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INTRODUCTION AND DEFINITIONS
’ .
The class of self-ccmplementary graphs has been exien-
. sively studied by rany people, among others by C.R,J, Claphan,
5,8, Rao, G

Ringel and H, Sachs, and nany problens have been

3 b

solved fér this class, such as the Haﬁiltohian problen and the
characterisation of potentially and”forcibly self-compléenentary
dogree sequences (see [ 1] L aTN e ‘17_‘!"]‘, BB R, el d
M157), Thus sélf-complementary graphs formran interesting
class and this has been generalised by Hebbare [ 8_] into the

class of multipartite self-conplenentary graphs,

An rmpartite selfmcomplementary'graph is an r;p&ftite
graph G which is isomorphic to its r-partite complement I
waere H hés the sane vertex Set as G and uv is an edge of
H iff u,v belong to different sets in the r-partition of ¢
and uv 4is not an edge of G, A multipaftité self-complerens
tary graph is an r-partite self-complementary graph for scne
z 2, In this thesis we study the%properties'of mﬁltipartite
self-complenentary graphs, Several_well-knoﬁn'results'on self-

complenentary graphs are obtained as corollaries,

The thesis is divided into two parts, In Part i, which
consists of the first five chapters, we study the proverties
of r-partité self-conplenentary graphs for general r, In

Part 1T, cons;sting of the last two chapters, we study the

?

dnrrors ssgaenses oF bipartite s2lf.eamrlomentayy grephs
2 4 - . e LEE - am i i DRSS R S SO RPN WS (5. PLEEAE
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In Cbanter 1 we study the properties of complementing
pmrmutatlons of r—nartlte selfucomvlementary graphs, In
particular we prove that any COMDlenentlﬂg permutation of- a:
comnected bipqrtlte selfacomplementary graph permutes the parti-
tionssets as a whoIe and. the square of any comulementlng permuta-
tlon is an automorphlsm of the graph We also deduce the follow-
ing result of Ringel C177] and Sachs [ 18 7] on self~complemen-
tary graphs DR Sl is self-complementary and o is a-cample—
nenting permutatidh of G, then 02 is an automorphism of ¢
and either (1) the length of every cycle of ¢ is a multiple of
4 or (ii) o ﬁas & unigue cycle of length one and the length of
every other cycle of o isa multiple of 4,

In Chapter 2 we characterlse when certain simple. graphs

like trees forests unlcycllc graphs and cacti are r-partite

selfncomplementarya

In Chapter 3, we study the dismeters of 4n r-partite
gravh and its r-partite complement, The range of diéme%eis for‘
r~partite_self—comﬁlemeniary_graphsris detg;mined, In particular
we deducé‘thap the diamé%er of a self~complementary graph is
either 2 or 3, Fimally we solve completely a Nordhaus~Gadd
bype—problem in the class of bipartite graphs ; the characterisa..

tion of all triplets (a,b,p) Tor which there exists a bipartite
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graph G on p wvertices such that G has diameter a and the

bipartite complement of & has diameter b,

IniChéptér 4, we consider the vroblem of determining
ﬁhe-maximumﬁlémgth of & path in r-partite self-complementary
graphe on- pr veftices The problem is completely solved for
the class of connected binartite self—complementary graphs with
a complementing permutatlon ¢ such that + and oc(v) belong
to dlfferent sets of the blpartltlon for some vertex v e
also obtain sufficient conditions for the existence of a
hamlltorlan ‘path in an r-nartite self—complemgntary granh wiicn
r # 3, and sbow—that they are best p0351b1e in some sense, In

rticular we deduce the result, due to Clapham [:1:], that

every self-comnlementarv graph has a hamiltonian path,

In Chavpter 5, we study disconmected r-partite self-comple-
rentary graahs We QGtOfElQQ when a dlsconnected r_partl e graph
Without 1solated vertlces is r~part1te self-comnlementaay, It
is also cstabllsh d that a dlsconnected blnartite self-comple-
mentary graph has a complementlng permutation which mans oach

get of the blbartltlon«io 1tse1f

In Chapter 6, we characterise potentially bipartite
self-complementary bipartitioned degree sequences, i,e, sequences
of the type (d1,.,,,dmfef,,,,,en) with a bipartite selfmcompleu

mentary realisetinn,
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In Chavter 7, we characterise foreibly bipartite self-
complementary bipartitioned degree sequences, i,e,, gravhic
bipartitioned sequences T such that évery realisation of =«
is bipartite self-complementary, This characterisation involves
Torcibly sclf-égmplementary degree sequences characterised by
Rao [:8:] and unigraphic bipartitioned degreec segquences charac-

terised by Koren [[57].

The results in Chapters 1-4, except Theorems 2,3, 2,4

and 3,8 are obtained Jjointly with S,P, Rao Hebbare,

We now list the general definitions from Graph Thcory
vhich will be used in this thesis, More svecialised definitions

and terminology will be given at the beginning of each vart,

By a graph we mean a finite undirected graph without loops

and multiple edges, Thus a graph G consistyof a finitc non-
empty set V(G) of vertiées and a prescrég;; set. E(G) of
unordered pairs of distinct-ﬁertices, Tach pair e = (u,v) Qf
ertices in E(G) is called an gdge of G and e is said to
doin u and v, We then write e = ﬁv and say that u and v
are adjacent vertices ; vertex u and edge e are incident

with each other, as are’ v and 'e_a A graph G is called

trivial if {¥v(®)] = 1 and non-trivial otherwise.
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A grach in which every pair of distinet vertices is
Joined by an edge is callod = complete graph, The complete
gravh on p wvertices is deroted by Kﬁ and somctimes by X
vhen the number of vertices ics not cof interest, Similarly a
graph on p vertices and with no edge is denoted by ﬁp and

sometimes simply by ¥,

Two graphs G and H are said to be ‘isomorphic

]

(written € == H) if there ig = bijection from V{G) onto

V(1) which preserves adjacency, Such a bijection is callied

an isomorphism_of G onto E, An automornhism of ¢ ‘is an
isomorphism of G onto itself, The class of all autonorphisms

of G forms a group and is called the aubomorphism group of @,

denoted by Ant(),

Let G be gfaph, By & subgraph of G we mean a graph
Howith v(H) (C v(e) and  B(H) (L E@, Iet 5 (C V(¢), Then
by the subaraph ¢S] induced by S in G we mean the sub-
graph of G, whose vertex Sefﬂis"s and whose edge sci consists
of all those edges of G which join vertices in 8, If
608 =X then S is said to bs complete and if ¢[s] =E,

then S 1is said to be independent, We denote by G ~ S the

Subgraph of G whose vertex set is V(G)-S and whose edge set
consists of all those edges of G which are not incident with

any clement of S

-
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A Vo~ Vi path of a gravh ¢ 1is a sequence

3

v, v1 .e. v, of distinet veriices such that for each i,

Vi vl +1 is an LdgC of G, The vertices Vo and v, are

culled the terminal vertices of the path and the path is said

to connect v, and Ve The length of a patb is the number

of edges in it, An n-path is a path of length n, A giglg is

a path, with length at least 3, whose terminal vertices coincidc,
Iet V(@] =p. Then a cycle of length p is called a

hamiltonian cyclé and a (p-1)-path =2 hamiltonian ﬁath, e 3G

has a hamiltonian cycle, then| G 1is called namiltonian,

A graph G is said to/be commected if any two vertices

of G are connected by a yfith, and discomnected otherwisc,

A maximal connccted subgrvaph of G is called & comnected componeat

or simply a component of G, Thus & disconnected grapvh has at

least two componsnts, A cut-vertex of G is a vertex whose

removal increases the number of components of G, A comnccted

non-trivial graph without cub-verticcs is called a non-separablce

graph, A block of a graph is & maximel non-separable subgraph,

The distance dG(u,v) between two vertices u and v
in the gi2ph G is the minimum length of 2 wu~v path if any 3
otherwise d,(u,v) =, We notc that ds(u,u) is zero, The

diameter of a graph G is the maximum distance between wwo

L e S LT T ]
VAPt ly W e
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A graph is acyclic if it has nO‘cycles; An acyclic
graph 1s £lso called a foregst, 4 connected ~acyclic graph is
callad a Eggg_ A graph with exactly one cycle is called a
unicyclid graph, A cornected graph-ﬁhOSQ only blocks are K2's
or cycles is called a cactus,

et G be a graph, The neighbourhood NG(V) of a

vertex v in G is the set of all vertices adjacent to v
in G, and the degree d,(v) of v is the cardinality of

NG(V), A vertex v is called isoloted if d,(v) = 0 ond an

end-vertex if d,(v) =1, ZIet V(@) =,{-v1,,,,,vp§ . Then the
sequence‘of non-negative integers E{Q) = (d1,_,,,dp) where

d, = dé(vi) is called the degree sequence of G, Conversely o

sequence n of non-negative integers is said to be graphic if
there is a graph G such that =#(G) = 7, In this case G is

called a realisation of m_

The complement € of @ graph G is the graph defincd by

V& = v(g)

il

i

E(G) Suvlv,v e V(G), u # v and uv £ E(G)} .

