmLt i L,
< sup Lt/ 4 M em (1)) + 2t7/4]
n"1$ t gpf1xp R T

< n1/4»[E;1(n_1£n) . En(n“1£n)] v 0 g3/4 £n3/4

& n4 log n a.s, (using Bemark 3.2,1 and
Ak ' Lemma 3,3,1)

Next, following the first step of the proof of the Theorem 2.2.1

and using (3.3.2) we get

(3.3.9) sp . TECRGE) - b o« B (8 - ] t/4
» 0L <6 g 12 .

-2 8 sup sup |E, (8)-E(t)-s+t| g=1/4

= 112 =17 21 T2
n- L L1172 |-t |<2Kt "/ “n Ly

(K is the same comstant appearing in (3.3.2)),

~1

Fixa te [m fess 1/27] =and divide the interval
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/2 4w o 612 07 V/2 /2] into sun-

[t -2k /% 0= 1/2 ¢

intervals of length n—Bd Then, by the usual kind of approxi-
nations,
sup B, (8)-E (t)-s+t| +7 /4
ls—t] < 2K t1/2n-1/2x;/2 , ,
< - max  |E (4] nfj) - E, (%) - jn=| tf1/4 +
3] v, (®)

where v, (%) = [Cex 172 yo3/2 K;/E T+,

Purther, let us divide the interval '[pf1[n, 1/2] into
. 'z
sub intervals of length n~> and note that if s ¢ Ehf1£n+in"J,

n71£n+(i+1)n73] , then

-1/4

max B, (s + ] nfB) - B () = 3 n'3| s
3l & vy(s)
< o max 7'@_1/4|En(§+j‘n_3) = En(a) = nf3| o)
il € v+ R
where a = n‘1xn~+~fi+1)n73, . In view of this,
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(3.3.10)  1,h.s. of (3.3.9) < 2n"L nax max

r < En3/2:] ]j[gvn(n'1£n+rn"3) +1
, ~1 .
(nf1£n+rn73)Z|En(n71xn+(r+j)n"3)-En(nf1xn+rnf3)—jnf3[,

Let us fix some r and j (j depending upon r) as

in the r,h,s. of (3,3,10), We shall estimate
(3.3.11)  2G|B (0™ Uy (e+n™) = B (a” Y+ e gn)
= “ly e =14 174,374
> 2403k (n L, *r n77) n Lp/="0 »

Using Lemme 3,2,2, We take B = jn™°, u=1W= n, E=o0,

b =73 K(n"1,(n R LA x;i/g, 8= 1/2, and D = n1/2,(;1/2

in Lemma- 3.2,2 for the present case. We have to check the two

conditions, namely, |[B] ¢ b and D < N b1/2, Now,

18] % (vn-('-n"qxn Froamd) o+ “;f) o
< 2@l gy eV V2 172 L 5 3
< bp - (for all large n).

The senond condition is imnediate assuming, without loss of

gemerality, that K > 1, Hence, Lemma (3.2.2) gives that the

l.h.s. of (3.3.1T) = 0(u~9), -
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Now, a simple application of Bonferroni inequality and

Borel -~ Cantellil lemma shows that
(3,3.19 l.,h,s. of (3.%.9) & e 12(4 a,s.
Cowbining (3.3.8) and (3.3.9), we have

swp . (EST@ - b+ B8 - 17« ng, e
n~l ¢t g 1/2

Similarly, onc shows that

sup |E£1(t) -t + B (B) - t](1~t)—1/4"« n71Kn
172 ¢ 4 & T-n"" ;

completing the proof of the thcorem,
We now statc below the corresponding results for mixing

r.,v.s without proofs because the proofs are quite similar using

Theorem (3.2.1), (ii), (iii) and Theorem 3.2,2 (ii).

Theoren 3,3.2 (i). 10w { Uy } is a sequence of {-mixing
o, 1] r.v.s with 0n) K« n? (if Y = 2, we further
assume that © 0/2(1) < =) and 0 ¢ 2 < % - mysyy » then

3/4

SUp GO=8))" B (1) =t+B, (1)) << AT iy
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(ii) If { Ui} is a sequence of ®4nixing U [o, 1] A
Mn) « __,e_)n, Yy > 0, then

g ¥

sup b1ty )" /R B (-tem (1)-%) « 1y

_ 2,5,
<t ¢ 1-n

2
1 n
-

(iii) If { Ui} is a sequence of strong-mixing r.v, s with

a(n)y <« e“)n , J > 0, then for all 0< 2 e < 1/4

sup 1(t(1—t))—€|E;11(t)-'t+En(t)-t1 « w33 g,
<t < 1en”

n--‘I
Remark 3,3,2. (3.3,12) states that, in the mrdependent case,

S sup .%'/ﬁlEﬁ(t)_t«»En(-t)_t] « o g,
n L, g g /2

Thisg implies that

JBOE -1 Jn ()

Epp + o(1) a,s,
(tm(utn))v2 (-tn(1..tn))1‘ 2

whenever tn -> 0 and tn n /(;3——960 .This represen‘ta’;ion
trivially gives the asymptotic normality of the f.h,s, of
3,2.,12 it tn satisfies the conditions as mentioned above, In

general, for any sequence of tn such that
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. e B o S ; 2 : 3 :
lim sup t, — 1T+ 1 1(1c>g; n)Bs_.a and 1lim inf 1t - m h (log n)” 2

n —> n -y
oneg has
Jﬁ (3;11(tn)_tn) | Jn @, (1)-t) -% "'—% ¥ 73;') k
N 72 0((tn(1-tn)) n Ay,

(4, (1-8 N2 ”f (t, (1-t,))
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CHAPTER 4

REPRESENTATION OF QUANTILES FOR MIXING PROCESS
o . GEVERAL CASE

4.1 INTRODUGTION

Our main aim in this chapter is to extend the results of
the previous chapters regarding the representation of quantiles
for uniform distributions to- general distributions satisfybng '
certain smoothness conditions, Most of the results avallable in
this directlon assume the knowledge of second derivative of the
underlylng d,f, We shall refer to such d,f. s as regular cases,
In this chapter, we consider some more general d¢.f, s, (to be
-referred‘to as non-regular cases) Which in ﬁartieular ineclude
oases-ﬁhere'only right derivatiVes exlst, only left derlvatlves
exist or both the left and rlght derivatives exist, but are

unequal.,

The main technique of this chapter consists in using the
known respltsrfor uniform distributions by means ofﬂa suitable
transformation, sTO'be‘formal; let {Kn} 5@ a stationary
sequence of r,v,s having marginals F (by definition F is
right continuous) Let F, CX) -0 < X <00 be’tho e.d.f, at
the n™? stago and F, l(t) 0<xt=<1 be the corresponding
quantllc procoss We define U, = F(Xi). En(t) and %1 (t)

denote the e.,d.f, and the quantile process respectively for

Ui S

(77
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If the distribution of Uy s is uniform, which is true
if and only if F is continuous, there is not much difficulty
in transforming the representstion results known for E;l(t)
to F;l(t) even in the non-regular cases to be consildered in
the section 3 of this chapter, But to get an asymptotic result
for F;l(t); it appears superflous to assume that F. is continuou
throughout, TLemma 1 of Kiefer (1967) suggests a method for.the
independent case by which one needs to assume continuity of F
only in a neighbourhood of F*l(t). However, it appears that
the technique cannot be easily extended to the dependéht
situations also, We employ herc an alternative method which

uses local uniformity., The main idea is given by the following.

Lemma 4,1,1, Let X be a r.v. with d,f, F and U = F(X),

If F is continuous in an interval (a,b), then
(4,1,1) P(U <u) =u for all uce (F(a), F(b)).

In section 4, wo obtain the strong approximation of

quantile processes as mentioned in Chaplter 1,

Throughout this chapter, we confine to only ¢ - mixing
r,v, s, although, the same proof works for other weak~dependence

structures considered in the previous chapters,
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4,2 REPRESENTATION OF QUANTILES IN RBEGULAR CASES

th

For some t & (0,1), let us define t quantile of d,f, F

as

(4,2.1) Q. = inf {X s F(x) > t}_.

Our first theorem provides representation of quantiles for

fixed t e (0,1),
Thegorem 4,2.1, Let {Xi} be & stationary sequence of ®~mixiﬁg‘

r,v, s with, Z @l/2Ci) <00 and, Xy having d.f, F. For some

t e (C,1), let us assume that F 1is twice differentiable in a
neighbourhood &f Q. with first derivative bounded away from zero
and the second bounded, Let' Qnt denote the tth sample quaﬁtile.

We then have |

(1) If t, is a sequence of positive numbers from (0,1)

such that t —> t as n —> _ then
(4.2,2) gL e E O LRIN O, |
4,2,2 ~Qp = + R (F, t
e T 5 T
Where
ey g -3/a,, . \L/2", 174
(4,2.3) IRH(F;tn)L = Op(n (log n) (log log n)‘: '

+in~1/2 6, - t{l/z)
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(4.2.4) Rn(F't )] = oln 3/4Clo n)l/g(log log 351)1/4

#0772 (5@)M2 (og 1og 01
a,s. with t(n) = sup {It; - ¢l}
(11) P B, 7 t] = o(n"l/g) as 1 ——>¢n'; then
(4.-'2.-5),*.. :_ldntn --':§t_—'[t --.Fn(Qt).]./F‘(Q;G_)-l W R
;706 ?/% (1og log.n)8/4 + .ty =t aus

n .

We shall derive the theorem from
Lomma 4,21, Let {Xi} be same as in the above theorem,
Define Uy = F(¥). Let B (t) and E (t) demote e.d.f.

and the quantile process respectively for {Ui}’. Then we have |

(1y 1f t, —>t as n —>o, then

(4.2.6) Egl(tn) -t + B (t) -t = Ry(t) -

such that asymptotlc behav1ours of [Rn(t )l is given by the
r.h.s.s of (4.2.3) and (4.2.4).

(11) If itn -] = O(n—l/z) as n —>c  then
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(4.2.7)  ETCE) -t + B (t) -t

= 0™ 4(10g 1og M2 + |5, - 1) a.s,

Proof of Lemma 4,2,1 (i), The regularity conditions assumed

on F imply that there exists a & > 0 such that
P(U; < s) =8 if se [t - 28, t + 28],

In view of Remark 2,2,1, all the proofs of section 2,2
hold if we confine ourselves to the interval [t - &, t + &1,

Consequently,

-1
(s) - s + E_(8) ~
s TR e L8 e

= O(n~3/4(log n)l/2 (log log n)l/4) a,s,

In particular, if t, —>t as n —>c, then

(4.2.8) B T(E) -t + B (6 )t ]

g n)l/z (log log n)l/4)

8,5. Since
PRI ) - by + By (8) - ]
< [EMCe )ty ¢ B (b)) = b ]+ B (6 )=t~ (B)+t]
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it follows from (4.2.8) that (4,2.8) holds if we show that

(42,90 1m ) - 6, - By(e) + £ = 0 7 g 61 P

and

(4,2.10) B (b)) =ty ~ B (¥) + t]
¥‘O(n;l/2(t(n))1/2 (log log n)l/g + n~3/4)

With the help of Lemma (2,2,1), it is easy to see that

W%ﬁ)~t + B () - t) = om_ ~ 1),

[ty

This ylelds (4,2,9) utilizing Chebychev inequality. GComing to
(4.2,10), let us take t'(n) = t(n) + n—l/z. Clearly it suffices
to show that b

sup lEn(s) -8 - -‘En(t) + ] =
emtltt () |

= O(nul/g(t’(n))1/2 (log log n)1/2+ ﬁ—B/Q) ErSk

We prove this upper bound justimitating the proof of Theorem

2.2,1 (we make use of the facts that ~t*(n) is non~increa31ng

1/2)

in n and t'(n) zn The proof is omitted since it does not

require any significant change.


http://www.cvisiontech.com

(83)

Broof of Lamma ¢,2,]1 (ii). In view of Remarks 2,2,1 and 2,2.4,
A = AL/
if Jtn = t|l =0 3,

lEgl(tn) %y Io En(t) + t| = O(n_8/4(10g log n)3/4) a,S
This yields (4,2,7) writing

BN~ b - B0 ¢ v] RN - gy - m 0]+ (et

Proof of Theorem 4,2,1 (i}. Regularty conditions of the theorem

inply that F is strictly increasing in a neighbourhood of g
and hence, for all large n, Fantn) = g;l(tn), t, = F(Qtn);
Fn(Qt) = EnCt). Therefdre; the conclusion (4.2.6) can be

rewritten as
(4,2.11)  F(Quy ) - F(Qy ) + F (Q.) - tL='RnC£n);
n n

Since, F is st;ictly increasihg in a neighbourhood of Qt,
it follows from (4,2,11) and the strong law of large numbers

that IQnt - Q4 | —> 0 a,s, Hence, by expanding jF(Qnt )
n : n

n
by Tailor's expansion, we have

(4.2.12) (Quy =~ Qg ) Fr@y ) + (Qntn = Qtn)2 Ft!(w )
X - o D n n }
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where @_ 1is a random point between @ and Q. . But, since
X ntn - 4

F' is bounded away from zero and F'' is bounded in a neighbour-

hood of @, the representation (4,2.12) guarantees that

(4,2.13) K

@ =8 1= 0/n
ntn tn P
Thus the second term in the 1 h,s. of (4,2,12)-is negligible as
compared to Rn(tn). Further, let us note that

(4,2,14) [ (Qy =~ 9 ) FH(Q ) = (g~ 9 ) Ft Q)]
n n n R P B =5

- 00e, - Q) (@ - 4.))
nt,, -_Qtn Qtn Gy
It

yug. Ce1/p
=-0_(n s

p‘ = tl) 045, X i

Now, (4.,2,12), (4.2.,13) and (4.2,14) prove (4.2.3),
Similarly we. see that
n

Gy - % | = 0072 (og 108 M%) w5

and

(h.s. of (4.2.14) = 0tn L2(10z log n)1/3 [t,~t1), a.s.
which gives (4,2.4).

Theorem 4.,2,1 (ii) is derived from L erma 4.2,1 (ii) by

a similar kind of substitution,
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Corollary 4,2.1. 1If i, == t, arbitrary slowly, as n —> o9

A

?

then the representation (4,2,2) holds with vn Rn(F,tn) —> 0

in probability and vh R (F, t,) (log log n)”l/g#—>=o.ra,s.

We now turn to representation of quantile processes for
the case of general distributions, We extend Theoram 2.2,2 for

general d,f, s as given below,

Let us say that é d.f. satisfies the condition (*).if for
some-interval I, F'(x) =0 1f x ¢ I  inf {F'(x) P xe I}

sl

= Kl >0 and Sup:{FTr(X) M X EPI} < o0 ., We have the foliowing

theoren for distributions satisfying the condition (*),

Theorem 4,2,2, Let {Xi} be a stationary sequeﬁce of O-mixing
r,v, s with Z,®1/2{i) < ¢ and the underlying d,f, F satisfy-

ing the condition (*), Then

R:(F) = 0(11“3/4 (log n)l/?(lpg log n)l/4) 4,8,

where . :
R, (F} = sup [R (F,t)]
0<t<1
and
(4.2,15) Bp(F,8) = Q- qp + [F () . t1/80(q,)

Proof, The proof is immediate from Theorem 2_2,2 and the follow-

ing two lemmas,
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Lemma 4,2,2, Let -{Xi} be same as in Theorem 4.2.2, Let B,
denote the e.4.f, of the sequence of T.V. S {Ui} defined by

Uy = F(Xi):' Then -for every t & [0,1]

a

R, (t) = F'(Qy) R, (F,t) + Frifwy) Qpe - Qt)z

where ﬁn(t)'= E1(6) + B (t) - 26, R,(F,t) is defined by

(4.,2,15) and wg is a random point between Q. and Qy .

Proof. Since F 1is strictly increasing on I, Egl(t) = F(Qut 7,
E,(t) = En(gt) and t = F(Q,). Hence,

(4.2.16)  E1(), -t TB(E) = t = F(Q) - F(Q) + Fy(Q) - b.

The lemma follows from (4.2,16) applying Taylor's expansion

and the condition (*),
Lemma 4,2,3., Under the hypothesis of Theorem (4,2.3), one has

(0.2.17)  sup 1o - 9l = 0" 2(log 108 1)) as.

O<t<l

Proof. Let - B, (X) be same as defined in the previous lemma.

Now, lemma 2,2.5 guarantees that

(4.2.18)  sup |EE(®)=t] = 0 Y 2(og 1og mTP) as.
0<t<1 | .
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Again, due to the facts that Eﬁl(t) = F(Q.), t = F(Qy),
we have, with the help of mean value theorem and the condition(*),

that

=i
(4,2,19) .. sup | -0, <k |E@) -t
- e an e 1%,
where Kl 1s same as the positive constant used in the definition
of the condition (*), Wow, (4,2,17) 1s a consequence of (4,2,18)

and (4,2,19),

Remark 4,2,1, For real numbe;s_ 0 <o =<8 5‘1, suppose’ that ‘the
underlying d4,f. F (which need not have bouﬁded}support) satisfiesthe
conditions I (2) F'(x) exists for xe [Q, - é,’QB‘+ eI Er >0,

and 1s bounded away from'zero on this interval (b) F''(x) exists

and is bounded on the interval [Q, - e, G + el. Thén the

proof of the theorem can be easily modified to conclude that

sup ‘an(F,t)l = O(nm3/4(1og‘n)l/2(log‘1og n)l/4) 8,8,

« <t <8
We mention in passing that the strong'approximation results
of sample mean known in literature for both independent, and
dependent cases (see Komlos et al (1975)).and Philipp and Stout
(1975) can be extended suitably to quantiles utilizing these

representations,
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4,3 RBPRESENTATION OF QUANTILES IN NON-REGULAR CASES

Theoren 4,3,1. Let {Xi} be a stationary sequence of .¢~mixing
r,v, 3 with =2 @1/2(1) <o and X, having d,f, ¥, Let

g s (0, ©) ~> (0,¢) be a function such that gle) —> 0- as

¢ >0 ond g(0) =0, Let Q be as usual the t"" sample

quantile. Then, we have the following;
(1) Let us assume that F satisfies the condition

~ F(x)

(4.3.1) 1m  HEE g% =4, >0

€ \lt'o = ) ' '
and is continuous on (x, x+ so] for some réal % and .y B 0,
If F(x) =t and Sty is a sequence of numbersfrom (0,1) such that
he t  and t, -t = O(nul/g) as n —> o then

(.3.2) a4y £y - D) = & - R F Ry

vhere vh B, 4 —>0 in probability and va R, ,(log log n) /250
BeS.