G is said to bo gelf-complementary if ¢ =X G, If G is solf-

complementary then an isomorphism of ¢ onto G is called o

complementing permutation of G, We denote by Tg(G) the class
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of all complementing permutation of the graph G, Wotc that
B (@) = ¢ if ¢ is not self-comvnlementary,
A gravhic sequence of non-negative integers 7 1is cald

to be potentially self-complementary if there is a self-comple-

nenta realisation of = A sequence of non-negative integors
a &

7 is said to be foreibly self-complementary if =n is graphic

and every realisation of n is sclf-complementary,

A @directed graph (or digraph) D consists of a fimnite

non-empty set V(D) of -vertices and a prescribed set A(D) of
ordered pairs of vertices (not necessarily distinet), The
elements of A(D) are calléd ares of D, The outdegrec

(resp, indegrec) of a vertex v in is the number of out-

going (resp, incoming) arcs incidént at v,
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PART 1

MUITIPARTITE SELF-COMPIEMENTARY GRAPHS
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In Part I, ve study some properties or r-partite sclf-
complementary grovhs for general r, The case p = 2 is of
special interest since it ofton Yields stronger theorecms cs
well ag simpler rroofs, We also obtain several wall-lnowm

results on“self—complegentayy graphs as corollaries,

4 graph G is said to be r-partite if there exist '
& sets‘ A1,85,..,,A, such that i@_j i, = v@),Ai N Aj = @
if 1 # 3 eand each Ai is independent, Such a partition

{,Ai"'-’Ar} is called an r-partition of G, An r-martitioncd

graoh is a pair (G,P) wvhere G is an r-partite graph ang P

is an r-partition of G, A complete r-partite graph is an

r-pértitioned graph (6,P) in which cach vertex in A, s
adjacent to all vertices in Aj, for all i,j, 1 # 3, 1< LTI gk
Tor r=2,a complete 2-partite graph is also called a complete

bivartitc graph,

Throughout Port I, (G,P) denotes an r-partitioned graph

and the scts of P are denoted by A1,A2,,.,,Ar with thcir

Iespective cardinalities Ny,0p,...,0, in non~decreasing ordecr,

The only excepntion to thie rule will occur in Theorems 5,2-5, 4,

vhere  (G,P) will denote a bipartitioned graph and the sets of

P will be denoted by A and B (instead of Ay and A,

respectively),
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- We will sometimes sa (G

i, e I H

P) has proscrty XU io

mean G has proveyty X', where X is an invariant proj

Given an r-partitioncd greph (G,P), we define its

r—portite complemeny to be the r-partitioned graph (G(7),

rhere

v{G)

<
i
o
Pt
o
Mg
-
I

3|
Pan
]|
Py
35|
R
S
i

{ uv|u,v belong to different sets of

P and uv e E{G)i .

~y

An r-partitioned graph (G,P) is said to be r-pariii

self-complementary (abbrevinted r-psc) if ¢ = G(P),

A 2-partite self-couplementary graph is also called biparsi

self-complementary (abbreviated bipse),

It is casily scen thet 'f (G,2) is r psc and each y
of P 1is a gingleton;-then G 1is self-complementary in U
usual sense, Conversely, a self-complementary graph G on

vertices can be looked upon.as a p-partite self-complement

graph with each set in the p-pertition o singloton, Thus {
concept of r--psc graphs is o generalisation of the concept §

self-complementary graphs,
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Let (G,P) be v-psc, An r-pvartite complementing

permutation (abbreviated g:pgg) of (G,P} is an isonorphisn
between G and G(P), i,e,, a bijcction o T V(G — V()
such that o{w) o(v) = B(G(F)) iff uv o E(®), We denotic by
.ﬁﬁ((G,P)) the class of all r-partite complenenting pernutea—
tions of the r-psc graph (G,F)

of (G¢,P) +then g nay not be an r-pep of (G,P), To nut it

. Note that if o is an r-pecp

is another way, an r-pep of (G,P) nay not be an r-peyn of
Ty Y ’ N

A eycle of an

(5(3), P) evern though (E(F), P) is r-psc
r-pcp 1s said %o be pure if it pernutes only vertices bclongling
to 2 single set of P and is seid to be mixed otherwisc, For a
cyele T, the syzbol < TU> donotes the set of 211 vortices

pernuted by ( and the symbol | T | stands for the cardinality

or < (>, Further we use IT" to denote the set

i | 1gigr, & 1 <T> #p4,

‘e now define two inportant subclasses of [i((G,F)) as follows:

Sc e B(G,P)) ]| all cycles of o arc pure:

D

Wp((G,P))

?

R

I AT :
T (3,20 o e (((G,P))| all cycles of o are mixod};

Finally, if (G,P) is an r-partitioned graph which is

not r-psc, then we define I ((G,F) to ‘o&t@;&r\@fﬂr@g‘b{
% 04 _\
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CHAVTER 1

COMPIRMEVTING PERMUTATIONS AND THETR FROZPERTIES

In this chapter we study the vropertics of compleomenting
permutations of an r-psc graph and establish analogues of some
well-known thcorems on self-complementary graphs,

We start with some ba smc observetions on r-psc graphs

and their complementing permutatlonu, These observations will

e f5 cquvntly used in the coursc of the thesis,

OBSERVATION 1.1, If (

P) is r-psc and o e G ({(G,F))

A

then uv e B(G(P)). iff 0_1( 0”1(v) e B(G),

OBSERVATION 1, Let (G,P) be r-psc and o & G((G,P)),

-»

If X is an invariont croperty of graphs and & subgraph H of
¢ has property X, then the subgraph induced by o(V(H)) in

G(P) =also has property X,

OBSERVATION 1.3, Iet (G,P) be r—psc and o & B,D)),

then

It

If 5 1 <j<n are cycles of ¢ and | [J L.
=1 3

yal
the k-partitioned subgraph induced by LJ < oy > in G (where

’

the k-partition under con81dcrat10n is that induced by P) is

k-psc with TT o, &3 a k-pcp.
¢ g=r°
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OBSERVATION 1.4,

= 15 =

5(@)| =
1<J

if r =2 then, either n, or n,

1
=% ¥ n,n,
2 s¢q 173

If (G¢,P) is r-psc, then
. Hence % E nyn, is even, In narticular,
13

is even, AMAlso, if G is

self-complementary, then |[V(G)| = 0 or 1 (mod 4),

We now describe 2 method of constructing new r-psc gravhs

from a given r-psc

ce Ge,P), T

gravh, Let (G,P) be an r-psc graph,

a cycle of o and let k be a positive

k- Xk
integer, Then we define an r-partitioncd graph-'(Gz», PT_)

as follows :

V(G%-) =5 |] T, vhere S =

V(e - <TON and :

T =T Xlg 1,2,,,_,k'£ . If u,v are two distinct vertices

then they are adjacent in G

either

(1)
or (11).
or (iii)
or (iv)

The partition Pk
A C
31!32’---’Br where

gither u =

or

of vk Yy

ueT and x é Aj

1%_ iff
u,v e S and ﬁv B E(®)
u e S;v e T and uy e E(G) where v ='(y;j)
nelTveS and xv e E(G) where u = (x,i)

w,v ¢ T and xy ¢ E(G) where u = (k,i)"
and v = (y,3),

congists of the sets

T

1 e B

£
j i

S aﬁd ueAj

where u =
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We then have the following

THEOREM 1.5, (65 . ?X) is r-psc,

g
1 G
PROOF = We define a bijection d% between V()

N

anc V(GE(C_ (]?1%_ Y) as follows X

G%.(u)=0(u) pm N [EhS

= (T &x),i) if ue T, wvhere u = (x,1),
, o & : . k
Then clearly o.. is an isomorphism between GT ang
oy o
G_(_ (Pl_z_ )? Hence (GT , Pl_;_) is r~psc and the theorcm is
proved, [ |
Given a sclf-complementary greph G, and a comp Lene

ocrmutation o of G, it is well-known (See Ringel [ 17]

Sachs [ 187]) that except for a possible fixed point, =2ll G
]
of o have lengths = 0 (mod 4), An analogous result for1

graphs is given in the following i

DHEOREM 1.6, . Iet (G,P) be r-psc and o & G((

Then the cycles of o satisfy the following propertics ;

(i) There exists a set 4, of P such that & eyl

for all pure cycles ( of o having odd length,
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(i1) Iet + be a non-negative integer and ( a cycle of o,
I < U> intersects k sets of P in exactly 2t+1
vertices each and is disjoint from the remaining sets of
‘P then k=0 or 1 (mod 4), Further, if k> 2 and
Tg is an au‘bomorp'hism of the subgraph induced. by < >,
then k = 0 (mod 4),

PROOF ; (i), If possible, let T, ¥ .be two pure cycles
of ¢ having odd _1éngt1;, <T> C Ag, < ¥ >t - Aj and i # j,
Then, by Observation 1,3, the subgraph induced by < T> |J < ¥>
with the bipartition § < U>, < ¥ >} is bipsc, Hence by
Observation 1,4, | C {.| ¥ |- is even, a contradigtion, This

proves (i),

(ii), Without loss of generality, let I.(_ = i1,2“”,1’;§,
Let H be the subgreph induced by < (> in G and let
Q=3<T> MMa1<ig k }. Then by Observation 1,3, the
Ic—éartitioned graph (H,0), is k-psc_ Hence by Observation 1.4,
(24+1)° k(k-1)/4 is an integer and s0 k =0 or 1 (mod 4),

Suppose now k > 2 and T? is an awtomorphism of H,
e now claim that | T | is even, If possible, let | T = 2a+1
for some o, Since k > 2, EfH) £ 0, Let e E(H), The;'l since
T? isan automorphism of H, it follows that .

T2 T2 ¢ 2, ie. T T () ¢ B@), a contra-

SiehiipreesiBd BRR, wlb dptshizatish usihy £witenfaniedaddasmbniopfor CHSZIN, PDRzpe

s
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-.16 =

| T| iseven, But | (] = (2¢+1)k, Henee k = O (mod 4)

This comrletes the proof of the theorenm, []

COROLIARY 1,7, If (G,P) is bipsc, o e ¥ ({(G,P))

and a cycle ( of o intersects cach of A1, A, in exactl
t vertices, then t is even,
Let (G,P) be r-psc and o ¢ © ((G,P)), we define

¢ to be P-invariant if o maps each A; into some Aj'

We denote by \g*((G,P)) the class of a2ll P-inveriant r;pct

We now show that if o is P-invariant and U(Ai)(: A
then equelity holds, For this define & digraph D' (with 1lc
zllowed) on the vertex set {A1,,,,,Ar} by joining 4; to /

if o(A,)) C A Clearly then every vertex of D has outdc

jo

exactly 1 and indegree at least 1, hence the indegree of «

vertex ie exactly 1, From this we immediately have

OBSERVATION 1,8, TIet (G,P) be r-psc and o g*

Then, u,v e A, for some i irf o(uw, o(v) e Aj for some

The P-invariant complementing permutations have mony
interesting properties, The rest of this charter deals wit
complementing permutations and their structural properties,

first'prove the following

THEOREM 1,9, If (G,P) is r-psc and o ¢ 5*(@G,F

™

e ¢ g oautb (L'i')‘
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~ PRIOF ¢ Let w,v e V), If u,v _bélong to some set
of ¥ then cz(u), o“(v) also belong to some set of P, If
w,v belong to different sets of P, then o(u), ofv) as well
8.3 0'2(11), o” (v) belong to different sets of P and uv e B(G)
iff oW o(v) e E(@(P)) iff o(u) olv) £ E(G) iff
o2(w) % (v) £ BE(G(P)) iff az(u)-ce(v) e B(@), DThis proves the

theorem, []

~ The corresponding result for Self—bomplementary graphs

con be deduced as a corollary,

CORCLLARY 1,10, TIet G be self-complementary, If o

is 2 complementing permutation of G, then aa«s“ﬂui (G),

This corollary follows from the fact that if P is tho
partition of V(G) consisting of singleton Sets and [V(G)|=p,
then  (G,P) is p-psc and o = ;6*(((}7,]?)),

One can also prove the following theorem on the cycle
lengths of a complementing permuiation of a sc¢lf-complementary
graph, |

THEOREM 1,11, (Ringel [[177], Sachs [18_]), Iet & be

selfwcomplementary and o be 2 complémenting permutation of G,

Then either |V(8)| = 0 (mod 4) and all cycles of ¢ have lengths
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= 0 (mod 4), or, |V(G)] =1 \mod 4) and al. but one cycle

of ¢ have lengths = O (mod 4), the remaining cycle having

i

length one,

PROOF ¢ Let |V(G)| =p. By Corollary 1,10, 6° & Aud
Uic now consider G as a p-psc graph, whcere the pﬂpartitio£ !
V(G) consists ofrsingleton sets, By Thcoren 1,6 (i) it now
follows that o has at most one cycle of length 1, Further
any cyele T of o with | (| > 2 satisfies the hypothe

| T, Since

[}

of Theorem 1,6 (ii) with t =0 and k
o ¢ Aut (¢), it followrs that if | C | > 2, then | G| 154
(mod 4), This nroves the theorem, []

In the case of commected binsc graphs Theorem T,9 re

to ﬁhé.foilowing

THEOREM 1,12, Iet (G,P) be connected bipsc, Then

€ ((G,P)) = E*((G,P)) and o ¢ Aut () for all o & 3

PROOF : Tet o & G((C,®))., Iet w,vedy for sa

The since. (G,P) is o connected bipartitioned graph, the ¢
between u and v in G is even and so by Observation 1
‘distance between o(u) and o(v) in G(P) is also even,
follows that o(u), o(v) ¢ Aj for some j, Thus o ¢ §

The rest of the theorem follows from Theorem 1,9, D
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Les (G,P) be r-nrsc c.ud o = EG,.Y), A cyele T

[ ]

of ¢ is said to be k-reriodic if T is of the form

(agq vy, U2 Yppee Wity Upgea )

whore Ugs ® Ai , 183 £a, 1<t <k and 11’12’°"’ik are
.t A

Cigtinet indices,

The cycles of a P-invariant comnlementing ormutation
have nice periodic structures, This is aé%ablished in the

following

IHEOREM 1,13, Tet (G,P) be r-psc and o & ¥©*((G,P)),

et ( be a cycle of o with | Then

1 =k,

T'l

(1) € is k-periodic, |

(11) If ¥ is any other cycle of o with I ¥ N IT_ £ @,
then (a) Iy, =1_ and () if T takes vertices in

A to A, then so does ¥ |
1 J

FROOR 1 1et i,i2,.,,,if we disvinct indices in I_ and

u be a vertex in < T> [] 4, such that T %(w) & A. vhen
5 T4+
1¢t <1 ana Thw - Ag. Sime oo GX(E,D), it
follows that o(A. ) = A, when 1 <t < £-1 and oA, ) = 4, |

=k, we get [f=k, Thus

Since ( is a cycle of o and IIT-I ’
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T is k~zeriodic and the fircs part of the t.eorem is -proﬁréd.,

The second paiv't follows casily, []
The following Corollary is imre diate from Theoren 1,13,

CORQLLARY 1,14, Tet (G,P) be r-psc, ¢ ¢ ¥ *((¢,R))

and (T be a cycle of o, If i,j e IT’ then n, = 'nj'

The consecuenges of Theorem 1.13 in the cose of comcct
L L ]

bipsc graphs can be summed up in the following
COROLIARY 1,15, Let (G,P) be connected bipsc, Then

B ((6,P)) =G, (@) |J &, (e,P), Further if
o ¢ §,((6,P)), and T is a cycle of o, then | T | 20 (mod

and ( takes vertices altermatively from Ay and  Ag,

PROOE ; Iet o ¢ %5 ((G,P)), By Theorem 1,12,
o e WX(G,P)), Wow if o ¢ ‘QP((G,P)) then, for some cycl

C of g, jI Tt now follows by Theorem 1,13 that all

= 2.
e
cycles of o are 2-periodic and thus o ¢ @m((G‘,P)); This.
piroves the first part of the Corollary, The second part foll

easily from Theorem 1,13 and Corollary 1,7, []
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CHAY JER 2

SOME CIASSCS OF MULITIR/ADRTITH

SEIF-COMPIEMENTARY GRAPHS

In this chapter we characterise when certain simple
seophs like trees, forests, unicyclic graphs and cacti are

o

répsc, Throughout this chapter G will stand for a graph

wyith p wvertices and q edges,

We first charscterise all r—-pse graphs whose componemnts
are trees or unicyclic graphs, For r = 2, the characterisation
is given in Theorem 2,1 and for r > 3, in Theorem 2,2,

let G be & graph with k components, s of which are
unicyelic and the remoining are trees, Then the following

uation holds for G

q =P ¥“k + s e.l(2,1)

Using this equation we prove the following

Y »

THEOREM 2.1, 4 bipartitioned graph (G,P) with &
components, s of which are unicyclic and the remaining are
trees, is bipsc iff cxactly one of the following conditions

holds @

(a) ny =1, n, =
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() ny =2, 1, =4,

(e’

(¢,7) is one of the bipertitioned graph.

listad in Figuxe 2,1,

=

(G,,P,°
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i A 1 A A J'{z b.,l L 2

fro AN . 8 - il
SO (GypsPqg’ (G1g,71g (CopsZog

PICUE 2.1 (Contd
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1R00F ¢ (Necessity). Iet (G,P) be a bipsc gram

=]

components,/of which are unicyclic and k-s of which are
.1 :

Then p =-n1+n2 and q = 122 . Now if ny, = 1,‘then (a) g

and if =n, = 2, then (b) holds, So let ny > 3. Subsilly

n
p = Nyt and g = E%Tg in (2.1) and simplifying, we o4

x

(n,~ 2) (ny- 2) = 2(s - k + 2)

Since mn, > ny > 3, it follows that k = s or s+1, e &

consider two cases |

case 1, k = s+1, Then n, =3, n, =4 and §9
I3 can now be easily verified that if s = 0, then (G,P)
one of the graphs (G,B;), (G,,P,) , and if s =1, ther
is the graph (Gi’Pi) for some i , 3 £ i £ 6, exhibite

Pigure 2,1, Thus (c) holds in this case,

Case 2, k =s, Then either (i) ny = 3, n, = 9,1
or (ii) ny =n, = 4, 1 <k=s<2, It can now be easiﬂ
verified that if (i) hoids, then (G,P) is the graph (
for some i, 7 < i <11, if (ii) holds, and k =s =1,
(¢,P) 4is the graph (Gi’Pi) for some 1, 12 <1< 19
(ii) holds and k = s = 2, then (G¢,?) is the graph (G

exhibited in Figure 2,1, Thus (c) holds in this case &l

This completes the prcof of necessity,
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\Sufficiency), jet 3,P) be any bipartitioned graph,
We will show that if any of (2), (b), (c) helds, then (G,DP)

is bipse, Por this let &y = {uy,...,u, { @nd
M

'A' B v -aaa V B
2 { 5[ Z nzg

Pirst if (a) holds, then ny =1, n, = 29 and without
loss of genérality, ve may assume that in G, uy is adjacent
10 ¥q,Vpy..., V. Clearly mow o --l(u1 il (v Vog+!o 3)5 3 (G, P))
and (G,P) 1is bivsc,