(11) Let F satisfy the condition

(4,3,3) 1im  E& "g%QIZ-F(X) = - d, <0
8_1,0
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x) for some real x and e_ > O,

and be continuous on [x - €0y %

If F(X) =t and t, is a sequence of numbers from (0,1) such

that t_ <t and t -t = 0@ /2 as n —> oo then
-, g((Qntn ~x) )= (t ~F (x)) + Bt

where vn R, y —> 0 in probability and vo R, t(1og-log n)"l/z
b y ' i '
— 0 as,

(1ii) Let, for some x,

1 B{x +e) - F{x) _
et gle) Rl
£ 4’() r ' B

.and

FCEi = gy Ly v
g(e) So= dg =D

1im
&y, 0
so that F 4is strictly increasing at %, Let t = F(x) and
.t, Dbe a sequence of numbers such that |t ~ t} = OQn_l/?)_
as n —>00, Def;ne h () = 4 if Qntn_z x, = -d, if

Qnt” 2x, If T 1is contimious in a nelghbourhood of x, then
n

g(JQnt - Qt hnCt) t = K (x)) + Rn +

where vn R —> 0 in probability and VE”Rn +(log log n)-l/z
] 4

—> U a,5,


http://www.cvisiontech.com

(20)

The theoram is derived from

Lemma 4,3,1, Let {Ui} be a stationary sequence of r,v, S
satisfying the mixing condition stated in the above theorem,
Let En(t)rand Egl(t) denote the e.d,f_ and the quantile
process for this sequence at the nth stage, Further assume
that for some 0 <¥% < t! <1, P(U; 2s)=s for all

s e [t thi,

(1) If $,2% and t -t = O(nul/z) as n —> o _ then

(4.5.0) (&6 )6 (6B, (6T [= 0™ (l0g log m)> Hrlt -t ] das

(i1) If ¢, <t' and t'-t, = Gih_l/2)3as nr—~>tp, then
(4.3,5) | (ET(E,)=t1) = (£ T =E, (¢! ))"la—ocnj3/4<1og log n)¥ %]t ~tt
4,5,

(111)  If t_ e (t,t') and |t -t ) = ocn“l/z), then

-—

SR i P O g pL ~3/4 . 3/4 _
(4.3.6) [B ~(t)) t +E, () tol o(n </ *(log log n)_ AR toj)a.a
Proof, (iiif part of this lemma is essentially same as Lemma
4.2,1 (ii). We present below the proof for (i) part and the

(ii) part is proved similarly,

In view of Remark 2,2,1, a proof similar to that of Lemma

2,2,4 viglds that


http://www.cvisiontech.com

(917

(4.3,7)  sup (B (s} - s| = O(n”l/z(log log n)l/z) 8¢S,
t <85 xt! ‘

and hence there exists a comnstant X such that, with probability

one,

En(s) > 5 - KB\nul/g(log log‘n)l/2

S for all s e [t,t'], for all n sufficiently large, A4s a

b ]

consequence, -

(4.3.8) B (b + (5,~8) + K, n"2(10g 1og %) >t

for all sufficiently large n, a,s, . But (4,8.8) amounts to saying

that
(4,3,9) lim sup nl/g(E;l(tn) S (log log n)"l/g <K, a,s,
. n — GO g
due to the fact that t -t =_‘O(n_l/2§.
In view of this conclusion, we claim that
e T +
(4,3,10) (B ~(t)) - )" - (.- E (%)) i
<..3 ‘sup A N |8 (s)~R (t)-s+t!
: -1/2 ' 1/2 *n n
0gs-t2K, n (log log n)
+ [t - t]

n

for .all sufficiently large n, a.s.
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To justify the claim, consider tws cases,

Case 1, If

of {(4.3,10}

Case £, In

|

IA

—

T <8 B () >t

ol
S ’ n
=0

L)

case E;l(tn) >t (== t, > E,(£)), we write

“Leey iyt eyt
(B, "t )-t) - (¢t - B (£))7|

Pt ) -6)F - (b B (Y] + | (58, () ~Ct,~B, (+))

lE;l(tn)ft—tn+En(t)[ + | (6B, (£)) = (t B (+0)F], |

By considering, two different cases {(t) <t and
’ - Bt = _

B (t) e [t tn],‘we see that [(t-Eﬁ(t))+~(tﬁ-Eﬁ(t))+lﬁltn”tl-

Thuq, if

) > ¢,

-l(Sﬁl(tn)‘t)+‘(t"En(t))+[£1351(tn)“tn+§n(t)ftl+Jt"?n1

<

A

ia

B, B (b)) -B (6)-E (6 vt | +{E, B (s )t [+ |tet_|

> t. In this case A.h.s,

']

5o

B, B oy )B (0B o et By G0 )R (8,00 6

24 & rs;lctn)-znct)-E;lctnm_[;iEncE;%tn>'-o)~En<t)~—E;1<tn)+t1

+ |t ~t]
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Combining the conclusions of Case 1, Case 2 and (4,3,9) we have

(4,3,10). Finally, we show

4.3,11) : sup lEn(S)fgn(t?'"4§+tF

OgsutfzKanl/é(log log n)l/z

= O(nm3/4 (log log n)B/é)
a,s,, by Just imitating the proof of Theorem 2.2.1 keeping the .
Remark 2,2,1 in mind, Now (4,3,10) and (4,3,11) yield the lemma,

Proof of Theoran 4.3

. Let us define Uy = F(X;). Conditions
of Theorem 4,3,1 (i) cnsure that there exists a e > 0 such that
F 1is strictly increasing at x and continuocus in (x, x + sO].

Hence P(U; < s) =35 forall s [t,F(X+EO)]. Also we have
B () = F(Qntn), E (t) = F, (x) and t = F(x). Hence, by an

appeal to Lemma 4.3.1 (1)

-1/2)

(4.3.12)  (F(Q,, ) - FGN' = @&-F (=N + o(n a,s.
F bl o n
Tt follows from rcpresentation (4,3,12) and the fact that
i i
)

F is strictly increasing at x that (Q,, ~ x) —= 0 a,s,
o 5}

Substituting the value of -4, h.s, of (4.3.12) from (4.3.1),

we have
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%) [0 ()] = (b-8, (x) e @™L/3)

n

ni S35g

(4,3,13) dq g((g

Since VA (t-E,(x))* = 0_(1) and VA (4-F,(x))* (log log n) /2

= 0(1} a.s,, (4.3,2) follows immediately from (4.3.13).

Parts (ii) and (iii) of the thecrem are derived from parts
(i1) and (iii) of Lema (4.3,1) respectively by simllar kind of
substitution, In part (ii) the equality B (t) = F (x) 1s not
true in general for a1l sample points but it is true with probabi-
1ity one, In proving this we use a éimple fact that if . for .
some set A, P{X; ¢ A) = O, then none of the X;’s fall in A

with probability one,

Remark 4,3,7, ﬂThé-continuityrparts of the assumptions in the
above theorem are redundent as for as the baiidity?if the theorem
is concerned however we have assumed it for the sske of neatness
in the arguments, Morecver, the exemples where (4,3.1) holds
and the continuity does not hold in (x, x + &) for any ¢ > 0

appear to be quite artificial,

Examplel;' The above theorem includes the followjné very common
non-regular cases S (1) F is discontinuous at x but it has
right derivative at x., (ii) In a neighbourhood of x, the
graph of F dis made of two straight lines joined together at

, q
& 4 IO ma D . OBHM Hon 1 o oy
L g \,.I._l..l.) N leca oy <o \.,u:.i)_b’ &o any
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Corollary 4,3,1. Suppose (4.3,1) and (4,3,2) are satisfied

with d, =, and g(e) =e% & >0 and that

oG
(4,3,1.3) D < Ut é v(I(XIth)) + 2 iEl COV(I(leQt);I(Xl+if Qt))'

It follows from the above theorem, the central limit theorems

of Ibragimov (1962) and the laws of iteratated logarithm of

gﬁ-

Reznik (1968) that

| o T 2,.2
‘TVE ant Qtl Sigﬂ (Qnt"Qt) _ff“> N(O, Ut/dl)
and
lin Vo [Q £ “‘Qtfé (log log rl]iml/zﬁ= U%/dl a, s,
1 —> 00 n - :
These results imply that Qg canfbe estimated efficiently
for large n if & 1is small,. : L bem e .

Some similar results have been obtained by Ghosh and

Sukhatme (1977) for independent r.v, s,

Remark 4,3,2. Let (4,3,1) and (4.3,2) be satisfied with

gle) =e and 4 # dé: that is, d; is the right derivative
and d2 is the left derivgtive of T thfg,:-Then it follows
from the theorem that the asymptotic distributlon of

v (Qnt - X is a distribution whose density is same as that
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2
2

where o, is defined by (4,3.13), Further

of 1(0, ¢2/dZ) on (-eo, 0) and that of M(0, 92/d%) on (0, cd)

lim sup (Q4—%) Vi (log log n
b o' o g

).—.1/2 =/ Gt/dl BeS,

IrLllm__l;Eo (%) v (log log n) 12 =-0,/8, a.s,

In the next theorem We’obtain stronger representations of
quantiles-under stronger smoothness conditions_th&ﬂ agssumed in
the previous thecrem, We state and prove below the stronger
representation corresponding to the (1) part of the previous
theorem., One can similarly obtain other versions which correspond

to (i1) and (iii) parts,

Theorem 4,3.2, iet {Xi} belsame as in the previous theorem,
Let gy,8, be two functions from  (0,9) to (0,) such that

| ngg) ~—> 0 as & ~—>.0, R38R is strictly
increasing in a neighbourhood of zero and g;(0) = 0, Assume

that F satisfies

F(xte) - F(x) _
- gq(e)

(4.3.14) , as

4 (L + 0(gy(e)), 4 > 0

€ —>0 at some real x and it is continuous in (X, X + 80}

for some e positivé; If F(x) =t and t, ‘is a sequence
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of numbers from (0,1) such that thZt amd t -t = O(nnl/g)

(4.3.15) 4, gl((Qntn—X)+) = (¢t - F N + By

where

m ~3/4 3/4
(4.3.15)' R%,tl— 0(n (1og log n)* +_5pn -t
t Mg, (K g3(K6 xJ)), a.s,,

where kﬁj'=~nhl/2(log log n)l/2 and g is inverse function

of g1 which is well defined in a neighbourhood of zZero,
Pr6of, OAGE again we shall be applying the Temma 4,3,1 (1) to
derive this théorcmo Following the proof of the previous the&gém;

we have, applying the (i) part of Lemma 4,3,1 . that

3

(4.3.17)  (PQpq I-FGN' = (45 (03 + 00 % (10g 10g n)
n . _ -
t e, -t

Substituting the value of A.h.s. of (4,3.17) from (4.3.14),

We see that
(4,.3,18) dq gl'((Qnt ~x)+)-[1*¥ o(gQCQﬁf ~x)+)]
Il n

= (t—Fn(x)S+ + O(nﬁ3/4(log log n)3/4 & jtn~t[) 8.5,
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~ As a consequence of (4,3,18),

(4.3,19) gl((Qnt 3y = 00} a.s. Oy, = n_l/z(log log n)l/z)
n o

e Saphem y Al Blm T e ¢ o TS s PR ot Sy LIPS SN S
and hence _
+ ] S 4
(40 3020) (Qntr{':_}s?— - Oclg8(§6 m)"n)) \_ ﬁa{',?‘;svﬂ } ‘; 5 ‘ ; L i \

Feeding (4,3,19) and‘(4.§¢291_,back to (4,3.18), we obtain
In the”indépeﬁdent case, one can obtaln the constant term

implied by O - term using the results of Kiefer (1967),

4,4 APPROXIMAEION _OF WEIGHTED QUANTILE PROCESSES BY GAUSSIAN
PROCESSES :

A Brownian bridge Eﬁt}, 0 <t <1, is a seperable Guassian

proecess with the covariance kernel given by
cov( Bltyky B (80) = tgnto-~ tyly »oi wn it

ot {Ui}\ be a sequence of 1,i.d, r.v. s with marginals
as U[0,1]., Let {Eﬁ(t) denote the e.d, £ of }{Ui} at the
nth stage., Komlds gt al (1975) established the following strong

approximation of the process K, (t),
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Theorem 4,4.1. Let E (t) be as defined above and { Bi(t)}
be a sequence of independent Brownian bridges, Then, there

exists a version of the processes B, (t) and {Bi(t)} such that

n
(4,4.1)  sup  [n(E (£)=t) = % B ()| <<(logn) ? a.s.
0 <t <1 i=1"
We -7 =11 combine this theorem with the results of Chapter
3 to obtain some strong-—approximations of weight'ed guantile

processes with appropriate Gaussian processes,

Let us say that a d,f, F satisfis: the condition (k%)
if the following are met &~

(i). F' and Fre eXisth throughout the support of F
with positive F! al-ld1bounqed Frr, (ii)} F' dis bounded awayhr
from zero in the'intépval Fi(x) - 8, F1(p) + 61 for some
0 <« <= p <l and- & > 0, -Ciii) F!' and F'! are non-decreas-
ing in (- '00.1,‘, F1(«)) and non-increasing in (F“l(B), oo), (iv)

lim sup £, /T <0
AR badty S

wlim sup. f /f < O
tim sup. Le3p)/fi1-at)

vhere £, = P (FHlCt)).

Before coming to the spproximation theorem, we would like .

+ta mention that the condition (iv) althoush looks rather


http://www.cvisiontech.com

(100)

restrictive, is met for most of the distributions which are of
practi;al importaﬁce. As a matter of fact, if Elelc <o ¢ >0
(Xl having d.f.'F);‘it is proved in Lemma 4.4,1 (see below)
that fl > K7 t?_ +1+§ for any €& > O (K7 depends on &) and t
in a neighbourhood of zerc, and a similar inequality holdé when

t +s near one, This means that £, === 10 as t(1 - t) — 0

at a polynomizl . rate. This seems to be the intuitive reason for

the condition to hold,
We now state our result of this section in
Theoren 4,4.2, Let {Xi} be a sequence of i,i,d, r,v. s with

the underlying 4.f, ¥, We assume that F satisfies the condit-

ion (**), TLet Fn(x),‘qnt and  Q denote e,d.f.; £t sample
gquantile and tth population quantile respectively. w(t) stands
for some weight function on {0711 ma £y = PEL()). If

até _ pe : JE; + ;'%-
E[Xli <od for' some a > 0, & >0 and w(t) = 0((t(1-t))" ~

as t(1 ~ t) —> 0 then, there exists a version of the precesses
{Qnt} and a sequence of independent Brownian bridges { Bi(t)}
such that

n 1/2 -

(4.4.2)  sup  |n w(6)(Q-e)~ B 3 B (8)]= ot )
1 o _ t i=1

n ~<t<l-~n

a.s. for gnme Yy>0.
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The following lemma is of central importaﬁce in proving
the theorem, It is also appealed to repeatedly in the next

chapter,

Lomma 4.4,1. Let X boarv with d.f, F and Q, stands

for any inverse of F. We ‘then have 5

1
(i) J (u(l—u))a“@' d Qu <00 for some a >0 and 0 < & < a
0

[X'l l/a-'-—< oo

- (i1) E[}’i_[a+§ < 00 for some a, & >0

" =
e J @t a g <o
0 hok

até

(1i1y 1If E{X] < and F satisfies the condition (**), then

1/8, = 0(C56))"TH®) Tas w01 - 1) —> 0,
Q| = ot - 572y as £(1 < ) —> 0,

. 2
1im sup © P Q 3/ < o
R t (4t)

llm sSup Ll = t) Ftr(Q(l."t))/fCI“ét) oo . -

R

Proof of Leuma 4,4.4.(1 ).

J Cl-~11)"5L_8dQ11 < 00
Ls2 5
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implies, by applying the transformation x=Q, , that
{.4.403) ‘f“ (1 = F(X)) dX < o0 .
O : ]

Since (1-F(x)) is non-increasing, (4.4.3) implies that

(1-F(x))2® = ocx"l) as X ~—> 00

——  A-FG) =0 )y 5 x s
o ~1

e I P(x® > x)dx <
0

=== E(X+)1/a*<oo :

Similarly one siows that

/g . . ¥ .
j uaﬁdQu
0% o

and this completes the proof of the (i) part,

Proof of (ii),

== i) PCX‘7> r}cl/‘(a-l-&))dx < 0O
0 .

=1 )
ez 1 - F(x (at+s) - O(Xﬂl)

we (17- PR = oG (84878
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o
= g (1 - F(X))lZa dx < co

L o il i .
e, { (1 - u)l/a a Qu < oo,
1/2 :
Similarly l/é
B(X™ )a+§ Bl )y ul/a
0

d Qu ' <o,

Proof of (iii}., " ~Under the condition (**},

atd

. 1L/ e i ','
BX|2* oo == p QW gy T (py(4) part of this

0 t
1emma)

t o (ge1ag))L/e

— dt —> 0 as t —> 0

t/2 Ty
= (t“ /T y [ dt —> 0 as t ~—> 0
t/2
=tay  ]1/f, = o(t"l”l/a) as t —> 0

t

Similarly, we see that

/014y = 0((1-t) 1172y

ags be 1,

The other statements of-thisﬁgért are derived using the
order of 1/f, and the mean value theorem, The proofs are

simﬁle and we omi% them,
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Proof of Theorem 4,4.2, Define U; = F(Xi). Let En(t) denote
the e, 4, f. of {Ui} » Now, Theorem 4.,4,1 1is in force and. we
have the approximation (4,4q1) of En(t§ with a sequence of
independent Brownian bridges {gi(t)} . We obtain (4,4.2) with the
sequence of independent Brownian bridges {éi(t)} defined by

B, (t) = - B, (t).