Next, if (b) holds, then ny =2, n, = q, Iet
k = ]NG(ULT) N NG(U?)! and & = dG(LL'), Then without loss of
generality we may assure that in G, u, is adjacent to
ViseeesVy and Uy is adjacent to ViseoesVier Vaud """an?k‘

-k
Clearly now o = (uyu,) TT (v, Vg1 J) qTT (v) £ \6 ((,?)
J=1 J=k+1
and (G,P) 1is bivsec,

Finally if (¢) holds, then (G,P) is the graph (Gi,Pi)
for some i, 1 ¢ i £ 20 given in Figure 2,1, and it can be
easily verified that (G,P) is bivse,

This completes the proof of sufficiency and Theorem 2,1
is proved, [J

1 n-|‘|

WslonedTR preimoptiniize: bihgper


http://www.cvisiontech.com

- 26 -~

THEORZM 2,2, Tet r > 3 and (C¢,7)' be an r-partii

graph with k componcnts, s 'of vhich are unicyclic, the !

ing k-s being trees, Thon (G,2) is r-psc iff exacily

the following conditions holds

(&7 r =73 and (G,P) is onc of the tripartitioncd grap!
listed in Figure 2,2,

(LY r =4 and  (G,F) is the A-partitioned graph given

Figure 2.3,

(¢ r =05 and (G,7) .is onz of thc two S-partitioncd
- H

graphs given in Figure 2 4,
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5]
o
A, A, A,
CPRSPY
Q\ﬁ
A J.n.\. Y |
Ay iy o Ry Bp Ay
(G13:P13 (140214’
PIGURE 2.2 (Contd,)
A A, Ay Ay
FIGURE 2.3
Jm T ——O
boAy Ag A, Ag Ay Ay Ag A, A
(64,29 | (G ®p)

FIATRT 2 4
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£ROOF : Sufficiency is a matter of simple verification,
To 7rove the necessity, let (G,P) be an r-psc graph with k
components, s of which are unicyclic and k-s of which are

trees, By (2,1) we have

q~PpP =85 - k _<_ Oo 010(2'.3)
" - r . , 1 i
Also, since p = = ny and g =5 I I nin; it follows
i=1 i<y *+d i
that
' Sl ) r f ) r 7 T
2(g~p) = -2) I n, + (n,n,~2 +n, Tan o+ B B nn,
M s 253 S 4s4 1 =3 gmier 137
,,ﬂ(2,4)

First let n; » 2, Then mmny > 2n,  and so by (2,3) it

follows that r = 3, ny *n, =ng = 2 and k = s, It can now be

easily verified that (G,P) is the graph (Gi,Pi) for some i,

1 <146, given in Figure 2,2, and (a) holds,

Next let ny = 1

Then from (2,4) we have

2) D of i
. . = Ny 2) £ T T n.n.,
i=3 * i=3 * 2 i=3 j=i+1 L

‘ | | oo o (2,5)

| 2(g-p) = (n,~2)

If now n, > 2, then by (2,3) we have that r = 3 and so
(ny-1) (n3~1) < 3, Hence it follows that 2 =2, ny £ 4, Also

5 3 - E . o) LN P L3 L .- - e
SO g EE RN Ol BT T e f:7| Al .- TEEE- S AP

in, OCR, Web eptmitzat ! B 5 ) g

]

POFCEHIDIesse
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be easiliy verified that (¢,2) 1is the graph (Gi,Pi) for sone
i, 7<1 £ 14, given in Figure 2,2, and (a) holds, So let

1’12 = 1, Then since q = -12- & % nn,, it follows that =» > 4,
iy L4 =

Also from (2,5) we have

r T

pi = R n.n. - 3

2,6)
i=3 j=i+1 1 .

'2(qrp) =

- LI N ]

By (2,3), it now follows that r ¢ 5, Thus r = 4 or 5, How

if r =4, then by (2,3) and (2,6) it follous that ng = 1,

n, £ 3 and éince q = % i(? ninj, it also follows that n, is
odd, But there is no 4—?82 graph with (n1, n,, n%, nd) =
(1,1,1,3). It can now be easily verified that (G,P) is the
graph shown in Figure 2,3 and (b) holds, Fimally, if © =5,
then by (2,3) and (2,6) it follows that né =n =ng =1, It
can now be easily verified that (¢,7) is one of the two graphs

given in Pigure é;4 and (c¢) holds,

L)

This cqmpletes the vroof of necessity and Theorem 2,2 is

proved, []

Next for =r » 2, we characterise when an r-partitioned
cactus (G,P) is also r~psc, If G is a cactus, then G

satisfies (See Rao [ 11]),

Batioh uSing a-whts Compn
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# 3
L3 (oo

q=*_n-—1 bE vew NTe"

r.ow s is the number of cyeles in G, Also by infucsion
ot the nombex of bloc*g one ean easily prove the folloving

IDMIA 2.3 If & cactus has an indecendent 9ov of 2T

oSl i S SRR ot

¢ +then it has &t most p-e-1 _cycles,
Using these resulis we »rove the following

NUEONEM 2.4, 4 birartitionsd graph (G Y 5 = winge
» ¥

cactus iff (G,?) is one of the graphs given in Pirwe 2,5,
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(G5q,P5q) (e

BIGI™E 2 & (raptad )
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TROOF : It can be ecsily verified il the graphs in

Pigure 2,5 are bipsc cacti,

To prove the converse, let (G,P) lbe a bipsc cactus,

n 3
Then p = ng* n,, q = nl?g, Since G is connected it follt
that ny > 3, Also by (? 7), we have

and so 1, <5, Ilet s be the number of cycles in G, Th§

by Lemma 2,3, s £ ny~ 1, Hence by (2,8) we heve

nn, = 2q = 2(p+s-1) £ 2(9n Yio— 2)

4n1—4
By LR B

and so

If now ny = 3, then n, £ 8 and by Observation 1,4, n, i

even, It can now be easily verified that (G,P) is the gr
(Gi,Pi) for some i, 1 < i < 9, given in Figure 2,5, Next
n, =4, then n, < 6, T% can now be easily verified that (
is the graph (G;,P;) Tor some 1, 10 & Hvg ‘22, - Rilmaillyg

n, =5, then n, {5, a contradiction, This proves Theoren

Next for r > 3, we characterisc when a given r~-partt

tioned cactus is r-psc in the following

THEOREM 2.5. Iet v > 3 and (G,P) be an r-parti

tioned cactus, Then (G,P) is r-psc iff exactly onc of ib
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following conditions holéds |

(z) r =73 and (G,P) is one of the tripartitioned
graphs listed in Figure 2,6

LI

() r =4 and (G,?) is the 4-portitioned graph
given in Figure 2,3, ,

(¢) =5 and (G,%) 1is one of the two S5-partiiioned

graphs given in Figure 2,4,

(GT!P"{}‘: . (G‘

8, 8) (G‘g,.l-g

FIGURE 2,6
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IROOF ; Sufficiency can be easily verified, To prove

the necessity, let (G,P) be an r-psc cactus, Then

r
n= Zn and q = % Z % ngn,, Now from (2,7) we have
i=1 1 1 = ‘ |
') T : 0 N r r & 3
(n,~-3) I n, + (n,n-3n,) + Tn + X' % nmn.+><0
™ i=2 * 2%~ "2 i=4 T 1=3 =i+

000(209)

From this it follows that n, < 2, We now consider two cases

as Tollows °*

-

Case 1, ni = 2, Thus from (2,9) we have

(ae2) Em, +( E >+ B '
n,2) T, +( Em, -n-3) + £ T nmn, £O
A T SR 523 j=i+1 L J

(2,10

Prom this it follows that r = 3, Also then (2,10) reduces to

If now mn, = 3, then by (2,11) ny =3 and ‘q- is not an
integer, a contradiction, Thus n, < 2, and G has an indepen-
dent set of size p-4, By Lemma 2,3, it follows that G hes at
most 3 cycles, Hence by (2.8) |

4(ng + 1) = 2q < 2(ng + 6)

and so nz £ 4, It can now be easily verified that the only

3-psc cacti with (ny,ny,ns) e §(2,2,2), (2,2,3), (2,2,004
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are the'graphs (Gi,Pi), T < i¢ 11, given in Figure 2,6,

Thus (a) holds in this case
*
Case 2, ny =1, We now consider three subcases as

follows =«

-

-

Case 2(a)., r =3, Then by (2,9) we obtain

and so n, < 4, Since g 1is an integer both n, and nﬁ are
even, if now n, = 2, then by Lermma 2,3, G has at nost 1
2 cycles and so by (2,8) it follows that né < 6, Again if

n, = 4, then by (2.125, ng = 4, It can now be easily veriliy

-

that the only 3-psc cacti with (ny,ny,ns) ‘%(1,2,2), (191
(1,2,6), (1,4,4) } are the graphs (G,,P;), 12 { i £ 20, giw

in Figure 2,6, Thus (a) holds in this subcase,

rase 2(b), r = 4, Then by (2,9) wec obtain

| ' ' : |
(ny - 2 (ng + ny) + (ngny, - 205) <O (O]
and so n, £ 2, |
First let n, = 1, Then from (2,13) we get

(ny - 1) (n, - 1) &3

end so ny £ 2, But §Ince q is an integer and mn,

i
/ ]

it follows that hoth N~ ard n_ are odd, Hevre n. =1

-
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then by Lemma 2,3, G has a: most 2 cycles and so by (2,8),
n, < 5. It can now be easily verified that the 4-partitioned
graph given in Pigure 2,3 is the only 4-psc cactus with

Next let n, =2, Then from (2,13) we get ng =n, =2,
It can now be easily verified that there is no 4-psc cactus
with n1=1andn2=n3=n4=2'.

Thus (b) holds in this subcase,

Case 2(c), r > 5, Then from (2,9) we get

N T ( BE ; T T p
(n-2 Dtavdn (B, 2 Mo o= 20 * 2 2 nmn. <0
S = D I Y 20 =4 gmier 1

(2,14

[

and so n, = 1, Substituting this in (2,14) we get

(e - 1) = (z = _ <0,
n. - 1 5 n. + oH Y n,i. = g = & 0.
? i=a 1 =g g=ier Y3070 o

From this it followe that ng = n, = 1, It alsco follows

1k

that either (i) r = 5 and ng < 3, or (ii) r = 6 and ng

il
197
-

But in the latter case g is not an integer, Thus
ng =Ny Tng =on, = 1, and ng < 3, It can now be easily
verified that the only 5-psc cacti satisfying these conditions

arc the graphs given in Figure 2%, Thus (¢) holds in this subcase,

This completes the proof of necessity and Thcorem 2,5 is

proved, []
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MUITIPARTITE COMPLyMENTARY GRAPHS
AND THEIR DIAMETERS

In this chapter, we study the diameters of an r-parti-
tioned graph (G,P) and its r-partite complement G(®), It
is well known that the diameter of a self-complementary graph
is either 2 or 3, The problen of determining the range of
- diameters for bipsc graphé is solved in Theorem 3t2 and the
corresponding problem for r-psc graphs with r > 3 1is solved

in Theorem 3,5,

Given a connected r~partitioned graph (G,P) with
¢iameter A, we choose and fix u_, v, ¢ V(G) such thot

dy(u,, v,) = A, Further we define

1}

B

L= fue VO] a5, w o= pd ir #e§0,1,...,0]

$ otherwise,

Then clearly B, # § for # ¢ $0,1,,,,,A} and $B,5B1s00 0By}

is a partition of V(G),

As a preliminary to the determination of the range.of

diameters for bipsc graphs we now prove the following
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THEOREM 3.1, If (G,P) is a connec.ed bipartitioned

graph with diameter at least seven, then G(P) has diamcter

at most four,

FROOF : Tet A be the diameter of G, 7 { A < =,

Without loss of gencrality we assume that u, ¢ &4;, Then

B, Ay for all even %4 and B

s (5 A, for all odd K, We

first observe the following :

Obsgrvation 1, If O 4 <A and 0< t < 8 +then

cither O 4 -t <A anmdso B, , #§ or 04 +B~tLA
and so BM+8¢-t#g'

Observation 2, If u e B,

then u and v are adjacent in G(P),

and Vv e B

42441 with t > 1,

Now, let u,v e V(G), We shall show that the distance
between u and v in G(P) is at most 4, Without loss of
generality let u e B;),f- Ve BT) with M_(_ N, We consider the
following two cases @

Cage 1, # =71, By Observation 1, there exists
woe By 5 |] By5. By Observation 2, uw, vw are edges of G(P)

and so dgepy(n,v) £ 2, ' Raa

Case 2, & < m, We now consider the following two

subcases
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Case 2 1,}, By Bﬂ (_ 4, for some ie {1 2§ Then

n = 4+2t for some . t > 1, Now if th re exists W e B, 3 U B‘
then by Observation 2, uw and vw are edges of G(P) and ve

done, Obherwise 4 2 and n + 2 X X, Since A 2 7, we haw

t>2, If t=2, then 7 AL H +6 and s0 (,m) = (1,5) 1
(2,6). Tet x e B

’

PRTE ALI- N and z ¢ By, If (,m) = (15
then uy z X v is a 4-path in G(P) and if (#,m) = (2,6),
then uyu xv 1is a 4-path in G(p), Pinally if t > 3, then

let w e B

+30 Then uw, w are edges of G(P) and we are &

Case 2,2, B, (___‘ Asy BT] (; Ag_; for some ie {1,2§ ’
Then n = 4 + 2t + 1 for some 't > O, If t > 1, then by
Observation 2, uv is an edge of G(P), If =0, thenn =
ond by Observation 1, there exist w e B, 5 U B and

%X e B [ U BM+3. By Observation 2, uxwv is a 3-path in GQ@

Thus for all u,v ¢ V(G), d@(P)(U"V) ¢ 4, This proves

theorem, [}

We now give the range of diameters in bipsc graphs in’

following

THEOREM 3,2, If (¢,P) is a connected bipsc graph wi

diameter A, then 3 < A £ 6, Purthor if A e {3,4,5,6},
there is a bipsc graph with diameter * on P vertice\a iff

f‘\’ p.ﬁ where (.T““:", T'}‘l' Pey hs) o (12’ B, 79 7)‘

- -
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PROOF : Tet (G,P) be a comected bipsc graph with
diameter AN, By Theorem 3.1 it follows that A £ 6, 3But if
M€ 2 then G 1is a comnlete ﬁipartite graph and so (G,Iﬂ
is not bipse, Thus we have 3 S A& 6 and the first part of

the theorem is proved,

Next, given A e §3,4,5,6} y we construct in Figure 3,1

a bipsc graph (G,P) with diameter A on p, vertices ond
also specify an clement o in t?p((G,P)) which hab a cycle
T of length one, =

How given k > 1, we consider the binartitioncd graph

( +1 Pk+1 '
GT“ » B ) as constructed on page 13,By Theoren 1.5,

k1 +1

(G5, Bt ) is bipsc on (p, + k) vertices Clearly the
T [ A s

diameter of Gk+1 is A, Thus there is a bipsc graph with

diameter A on p wvertices if P> Py . This proves the
'if mart' of the second siiuowciin i Lthe theorem, The 'only
if' part will be proved in Theorem 3,3, This complgtes the

proof of Theorem 3,2, []
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stﬁ:H\\\\\H
7(v )
2

. ; A =5 A.= 5
o=(13{2) {3 5@ o=(NB3) 2 4 e=(T 2)(3) o=(1 3)(2)

{4 6.(7 12) (5 6Y€9 B) (4 (5 6) (4507
(8 113(9 10) e g’p({c;,r)‘f & ‘@’p((@,?)) e X (G,
£ gp((Gl?))

FIGURE 31

Hext, to dotermine the range of diameters for 1=bic

gophs with 7 > 3, we first wrove the following nrelinincy

THEOZH 3,3, Tet r > 3 and (G, be a comccied

E

e-virtitionad gravh, If the diamcter of G is ot lecst oiz

then the diameter of G(P) is ut nost four,
e ]
PROOF ¢ Ict the diamcter of G be A and asswe

That oA > 6 Por anyv integer 4, Aafine
—— - (V. [ H
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Clearly, §S,, | 0 # <A, 1 ¢1i¢r} is a pertition of

V(G), We now make some observations which will be used

reneatedly,

Observation 1. If 4> 1 eand §,. # 0 , then
SM—1,j # @ for some ,j-% i, Also, if 4 < A and By ( Ay
then S = @,

1,
Observation'2,‘1f 0 ¢ H# <A1 and B, |] By (;-AiLJAj,

then S LJ Sﬂ+1 i # @ and S LJ SM+1,3 = @,

A

Observation 3, If 0L < n and 0Lt <7 then

either O ( M-t { A and so B, , £ @,or, 0 u+1-t < A and

30

By * 2.

Now, let wu,v e V(G), We shall show that the distance
between u and v in G(P) is at most 4, Without loss of
general_ty let u e SMi y V & Snj with #<n and 1< j,
/e consider the following four cases

Case 1, # =m, 1 =j, By Observation 3, either
M 3 # P, or B‘u’+4 #9, It now follows.that'for some

k # 1, f @, Iet w e s”

g% =

553, U Sueie U Sz U Sued b
Then wi, vw are edges of G(P) and we arc done,
Case 2, # =1, 1 < j, If for some k # i,j and some

6 £ {M—1, M, M+1} , Wwe have Sak # @, then for any w = Sak»
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s i e

we get ¢ 2~path uwvin G(?), Otherwise B, (C Ay U Aj

for all a (£ {,U«-1, K, M+1§ , 2nd by Observation 2 it

follows that S U S0 +1 1 P and S“J U Sa+1,3 £ @ for

2ll a ¢ {0,1,,“,;&_3} U Sue2, ;u+3,_”,,-1} . Also since
' M"'JI LY . .

r > 3 it follows that S, #@ for some k # i,j.
b ? a=Ls " ak

Farther by Observation 3, Bua U B 103 ?'5 535 and B, 3 U Blia? 2.