As in Remark (4,2,1), condition (**}) implies that

b -E, (t)
sup  |QQ - = .

nfB/-’—l
£y
“<t 28

0(r

log n) a,s.

This proves 4.4.2 if the supremum is taken on the interval

<, 8] only,

Coming to the interval [nﬂl,"(], we shall show that, for

some Y > 0,

(4,4,4) sup v (8)]a-0 ] = 02 =) as,
n_l<t§nml(log n)?

. n
(4.,4.,6)  _ sup ) | = ”Bi(t),l
n“‘“li_tfn“‘l(log n)2 t j_-—l 1
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Tk sy e ' w (8) (& = B (6))
(‘4'4"6) sup [W(t)(%t‘“‘qt) =

Ty
"M log n)<ts
L O(n“‘"l/z "'y)a g
and
W Ct)(En(t)~t) w. (%) .
(4.,4.7) sup l e - e 1#1,21(t)i

n"L(1log n)Z<tz«

= Otn /2 =) a,s

One obtains similar results on the interval (8, 1071,
These results yield the desired approximation immediately. The

proofs of the statements made above are presented below.

In view of Lemma 3.3,1 and Lemma 4,4,1 (311),

AibJs. of 44,4 << wn (log 1)7). Q

-3 2
» n_1/2 _y (n “(log n)7)

a,s. for some Y > O .

(4,4,7) 1s also immediate from 4.4,1, since

(4.4o8)l JVE (n_lClog ﬁ}g)/fl/h = O(nl/zﬁ”y) ¥Y>o.

To show (4,4.5), we note that ,
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n n
12 5 % s+ VBB - 2) ¢ 2 B (1/2)

L=l i=1

T(t) = n

is a standard Wiener process on [0,1/2], TUsing maximal inequality

for Wiener processes (see (5.3.10) of Stout (1974)),

P( sup iT(t)l> nhl/z(log n)2)
n-lgtgn—l(log‘n)z

< 2 p(|T0 Log D] > 17 2(0g m)%) = 0@,

Thus, we have, by Borel-Centelli lemma, that

& sup | _[T(t)[ = o(n“‘l/z (log n)%) as
n"Iet<nH(iog n)?

Also, an application of Borel-Cantelli lemma yields that

: - 0 e u | :
i a2 4 3 B (/)] = o) as. wY> 0.
= 0 i <EEE R T
n <txn " (log n)

As a consegquence

o 13 B )] = 0(Clog M) a.s,

M

i=1

n";jtjpml(log n)?

From this and (4.4.8), (4.4,5) follows,
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_ Lastly, we show 4.4,6. To this end, let us write

R (F,8) = Qpp ~ Q + (F Q) - £)/%,
and

R (t) = B °(t) - t + B (t) ~ t .

Clearly, we only have to show that, for some ) >0 ,

(4.4.9) sup IR (F,6)] wet) = 0 2 Yy o,
n"L(log n)z_stf_é@

It follows from Lamma 4,2.2 that

(4,4.10) ¥ (t) JRﬁ(F;%)l'?

< w(t) R (6)] /8, +w (8) FY (@) (Qu~Q.)%/f,

!

where @i - ig a ranfiom point between Q. 4 and Q% -

Theorem 3,3,1 and Lemma 4.4_.1 guarantee that, for some
sap  wit) IR, B /E = o172 7N 84S,
nhl(log n)2§ t <« )
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Now; we are left to estimate the second term in the r.h,.s.

of (4.4.10). By Lemma 3,3,1

.
t/2 < EL() <26

in the range of t under consideration, for all sufficlently
large n, a,s. Hence, W < Qu for all sufficlently large n,

a,s, Also,

CQngtl Q) = FHETNE) - 57 e)

it

(Egl(t) = t) / F(a})

where m% is a random point between Egl(t) and t. Collecting

all these observations} we see that

w (£ (r Tt (2t)) | c.E"l(t)—tj

(4,4,11)  w(t) F* (w,) (Qnt~Qt)2/ft < < ;
‘ | Ty /o

A “1
. a0 5lig)-t o
conm | SreeTeny (& ]
i fg/e L

-

The term in the r.h.s, of (4.4,10) is'secn to be

O(n“l/g'*y)‘a,s.,using (4.4,11), (4,4,8) Lemma 4,4,1(iii) and

T -~ (2] V. 3 . ” - +1-
LoriiessibnIOCR, wéhdrimtangn wingta witemiaraed By
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CHAPTER b

REPRESENTATION OF L-STATISTICS

5,1 INTHODUCTION

In'this)chapter,,we consider the‘problém of asymptotic
represéntations_ofAi~statistics. The représéntations linearise
the statistics except for a negligible remainder, Central limit
}‘theoréms, the laws of iterated logarithm and strong-approxima-
tions are immediate consequences of the répresentations. The
idea of the representations can also be used to geét rates of
convergence to normality of such statistics, This problem is

discussed in the next chapter,

In section 5.2, we consider L~statistiqs.with-smoo$h

4
welght functions and employ the idea of Moore (1968) along with the
stability results.of Chapter 3, The problem is explicitly

deseribed in section 5.2.

In section 5.5, the results on quantile's representations,
proved in Chapter 3, are utilized to establish the représentations
of L-stétistics with more general weight functions, Weaalso have
a result which combines the Moore fechnique with the quéntile
representation technique and produces some representations which

do not seem to be obtainable by either of these techniques alone,

(109)
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5,2 APPLICATIONS OF THE MOORE'S TECHNIQUE

Let {Xn} be a stationary sequence of r,v,s with Xl
having a continuous d,.f. F on the reay line and Fﬁ is the
corresponding e,d, f. TFor some weight function w on [O,l],

consider the following linear combination of order statistics

o
(5,2.,1) L, = § xw(F(x))d Fn(x)

n )

and the corresponding parametric value

oo

(5,.2.2) L= J x w(F(x)) dF(x) (which we assume to

- GO
exist), Let &K (u) denote the e.d.f, of Uy = F(X), 1 <1 <n,

(which afe'ﬁniformly distributed on [0,1]) and Q be any

inverse of F, Then, we can also write.

i

i
éf Q(ﬁ) w(En(u)) dE (u)

;g ww) au
0

I

- Further, let us define

1
(6.2.4) Ze = = é (T(U; <u) -u) wlu) aQ, .
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Moore (1968) gives én clegant proof of the asymptotic
normality of v (Ln~L), in the case when {Xn} is a sequence
of 1,i.4, r.v.5 by showing that 1if w is sufficiently smooth
and  E|X| <o, then | '

n

L A g il
(6,2,5) RL, =L, -L-n 151 Zy Op(n

~1/2).

Later, Ghosh' (1972) proves that if w has bounded second derivative
(this condition is slightly stronger than that assumed by Moore

(H%SD and

n

1 1/(e48) '
J (u(i-ul}y 8 < oo for some &; > 0 (which is
0 : ' i -
2+6, St
equivalent to assuming that Einl <o for some &5 > Q), then
(5.2.6) RL_ = 0(n™T (log n)?) a.s.

Ll b .

In Ghosh (1972), the author proposes to study the a,s.
behaviour of RL, under the more natural conditidn Elel < €0,
We arswer this question here by extending (5.2.6) under the
condition E{Xli <<n'; n fact, we obtain a slightly sharper

1+8
N

order for the m-dependent case, If E| <o  6.>0, We

sharpen the order by showing that


http://www.cvisiontech.com

(112)

RLn = O(n"l(log log n)) a,s.

We study the order of RLn in the case of mixing r,v. s
also, Recent]l.y{ the problem for (b-mixing r.v,s has been attempted
by Sotres and Ghosh (private communicat'io.ns) but the results
obtained by these authors appear to be much weaker than those

obtained here,.

We conclude this section by relaxing the smoothness
condition on w at finitely many points., In this. case the prdof

turns out to be somewhat complicated rather unexpectedly,

Let us recall the definition of V. (e) given by (3,2,1),
Theorem 5,2.1. Let w have bounded second derivétive. We
then have } By ’

(i) 1If {Xi} ‘is a sequence of m-dependent r,v,s and

E|X;| <e | then, for any Y > 0,

RL, = O(nnl (log n)1+)/) a,s,

(11) 1Ir '{Xi]'.' is a sequeriée of m-~dependent r,v,s and

ll+§ <0, for some & > O, then

Bl X,

RL, = 0 (1™} log log n) a,s.
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(i1i) If {Xi} is a sequesnce of ¢p-mixing r.v, with ¢(@) =
-8 e . 1/2,. -
0(n” %), @ > 2 (vhen @ = g, we further assume that O L) <0}

~1
ll+e ™ <oo , for some & > 0, then

and E[X

RL, = otn™t (log log n)) a.s.
(iv) If {Xi}v\ is a sequence of '(i)émixing r,v.s with ¢(m)

., = LS

= 0(e” @), @ >0, and E[X| <co, then, ¥ Y >0,

RL, = O(n—l (log n)2+)/) 865,

(v) - If {X} is a sequence of strong-mixing r,v,s with

«(m) = 0e” &), >0, and E|X | <o | & >0, then

RL, < < n~t (log log n) a,s.

Proof., Following Moore (1968) and Ghosh (1972), we write

(5.2.7) L, ~L=L,+ Iy, + Iyg (R]'_.n Lo * I‘nB

where

E £

Loy = 4 () (B, (@)-w)du + § 2Rt
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. -
Lo = g Q, [w(En(u))"W(u)ff'(u)(En(u)“u)] qEn(u>
and

- i ,
tﬁS =.é-.Qu wh(u) (En(u)~u) g(En(u)~u),

(In this representation we do not use the fact that w!
is the derivative of w, Hence, in the proof of the next theoren,

we replace w' by O vhengver it does not exist,)

It follows by integration by‘parts that, under.the'conditim

BlX, | <eo (vhich is the minimum moment condition assumed in this

Section),

(5,2.8) Iy =0 I 2 (2, s are defined by (5,2.4)).

Under the assumed conditions on w, taking

(5.2.9) Ly = 00 R (T (00)%) s,

Also, with probability one,

1

(5.2.10) Ly, == DG v a@@) - u)

+d o whin) A (u),
L] o N A ‘J-yl
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ClLearly, | e 2y

'(5.2.11) . the second term in the r,h.s, of (5.2,10) = 0( X /n)

#nd it follows by integration by parts and the condition

v 1 . - g s .
M%L<®(¢ﬁw gl%fi&1“@~m%

. : l
(5.2.12) i t(u) A(E (u) - u)?
H Qu. lﬁ u ‘ Ehlu - U

e Ll 2 ;
= [ g wtt(u) (Ehcu) e u). 2, du

. o TRl
+ _g wt (u) (Enﬁl? E) Qu ]

F ‘ - al &
i A Far Ty 2 2 y 28 i .
sée ® 0((V: (0)) +‘(Vh(a)) é (u(l~u)) 4Q, ,52e 20
Now, all the statements of the above theorem are immediate
using the estimates of ¥ (e) proved in section 3,2, Lemma 4.4,1,
(ii) and the sbove inequalities for L., and Ij,s. Proof of

Theorem 5,2,1 is complete,

To inelude some Important statistics, liﬁe the trimmed means,
in the domain of the present study, it would be worthwhile to
relax the smoothness res%rictions on w at.finitely many points,
In the theorem that follows, we extend the (i) part of Theorem
5.2,1 to the weight functions which need not even be continuous

trompressiony Qldat Wep ORNZA]
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Theorem 5,2.2. Let {&n} be a sequence of m-dependent r,v,s
such that E{Xij <0, Let w have bounded second derivative
everywhere except at finitely many jump points &, «5,...,%,
(by a jump point of w, We mean that both the left and rlght
limits of w exist and the function is contlnuous at least from
one side), If F admits density in a neighbourhood of each of
« Qg +evreen ene,O and tho' donsity is botmded
away from zero in the corresponding neighbburhoodgj then

¥Y>o,

these points @

RL = O(n ~1 (log n)l+)3

The following two lemmas are required in_the\proof.r

Lomma §,2,1., If ‘{xi]. satisfies the conditions of the above
theordg ag@ E  1is the e,d,f, of {Ui}, where Uy = FCXi), then

65.2_.1:3_)_- | _su}lg___- lEh E;j'(t) s Bl =7 o(n""l) a,s.
T Ojt_ﬁl

Proof, For any integer 1 < J <m,

sy Uprgo Damige sooos

1,

is.a seqmence of i,i,d, U[0,1] r,v.s, and therefore, these r.v,s

take distinct values with probability one, This observation

implies that, with probability one, at most m r,v,s out of the
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sequence Uy,Us, ... can take same value, This fact ylelds -
(5.2,13) trivially,

Lomma 5,2.2. For some fixed absolute constant o and 0 < a < 1,
(56,2,14) :ﬁ:{i cl<izsn and Uy efa~c n 1/2(log n) /2,
a+ ¢ nqlzg(log n)l/z]}

e - = b(nl/gtlog ﬁ)l/z) B.4S,

L

Proof, With probability one,

Ah.s, of (5,2,14) = n En(a+c n 1/2(10g n)l/z)

- E (a - 1/2(1 og n )1/2)

<< n Vh(o) + 2c nl/é(log n)l/é‘= thlyé(log n)l/z)

(recall the definltlon of V, (o) given by (3.2.1))

a,s, Hence the lemma

Proof of the Theorem, For the‘sake‘of‘simplicity in arguments,
we assume that w satisfies smoothness conditions everywhere
except at a jump point « ¢ (O 1) The proof can be easily

extended to the case when thero is more than ohe jump point,

We argue in two steps as follows
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Step 1. Consider first the case when w 1s continuous at <

but not differentiable, Define w'(«) to be zero, Since,

1 1
g s w*ﬁu)(En(u)—ujdu = é Qu (En(u)fu)dwKU)
. __l n
still holds, we have Loy =0 % Zi by integration by parts,
: ' i=1

We prove only Ly, = o™t log n) a.s,, since the ﬁroof for

Iy = O(n"l (log n)l+y5, a,s., requires only minor changes,

S

From Lenma 2i2,5,'

sup lEh"l(u)—*u‘l <1 a.s.
0O<2uxl

1im sup nl/2uog n)“l/2

Writidg Y. = nnl/g(log n)l/z' We eXpress Ln2 as follows &

v

n 1 | A
Ly = (,é[ + + )+(Q-'u (w(E, (u))-wlu)

=) ()
C em ()-w) v (w))) 4B (),

The desired orders of the three integrals one established easily
using the choice of Y, Lemma 5.2,2, and the fact that, under
the assumed conditions, w satisfies a Lipschitz condition of

order 1,
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Step 2, We finally relax the continuity of w at «, For
definiteness, let w bte right continuous at « and
w(«) - w(x =) = b # 0, Define, a new continuous welght function

wl as follows

wy(w) = wu)- for ue (0, %)

1]

w(u) ~ b for ue (x 11,

Using the conclusion of step'l, il

1‘
o= LGy w(E) B )
and
' Il (u)
L = d
3 Qu wlu u

then, a.s.

I

: .
g - Te - (@) @) @ g+ 0 (Log 1))

We establish our claim by showing that, with probability one,

T 7
(1 =2)=@ 1) + § G ()-u) (W)= ()7 @ = 0(n™log n)

To this end, we note, under the assumed conditions of the

theorem, Q satisfies a Lipschitz condition of order 1 in a
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neighbourhood of the point « , The following are true up to the

order nml logn a,s. .

' T ' 2}
(Ln—I.I‘l)—(L—L')=b£_1 QudEn(u)—bo{Qﬁdu
E, (et}
= |
1 . . B (=)
=b J q, 4B, () -uw)—-b | Q, du .
E%n(cﬂ) :

By integration by parts, we can write this as (upto n -~ logn a,s,

&=
i (B L(e)) =~ ))
QE;L'}_(O() (En Il (c( En (ql

1 -
~b § (B @) -wd Qg — b (F ) =)

£, (=)

—

i
e = - "lig) -
b { (B (w) = wu) aq + b(Q e Qo) (B (=) = )

= b Q (5, B (%) = «)

B 1)

(since @ satisfies Lipschitz condition of order 1 in a

neighbourhood of « )

il

1 _
= b{ (B, () —u) (wlu) -~ wy(u)) aq, .

This proves the theorenm,
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Remark §,2.1. In particular, this result implies that the
trimmed means can be linearised up to the order ﬁul(log n)l+y:
Y >0, a,s.,, which is impossible if one tries to do so using

the asymptotie representations of qﬁantiles (also, one requires
the existence of density everywhere for the representations of

quantiles).

To obtain possible extensions of Theoren 5.,2,2 for mixing

r,v,s, we rewrite our findings in an alternative form in

Theorem 5,2,3, Under the conditions of Theorem 5,2.2, % Y > O,

(5,2,15) RL, < < Z[E Elw )—ql-fnluognﬂ*y
i=1

Now, if the condltlons of Theoren 5.,2,1 (ii) holds all
the argumonts of Thoorcm 5.2.2 go through except for the Lemma
5.2,1 (the result of Lemma 5,2,1 doecs not seem to be true for

mixing - r,v,s).

Following the procf ¢f Theorem 2,2.2, it can be seen that

under the mixing conditions of Theorem 5,2,1 (iii},

(5.2.,16)

i Me

~1 x
_1En an-(qi)~_ &

: .|

1

.

<< > Sl q = E; E" =1 c( -0
i=1

8 B! ~1+(28+2) +a\
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and if ¢ decays exponentially then
{h.s. of (5.2.18) = 0™t (log n)*) a,s.

One gets similar results for the strong mixing céses also, These
results provide us with slightly weaker extensicns of Theorcm 0.2.2
for the mxing cases, Obviously, if the bivariate distributions

of (Xi’ Xj) are absolutely contiuous w.r.t. Leébesgue measure on

the two dimensidnal'plane, for all i # j, then

A T4

sup [En E;l(a) - al = o™ a.s.
1<t 1

1A

5,3, APPLICATIONS OF QUANTILE REPRESENTATION,

Let {Xi} be a stationary sequence of r,v,s with the
underlying distribution F. Let Q, be t* population guantile and
Q¢ = inf fx : Fo(x) > t} 1f Jt\> 0
(6,3,1) '

% Qﬁ(t+) T3 e

where F denotes the e,d,f of {Xi} at the 'nth stage.
For some d,f, W on [0,1], we consider the following linear

combination of order statistics .