Now if SM—J & U S 1 # @ for some k # i,j, then we take

XSSMJI:USMK"YES‘M-KI:LU M—B:LU M+21USM+)1
and 2z e Suh—l‘ g U S'U‘_3 3 U 840 i U SM+5 G Otherwise
SLH‘I,k # @ for some k # i,j and we take
XeSume ¥ e Sus g USuos USues s U Buay,; and
% € S;U»—B,j U Su_.z,j U S;U«+3,j U SU’*‘%ﬂ ., In either case
Uz Xyv is a 4-path in G(P) and we are done,

_Gg&_?, u(n, 2 If Sak#.ﬁ’) for some Ik # 1
and some o ¢ §M—1, Ky 441, n=1, 7, n+1}, then for any
WeSyu,uwyV is a 2-path in T(P) and we are done, Otherwisc

B (; Ai for G111 LR 8 g,u,... , My M1 - 1 Ts T]+‘Ig . By Observa-
tion 1, it now follows that 4 < 2, A < n+2 and 1 £ K+4, Also
since A > 6, it follows that n > 4+2, We now consider the

following two subcases ®
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C.se 3,1, # =0, Thn 1 =4, By ‘bservation 1 we

have STk # ¢ for some k # i, Now, if”ﬁhere exist {,n

£ #m# i, such that lJéSQK % 8, Lj Sym * @, then for
: : R A 4

ve |J Sag s ¥ e | Sy v xwy is a 3-path in TP,
al? axa

Otherwise, |} By (C &, \J & 30d 50, by Observation 2,
. o#3 : ' f ke
Sepe U S %lﬁ, Since r 2> 3, it also follows that Sz F 0

Tor some m}# i,kX, DNow let ¥y & Sgp LJ SGk’ Yo & S5 and

¥z e Sixe Then u ¥49o¥3v is a A-path in G(P) and we are

done,

Case 3,2, # 2 1, Then by Observation 1, Sy P
Tor some k # i, Now if there exist [f,m,{ #m # i, such

that  |J Sgp # @, |J S, # P, then, since 1 ) M+2, it

agfté a2p+2
follows that for w e &i Saf s+ T E LJ Sam , WX WV is
' ; a) 4+

a 3-path in G(P), Otherwise, since A > 4+4 ywe have
U Ba C4; |J 4, and by Observation 2 it follows that
a#u+1

Suez x U Sﬂ+4 1 # Q Since r » 3, we also have Fuai g ¥ P

Tor some m # i,k, Vow let Ve Su+3 X LJ SM+4 K Vo ¢ Su+1 &

and  yz e Sﬂ—f,k‘ Then u.y1y2y3\n is a 4-path in G(@) and

we are doae.
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Case 4, M <n,i<j, If m 2 #+2,hen uv is an
edge of G(P) and we ‘are done, So let n = 4+1, Now, if

ﬂ, # @ for some k sf i,d and some o £ {M—‘i 1y 141 ,u,+2}

then for we Sg., wwvV js a 2-path in G(P), Otherwise

{
o8

As U A , for all 'a £ {ﬂ—1,u,u+1,u+2g . But since

¥ 1

r2 3, Spy 7‘ ¢ for some k # i,j =and some P & {u...l ,-,u,‘,u-u-‘i,garg} .

We now consider the following four subcases,

3 G d
Case 4,1, # <1, Then U SBk # ¢. Also since
B=0 : .
B U Bg (= Ay U 53 , by Observation 2 we have, SSiUS6i @

3
and S5j U S6j #ﬁ.r Iet XE‘.SBj Us6j’y5ﬁL=JOSBk’

z ¢ Sgy |J Sgy. Then uxyzv isa 4—path in G(P) and we

ore done,

Case 4,2, o= 2, As before SSi U S¢s 75 b, 853’ U 863#;5“
et X e B, ¥ ¢ S5i.U Sgy 2nd 2z & Sgy U S63 « If x £ 4.,
then uxyv isa 3-path in G(P) and if x a.Ai,“then nz XV
is a 3-path in G(P), In either case, we arec done,

case 4,3, # =3, Then B, |} By (; Ai U Aj end so by
: Observation 2, So‘i U S1i £ 2, Sbj U 813 # ﬁ, Let x e B,

¥ e Sgs U Sy ond zasoj lS‘ij- If x£A;, then uxyv
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is a 3-mcth in G(P) and if x e A;, then 12z xv isa

b-path in G(P), In either case, we are done,

w2
Case 4,4, 4 > 4, Then _J SBk # Q for some k # i,].
' p=3
Also, as in Case 4.3, S ; ] S i ¥ % Sy U 85 # 8. Iet
u+2
X e og [J 313’ Ve LJ Sﬁk . Z{aksoi LJ STi . Then uxyzv
P=3 .

>

ia a 4-path in G(P) ~and we are done,

Thus we have shown that for any u,v e V(G) the distance
between u and v in G(P) is at most four This proves

Theocrenm 3,3, []

CORCLIARY 3,4, If r >3 and (G,P) is a connected

r-partitioned graph with digmeter at least six, then G(P) is

commected,

We now determine the range of valuce taken by the dicmeter

of an r-psc graph (G,P) with r > 3, in the following

THEQOREM 3,5, Iet f (G,P) is comnected repsc

~
/

LS

3.
with diameter A, then 2 ¢ A £ 5. Purther, therc is an infinite
class of r-psc graphs with diameter A for sach A ¢ §2,3,4,5} P
FROOF ¢ Iet r » 3 and (G,P) bDe a connected r-pse

groph with diameter A, Then G(P) =also has diameter A, It

now follows by Theorem 2,2 ¥hat » <9, Buit 1f A =13 Thoen O
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is complete, r = |W(&)] and so (G,P) is not r-psc, a
contradiction, Hence 2 { A {5 ond the first oart of the

theorem is nroved,

-k

[ ) W ) B RO B AV 4

T & O A e

o = (1203 G 67 89 12)(10 11)(13 17)
(14 18Y(15)(16) ¢ G, ((6,P)) '

i=1

I
¢ = ] (2i-1 2i) e ggp((s-,m)‘

Proui 5,8
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=~ A9 4

'y ' T
g = TT (2i-1 23.) € @ ((G P)) e = (13 24) T]; (2i-1 21). > @(('G,lf))
lﬂ

ar+z.

. r H
= (12 34 (57 (6 TT (2i+2 2i+%)

i=3

e B ((¢,?)) ,
FIGURE 3,2 (Com$d }
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To prove the second p. t of the theor.m, we exhibit an
r-psc graph (G,P) with diameter A for each r > 3 and
cach A e §2,3,4,5} 1in Pigure 3,2, Now if o ¢ @ ((G,P))
and T is a cycle of o then for any positive integer Ik,

1% k '
the graph (GT. . P%_) as constructed on page13,is r-psc with

diameter. A, This gives us an infinite class of r-psc graphs

for each r » 3 and each A ¢ §2,3,4,5% and Theorem 3,5 is

proved, []

Ringel [ 177} and Sachs [ 18]] proved that every self-
complementary graph has diameter 2 or 3, We prove 2 gcneralisa-

tion of this in the following

THEOREM 3,6, Iet r > 3 and (G,F) be r-psc, If there

exists o ¢ 13*((G,P)) such that any cycle of ¢ having length
> 1 intersects at least three sets of P, then the diameter of

G is either 2 or 3,

PROOF : Let o e w*({G,P)) be such that any cycle of

o having length > 1, intersects at least thrce sets of P, By
2,

Theoren 1,9, o ¢ Aut (&), Iet u,v e V(G), We first prove

the following claims,
Claim 1, If o(w) # u, then d,(u, a(u)) € 2,

Suppose o(u) # u, Then by hypothesis and Theorem 1,13

the cycle of ¢ containing u is k-periodic for some k 2 3,
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Thos, u, o(w), o (w) all be .oug to differe t sets of P,

How if w o(w) ¢ E(G) we are done, Othcorwise u o(w) & E(G(D))
and so 6_1(u) u e B(G), Since o° & Aut (@), it follows that

s(w o%(a) ¢ E(@), Now, sither o™ (w o(w & B(®) or

w of(w) £ B(E(P)), and hence u o-(w) e E(G). Thus olither

u 0_1(u) o(u) or u oz(a) c{w) is a 2-path in &, This praoves

the claim,

Claim 2, If o(w) #Zu and o(v) # v, then either
o{u), v belong to different sets of P or u, o(v) Dbelong to

different sets of P,

If the claim is false, there exist Ai and Aj such that
o(w, veh, and o(v), ue Aj, Since o ¢ *((G,P)), it
follows that o(4,) = Aj and U(Aj) = A;. Also by hypothesis
and since o(w # u, we have 1 # j, But then o  has a
2wperiodic cycle, contradicting the hypothesis, This prove the

claim,

We shall now prove that for any u,v = V(&), dG(u,v) L1

tic consider the following' three casces ¢

Case 1, o(w) # v, o(v) # v, By Claim 2, we ray assune
without loss of generality that o(w), v belong to daifferent
scts of P, Now if o(w v e E(G) then by Clain 1, &,(u,v) £ 3,
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Otherwise o) v e B(G(P)) wad so ulc—1(v3 e B(@), Ty Clainm 1,

dG(c"q(v), v) € 2 and so dG(u,v) £ 3.,

*

Cagse 2 o sends exactly one of wu,v to ditself,
Without loss of generality assume that o)} # u, olv) =v, If
w e E(G) .wé are done, Otherwise uv £ E{G), hencc
() o{v) £ E(G()), i.,e, o(w v ¢ E(G@)), Now if o(w),v e Ay
for some 1, then since o(v) = v, it follows that c(Ai} = A,
Since o(w e A;, it also follows that u e A;, But u # o (w
and so if T is the cycle of ¢ containing u then { has
length > 1 and < T> (C Ay , contradicting the hypothesis,
Hence o(w), v belong to different scts of P, Since
o(u) v ¢ B(G(P)), it follows that o(uw) v ¢ E(G), Now by Claim !

e have  dn(u,v) £ 3,

Case 3, o(w = u, o(v) = v, By Theorem 1,6 (i), u,v e 4,
for some i, Choose and fix an clement w in some Aj, i # i,
By Theorem 1,6 (i), o(w) # w. Now by hypothesis and Theoren 1,13,
the cycle containing w is kwperiodic for some k > 3, Thus,

w, o(w), cg(w) belong to different #ets of P, Also since

o(Ag) = Ay we have w, o (w), o“(w) o A;. Now if uw, vw are
cdges of G we are done, Otherwise without loss of gencrality
we assume that uw ¢ E(G), Then u o(w) £ E(G(P)) and s0

uo(w) ¢ E(G), Now if v o(w) e E(G) then wec arc done,
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Othorwise, v ol(w) £ B(GY a1l so v a(w) e 7(G(P)), Since

o1 () = v, it follows that ww e E(G), Alse, gince

% ¢ Aut (6), we have v RO E(@), Tpw if w o(w) ¢ E{&)
then u o(w) wv isa 3-path in G ; otherwise o(w) % (w) e E(G),
and so u o(w) ag(w) v is a 3-path in G, In.gither case '

dqu,v) £ 3,

b 4
g o e a
R o NN S 1

Thi;.s‘ completes the proof of Theorem 3,6, B

COROLIARY 3.7, (Ringel [ 177, Sachs [ 187])_ Evewy self-

complementary graph G with more than one vertex has diame'ter

2 om Py

PROOR Tt P‘“‘_“b'e the partition of V(G) consisting of
singleton sets, Then kG,P) is p-psc where p = |V(G) |',"Fu‘..r1\:1j.fer_
every complementing pem;;\i‘ta‘tion of the self-complementary graph
¢ 1is also an element-_o':_f‘m g*((G,P)), By Theorem 1,11 we also
have that if p > 2 tiié'n. éwery-cyc'le of a complementing permuta-~
tion of G having leng_t-h > "‘1.,‘ ihter-see*ts at. 1eéa.st four sets of
P; The corollary now follo_w,é from the theorem, []

We wiii. ;I.Dw deal with an éssentially NordhauesGaddun type
of problem, for a bipartitioned graph amd its bipartite comple-
ment, L Seguees B

Tet f be a graph theoretic parameter and p a positive
integer, The Nordhaus-.Gaddum problem for £ feof E‘!!Dj) is to
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determine upper and lower bowids (ﬁreferably sharp) for

£(@) + £(@ and £(6), £(§), vhere G is o graph on p vertices
and @ its ordincry complement, One can also consider the
problem of detcrmining all triplets (a,b;ﬁ) for wﬁich there
cxists a gr&ph. G such that (vie)| = p, £(® =2, £(® = b,

In the class of bipar%itioned-grébhé'fﬁe>correspondiﬁg problens
ore (i) to detcrmine upper and-lower bounds for f(G) + L(G(EM
and f(¢), £(C(P)), where (G,P) is 2 bipartitioned graph on

p vertices and G(F) 4s its bipartite complement, and (ii) to
cnunerate all tfipléfé (2,b,p) for which there exists a biporti-

tioned graph (G,P) such that [V(G)| =p, £(¢) =a and

F(GEE)) = b, A_spluiion of the second prcblem necessarily provides

a solution for the first problem, Below we solve problem (ii)

waen f stands for the diameter of a graph, In this’ context we

define a triplet (a,b,p) to be realisable if there cxists o
bipartitioned greph (G,P) on p wvertices such that the diometer,

of G 4is o and the diameter of T(P) is b, Such a (G,P) is

called a realisation of (a,b,p), If min (2,b) =1 then clearly
the only realisable triplets are (»,1,2) and (1,»,2), We now
onumerate all realisable triplets (a,b,p) with min (a,b) > 2 in

the following ) " " ] o

L ———
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TEEZOREM 3,8. Iet min (a,b) > 2, if (a,b,p) is rcalimable,

then so is (a,b,p*1), The smallest value of p, if it exists

-

for vhich (a,b,p) 1is realisable is given in the table below

]

- PABIE 1

a~Pl2 {31 4] 5 |61 7|8 |9¢ble]| w
° o N L Rl o [ B - 3
3 - {12 {12 110 |9 |10 {10 b+ 1 4
4 - |12 8] 8 |8l 819 _ 5
5 - |10 &g ' 8 N - E €
6 - 194{8| 8 |7 -] - - _
7 - 1018} « |- -1 = 3 N
8 - 110 9 - N . 0 _
G ¢a o bodaafal o 48 21 & ;
- 3 i 4 4 5 6 = = o o 3

PROOF ; To prove the first part, let (a,b,p) be
rcaligable and let (G,P) be a realisation of (a,b,p), Pix a

vertex u in G. We construct a graph H from G by adding a



http://www.cvisiontech.com

- 56 -

now vertex w'  to V(G) an. joining it to all the vertices to
vhich u is joined; We obtain a bipartition Q of V(H} by
including u' ‘in the set of P containing u, Then (H,Q) is
a bipartitibnéd graph on p;ﬁ vérﬁices, It can be cosily
verified that H has dicmeter a and TH(P) has aismcter b,

Thus ~(H,Q) is a realisation of (a,b,p), This proves ¥he first

part of the theoren,

P

We next prove the following

Claim A, If in Table 1,‘5 blank (*'__*') corresponds to

a pair (a,b), then " (a,b,p) is not realisable for any p, —

Note that if = (G,P) iqﬁa“bipartitioned graph then the !
bipartite complement. of (G(P),P) is isomorphic to G, Thus
(2,b,p) 1is realisable iff (b;é,p) is éo, . Hence 1i% suffices
to prove Claim A foﬁmpaifs (a,p) with a > b, We break up

th@_grdof into segéral‘steps,

'_1? If a ¢ =, then ~(5,2,p) Is not realisable for any bp.

This follows since if a bipartite graph has diameter 2
then it is complete bipartite 2nd so its bipartite complement

(with fespect to the unique bipartition)-is discomnected,

2% T 6 <b ¢ », then (»,b,p) is not realisable for

Qny bp.
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For this, let b < e .nd (G,P) be . realisation cf
{o,b,p), If G has oan isolated vertex or G has at least
throe components, cach containing at lcast an edge then, since
G(?) is comneccted, it follows that the diancter of G(P) is
at most four, If not, then G has exactly two componenis,
cach containing at least an edge and since G(P) 1is conmected
it follows that the diameter of 56?} is at most five, Thus

if (w,b,p) is realisable for seme p, then either b £ 5 or

3% If 9<¢a<d= and 4 <b<a then (a,b,p) is not

realisable for any b,

By using techniqueé similar to those used in the proof
of Theorem 3,1, ome can prove that if (G,P) is a coanccted
bipartitioned graph with dianeter at leagt nine then the diancter

of T(P) is at most three, From this 3° rollows easily,

42 Ifa=7o0r8 and 5<b¢a, then (3,b,p) is not

realisable for any bp,
This follows easily from Theorenm 3,1,

This proves Clain A completely, We next prove the

following

Claim B, If a positive integer p* corresponds to a

nair (a.b) in Table 1, then (a,b,p*) is realisable,
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sizce Table 1 represcris a symmetric atrix, it

surfices to prove Clain B (as it sufficed to prove Claim A)

For pairs (2,b) with o > b, Our mcthod of proof is tg Follous:

Por cach positive inteper p¥  corresponding o o wid

{a,b in Table 1, we oxhidbit in Figure 3,3 o realisation of

-

{a,b,p*), PBolow sach graph in Pisure 7,73, we ilso give

J

.Y .
Gl

wriplet vhich is realisoed by the grovh,

W-
=

A

H

i
+
¢

i

i

t

f

¥

|
)

o =

(Cy,oq7 (6o, B, (GE,*SX. (GyyTy - (Gg, T
{00,2,3) (00,3,4-) {30’4-,5) . (M,S,G) oo,cx:a’.’j\

0{:::::; 7 1

e i
fq Ay Ay Ly Ay Ay Ay

(B g  (Gq, B

(2,3,10° | (8,4,9 (7,3,10% (7,4,

PIGURE 3,3
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(G18,P18)
(4,3,12; - (4,4,8) (3,3,12)

FIGURE 3,3 (Contd))
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To complete the proof of Claim B, we have shov
fhat if 9{a <=, then (a,3,a+1) is Tea’
follows, since the path of length a with 1
sis a pealisation of (a,3,2+1) for all

proves Claim B,
Wwe will next prove the *

Claim G, If & pos®

pair (a,b) in Table -

p 2 ¥,

As bef | (o)
with a > Lteps, it
whe” ' | some D, .then

_ealisable then D 2 a+l,
s a realisation of (a,b,n’,
diameter &, there is 2 povh of length
1,
< a+l, for all- a, 9 L2 { », Purther,
p* L, p* (1,8 =8, p* (6,6) =T,

fhis follows from Claim B and 1° above,
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3? If b <> and {~,b,p) is realisablic then p > b1,

Purther p*(ew,e) = 3

*

The first statement follows since if b ¢ = and (G,0)
is a realisation of (eo,b,p) +then G(P) has a path of length b,
“he second statement follows easily from Cliain B,

9
Al

If a,b <= and (a,b,p) is realisable, then p > 7,

This follows since for any comnected bipartitioned graph

on six or less vertices, G(P) is disconnected,

50 p*(5,5) = 7

This follows from Claim B and 4° above,

67 1If (a,b,p) is realisable and either (i) a £ §5,6§, or
(#1) a,b <=, a # b, then p > 8, |

Indeed, by 4°, p > 7, Further,-on_seven vertices the
only connccted bipartitioned graph (G6,P) for which G(P) is
also comnected are the graphs G1§ and Gyc s shown in Figure T ey
Hote that Gq5 1is a realisation of (6,6,7) and Gy of (5,5,7).