1

é At d Wt}

il

(5.3,2) L;
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and the corresponding parametric value

1 :
(5.3.3) L= 1Ry @ W)

* e
(If W'=w, w 1s bounded and E{X,| <oco then (Ln-Ln)ﬁo(n <)

A

a,s, where L, is defined by (5.2,1). If F 1is continuous
*

and W! = w then L defined by (5,2,2) and 1  defined by

(5.3,3) coincide, |

We present below a theorem on linearlisation of L-statisties
which is proved by combining the Moore technique and the represen-
tation of quantile processes with uniform bounds, The result
appears to be guite neat and strong enocugh to cover most of the

practical situations,

Theorem 5,3,1, Let {Xi} be a stationary sequence of m~dependent
r.v,s with the underlying d.f, ¥, Assume that F is continuous
and for some real numbers 0 <« <8 <1 F satisfies the

conditions |
(1) F!' exists and is bounded away from zero on

[Qq -8, Qg+ el, for some & > 0,

(1ii)} F" exists and is bounded on the. interval
[Qq - g, Qﬁ +e], e >0,
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Let W be a d,f. on [0,1] such that w* exists on

(O, « + $)Y U (p - 6,1) for some & > O - and has bounded second

* *
derivative, Let L and L Dbe as defined by (5,3.2) and

(5,3,3),
S I 1
o - Ty g ([ﬁ = T(F(X] 7/ FT(QY) dW(t)
and |
RL = L: - L* ~nt g % B
: : i=1

Then, if B[X;| <o

Rl = O(nHB/é (log;n)l/z (log 1oz n)1/4) 'é.é.

Proof, Using Remark 4,2,1, a,s

*y

e e P Bt-F ()
(5.3.9) (@ -9,) @WCt) = | —B aycy)
:q o S® FT(Qy)

+ O(n-g/é(log n)l/g(lOg'log n)l

&

Considering'the integralf (Qnt"Q%J w(t)dt, we observe that,

0

since w satisfles a Lipschitz condition of order 1 in (0, « + §)

]

and EB[X,| <eo

A
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QC{ - q __1
I x w(Fn(x)}an(K)+ I x w(Fn(x))an(x)+O(n )

of
J w(t)dt =
A8 5 A

8,8,

Now, following the proof of Theorem 5,2,1, we show that

e Qe Qe
(5,3.5) [ERS4 WCEDCX))an(X) - § x w(F(x))dx
0 0
& ' « : o
= éf Qv (u)(Eh(u)—-u)du + E[} Q, w(u) d(E‘h(u)-u)

+ O(nwl(log n)%) a.s.
(B, (@) 1s e,dif. of {F(X)} .
By integration by parts

(5.3,6) r.h,s, of (6,3.,8) = [ :
F'(Qy)

w(t)dat

£ w(Q,) Q(F Q) - <) + 0™ (og n)?)  a,s.

Therefore, if we show that, a.s.

s B PR S A% W ol
(5.3,7) é i w(Fn(X))an(X)+w(Qq) Qq(Fn(Qq)~«) =0(n ~(log n)?),
e

3

it would then follow
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o % t-F (Q.) .
(5.2.8) § (Q @) w(tdat = | —B—t w(t)as + 0(n (log n)?)
s  FU(Qy)

G485,
To prove (8.3,7), we use Lermas 5.2.1 and 5.2.2, The

following statements are true up to the order nml(log n)z*a,s.

L.h.s, of (5.8,7) = é &[X-W(FQCX)) - Q v(F (Q )] aF,, (x)

r;,(

<J Iz WCFH(x})—-QQ(w('Fn(X))lJ‘r Qy w(F, (x))-Q,, wCFn(Q;{)‘)l")th(x)

U Qe

n
<< é lx-Q lar, (x)+ § [w(F, () y-w(F, (R,))]dF, (x)
(4 Qc-; :
{ul Snec
<< _lqnex. = Qgcl an(Qq)-*Fn(an)\ + ;{ |F (%) - an(Qq)‘[an(x)
o
<< n~1 (lcg n)2 a, 83

proving (5.3,7) and hence (5.3.8).

Similarly, one shows that

i Se = Fn(Qt)

& ‘ -
(5.2.9)  J (QQ) wlt)at = J w(£)at+0 (" (Log 1
p

B F1(Q)

a,s. The state&ents (6.3.4), (5:3.8) and (5,38,9) yield the

thaonram,
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Remark 5,3,1. 4&s in Theorem 5,2,2, here also we need to estimate

{Fn(Qng) - «|  and an(QnB) - 8| to extend the result for mixing

r,v,s, As mentioned there, one can do it following the proof of

v

Theoren 2,2,2, -As an example, the above theoram holds in the

same form if {Xn} is a sequence of §-mixing r.v,s with

£ pL/2(1) <o end E,lKl'i3/2 *& oo 8 >0, If. Pn) = o(c” )

g L

¢ > 0, then the theorem holds as stated,

We shall prove one more theorem on the reﬁresentation of
L-statisties, which assumes more apout the underlying 4,f, and

less about the weight functions, The proof uses the results of

Chapter 3.
Thcgrbm 5,3.2, Let {Xh} be a statlonary soquencc of r,v,s with
the undcrlying d,f, as We assume that' F satisfies the

condition (**) of section (4,4)., Let W be some d,f, on [0,1]
such that w(t) = W(t) extsts on (0,«) U (8, 1) where
0 < « X B 2 1. Ve define Ln, L and Z; s as in the previous

theorem, We then have

iC'{"G Bco

(1) 1If {X;} is 2 m-dependent process, E{Xj ,

0<e¢cx<2 &>0 and w(t) =O((t(l-—t))(3 2 ) as t(i-t) — 0,

then
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* * .1 B -1/~ ¥ il T
(6,3,10) I, =5 =73 I 2z, +0(m da.s., for some ¥ > O,
i=1

(i1) It {Xn}A is a sequence of § - mixing r,v.s with

d(n) = 0(e” ‘n},;ﬁ > 0, then (1) part of the theorem holds as
stated, [ ‘ ’

(i1i) If *a } is a sequence of $-mixing r,v.s with

’-..._.

() = 0(n” 8y o0>2 (if g = 2, assume further that Z ¢1/2(i) <00),.
If

*

BIX 1% <00 0 <o (ag+ )2+ 1), 8 >0

and

w(t) = 0((t(1 t)f "% 4@y a5 t(1et) = o0,

then (5,3,10) holds.

(iv) 1If {Xn} is a strong nixing procoss with

%(n) = 0(e” ,n)’ 9 >0, and EIX, %0 <o, 0 <o <8/3 650
and w(t) 0Ct(1-t))/C “3/3 a5 t61-t)-4a-o, then (5.3.10)

holds,

Proof, The proof of part (i) is;presented below, 8ince, the
tools required have been developed for mixing r.,v.s also (in

Chapter 3}, we omit the proofs of the other parts,
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a3
The representation of J (Quq - Q) aw(t) 1is the same as
o

in (5,3,4) due to condition (ii) in (%),

Considering the interval (0,«), we shall show that, for some
n"l(iog n)®

(5,3,11) J

(Qnt-Qt) wit) dt = O(n”l/2 -‘-)/) 8e8.,
0 L e

n_l(log n)? t-F, (Q)

(5.3,12) § - w(t)dt = o(n"l/2 *)Sa.s.
0 F‘(Qt) ' ‘ X
and
“ W ™ t-F,_ (Q;)
(5.3,13) Q%) wltddt = B w(t)at
nnl(log n)? | nHj‘Clog n)® F1(Qy)
+ O(nhl/z —""y)a,s.

One obtains similar results on the interval (B,1) to
establish (5.3,10).

To show (5.3.11), we note that B|Xp|%"

<o implies
that Q, = o(t“l/c) as t — 0 (see Lemma 4,4,1(111)),

Also,
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%t = |%em)l < 10
- (T (loeg m) Y

by Lemma 3,3,1., Thus, £.h,s, of (5.3,11)

| n"l(lc;g n)z--l/'c, ~1/2 + 5/2
(n"H1og W)7H 0 i= 5

n"1(log n)? -1/g + A2

Gl dt
0. ‘
-1/2 =Y
= O(n ) 8,5, for some )' >0,

o

By Lemmas 3,3,1, 3,2,5 and 4.4,1(iii),

) = O__(n"l(log n)B) 84 S.,

;?"_"_'-_.’_‘.ﬁ‘ﬂ‘fQ, ~ \
R @™ (10g n)®

B ( 0

Q _. L ) =
7 n 'l(log.:n). el
for all sufficiently large n, a,s, .and

—-l/'."lﬂl
(F (gt_))"l = 0(t ) as t —> 0.

These facts imply (5,3,12) immediately.

To prove (5.3,13), we mimic the proof of (4.4.6),
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CHAPTER 6

SOME ASYWPTOTIC RESULT3S ON QUANTILES

6.1 INTRODUCTION

Recently, Reiss (1974, 1976) studied the rate of convergence
to normality of sample quantiles of 1,i,d, observations, The
first problem tackled in this chapter is to obtain some Berry-
Esseen bounds for quantiles in case of weakly dependent r.v,s,-

In section 6,2, a result of Statuleviéius (1971a) regarding the
Berrysﬁsseen'bounﬁgﬁfor sample sum of {-mixing observations is
extende&”%@"quantiles. it may‘befééntioned that the technigue of
this proof is limited to only duéﬁtiles‘and it bresks down, vwhen

A

we have a linear combination of quantiles.

The next problem conéidered-in this chapter is that of
asymptotic effective variances (4 E V) of quantiles, It was
realised in Basu (1956) “and Bahadur (1960) that the classical
asymptotic variance of an estimator hés a‘véfy)weak relation with
the actual probability of concentration around the trie value,
Bahadur (1960) introduces L E V which iS a more justifiablé
measure of asymptotic dispersion as for as the probability of

concentration is concerned, The concept 1s explained briefly

below.

(13L1)
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A .
Let [ be any statistic with the corresponding parametric

value o . Consider the root of the eguation ;- For some & > O,

(6.1.1) POIN(O,1)| > /A (B, e)) = P(| & =pul> )

where N(0,1) denotes a r,v, with standard normal distribution,

Suppose there is a seQﬁence ¥ (n) of positive numbers such that

20 7N\ | '
oxCpe) ’ 201
(6.1.2) lim - lin —Quﬂ R -1= T T M)
g —~> O N> 00 ;F?Q E=— 0 N0 M (n) ’

then ~N(n) is called an A E V of ﬁh- In particular, if

s 2 ,
(6.1.3)  P(| ﬁn-—al >e) = exp(- 5 = (1 t oln,e)l), N> 0,

where  1im Iim |&6(n, e)| = 0, then the root of the
g —> 0 n —> .

cquation (6,1,1) satisfies (6.1.2) with Y(@m) = Yha (see (1.4)
of Bahadur (1960)). so that ,{Wn,]. can be taken as A E V of
N .
Lo

In section 3, we obtain A E V of sample quanﬁiles of

m-depentent observations, To establish the résult: we first

obtain A B V of sample mean of m-dependent observations and
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then extend it to gquantiles., Once again, the‘techniques of
scotion 6,3 break down for IL-statistics. The problem will be
taken up again in Chapter 7 with different tocls which resemble
thdsewfor asymptotic representation of quantiles, - 42

} ' £ O s R
In what follows, §(x) = J (em) exp(-x"/2)ax,

-CC

6.2 &EﬁRﬁYFESS@EN B0UNDS FOR QUANTILES OF MIXING OBSERVATIONS

We start with the theorem of Statulov1cius which we shall

UG L P

i

use,

Theoren 6,2.;. (see Statulev1clus (1977 b)). Let {Y } be a

statlonary soqudnce of @ - mixing r,v,.,S with zero mean and
P @l/z(i) <o , Then, there exists a constant c¢ depending

[+ @]
only upon X @l/g(i) such that
1

(6.2,1) ;J_p lLP(sn % X U(Sn)) - 0(x)| < ¢ Mg, log (1 + Nan)

x e 1R
2 2
where S = & Y., 0°(8 ) = V(5)) (assumed to Dbe non-zero)
no o4 1 n n
8
B 3,.3
and Mg = I MYﬂ /a7 (s, ).

i=1
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This theorem is also proved in Stalulevidius (19772) under

the stronger condition that 0 is exponentially decaying,

Now, we state the Berry-Esseen bounds for quantiles which

i1l be established in this section,

Theorem 6.2.2. Let {X,} be a stationary sequence of (-mixing

r,v.s with 0(n) = O(n"a) and the corresponding d,f. F, Let

Q. denote the t* sample quantile, We:thenmhavé %

(1) At some rgglu;x%j’lgt b2 satisfy‘tﬁe condition

A

=ik

F(x_te )«F(x_ ) 5
lol i d; (1 + 0Ce %)) as. gL, e

(6,2,2) 3]
: £

KTV '

wvhere dl, 613 and: 82_ are positive congtaats. t =.F(xb) andr

g

(6.2.3) 0 <0f = V(I(F(X{) < t)

+ 2 izlcov(I(E(Xl) 5‘t)s‘I(F(Xi+1)f t).

If F is continuous in (Xb'xb+8) for some ¢ > O, then

-

(6.2.4)  sup |PCvA 4 ((Qu-x)") T < x o) ~ B

x>0

< <

- ~&./28 1/2+ 5./25
" 1/2 2/ F (log n) a/ 1

Jogn +n
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(i1) At some real x,, let. F satlsfy

F(x_-¢) - F(x) P
%o a Sl LA d, (1 +0(c %) as e o0
. : . &r et 0 &

8'.

where d,, 8 4 snd &, are positive constants and (6,2,.3)

holds, If F 1is continuous in (xo— e, xo), e >0, then.
. Rl i - ﬁ3
sup [P~ VR d, ((Qq = %)) © 22 x0.) - B(x)]
X <0 |
. ~8,/¢5 1/2 +6,/28
< < nl/zlogn%-n4 Blogn) S A

. 7(411) - Suppose that at some X, € R

L

E,(XO _+ £) —- F(xo)

&1

£

&
=@ toe ) e g o0
and |

F(XD - €) '-F(EQ)

84 - |
- d, (1L + 0 ™)) as e §, O

3
AL i

where 6., &, 85, 8,, d; and d, are positive constants, If

(6.2.3) holds with t = F(x) and F dis continuous in

(xo - &, x0+e), g >0, then
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sup |P( v dl((Qn ~X )+551 < x0,) - B(x)l
x >0 1t o = t |

P RESCCRCRLAPIRRE S

x.%:0 nt 2

—52/251 1/24. +52/25

< < 1/2(1og n) +n Ciog n)

i Sl s /28, . /2 + 8,726

Theorem 6;2;2 is derived from the following .

Lemma 6,2 . Let {Ui} be a statlcnary sequence of Q-mixing
<s8)=s for s e [t,t'],

r.v.8 with b(n) o(n™3 and P(Ul
0 <t < tf4< 1, En(s) denotes S ' {Ui} - Define

2(3) WIW, 28)) + 2 T cov(1(U; s} ICU:H_;_“ < s)).
=1

If o(t) > 0, then

(6.,2.5) . .sup |P(vh (B 1)-0)* < xo(e)) - << a2 101

x>0

Firan
Lo - -~

and 1f 0(t') > 0, then


http://www.cvisiontech.com

(137)

(6.2.6) sup |P(- v (1= < x 066 - o)

x <0

< < nhl/2 log n ,

Proof of the iemma. The proof of (6.2.5) is given' below and
(6.2,6) can be proved similarly,

Step 1. For any constant ¥ >0 -

e
;-r‘-"'

p( VB () - 6 > Yo (t)Qog n)1/2). |

= P(EI1 (t) >t + Yo(t) (Qog n)1/2 1/2)

)1/2 -1/2)

fA

P(t 2 Ega(t + Yo(t¥ (log

<P(-n B (64 Y 9(5) Qlog 22 27172 4 ¢

+.Y 0 (t)(10% )1/2 "1/2 > ¥ 01725 (£) (1og n)1/?)

These inequalities along with Lama 2,2,3 (see also Remark
2,2,1) ensure the existence of a posi'ti-ve constant K such that

p( Vi (E‘gl(t)-—t)*‘ >K o{t) (10g_)11)1/2) = O(n-l/z)

§ (1og n)l/g) = O;(n-l/g)

e
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1/2
Therefore, it is enough %o conslder x & [0,K(log n)™" 7] only

in (6. 205) [
Step 2 ] )

Since E(s) >t = sz E(t) and E (1) <5 =
t < B (s), it follows that

P(-vh (B (t + szé?ll)) e iiiéﬁl‘ % " o)
n . .

'41}

< POVAR (EH(E) - t) < xo(t))
P(- VA (5, (t + 2Ly g 4 22D < 5 g(p)),
< P(-vn (B (% 4 i Ly % 0
Also

L]

Ah,s. of (6.2.7) 2 P(~va (E, (t+o(t)x / )+t (8)x/ va)

< x o) -0 L3,

As a consequance, it is easy to conclude (6,2,5) if we

show that

(6.2.8) sup [P (= VAR, (b4 2x o (8))-D(x)]
.ijfBKl(log n)l/2 : R Vo
= 0(1‘1"1/2 log n)

where K, = K o(t),
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Step 3, Define U; =7TU (x) = I(U; <t +==) -t -
in in i r-n ,-n ’

0 <x=x 3K1(10g n)l/z. We claim that

Tl
(6,2,9) Lv(i§1_Uin) ~n o2(t)] = 02 (Log n)?)

where the constant involved in 0 term is free of x in

[0, 3K (log )23,

The claim is verified as follows §

Since ) 7
s | | 1/2 1/
n - % cov(I(U <t) I(U <t) << n 2 0 (1) = 0o(n )
. 1= 1+i=-
i=n i=n

(if o(n) = O(n;s),,)L we have

2 2 O 1/2,
n o(t) = n[V(I(Ul<t))+2 z cov(I(U <t), ICU1+i<t)) + o(n™—"©),

i=1

Also, since

*

Dy 1/p
Z i cov(U ,U Yy << 2 i)Y =0@ %)
jo17 In (1+i)n T ogoy 5 %g y

SN
b

it follows that

@®y;

WE U )‘—';n"[V(U. ) + 2
i_‘l ].Il w

-1
iEl COV(Uln’U(lﬂ)n)] 2
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Now, to see (5.2,9), we show the following two inequalities,

(6.2.10) n] V(0 )-V(1(0,=6)] = 0@ Z(10g )12
and
n-1 n g
(6f2.11) [i§1 cov{Uln,U(1+i)n) 1§1 cov(I(Uljt),I(U1+ijt))l
=-O(nél/2);

Proof of (6.2,10) is trivial, We rewrite the Ah.s. of (6,2.11)

as

(6.2.12) | El B0, Ugeiyn = ICU(1+1) <t)+ t)]

+ BI(T(U g4y 2 8) = ) (Upyy = 100 2 8) + ©)]]

< & : n“1/2 (log n)l/2 (D(n) = O(n"l/2 (10g n)l/g)‘

using thé'éécond_pért of Lemma 2.2.1. This completés the proof
of (6,2,9), '

Step 4. From Theorem 6.2,1, for any X ¢ LQ,gKl(log.n)l/?],
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= W |
(6.2.13) sup |P(-n(E, (s+E)t+5)<y(V( T Uin(x)»l/i— LG 1N
v & IR vn v i=1 . 8 T

n ' n
25U, (0]DH/VCE T, )2

< c¢(log ny (C
. ] i=1 i=1

b ;. ngnnl/g logn

using the results of the step 3, But, since the r,h,s, of (6.2,13)

is free from x, (6,2,13) &lso says that

il e

o §r : . =
(642514) sup [P (0 (B, (b+E2)+8+2) < x;/V( z 0y, (x))
- 1/2 A/ 1=1
05xg3K, (log m) . 7
- Bo] £k 02 g n
Now, since " |
n 1/P
(v = U, (x))1+?
i=1 7 — =1+ O(n-l/z(log n)l/z)
n1/2 a(t) B

and -

sup 1Bx) - Blx(1+o(m 210z M1/ = 0a™12 1og n)
x ¢ IR

the proof of this lemma is complete,
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Proof of Theorem 6.2.2. We prove part (i) using (6.2.5). Part

(ii) follows similarly from (6.2,6). Part (iii) is obtained by

combining (i) and (ii), 7

Let U, = F(X). If the conditions of the part (i) of the

 theorem hold, then there exists a t' >t such that P(U; < 8) =
2
o

H

for se [t,t'), ¥i > 1, With this definition of the {U;},
defined by (6.2.3) is the same as Ug(t) defined in Lemma 6,2,1.

¥

Now, f6.2,2) implies that
(6.2.15) (B L8) - ) = (R(Qy) - Flxg )"

5 +62)

U

6
8 (0,0 1+ 0C((Qyy = %))

Consequently, there exlst positive & and K. such that if

o “6 2
1 + X :
(B, ~(t) ~ t) 65, then
o ¥ +,01
ORI NS WICINEE 4)
6,46 N (8,16,)/8

= ((q-x)") T B < r(@te)eyt B

In : - , 8, (616,)/8
(6.2,16) == | (BTH(6)-6)* -, (G -x,)") L Kg((EFH0)-6)) T F

At this stage, we make use of the simple fact that, for

any two r.v.s X and Y and 6 > O,
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(6.2.17) sup -IP(X-&Y < x)- E(K)lf sup |P(X < x) - D(x}}
' x IR x ¢ IR
£ POITLY > 8) + B.0aw) B
hpplying (6,2,17) with
X = o 1 /B, (¢ - X )+)§l
A e
= /& - (( §oy Iy
Y = [(En (£)-t)" - dy ((Qyy = % ]
and . :
-8 ./26 1/2
6= K,n ? 1 (log n)* 52/05i
and using (6.2,16), we see that
Lohs. of (6.2.4) << n 2(log n) + P('E{;l(t) -t > 85)
& /(@ +8 } ~l/2
RO ) “ase 1))
~&./26 1/2 o
e B el &
~§ /26 i/2 &+ 8,/25
<< .n—l/g logn +n 2 (log n) 24

as

in the proof of the 3tcp 2 of Lemma 6.2,1.

Hence the theorem,
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Remark 6,2,1. Making use of Theorem 2 of Statulevicius (1977 b),
it can be shdwn that éhe sbove théorem nolds in the strong mixihg
case if the {%(i)} is exponentially decaying, Similarly, the
results of Stein (1972) can be used to show that in the m~depen-
dent regular cases (@l =85 % 837 &y = 1) the rate of convergence

to nommality of sample quantiles is n~1/2°

.

6,3 AFE V OF QUANTITLES OF m~DEPENDENT OBSERVATIONS

Our main aim in this section is to establish the following

Theorem 6,3.1, Let {Xn} be a stationary seguence of.ﬁ;dependent

r.v,s with the underiying d4d.,f, ¥, Tet Xy be a point such_that

F(XO+E) m*F(Xoj | SR ral R
x e dlil + 0(ed) as ¢ 420 )

1

and

FCXb“S) - F(Xb
- L . = B d2C}vf Q(aj),as E i,O

(6,3.1)

where d,, d, are positive constants, Let t = F(xb),

- 2 42y 5
d_ = min (47, d3) and

} M1
2 - : - < A e : i e
0 <0y = V(I(X1 & ab) ) Bigl UOV(I(Xl < t)s I(Xi+i < 1))

if Q. denotes the 0 sample quantile, then


http://www.cvisiontech.com

(145)

ne 4
(6.3,2) P(_lQm;Xo | > &) = exp(- *"—5-9- [1+ &,(n,e)]
Xy,
vhere - 1im . Iim lﬁl(n, e} = 0,

E——> 0 1N 00

and hence, A EV of Q,; as an estimator of x can be taken as

2
{dt’/dd n} .

To establish this theorem, we first obtain a similar
result for sample mean of m—depondenf observations in Liama 6,3,1
(see below), It appcars that the conclusion of the lemma. cannot
be easily dorlved from the known results on the probabilities of
deviations for dependent r.v. s (see e.g. Statulevicius (1946,
1974)). In any case, the proof supplied here is éeif~contaiﬁed,

o

neat and interesting.

Lemms 6.3.1, Let iYi} be a ghationary sequence of m-dependent

r,v.s. Let

m-1

ve o= V(Y )t o2 i§1 cov(¥, ¥, >0

and W, = Blexp(t Y;)) exist for all [t| <9, 6 >0, Then

9

| 3 ‘ |
(6.3,3) P(lu -1 Z Y, - B(Y, )l > a) = oxp(-' [1+§ (n,e)1)
PEicas o
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where 1im lim {e,(n,e)| =0,
g = 0 n —>co = '

1 Y. can bo taken to be {Vz/n} P

and hence, A E Vof n s

=

Proof of Leomma 6,3.,1, Without loss of generality, let E Y3 = O

- Ly
and v° = 1., We show below that P( X '¥; >n'e) can be expressed
H il . N

as the r,h.s, of (6,3,3) and a similar emreés'ion holds for

4 n } " N oy |
P(-2 Y, > e) to complete the proof of (6,3.3). Since the
T 4=1 oy -

proof is somewhat >lon,‘g_we‘break it into several steps..

Step- 1. If {¥ , Yo, vue, T} are identicall distributed
r.v,s ~and  E(exp(t Y,)) exists for ti <9, © >0, then, it
follows by repeated application of Holder's ineqﬁality ’-chat‘

(irrespective of the dependence structure)

i
Blexp( t 2 Yi)) < 00
i=1

for 11;[ <6/r .

1/2

Step 2. Let & > 0 be small enough so that & ¢ >m, Taking
_ r.=1/2q B \ n
b= [e 1= and =k = [n/(chm,]9 we break the sum 2 Yi as
. : ] _

follows §
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n
oY= 2 i)+ 2 1(3)
i=1 j=1 i=1
winere
P m
€)= 2 Ypmyg-ier T T 2 Fpmm) (G-L)pH
n
for 3 = 1,2,...,k &nd E(k+l) = i:"__ Y, or O
i=(ptm)k+1
according as n - (p+m) k > 0 or not,
| < o/8
Step 3. Here, we show that P(} Z 7(j)] >n e™7) is negligibly

=l
small compared to the r,h,s. of (6,.3,3).
| Since ‘??(1)', n(2), ... 1is a sequence of 'i.i.d. T.V,S
(m is fixed) we cen apply Lumma 2,4 of Bshadur (1960), W, £ g,
assume that V(1(1)) > 0 (otherwise, our effort for this step
is trivial)., Appealing to the results known for the indep endent

case (B exp(® (1LY /m)) < o)
6.3,9 B0 Z D] >x £2/8y = p(|
1= Sl

2 9/4 o
== ex_p(n lc‘g—(%%ﬁ_ [l + 53(1’1,8)]

WmeEL Y
Z 1(3)| > kn/k) 89/8)

=1
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where lim 1im |64(n,5)| = 0. Substituting the value
E—~>0 n —>

of k, we get
S Tl s ™ :
(6.3,5) Ah.s. of (6.3,4) = exp (~ ERIGI6B)) 1+ 84 n,e) ]
where 1im Tim [Gé(n,a)[ = 0, The stated assertion
g —> 0 n--—>00

follows immediately,

Step 4, We now estimste PUlE(et1)]| > n 89/8). By stationarity,

p
(6.3.6) P(lE(k+1)|> n 89/8) j,P(iZ [Yil > n'eg/e)
=1
: [p/m]+1 R
<m P( O y: g
= ( '2:::i::[ % ] | >m™ n £7/°; |
= R
C | - Ip/mi+z
<m exp(~- 6 nt 9/8) [E(eXp(e)[,Yl[f))] '
<mexp(- om™Ln 89/8 ) ‘1/2 10gu(\ug g l))
= eip(; om~L n 98 (l+2me~e ~13/8 |- log(Wb+l;))

~r .
where ‘Ye = E(exp(Q[Yil), 45 a consequence, the A.h.s.(6,3,3)
is negligibly small compared to the r.,h,s. (6,3.3).
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978y

Step 6. Let us write e_ = (¢ # 2 We now show that

Q.

k '

P(Z E(j) > n EO] can be expressed as the r.h,s, of (6,3,3).
yj=1

This result, combined with the conclusions of the previous two

steps, completes the proof.

Although the E(i) s are independent, the zone in which
£(1) has m,g,f. depends on & , Consequently, the corresponding
result fori,i,d,r.v,s cannot be used directly. We carry out the
the proof as follows |

Let us write

k k
(6.3.7) P(TE(3) >ne ) =PCLE () >key)
1 A

_ 3/4
= E
o}

where £1(3) = £(ATV2 e = /) Mt (1+0(e

o 5 1/4
For lsl e A define
v = mexp(s £11L))
"Mé,--—'— ,(SYS)—]' J x exp(s x) d(P(E'(1) £ x))..
D T S P

"By an ap;ﬁéal to-the result mentioned in step 1, it follows that
* B | 2 1/4
Y, and M are well-defined in the region [s| < = r .
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Now, we claim that the equation M_ = &4 has a solution and that
e

any solution has to satisfy
- 5/4
(6.3,8) € =eq t o(e1 .

To see (6.3.8), we first obtain some useful "estimates of

. % :
iq and Mg | | i

n *

-1 =% sEran? <% E(lEiCl)lBAOXp(SlE‘(l)l))

£ (et ®)  [atexplas e 2 1% (0117
i...n

i

1/4 plY l))11/2

M

S~ [(]g3W)[°) Blexp(2 s €
(by repeatediapplications of Holder's inequality)

The last step follows using Ibragimov's moment inequality mentioned

1/4

in the proof of Lemma 2,2,2 and the fact that |2 s e p| x 8,

Also,
m—1

81/2 L g V(Yi) +2 & (p-i) cov(Yl,Yl+i)]
i=1 1= ' '

!

B(E (1))

. 1/2 | m—l |
= € p[V(Y Y+ o E (1~1/p) covCYi, l+i)]

it

1+ 0(81/2) i
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so that

* ; o 1/4
l‘?s -1 - %? i< R g% e =,

By similar expansions, one finds that

(6.3.9) Mg - sl 2K, s e 1/4

Obviously, (6.3.9) implies that

1/4 _ 1/4
M2 s - K7 5 € = 3[1 - K7 3

(6.3.10) and ¥ - i 1/4 _1
TOM(1+K, e <

921

; <M (1 - K7 81/4 )

Evidently, if s > 261(1 - K 51/4) then M_ > g4 (start

’

z
with sufficiently small e). Also, it follows by the dominated
174

covergence theorem that M_ is continuous in iog ] and

right continuous at O (Clearly5 Mo = 0), In view of these

facts, it follows by intermediate: value theorem that M_ = €1
=) &

has a solution,

If e < s <

(6.3,11) M_= s+ 0(s
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The inequalities in (6,3,10) ensure that, if e 1is sufficiently

small then any solution to the equation M_ = 61 has to lie in
&

g 174
e, == }» Therefore, (6.3,11) yields that
e = €+ 0(55/4)
. E = g, t O(e§/4)

and hence we have the claim (6,3.8),

Now, define the 4d.f,
- * .k _ k ‘ _
d F (x, €)= (¥_ ) exp(e x) dP@E'() = x))

and e

o2 = (Y )T 5 e (F ) APEIA) <) - MD
£ £ - OO - £
Then,
- = * K - .
(6,3,12) the r.h,s. of (6.3.7) = § (Y )" exp(-¢ x)d F,(x, €)
‘ k £q £ . s
o0 - N
= A J exp(~D_z)d F (¢ vk z+ k¥, €)
e, G £ € 2
where ;
* .k - e
A = (V) exp(-¢ keq) . (ey = M)
g \Yg i = o -

D = ¢ & vk ,

t"fl
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Using similar kind of expansions, as done sbove, we see that

M

| 2
Vk (g +0(¢& ),

o
my
H

Further, since F (0_ VK z + k 61, €) 1s d.f, of )
. 1V -

the normalised sum of k independent r.v.é: Katz's theorem - (sece

Katz (1963)) implies that

T

sup |F (0 VE 2 + k M., E) - ﬁ(z) = Kg X -1/2 .
€ &

g
z e IR

Now, we are ready to estimate the desired probability §

r.h.s, of (6,3.12)= A [ exp(~D_z}dD (2)
= |

e O
OO .
+ A [ exp(-D__z) A(F (0_VE zeq, &) - §(2))
e 0O £ . €

-

A exp(D® /2) [1 -0 (D3] + &_ ok

g Sey FE S € £
(using the integration by part)

= the expression desired in the r.,h,s, of (6.3.3) by

m

substituting the estimates of A_ , D_ and ¢ (given by 6.3,8),

£ £
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An Open Problem,

It is not known to the author whether or not

the content of the above leamma can be extended to mixing r.i}.s

even with exponentially decaying mixing coefficients,

Lemmg 6,3.2, Let {Ui} be a stationary sequence of m-dependent
r,v,s such thst '

(6.3,13) P(U2 8) =s for se-[t - ¥ ¢ FY]-

for some Y>> 0 and

m-1

0 < go(t) = V(I(U; = t)) +2 '131 cov(I(U; < %), I(U g 2 t)),

If En(t) denotes the e,d.f, at the n'! stage, then

S e s PCE;IC’G) -t >e) = exp(- & e (1 + 6 (n"'e))
| oY 20°(t) i !

it
o

where 1im TIm  les(n, €)f and

E"_“"'>O n-—-—-}m

‘ 2 ;
(6,3,15) P(t - ETT(t) > ) = exp(- ~2f= (1 + 55(n, ¢))

: , 20°(t) :
Where lim 1im L§6Cnx g} =0, e

E > 0 T 0D
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Proof of the Lemma, By the usual arguments,

(6.3,16) P(-E (b +e) ttte et o7

SPEI) -6 > 8) s P(-F (b +e) ot +5 2 e),

Let us take O <e < Y and define

(%, P) = I(x < Uy < B - B+ «

where 0 <« <1 and P > &, Clearly,

PR

(6,3,17) _ r.h.s. of (6,3,16) = p(~ E () +t _:_- (e + '55/4)

- ;
+ 0(P(} = Xi(t!HE} |>n 85/4)).
= e :

Our theorem of the previous section guarantees that.
P(- Eh(t) +t > (4t 55/4)

can be expressed as the r,h,s, (6.3,14), Next, we claim that

n
P(l = % (Lytre) > mn e
i=1 t

5/4)
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is negligibly small compared to the r,h,s. {(6,3,14), We see this
as follows ¢ ' 7
-5/45

n
P(| & x (t,tre)|>n ¢
i=1 1

= P(| g x, (tytre){>(n 88/4) 81/2) .
j=1 *

We use the estimate provided by Lemma 3.2.2 to see that this
probability

< exp(~'Kg n 83/2). _

and hence, it is negligible, Similarly, we see that the £.h.s,
of (6,3,16) can be expressed as the r.h.s. of (6.3.14) to complete
the proof of (6,3.14),

(6,3,15) 1s proved siﬁilarly.

-

Proof of Theorem 6,3,1. Define U; = F(X;) so that (6,3,13)
holds, With the dofinition of U;'s, 0oF dofined in the statement

of this theorem is the same as dg(t) defined in Lemma 6,3,2.

Let us prove using the first condition of (6,3,1) and (6.3,14)
that

n 82 d2

(6.3.18) Pl - x2 o) = exp(- ——L( + 8,(n,6)))
Tt
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where lim lm1_w7ﬁhsﬂ = 0,
£ > 0 n->oo ‘

Condition (6.3,1) implies that there exists a constant K,
such that if

(£ t) - )7 2Ky, then’

O
(@ - 20" 2 ) - 0] 2k, @) - 0P
and hence,

PR (E) -t 2 e a4y + By - P, (BN < 602 2 e3B)

- P(Eh"l(t) 2t + Ky)

P(Qnt - X, 2 g)

1A

PartE ) - €) 26 - 6372) 4 BlR, (EIHE) - ©)F > 32

+ PEIE) > b+ K.

From these inequalities (6,3.18) follows by the usual kind of

probability calculus as we have been doing,

Using the second condition of (6,3,1) and (6.3,15), one

proves similarly that
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2 e
E

n d
(6.3.19)  P(- Gy + @y 2 ¢) = exp(- —3—2= (1 + 85(n,2)))
: ps
t

where lim lim l8g(n, )] = o,
£ -_S'O n g L OO.

(6,3.18) and (6.3,19) yield (6.3,2) and hence, the theorem,
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CHAPTER 7

0N ASYMPTOTIC EFFECTIVE VARTIANCES AND APPROXIMATION TO
TO NORMALITY OF L~STATISTICS

7.1 INTRODUCTION

In this chapter, we consider the problems of asymptotic
effective Varianées (A E V), probabilities of moderate deviations
and,rates ﬁunifdrm-and non—uniform both) of convergence to
normalityidf'linear-functiOns'Of order statistics.

As was seen in the last chapter, the probliem of finding
ALV redices to that of finding expression for probabilities
of certain type of deviations, In sections 72 and 7,3, this problem
and the problem of finding probabilities of moderate deviations
are tackled by exploiting the ideas used in obtaining'the
represeniation of quantile processes, This technique appears

‘o be quite flexible for weakly dependent structures,

The above-mentiqned method based on Quaﬁtile representation |
is capable of produciﬁg Berry—Esseen bounds with the order of
error as nmlféulog n which 1s far away from being the best
possible, 1In section 7,4, we shallrmaké use of some of the
representation results presented in Chapter 5 to get uniform and
non-unifarm Berry—Esseen bounds for I—~statistics, This method
produces very satisfactory results on Berry—BEsseen bounds and
the proof goes through for mixing r,v,s &also, However, the
technique suffers from the demerit that it demads smooth welght

unctions,

(159)
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7 o AEV_OF L-STATISTICS

We shall investigate the A E V of trimmed type L-statistics
in
Theorem 7.2.1, Let {Xn} be a stationary sequence of m-dependent
r.,v.,s with Xl having d,f, F, Let Qnt and Qt’ 0=t <1,

g th yopulation quantile,

denote the t sample quantile and the t
respectively, . W stands for some d,f, on Ei, B]; 0<x<B <1,
Define
ok g Ay % s
(7.2.1) ° L, ’g Q. (L) and L= g Qp aW(t) .
Let us suppose that F' (x) exists ¥ xe [Q.-6, @6l

for some & > 0, and

—~ - P “'l
42 K Y~ T
(7.2, 2) 00 >'k1-2 iy 2 > 0 and [FTU(R)| £ Ky <o

throughout the interval [Q. -6, QB+6]. We adopt the notations
il

FL@Qy) = Ty, 2y =(b - 104 2 Q) 7 and 7, = SO

It
m-1 '
GRSid = V(Zl) + 2 iEl cov(Zy, Zy 47,

then
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: : . 2
(7.2.3) P(iL; - | > e) = expl- 2 ZE (1 + 8¢(n,e)]
L

vhere lim  Tim  |sy(n,e)| = O, Therefore, 4B V of

£ > 0 N ——>

% 2 7 b
L, cen be taken to be {UL/n},

Proof. Define U; = F(X;). Let L, denote the e.d.f, of

{Ui}; Our arguments for the theorem go as follows %

Step 1. Let us prove first that, for any &; >0 (fixed)

9/16)

IIE;l

P( n

sup (E)=tl > 86 ¢
«-&/2<t<p+8/2 ' 1

is negligible compared to the »,h,s. of (7,2,3), By the usual

/16

kind of inversion, we see that, if &, ¢ < 8/4, this

probability cannot exceed

(7.2.4)  PC sup R (8)-t] 2 8y 271)

& - %515 t < B+ 38/4
Splitting the interval [« - 38/4, B + 38/4] into subintervals of
length n~% and using Bonferroni inquality, let us note further

that the expression in (7.2.4) is
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0/16 n)

1A

n max P(nIEn(S)—s[ > % &, ¢
s =« -36/4+ j/n

j=11¢223.,.L(F=+38/2)n]+1

LA |

for all n sufficiently large., By an application of Lemma 3,2,2

9/16

(with =1 D= 26, ¢ n), we have

9/16 978 1y

P(nlEn(s)-sL > % 6, € n) < K, exp(~ K,

for all s in the range of our interest, Thus the expression

_9/8 Log n

in (7.2,4) =< eXp( Ks n(l + Kg e ))

and this inequality justifies the clalm made in this step.

Step 2, Define Bn(t) En (t) + En(t) - 2t, We claim here

a o

(7.2,5) B( sup iR, (B} > Eg/g) = P
X<t <8

is negligible cowpared to the r,h,s, of (7,2.3). Clearly,

(7.2.6) P, < P( sup |R ()] > 978 sup  |E_T(t)-t)< 9716
<t <P «® <t 5+%

- B sup 1B ) - t] > £9/16)

X~ ng t <8 +

5] =)
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It has already been noted in the fimnst step that the second
termgof the r.h.s., of (7.2,6) is negligible, Next 6 let us

observe that

(7.2.7) the first tertn in the r.h.s., of {7,2,6)
<P( sup B ER(6)-E (6)-B N (£)wt) >
%<t <P - =

Jé_ 89/8‘!
€?716)

e
v

sup ey - 8 2
« -8/22t=<p+a8/2 ' B

! J.

89/’8

pa i

+ P{ sup lEn E;]'Gt-) ~-.tl2 ; ] sup : ,lEr:;l"(t)—tlﬁ €

9/16)
o<t <p _ e X=5/22t<prs/2 -

Since
R

15, ) L t) < B B DB ETEh-0)
< JE, BN -EL OB, et] ¢ | B (B7t(6)20)-E] H(6)-E, (8D
it follows that

(7.208) I'-h-S. of (7.207)

< 3 P( sup | sup lEn(s-i-ﬁ) - En(*s) - t| > % 89/8)
«®<5<P [s-—tj[jazg/ls
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P(V - max max [En(( £ +in~ 1) ~E,( An 1)—3n |
1< A <[(B~4)n+2] %al [259/l6n+1]

iA

il 89/8)

>

e

for all n sufficiently larée (which is ggod en;ugh since the
limit is to be taken w.r,t, n, first), We employed here
arguments similar to that used in Theorem 2,2,2. By Bonferroni
1nequality, this probability can not exceecd

C?.2.Q) I e sup . ... = sup P(n[EnCs+t)~En(s) t[>

9/16 .

9/8)

A~8/2<t<B+6/2  |s-t|x3e

Using Lemma 8,3,2 (with ‘N=1n, b=3:"% ¢ = 1/2 and

’ ’

27/32

D=L8f—— ) yeo find that for s and t as in (7,2,9),
+8.av3

9/8

P(n‘[En(s+t)-.E'h(s)._t‘] = % e ?27/16 n).

) 2 Xy oxp(- g

' so that the expression in (7,2,9) cannot exceed

= log n
K7 exp(;.'K8 527/18 n{l + K9 On ))

which is negligible compared to the r.h.s. of 7 2.3,
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Step‘B.‘ Sirce

L]
é (Qup = Q) dWlt)

i1
=1, .
3 B (t) '

we see, by Taylor's expansion and the conditions of the theorem

~that 5.

1 C1EME g Ve . o

| é (Q Q) aW(E) - é S T aw(t)|s Ky, sup (B (€))7,
H<t<Pp

Also,

1( “L(gy-t) £71 awce) - lft ce)) £t awee)|
I S e =& Vs B e e e

‘ T St .
< K, sup |ES(t) + E (t) - 2t].
In view of these.estimatés

. ) S b
€7.8,10) ] g (@ ~ Q) W(t) - n”

SK . sup (ENH)-6) K (e + B (¢) - 2.
10 G5 Ch- Ak i
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Converting (7.2,10) into probability inequality, we have

bt

1 : i S .9/
| P( é (Qnt—Qt) dW(t) > &) - Pln . 151 Zs >78 + 2¢ ) |
sup ~1 2 9/
5?(1{10 <t <B (En(t)~t)3s ),
FR(K,  sup JETRE) £ R (8) - o] 2278,

This inequality, the results of the first two steps and Lemma

6,3,1 give the desired estimate for

B .y Sl e)

and similarly, we obtain the estimate for

2h
P( é (Qnt = Qt) dw(t) < - ¢)

to complete the proof of this theorem,

Using theridea of the representations given in Seetion 5,2,
we can get A E V of ﬁ-sfatistics with smooth weight functions
which need not necessarily be dfrthe trimmed type, but;.these
result require the existence of m.g.f. of the underlying 4,f.

in a neighhourhood of zero.
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7.3 ON PROBARILITIFS OF MODERATE DEVIATIONS OF L-STATISTICS

In the last section, we displayed a technique by which one
can transform the'khqwnfresults regarding probabilities of
deviations of sample sum to L;statistics.. In this section, we
shall present some interesting results on probabillties of
deviations of L- statistlcs The details of the proofs are omltted

since they are similar to that of the previous sectlon.

Theorem 7,3,1. Let {Xi} _be a sequence of i,i,d,r,v,s .and
Ln: L and UL be the same as in the previous section., If
5, —>® and s.°® o(nl/lo) as n —’3 go, then

o P( vn (L: - L*) >0 sn)n.i i —E(sﬁ)
and

P( vn lrL; - 1] 2 ap syt~ 2(1 - Bls ) -

This result is derived from the following result of Cramer

Theorem 3.2. Let {Y}boasoquoncoof iid T,V.S
sueh that Yl has nm.g.f. in a neighbourhood of zero, 1f
2 =

g (Yl) = V(Yl) >0
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Sn—%oo as n —» oo

and ‘

snso(-nl/6) as, n —>9ov , then |
P(n—l/:2 g (Y, - BLL DY =0(X) 8 ) 1= §(s)

e LR SPLE s oy L+ ; n

and

i=1

Proof of Theorem 7.3.1. Using (7.2,10),

P(_ ‘-'1/2 = : , -t . 1 p :
(T C R (Y - B2 0(¥y) isy) Ao 2(1 - Bls ).

—

/ n n g + s o i Jat
e R CL Lt
CMICRPEL B I -6-/1_0
2 Py, ; jsgpﬁ : (B () - t)* >n )
LN T Rl el BT /o3 /o M
+ P(K sup “(t)Y + B (t)=~2t | 2 n 7)
B, et < 1 2 VB By [

The first statement of the theorem folTows from the following

three estimates §

(7.3.1) Bl x (2/) 0710 0 Ts,)
n L =N

E - 7 oz e -
- - " »

(7.3,2) Py 7 osup @))% 2 0010 =01 - B(sy)
of < < E
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and

(7.3,3) P(Kll qi%gﬁ [Egl(t)+En(t)~2t[ > n"6110)= o(l - ﬁ(sn))

(7.3.1) 1s true because s n 1710,

- Q. (7.3,2) is proved

following the Step 1 of the proof of Theorem 7.2.1, To prove
(7.3.3), we note that - '

Ah.s. of (7.3.3) 5 P(K;; sup [El;:l('t) + B () - t] > n-.6/1o‘
«<t=<p

sup iEgl(t)-tl =< nh4/1o)
% ~ §/0<t<p+6/2 vk

+ B & ) -8] 2 0420y,

sup
«-5/2<t<p+6/2
After this, rest of the estimation is similar to that of Step 2

of ThCOI‘EHB 79201.-

The second statement of the theorem is established by

obtaininglsimilar results for
) * * 1.5
B vn (L, - L) 2,00 8,0 .

Proof of this theorem is complete,
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Our next result of this section is on the probabilities of
' Al
moderate deviations (deviations of order (log n)_ /2) of

-

L-statistics in mixing cases.

Tflegrem 7.3.3. Let the sequence of r.v.s {Xi}. satisfy either
of the two cpnditions : '

1/2 :
(1) {Xi} G-mixing with = ¢ (1).<eo
(i1) {Xi} is s_tljong:mixing with {«(n)} decaying
exponentislly, | ‘ |

If I‘n and L are the same as in Theorem 7.2,1, and

0 < o‘2 = V(Zl) + 2 Z cov(Zl,

1_1 1+1 s

then, for any ¢ > 0

; -§.~_ ‘- § 2  .
P( vn (L;—-L*)' > o O‘L(log n)l/EJN (21T & log I_l)—yg n~¢ /2

g 2
. * & ‘ , i
POVE |5 -1 & ¢ o (log 0)Y/2) ~ 2(enc? log n) /2 n~0 72,
This theorem follows from the following theofém';: @ich in

term follows from the results of Ghosh ahd Babu (1977) =pd
Babu and Singh (1978 a),
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Thecrem 7,3,4, Let {Yi} be a stationary sequence of r,v,s

satisfying either of the conditions

(1) ¥;} is O-mixing with X 072(1) < oo |

(ii) {Yi} is strong—miging with {ﬁ(n)} decaying

exponentially,

Let

A L ®
0 < 0'2(Y1) = WY) + 2 Z

cov(¥,, Y...),
i=1 e

cté X
If E[Yll'_ﬁ<fﬂ , for some ¢ >0 and & > O, then, for ¥ ¥ > 0,

P2 I (¥ - B(Z)) 2 e 0() (og 721 Y
i=1 =
-2
~ (2Nc2 log n):l/g nfg /2{m-
and
pin1/2 | 3 (v - B 2 e 0(y) (log 02 4 o=
4 15_1’

] |‘2"'
* A 2(2#02_log n)*l/z_nhé‘/z.

where Y 1is any positive constant,

Proof, This timé, we use (7,2.10) to get the probability

inequality
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(7.3.8)  JRCRE-T) > ¢ oy (log 1)/2)

2

-P(vn 2 2 20.(log n)1/2 4 n™178)|
e , ,

<P( ¢ “sup i@g%t)u1ﬂ231fbgkﬁ
£ S
o« & <tept &
1.4 -3
+ P( sup. ,lE;l,('t)‘*«“Fﬁ(t)_;-Qt-lzn “ .8, sup {Egl(t)-tl_gn i)
«<t<p . &~ %§t58+%
. o ey ok
+ P sup ,lEgl(t) ~t{ 2n >
o - % t=<p T %

AY

Rest of the srguments are similar to that of Theorem 7.2.1. Ve use
here the probability bounds given by Lemmas 2,2.,3 and 2.3.3.

For the present use, we have to modify the statements of these
Lemas slightly without altering the proofs, In the r,h.s. of
inequality (2.2.5) we can replace Ky N4 ‘gy Kl( A)Y N~ A

where ch {) is a cornstant depending on K. A similar

change can be made in Lemma 2,3,3. There changes are justified

ecasily by looking into the proofs of these lemmas,
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Z.4 ON RATES OF CONVERGENCE TO NORMALITY OF I STATISTICS

" We obtain here uniform end non-uniform rates of convergence
to normality of L-statistics utilizing the idea of the representa-
tions presen%ed in section 5,3.

Our main tool for approximations is given in

Lemma 7,4,1. Let X Y be tw r,v,s (in general:dependent). We

have the following inequalities ¢

(i) For any ® >0

(7.4.1) sup |P(X+¥< x)- D(x)| < sup |P(X < x) - B(x)
x e IR : X €

£ p(lY]) >8) + (2712
(ii) TFor any 8 > O end. "a real such that & < lal,
|P(X + ¥) < a) - D(a)]

< max _ |P(X < a*) - D(a*)| + P(iY]> B)
a*=a + . 19 5
778 exp(-(|a] + B)Y7/2).

The proof of this lemma is trivial and we omit it,

+ (2m)

We have the following easily derived uniform BerryflEsééeﬁ
bound for L-statistics with smooth weight functions in the case

of Mmixing r,v 3,
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Theoren 7.4.1. Let {XQ} be a stationary sequence of Q-mixing
r.v.s with 12 @l/g(i) <o gnd Xl having a continuous d.f, F.
Let F_, denote the e,d,f, of'{Xi}. "With w as some welght

function on [0,1], having bounded second derivative,:define

1 .
L =.é x w(F, (x)) dﬁn(x);

1
L = § xw(x) dF(x) - D T
0

il

2y

1 x : 4 i
é [u - IEE) =Wl w) a § |, i=1,2...

where Q denotes some inverse of F, If ElZil <60,

ElX119/4 T8 Lo for some & >0 and

(o]
2
0 <of=V(Z)+2 2 cov(Z, Z,:),

then

sap |PC VAL, = L) < x 0) — 30| = 02 Tog n),
x e R

Proof, Rewriting the findings of the proof of Theorem 5,2,1,

¥ I
(7.4.2) |l ~L-nTZ z| <K (v ONE @t2 g D
. . . H " .l

atsilt - i=1
-2 % K, (V. (a))2 l( (1-u))%a -
+KB111;N%%| 14V, (8)) é u{l-u)) _%1

s o gd o LR
o

EODUI )

R

A

'
b
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~ where U, = ?(Xi); Uﬁ(e} is tho same as defined by (3.2.1) and

a 1is any positive real number, Since

-2 4 8
- _Z‘I“ﬁ Bl *é' = -2- o £
Bl |7 <o == g (a(1-u))” 2d’g <o
(see Lemma 4;4.4(11))’,‘
£
1 - 8/2
5y12 9 _
Klé[Vn(-a - 7)) g (u(1-u))® a q,

= K(v, (5 - 8%

Let us apply (7.4.1) with X = vn (L, - L) U"f,l,‘ ¥ =

il el me -1 - .1/2
vn (L, =L =u izl 24) 977 and B =K n log n (Ky4 is-

a positive constant to be chosen later), In view of'THéorem G.l,

our regultqwouldzfollbw from the following ¢

There exist a constant K17‘ such that
(7.4.3) © PURONZ 2 K, 07l g n) = 0@ P
(7.4.,4) PV (0))2 n-l % | g, |2k n-1 ]Oé n)=0(n"172)
n : j=1 N = = 17 AR

. kgl
(7.4.5) P(n~t I > K., log n) = 0(n~1/?)
e kg e
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2 _ 82 5 = - _ ~1/2
(7.4.6) PV (5 - 207 = 7517 n™" log n) = 0(n ).
The assertion (7.4.,3) is proved by the usual kind of
partitioning of the interval [0,1] into subintervals and using

Bonferroni-inquality. (7.4.5) follows from”dhebyshev inequality

(E[Xiig/él < o0 == E| QU ‘[=9X4 < ©0)
by writing ‘e | ' 1
n .
the K.h.s. of (7.4.5) = P(n~1 2 g, [-Ble, "i°Elq;  [+Kyy; log n).
=L o 1 1
To see (7.4.4), we note
1.2 : Wl
Ln.s, of (7.4,4) < P@™ Z g, | -Eg ! 21
. Ci=l Yy -y

R a P((vn(.o).)2 > (1 + B|g; e Kig n™! log n)
A T

and then follow the p:roofs of (7.4.3) and (7.4.5).
Finally, we prove 7.4,6 in

Lamma 7,4.1. For any & such that O < § < 2/9, there exists .a

constant K (depénding upon &) such ‘that

7 .?(thz/é - 8) > K n7Y2(10g 12 = 0P,
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In proving this lemma, we require a slightly different

version of Lemma 3,2,3 given below,

Lenna 7,4,2, Let E denote e,d.f, of the §-mixing sequence of
{U;} with §() = oY), ¥Y> 2(if ¥ = g, assume further

that 2@1/2(1) <o) and U; having distribution U {0,1], If

1-1/20/+1). Y

0<px1l/2, end 0 <Dx [s(1-s)1° n for some

Y > 0, then there exists a constant d such that

(7.4.8)  P(n]E (s)-s| > 2d(s(1-s))PD) < K;q n™%

— =1
19 exp( 8D By = Wi
This lemmq is also proved inltating the proof of Lemma 2.2.,3

and by ch0051ng P = 1/(Y 1)

Proof of Lemma 7,4.1. Write

(0,1) = (o,'n'"3/2] ' (n"3/2, i n"3/2] il == & —3/2 o) 7
Since after a certain n onwards
e y 3 + [ -
 sup {3 ) =8| f~2/9- & |4 Kn 1/2 (log n)l/2
0 <t < =3/2 :

= = En(n-B/zl > 1/Mm
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we have that

_ -2/9 +8 wl/2 1/2 -1/2
P( sup JE (6)-%] % >XKn (logn)'%) =o0n ).
O<tsﬁ—3/2
By similar arguments
P( SUP [1-]:-]_,1(1:')---'11l(]_""1:)"2/9 5.k ﬁ—l/2(log n)l/é)ﬂo(nul/2)
1_n'3/2< £ <1 3
Now, “we are left to show that
(7.4.9) P( sup Lﬁnct)-t{(t(l—t))*2/9**53 K n"1/2(10g n)1/?)
n=3/ 2t <3 ™3/2

= O(ﬁwl/g)

for soiie constant K > O,

Dividing the interval (n 3/%, 1 - n%/2] into subintervals
of length n—a, it follows by some elementary approximations and

Bonferroni inequality that

3 [E, (6t
(7-45-10) /(ohost Of (7.409) _<. Il Sup : 2/9 _a
. (t(1—~t))
n--.3/2 3/ 2)
g =eslm

>K n'i/z(log nl/g)).


http://www.cvisiontech.com

(179)

To estimate the r.h.s. of (7,4.10) we use Lemma 7,4,2 with
p=2/9—8, D= nl/z(log n)° and Y =2, Then we see that,

for some K > O,

r.h.s of (7,4.10) = Or(n‘l)

and this proves Lema 7,4.1.

Remark 7.4.1, Theorem 7.,4,1 holds even if we relax the smoothness

conditions on w of finitely many points, but we need the stronger
condition {n) = O(-e—- ?n) for some 3 > 0 Dbecause of the factors

like [Eh Eﬂl(q) — of| . The result also holds in the strong mixing

case with exponentially decaying {d(n)} o

Finally, we statersome non-uniform rates of convergence to

normality of Irstatistic in the i,i.,d situation.

Theorem 7,.4,2. Let {Xi]. be i,i,d., r.v,s and L,, I ad Z
be ‘the same as defined in the previous theorem, Let 0y = V(Z;)>0.
We then have

l_*_g_
2-c

(1) Let E[%|% <o for ¢ >0, If BlX] < 00

for 'O<c_<,1, EX%<00 for 050_52 and E.[X1[C<00

for ¢ > &, th‘en, for all beIR such that = < (c+l) log n,

-
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(7.4,11)° | R 16:]!

i n~*(10g n) “expl—(1 — o) b2/2] + n-0(2(1og nyt

+.n . [le > X . 1/2 il)

viere | GhiE % nin (e, 1) ¢ = o* (er1)~ T and Ky,

constants not aepondlng upon b and n,

21 are

(11) Let ElZl 2+.C <o gnd 'EiXill2+c+6__<°0 for some

¢ >0 and 8§ > 0, Then for all b TR such that b (c+1)(log n),

SlTD -
(7.4.18) |PE— (1, = L) < b) = §(v)]
Bips i |

£ gy TEET  py >l

K

where &% = min(s, 1).

The ’cheerem is derlvc& fr@m the following results of Michel
(1976). |

Theoran 7.4.3. (See Michel (1976), Theorem 1), If {%;} is a

sequence of 'i.;‘i.a',r.v.& with E Yl = @)y FB Y. 1 = 1 and

v ]2+c

L

<™ fom gnme e > 0 then there exist constants
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Koq and K., (depending upon c¢) such that for all b eIR with

b2 < (e+1) log n,

w<§xinﬂgm~ﬁwn

1 =Y
< K. 0 % expl=(1~0) b2/2] + n PCIYI]> K, 0t 2|b])
= fo3 P , PUYZI> Ko
I — l * = * "l
where c¢* = ¢ min(e,1) and ¢ = ¢ (etl) ™.
Theorem 7,4,4, (See Michel (1976) Theoran 2). Under the set up

of the previqus theorem, there exist constants Kgs and Kgq
(depending upon c¢) such that for all b IR with b > (ctl) logn

n | . ~c/2 ~2(ct2)
IPCZ ¥, <) = {Bm)| <k om b
i=1 ;

4 n P(;Yll > Kog nl/glbl)

The followlng lemmas are also used in proving the Theorem
7.4,2(1),

Lemma 7.4,3, Let E, be the e.d,f. of i,i.,d. r.v,s {Ui}
with U; having the distribution U[0,1], If 0<p <% and

0 <D< (t(1 - t))° n, then there oxists a constant & such

teoRiE
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- el
P(n |E (t) — gl > 2d(t(L =t))" D) 2 Ko exp(“SDg o) B

This lLemma is essentiaslly Lemma 3,2.2 and the proof requires

very miner nmeodificstions,

Lemma 4. I {§} is a sequence of i,i,d, T,v.s with

B|Y,|1*C <00 where 0 < c <1, then

n 1/(c+l)
Bl 2 4l = ol Y.
=1

Proof., Let Yin be r.v.s obtained by truncating Yi ad

1/(etl)
n for all 1 > 1, With this definition of {¥;,} ,

12 %l <E 3 | |+ B 2 ¥
E|] 2 ¥.| 2E X J|%L = + B X
j=1 1 j=1 1+ in §z1 B

1/(e+l) n
< nE(|Y] Iyl >n ) + | 1§1 vl

~c/{ctl) . 1/2
<< 1n, n orRe + [n E(YE) + 112 (E Yj_n)2]

1/(c+1)} (I-c)/(1+e) 1/{c+1)

<< 1 - |l =1 + ng(EQ;&iI(lYli > n

1/(ctl)
= 0(n "

1?1

1/2
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Proof gf Theorem 7.4,2 (i}, W.A.g, assume V(Z;) = 1, For
\b] <1, the L@SUlt follows from Theorem 7,4,1, For [bl >1)

we apply Lemma s 4 1(11) with

X = \/E(Ln-L)-cil

- _1 = =1 =3
Y= vn (L, ~L-n" 2 %)op
i=1
and | >1/2
G = .Kzg n “‘log n
where K28 is fixed after taking into account the other require-

ments of the yroof, The term

Cp@T -1/2 151: Zi 2 b+6)-—§(b+é)[
i=1
is estimated using the above menti~ned theorems of'Michel, If
(b'i~§)2 exceeds the zone-of Theorem 7.4.3, we use fheorém‘7.4.4.
Thus, we essentlally require to prove that ;
; : j
(7.4.13)  P(R(L) >n ' log n) = 0(n %2 (log n)™D)

where R(Ln) is defined by the r,h,s, of 7.4.,2. The proof of
(7.4.13) follows:-the same lines as Theorem 7.4.1., The moment

conditions on Xl have been adjusted suitably to handle the tem

. £ | | :
ie) 1 Z |9, |, Lemma 7.,4.4 comes in use when we have 0 < c¢ <1,
@ssion, OGK
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Proof of Part (i1i), We sketch the proof for - > 0, In case

b <0 the arguments are repeated for =—(I, — L},
Since b° > {c + 1) log n implies that

ES
—c/2 —c— 22— 8/4

1 - 0(b) < Kog D b :
we only need to show that
‘ : —a/2 —c - 2 — §%/4
(7.4,14)  P(¥n (L, — L) > b) < Kgyn b

+n P(Zl > KBl b).

Let us choose 61(> 0) small enough such that ({1 - 61) )2 >
(c + %) log n a2nd note that

n . -+

A.h.s, of (7.4,14) 5"P(n’1/2 E Zy 2 (1- §,)b) + PctR(Ln)wln_' b).

The above mentioned theorems of Michel ensure that

=1/2 .0 —/S = — 9 = $%/4
P(n 151 Z; 2 (1 - sl)b) <Ko b ‘

~ and hence the proof is completed by showing that

~1/2 sig /0 S = 5 A g%
(7.4.15) P(R(I,) > & n b) X Ky, 1 b .
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The inequality (7.4..0, is proved passing on to the components
constituting R(Ln). The details are straightforward and resemble

with the proof of Theorem 7.4,1 and are omitted.,

" 2tc

Corollary 7.4.1, If Eizl L2+C+§

<o and E[X; < o
for some ¢ >0 and & > 0, then
e
nl/z(Ln— L) 1/2 (gte)
IB (s 1 Y- r 2 (e TIDVE)
L »
. —g%* gy 0/2
= 0(n (log n) b E
where c¢* = % min(csl).

This corollary is proved along the lines of the proof of
Theorem 6 of Michel (1976). '

Theorem 7.4.2 also gives the probabilities of moderate
deviations (similar to Theorem 7.3.4) and L, version of
Berry-Esseen bounds (similar to the results of Erickson (1973))

for the L-statistics under consideration.

Remark 7.4.1, Recently Babu, Ghosh and Singh (1978) extended
the results of Michel (1976} for {-mixing r.v.s. Using these
extensions one can obtain possible versions of Theorem 7.4,2 in

the P.mixing case also,
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CHAL TER 8

ON RELATIVE EFFICIENCI®S OF L-STATISTICS

8,1 INTRODUCTION

Thfoughout this chapter, we restrict ourselves'to the class
63 of strictly increasing absolutély continuous d¢,f, s, Let W
be a d,f. on [0,1}, symmetric about 1/2, Then following Bickel

and Lehmann (1975 a),
1 1 T ; = e
wy(F) = | P ~(t) daWw(t) - (P stands for. a d,f.)
0 | .

is a location paramefér. ‘The most natural estimator of such a

location parameter is
A 1 =
() = [ENE) aite)

where F_ denotes e,d.f, at the nth stage and E;l(t) is

th
£ sample quantile,

Asynmptotic normality of such estimators has been established
by several authors'uﬁaer various conditions as‘mentioned in
Chapter 1, It also follows from our representation results of
Chapter 5, In the independent case,-the expression for assymptotic

variances of these estimators are given by

(186)
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2( L (FY) = (V)

1L
where Y= [ ({t - I(FEX) = t))/f(F“l(t)) aw(t) and £{(x)=F'(x),
0 - , .

Using Lemma 3 of Shorack (1974), we can express the asymptotic

variance as follows.

A -
(8.1.1) o2 1y (F)) = V(¥) = V(o(W,F,B))

where U is a r,v., having uniform distribution on [0,1] and

. Lt g g
(81.2) B, F,E) = AW(e)/c(FTH(E)).
g b 1/2 “

Throughout this chapter, wé assume that the formula (8.1,1)
holds,

By efficiency of one estimator w.r.t. other we mean the
ratio of asymptotic variances, Evidently; if the results of section
72 hold, then the same expression for relative efficiency

also represents the ratio of asymptotic effective variances,

Whenever we replace dW(t) by w(t)dt, it is assumed that
W permits a density which is given by w(t). In general,
e (W Wl, F) denotes the relative efficiency of ﬁh‘(F) w,r,t.
2

ﬁh (F) in the i.,i,d. case when the underlying d.f, is F, For
L Z :
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convenience,we will also adopt the following'notations.

(1) e(T,, F) denotes the éfficiency of «-trimmed mean

¥¢)
w,r,t, mean for d4d.f, F,

(11}  e(WIN_,F) denotes the efficiency of «-Winsorized
mean wW,r,t, mean for T..

(11i)  e(T

" WINq,F) denotes efficiency of «&-trimmed mean

w,r,t. o-Winsorised mean.

For the sake of convenience, unless the contrary is
explicitly statéd we shdll be assuming that.the underlying
distributions are symmetric about zero Which'does not affect
the generality of the results, Two distributions for which
the efficiency is being compared are assumed to have the same
location parameter., We shall denote by gt)the subset of

consisting of all unimodel distributions.

,tetr Egy & & f%kand G has heavier tail than F (A
préciseHdefinition is given later)., Suppose Wi and W, are
two d.f,5 on {0,1] s.t, W, gives an estimator which is less
sensitive for tallsithan that of Wy (togbe_madé'precise later),

Then, we shall obtain results of the form

o(W,, Wy, F) 2 oWy, W

o9 os Wis @)
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Tn Bickel and Lehmann (1975b)(also see Doksum (1969), G

is defined to have heavier tail than F 1if

(8.1.3) ¢ Lt)/F L (t)  1is non-decreasing in (1/2, 1).

As long as the weight functions are modi fications of the
uniferm distribution on [0,1]1, (8,1.3) is enough., In order to
achieve similar comparisons for a palr of estimaﬁors,with general
weight functions, a stronger condition (8.3.1) has been intro-
duced for heaviness of tails., 4 conseguence of lemma 8,3,1
enables us to get iower bounds for certain relative efficiencies

over the class :z) defined above,

A particular result of this kind is contained in Bickel
and Lehmanm (19750) (see Thecrem 6) Whiéh proves that under the

above set-up 1f (8,1,3) holds, then E(T,F) < e(T,, G).

¢

8,2 LINEAR WEIGHT FUNCTIONS

The first result.Whichmwe}gfe goingfto prove 1is essentially
& generalisation of Theorem 6 of Bickel and Lehmann (1975D),
Denote G Y(£)/FR(t) by yt), (F L)% by p, and
(@ IEN® by g . |
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Theorem 8,2,1, If & has heavier tail than F 1in the sense

that, for some 0 < e < 1/2,

'y(.s)f-y(l““)f_Y(t) for 1/2<S§1"°(§t<1

L]
then

(8.,2.1) e(T,, F} < (T

(=4} — c(, G‘).
For the proof we need to strengthen I emma 2b in Bickel

and Lehmam (1975b) as follows &

Lema 8,8,1, Let T, be a continuous distribution function on
(0, ) and T, be obtained by truncating T, at the point a.

Let' B,(x), B5(x) be positive functions, integrable w.r,t. Ty,
aats

1) ?‘Bl(i) is non-decreasing and

o Bg(8) o Bgfa)« . . B (t) ‘
W EE 2 @ 2 pm fr ocesaxtes
then .
J By(x) 4 T (x)  f By(x) 4 Ty(x)
ik

§8y(x) a Ti(x) T 5 8y(x) a T (x)
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L2

Proof. Define T _(x) = I;(x) in (0, a)

1+ 1(x)
= =s=pwh—— in (a, @),
Let
* t ] S
(8.2.2) T = S 1)/ Se00 a1y,
= | . * * ,
Similarly, we define T2 and To replacing Tl by _T2 and
w1 . a T a Tx
I respectively in (8.2,2) so that gz and E‘E% exist
o N :

(these expressions stand for Radon-Nikodym derivatives).

oo
Set [ By(x) d I(x) =p; for i=0,1,2. Then, the
O .

following are easy-to verify

.o
oy oar P 2 p A
(8.2.3) — = £ I(0, a) + 2 I(a, o)
A i Pl - A
O
it o S
: . P Pt 1

(8.2,4) F.= 2 100, ay+ —2 T {a},

AN < M5 £

"Also, Bl(X) is non-decreasing === p,; > p, . This fact,
together with condition (ii) of the lemma, (8.2,3) and (8.2.4),

implies that
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bz B (a) AT, aT,
(8,2.5) L EETET - Elﬁgj It s - = >0 ¥x>0,
O 0

* - ‘
Integrating (8.2ﬂ§) Wel T, To we get the required result,

Proof of Theorem 8,2.1. By formula 8,1,1, we can write

1~ I 9
py dt + « pt] /C 5 Py dt) (1 — =)

(e(T,Fh= L §
. 1/2

1/2

(F is symmetric) and a similar expression holds for e(T,, G).
Now, the proof follows directly from the above lemma by putting
a=1-« Bl(t) =y 132(13) = gy and T; as uniform distri-

bution [1/2, 11,

Corollary 8,2,1, Let % = sup { < % 00420 & y(t)-‘is non-
decreasing in [1 - « 1)} end y(s) 2 y(1 —o)¥ 1/2 < s 21 -«

then ¥ e <o, (8,2,1) holde, For « = 1/2, Theorem 6 of

1

Bickel and Lehmann (1975) is a special case of this corollary;

Corolléqyw8,2;2. Let to = inf {t < 1/2 ! y(t) is non-

&7

oL ‘
decreasing in (%, 1-t) and y(I1 -t ) 2 vy(s) for

(1-%)2s<1 then ¥ >t _, (8,2.1) holds,

&

Remark 8,2.1, The following result shows that symmetry of ¥

and G can also be relaxed to a little extent,
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Let F and G be such that ¥ 1(t) = - Fi - t),

¢ty =31 - ) for t <« . Then, under the conditions
of theorem, an analogous condition in (0, 1/2], and zero mean,

(8.2,1) holds.

Proof, In effect, we have to show that

1/2 1-& i
! p, dt + [ P t+«p, + K< prq_
& t 1/2 °F . (1-«)
' Z c.e,G,
1/2 1
! P dt & " p, dt
0 v 1/2 )
~<=‘-—=_$-
: =4 1 : :
L g p, dt o 1 [-{uc(pt dt - & D )
(8.2l6) b 1/§ 1 ) ,E C.e.G‘.
AL Smeedibite | p,. dt
0 t 2/2 ¢

where, here and elsewhere c,e,G means the corresponding express-
ion for G,

The statement (8,2,6) follows from the following four

inequalities .

+ by g, t b &, a
(Use the fact that ! ™ d} X e d2 if o N Eﬁ :
L il 2 =il 2
b a a b b
L P IS . TR R - L8
d'1 —dQ ‘ d’k —do Cq - Cq


http://www.cvisiontech.com

(194)

5 1/2
1y [ é y(t)at - « y()]/ g yét) dt £ c.e. G,
. , 1
311y [ §J yB¥at -« y(1 -}/ § y(tldt < c.e. G
1- ST 1/2
« , 1
(i11) [ § yiat - « y()1/ J y(t)dt 2 c.e. G.
0 : 1/2
0 1/2
(iv) [ { y(tydt ~ &« y(1 ~ «}1/ § y(t)dt < ec,e. G,

0

The inegquality (ii) dis equivalent to

21

i o e e 1 :
(8.2.7) [ y{tyat + =« y(1 - «)1/ §- y(t) dt = c.e, G
1/2 L

which is immediate from Lemma 8,2,1. The inequality (i) i1s
prpved;anélogbusiy. (iii) is equivalent to (ii)and (iv) is
equivalent to (1) due to the partial symmgtry.assumed in the

remark,

' The next theorem proved below studies the behaviour of
efficiencies (w.r,t. meaﬁ)'Of a class of L~estimators which
ignore ta;lg to & lesser extent than trimmed means, ‘The?result
can be obtained, under stronger assumptions, as a particular
case of theorem 8,3,1 (see below) but the proof included here
is of partipulér interest, In the statements which follow, T
stands for unifOﬁm distf&gﬁtion dh‘[O;l] which, of course, leads

to mean,
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For convenience, write

1 ; 1
I p,dt=p f g, 4t = p J py 8t = v snd
1~ ° I i« ® S - !
Il
o P (S T
1/2 ¢ 2

Theorem 8,2,2 Let w be given by w=c¢ in [« 1 - «]

(with 1 <ec¢ < 1/(1 - 2%)), = d otherwise s.t.

1 I
J w(t)dt = 1, Assume y(t) 1s non-decreasing in [1 -« 1)
0

and for 1/2 < s < (L ~«), y(s) 2 y(l -~«), Then, if W

denotes d,f., corresponding to density function w,

c(W, ﬁ, ),

178 i

e(W, U, F)

Proof, -After a little computation, 1t follows that a sufficient
condition for the above result is
1

(8.2.8) - luy (FH1-0 + 2T e) 7T (1)) Pat]

=
19

Using the conditions of the above theorem, it follows

easily that
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1 1
J  pp at ] p. 4t
T " . L/2 =
Il - 1

q, dt J g, at
1w U 1/2 ¢

which is equivalent to
(8,2,9) iy < U1/U2

It can be shown that the numerators in both si_des of the
inequality (8.2,8) are positive by proving that e(W,U,F) > 1/c%
and  o(W,U,) > 1/c°, Notice that without strict inequality

it follows straightaway from Theorem 5 of Bickel and Lehmann (1975

In view of these facts, (8,2.,8) follows 1f we show that

1 ="y
g - § Fha-e « ) - PN vl < euo ©
1 5 2

or equivalently,

u/ FOFI@) + K PN - )2 dt < caelG
1 1

since 0 < d/e <1 (K >0 is a constant).

4 sufficient condition for this 1is

1
=3
~1 i F (t)dt
) F (L - «)
(8.2.10) pilp, < —— Lt

- -
. N

¢ Lee) at
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To establish (8,2,10), note that

1 1
J Py dt = |

7l —A8 -1 -1
(t) & (t)dt < f T -(t) ¢ ~(t)at.
1 < ] st v{I- &)

Y(t)

Hence, 1t is enough to show that

i 1
o L) ol at ;O OF(e)at
1- <« 1=
" ~ s
§oay dt ] G (t) at
L~ 1
or
L1 -1 L1 -1
J L@ F () dat joleTH ()] o (8) at
(8.2,11) += — < &=
SR o
) F —(t) dt - W~ ee) dt
1~ 1~

Since Ghl(t) is non~decreasing‘fuhction, (8,2.,11) follows
from the arguments of stochastic ordering if we show that,

¥ (1 - ) < t‘j;l, one has

§ooFNe) At

Lt ; > c,e, G

[oF ) a

1<

or Bowd 28y | & ~1

;. Fite)dt 0 F ) at

ot . 1w

A T e R =
fo GO )t ;T ooThe) at

1 e 1=
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But this is immediate from the fact that y(t) is non-
decreasing in [1 - «, 1), This finishes the proof of this

theoren.

Corollary 8,2,3. Let « = sup {x < 1/2 ! y(t) is non-~

decreasing in [1 - «, 1)} and  v(s) < y(l—qb) ¥1/2 < s = (lwmb)
then, the result of Theorem 8,2,2 holds for -« <« .

Remark 8,2,2. Here aléo;symmetﬁy of underi&ing ‘@.f!s ean. be

relaxed in the. central part,

8,3 GENFRAL, WEIGHT FUNCTIONS PERMITTING DENSITIES

Let us write f, = £CFTRE)), gy = 5@ T(E)) and

y(t) = g, /f,, vhere f and g denote densities of F . end-
G, respectively, In this section, we introduce a new condition
for the comparison of heaviness of tails, i,e., G has heavier

tails than F 1if

(8,3.1) v(t) is non-increasing in (1/2, 1).

It follows from corollary 8,3,1 that this cqnﬁition is
stronger than (8,1,3). One also observes that condition‘(S.S.l)
is transitive and invariant under scale transformations of one
distribution or both. The following distributions are
arranged in increasing order of heaviness of tails according to

to the criterion (8.3,1).
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Example 8,3,1.

28
(1) Distribution with density % %2 o 1%l

?

£(F T(t)) = 3[- log 201 --t)}2/3 (1

g B
(ii3J Distribution with density |x| e © ,

P

£(FL(e)) = [- log 2(1 ~ £)17% 21 - )

(fm) - Double exponentisl, £(FEIEN) = (1 -8,

Now, we prove & lemma which 1s of central importance in

this section and also in the next section,

Loma 8.3.1. Lot us recall the definition of 6(W, F, t)

given by (8,1,2), If F, G satisfy (8.3,1), then
8(W,G,t) | r |
BW.F.5) is non-decreasing in (1/2, 1){

Proof, Set 1/2 < s < s!' < 1, Usiﬁg (8,3,1), lot us observe
that ‘ |
® R (e aiee)
I wk Y IGIL dw(t

L0l Vit
8(W, G, s)

2

S .
J (1/gy) aW(t)
1/ ot
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g t
ioye) (L/gy) aw(e)
S .

> y(s) > !

T (17,) W)
S

From this the lemma follows easlily.

Corollary 8,3:1. ¥(t) is non—increasing in (1/2,1) === y{t)

is non—decreasiﬁg in (1/2,1)., Obviously, uniform distribution
has the lightest tail in class££§ defined earlier according to
critefion (8.3,1) and hence, according to criterion (8,1,3)

also, This fact énabies us to compute the infima of.many
relative efficiencies over the class é@ . FYor example,

e(T,,U) = 1/(1 +4%) = inf {e(Tq,F) 5 F eéa.} , a fact established
by Bickel (1965) differently. Same procedure will work for

e(W, T-J,r F) of Theorem 8,2,2 also, '

Using the leammé& proved above, we establish'artheor@m which

appears to be a quite general result of this kind,

Theorem 8,3.1, Let Wy, Vg be densitics of d,f.s Wl and
W, respectively which are symmetric about Wiz, Tieb ' wnw wl/wg

be nOn_decreasing"ini[1/2,1] and F, ¢ satisfy (8,3,1), Then,

oWy, Wy, F) < e(Wy, Wy, a).,

Proof, In effect, we want to brove
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3 2
I/ (B (W, ,F, £)Y7 at
/2 = %

X
(o, B, £)7 at

< c,e. G
1/2
or equi{réiently',

1 : : 1
(8.3.2)  § (8(W,,F,t)/0(W,,F,£))%(0(W,,F,£))7a8/] (0(W,,F,))dt
1/2 | L2

2 odew By
We shall, first show that

(8;3,3) 6(W,F,t)/8(W,,Ft) 2 c.e, G

To see this, rewrite the inequality as

1/2

t a
ofic Wo.(t) ('wg(t)/ft)dt
(8.3.4) =

+
5w (B)/£L) dat
1 /2 W2 i

It follows from the fact that 9(W2,F,t)/e(W2,q,t)- is

‘non-inecreasing that
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s s

J (w.(x)/f_Jdx i (w.(x)/g_ )dx
(8.3”5) 1/2 e Xk n 2 ;/2 2 X

t ) t

I (w,(x)/f_)dx { (w.(x)/g_)dx

1/2 @ e Vo it

¥1/2 <s <t . The stochastic ordering given by (8,3.5) and
the condition that LA (t) is non-decreasing in (1/2,1) yield

(8,3.4),
In view of (8,3,3), (8,3,2) follews if we show that

1 ki . &
(8.3.8) - (8Wy,F,£)/0(W,,F,8))2(0(W,, F,t))%dt/]  (o(W,, F,t)) %t
1/2 1/2

1 : 1

< J (0 F t) /00, F,t))2(0(W,,6,8))%a8/ | (9(W,,c, )%t
1/2 ) 1/2

Once again we employ the argumeﬁt of stochastic orderingto

see(8,3,6), We shall show thab

(8.3.7) o(W,F,t)/0(W,,F,t) is non-decreasing in (1/2,1)

and

z _ S - |
(8,3.8) JFee (GCW?,F',;E')‘)Z/ U] (GCWz,F,"t);)gdt >c.e, G
1/2 ~ 1/2 ,
¥ ze d(l/2,l).a ’

(8.3/6) 1is coneluded from (8,3,7) anc (8,3,8) as in the proof

of (8,3,3).
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For (8,8,7), set 172 < s < s' <1, The inequality is

a simple consequence of the following observation.

1

st
I (6)Cug(t) /£,)at e (8) (wplt) /)t

s © ..
{/2(w2(t)/ft)dt w g _(wzft)/ft)dt

Finally, (8,3,8) follows from the following inequalities.
Writing | |

o*(t) = (8(W,, F,t)/6(W,,6,t))%

¥ te (1/2,1), we see that &*(t) is non~inéreasing in (1/g,1)

(a consequence of lemma 8,3,1), Hence

Z ol o 1
{/é FHEINE Moy B 25 J 9*(t)(9(w2;G,t))2dt
' ‘ > e¥(z) > 4

z o 1 o
f (8(W,,G,4))° dt i (e{wW,,G,t))dt
1/2 2 e ke

This yields (8.3.8)'completing the proof of the theorem,

With this theoram, we can derive various interesting results
similar to Theorams 8.2,1 and 8,2,2 for general weight functions
permitting densities and compute the corressponding infima of

relative efficiencies over the class ﬁ} of d,f, s.
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8.4 WEIGHT FUNCTIONS NOT PERMITTING DENSITIES

In thls section, we shall study similar properties of
L-statistics for the weight functions which have positive masses

at few points,

e

Following the notations adopted in seetion 8,1

[y #D (73] (T, WIN,,P) = (1-2)° qu+ﬂ(F—l(l~g3+«/f(1~4i)2].

So, obviously, o > e'('Tf_{, WTNq,F) > (1—2@()2 with both ends sharp
in (i.e., both the bounds can be approached controlling

The theorem proved below throws some light on sensitivities
of trimmed mésns and Winsorised means for the tails of underlying

distributions. Also, it encbles us to find

inf {e(Tw WIN,, F), F eﬁ} : g

Theorem 8.4,1, If for two symmetric distribution ' F and G,
y(t) is non-decreasing in (1/2, 1 - «], then

e(T,, WIN,, F) < (T, WIN_, G),
Proof, 8ince the condition that y(t) is non-decréé.éing and

e(T, WIN,, G) are unaffected b’y- scale transformations on F

and G, it is enough to prove that e(T,,WIN,F) < e(T,,WIN_,C*)
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where G*(x) = G(y(1 - «)x), Write g* = dF*/dx, g = g*(G*"l(t))

and  qf = L (£))2,

An easy calculation shows that the theorem is true if we

show

1~

, 2 ~1,q ., |
[(mray™ o 2K (l"ec)]/(_! | Py dt+°(.pl_°‘)

f(1et)’ L) 1/2

< the corressponding expression for G*,

The above mentioned inequality is true under the light of’

following observations -

(1) G**l/F“l is non-decreasing io (1/2; l-<«] =znd

6* L(1—) = FH(1<) imply that G < Flin (1/2, 1-s]

t = 1-e¢ = 0O implies that

~1. =1
- d
(i1) [_(_G éE)/F (t))]
f1-) 2 8{1<0)
The proof of this theorem 1s complete,
The theorem which follows is analogous to Theorem ‘8,3,1
for Winsorized type estimaters, It appears to be a general

result of this kind,
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Theoren 8,4.2, Let F and G satisfy (8.3.1) in (1/2, 1 - <],
Let wy; and w, be densities of two symmetric d.f,s Wy and Wy
respectively on {O,l] s.t. W, = wl/w2 be non-decreasing in

[1/2, 1]. Define w}=c w, in I«

where ¢ i$ a normalising constant. Let wf = wy 1n fet, 1 - 1],

, 1 -}, =0 otherwise,
=0 4n [«, 1 - «]%, Let Wt be the d.f, on [0,1] whose
absolutely continuous has by the density wj and have two atomic
points « and (1 - &) which share the rest of the mass equally,

* \
i W2 denotes the 4,f, whose the density is wg, then

* *

% %} .
e(Wz, Wy, F) < e(Wz, Wy, G).

We first prove a Temma which is quite similar to Theorem

8;4.1.

Lemma 8,4,1, Let wj* =dw; 1in [, 1 - %], = 0 othervise,

®ok p— ,
where d is a normalising constant, Let Wl denote the d4d,f.

g
corressponding to the density Wy, then

B * * *

e(Wi , Wl, F) < e(wl ] Wl,'G).

Proof. The arguments are parallel to that of Theorem 8,4,1.
If we apply the transformation G*(x) = G(x/a), - then
ae(Wy,G,t)) wy (%)

8 (W ,6*,t) = a®(W,6,t) amd gt = 5. For

this result, we apply the transformation
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*k
& (2) = G(B(W,, G, 1-«) x/6(W;, F, 1-«))
and mimic¢ the proof of theorem 8,4,1.

Proof of Theorem 8.4.2. Hotice that

*
e(Wy, Wy, F)
k okok ' Kk ok
= e(wg, Wl JFD 5 e(W1 . Wl, )
* k% ok ok
< oWy, W, G) . e(W , W, @)
%k , - : ' ;
= @(wg, Wl, ¢} (using Lemma 8,4,1 and a consequence of

Theoren 8,3,1).

This establishes the theoram,

g Ay s k- i :
Remark 8,4,1, 2 o(W, , W, F) > 1/4%, ~with both ends sharp.

g

Remark 8.4.2. Theorem 8,4,1 givés us the following interesting

numerical result,

—

inf {e(T,, WN,, F) ¢ F el} = (T, WIN,, T)

3

= (1 - 8«4° + 12:¢7)/(1 + 4x),

For « = ,05, this quantity is about ,86 while the universal
lower bound is ,81, In the light of these facts, one is safe in

preferring trimmed means to Winsorized means,

Finelly, we turn to the study of the behaviour of relative

efficiencies of Winsorised means to means, 3uch nice comparisons
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are not available in this case end, as a consequence, uniform
distribution is not the least favourable distribution for this
efficiency (also see Bickel (1965)). The following result which
is proved under a somewhat condition throws some light on the

behaviour of this efficiency.

Theorem 8,4,3. If y(t) is constant in (1/2, 1 - «] and non-

decreasing in [1 - qb,l), then
e(WINq, F) = e(WIN,, G) V>« .

(e(WINq, F) 1is defined in section 8,1).

Proof, In effect, we want to .show that

by -« -« + q{fcqu)lz

(8,4,1) < c.e, G

U - gt <[P 11 - o) + ce/f(l_q)lg

(wy, ty, vy, uy, are defined in section 8,2),

Let G*, g: and q: be the same as defined in the proof
of Theorem 8,4,1, Then, (8,4,1) can‘be concluded immediately
after replading G by o (wvhich is again good enough, because
everything is unaffected by scale transformations) from the

following simple observations @

Ll
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1 -
(i) f/. p. At = th: zorresponding expression for G ,
172 >
1
(11) i p, dt < the corresponding expression for Gk,
1<
- & & - *
(D) fowy = B«

Example 8,4,1, Following is an example of the situation described

in Theorem 8,4,3, Let F(ox) have MIR in o , G(x) = F(x/bo)

for txi1 < O and = < F(x/o,) + L R(x/.) for\mi>z z >0
2 1 2 2 - ]

F(z/bl) +_FCZ/52)
= =,

where 0 _, 0, O, are such that F(a/o ) =

Here 1 =~ & = F(z/bo) = ((z)., The required property follows

from a theorem stated in Bickel and Lehmann (1975b)}p, 1l062.

Remark 8,4.3. As o ~—>"1/2 in-Theércm 8,4,3, the condition
of constant y{(t) tends to become void, Heuristically, this
explains e(WIN,, U) —> 1/3 as o — 1/2 vhere 1/3 1is
inf Je(WIN,, F) i F e;i% (sec Bickel 1965), e

Remark 8,4.4. Theorcﬁ 8.4,3 admits the following generalisation,
Let y(t) be constant in (1/2, 1 - = )} and non-increasing after
that, Let W be a d,f, on [0,1] (having density) and W* be
obtained by Winsorizing W at points « and i ~- &, vhere

W, F) < e(W . |

Ed
« 3 o« , Then, e(W W, 6.

L »
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