This prowves 60,

77 p*(6,4) = p*(6,5) = p*(5,4) = p*(4,4) = B,

This follows from Claim B and 6° above,
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80 It (G,P) is a realicution of (a,3,7), then given

two vertices wuy, u, in a set of P, there is a vertex v in

the other set such that. wv, u,v e B(G),

Suppose mot, Then dgepy(ug,u,) 2 4, a contradicuion,

This proves g°

9. If (8,3,p) is realisable, then p > 10,

For this, let (G,P) be a replisation of (8,3,p),
- Take. & diametrical vath, say, u1v1u2v2u3v3u4v4u5"in. G, Then

by 80, there is @ vertex v which is at odd distance fron Uy

in G such that w,v, w,v e E(G), Thus p 2 10,
0
10, If (7,3,p) is realisable, then p > 10,

For this, let (G,P) be 3 realisation of (7,3,p), Take
2 diamegtrical path WV UpVouzvzu, vy in G, Then by 80, there
are vertices u,v such that .n G, u is at odd distancc fron
V1,"v is at odd distance from u, and uvy, g, UsV, W,V £ E(C),
Thus p > 10,

112

If (6,3,p) is realisable, then p 2 9,
Proof of this is similar to that of 10°,

12? I (5,3,p) is realisable, then p > 10,
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132 ~Fp (4,3,p)" is realis.ble, then p > 12,

We omit the proofs of 12° and 13° -as these are
rather lengthy, However these proof technigues are similax
in principle to those used above,

14° 2

If €3,3,p) is pealisable, then p > 12;

e

For this let (G,P) be a reéli_saitim of (3,3,p). If
n, <4 ‘then, since G has diameter 3, there are vertices
vy Vo e Az_ sych that N.(vy) || N,(v,) = Aq . Thus
d@“(P),(v‘i’VZ) > 4, a contradiction, Hence ny > 5. But if
n, =5, then'the degree of any vertex in 4, 1is at most Two

in G, Now since G has diameter 3, it follows that Tow aiqy
pair of vertices U, in Ay, there correspands & ve..‘v:fte-}# v

in\-A2 such that N,(v) =§uy,1,} ., Thus mn, e (g;«)' = 10 -and

el

> 15, PFinally if n, > 6, then since n, > ng, we hawve p > 12,

o " o
Thig proves 14',

=

This preves Clain Cicorplotely and Thebrem 3,8 is

proved, [} = !

A1l the results in this ehapiter, except Theorem 3,8 will

appear in [ 67], = ’
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CHAPTER 4

PATH IENGTHS IN MUITIPARTITE

SELF-COMPIENMENTARY GRAPHS

In this chapter we consider the problen of deternining
the maxinum length of a path in r-pac graphs, The problen is
completely solved for connected bipsc graphs (G,F) with
tgﬁﬁ(G,P))V# £, TFurther sufficient conditions are obtaincd
for the existence of & haniltonian path in r-psc graphs ¢ fer
r = 2 1in Theoren 4,3 and for r > 4 in Theorenm 4,5,

The following lemma will be uscd to cstoblish certain
structural propertics of a connected bipse graph (G,8) vith
G, ((6,P)) # &, even though the lemma is stated here in o

5lightly aore general forn, 2

IEMMA 4,1, Iet (G,P) Db bipsc amd o ¢ B((E,7)),
et £>1 and T = (v, ue,,,u4[*1u4f) be a cyecle of o wit
u; e A1 if i is odd and U, & A2 Aif i is even, Tect H b
tiac subgraph of G induced by < T >, Then one of (a), (b),
holds ¢

(8 L =1: uy u, and Uz u, e E(G) o, uy u, ond

Uz U, & E(@) ,


http://www.cvisiontech.com

- 65 =

(p) H has a hamiltorian cycle ¢ wsuch that for any
u, with i even thor» exist J = 1(dod 4) and

= 3(mod 4) such that U0yt

. is a paxrt of T,
(¢) H has two vertex-disjoint cycles ¢4 and ¢,, cach
of length 2{ such that 0y contains all u.  with
= 1(mod 4) and, either all u; with i = O(uod 4)

or all u, with i = Q(de 4,

PROOF 3 Consider the bipartition @ of V(i) with sets
3y and By , where By = {u1,u34,_,,u4f_1} and B, = {ug,uﬁ,,,,u4zg,
By Observation 1,3, (H,Q) is bipsc and [ = ?3%((H,Q)), Hence
by Theoren 1,9, 0 e Aut (H), Now, either uqug e B(G) or
aiyy & B(G), Since T2 ¢ Aut (), it follows that cithor
Usus,q & B(G) for all odd 1 or, u,uy q e ‘B(G) for 2ll odd %,

where the suffixes are reduced modulo 4f£, If £ =1, (a) follows,

7
If £ > 1, then we consider four cases and in each casc

show that either (b) or {(e) holls,

Case 1, wqus e E(®) gnd wu, e E(6¢), Then clm«lJ
Uy Us,q € E(G) and Uy Uy,3 € E(G) for all odd i, To Qhow
that (b) holds in this case we consider the following hanmiltonian

cycle C

G 2wy uy g B N5 g . Upg 3 Uag Beg %2 B
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3
Case 2, uqu, ¢ B(G) and ugu, é 8(G), Then
u, 9i+f e B(¢)y for all pdd i, U, Us ¢ E(G) and hence

g8,z ¢ B(E) for all even i, To show thet (c) holds in

this case we consider the following cycles €, and 6,

C

L I

Py 0o UsT UGt g, Bl o o W Bally (o 0y
U3 Uy U7 Vg Wq By ... Upg g Ugp s,
Case 3, wu, £ E(G)  and gy, e E{G), Then

e

Co

PPLEN E(G¢) and hence Wy Ugq e E(G)' for all even 4,
Further uy; uy,z ¢ B(G) for gll odd i, In this case {e)

‘holds as is shown by the following cycles C, and C,

4

L

Uq Ug U5 Ug Ug Mo wew Upp 3 g Y
22 B Fp 0 Mg By = on Tt g o
Case 4, wyu, £ E(G) and g u, £ E(G), Then u2u§ e B(G)

Co

e

ard  upug e E{G), Hence W, Uj,.q € E(G) arxd Uy U3 e E(Gz

Tor 2ll even i, In this case (b) holds as is shown by the

N

following hamiltonian cycle C
C 1 830y 850, U7 Ug o, Uyp g Uy p Oq Ugp Us,
This completes the proof of Lemma 4,1, [] -

The maximum length of a path in a connected dipsc graph

(¢,P) with tgm((G,P)) # @ is now determined in the following
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THEOREM'4,2_ Every connected blpsc gréph;*&Gi?) vita
f;mﬁ(G,P)) # @ has a (p—3)~bath where p = V(@) ]. ﬁuither
Tor each p = 0 (mod 4), p > 8 %here gxists a conneutﬁd bipse
graph (G,P) on p vertices such that f; ((G,P)) # E and G
s no (p_2)_path, ‘Also for cach p = 0 (de 4); P> i?, there
cxists a cqnnecﬁed bipsc graph (H,Q) on p- vertices such that

% . ((H,Q)) = § and the maximun lergth of a path in‘ H is B+2,

EROOF 3 ;e% 'duﬁ %;m((G,?)? and let o = 0495.449, De

the‘disjoinj.qule reprGSGntatign~of o By Theorem'¢;12,

-

o2 e Aut (&) gﬁﬁ by’ﬂordllaﬁy 1.15, each o, takes wertice

FuY.

Hi

alternately from A, and A2° Purther 1ci| 0 (nod 4) fox

all i, We now consider two-cases 2

Case 1, :Kéﬁ, Withoﬁt:loss of generality, ﬁg assuwie that

= ey Yo
where ug e Ay (resp; Az) if s is odd (resp, even), and p = 44,
Since G 1is commected, £ > 2, It now follows by Iemme 4,1 that
cither G has a hamlltOnlan cycle or' G has two vertex-disjoint
cycles, each of length 2£ ~ In the latter case, since G is
connected, it follows easily that G contains a hamiltonian path,

7

This oompletos Casg 1.0 fe-r
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CaselQ,,rh 4 1. ~Without loss of generality, we assuse

that for all i, 1 ¢ i < A

O’i = (uﬂ U-iz e ai,d'fi—‘l lli’ 41:‘.—)
vhcre uy, & Aq (resp, A) if s is o0dd (resp, even),
is 1 2 :

o

Let Gi be the subgraph of @ induced by < o, >

shall call the vertex U of Gi even or odd according oz .3

is even cr odd, By Lemma 4,1 we have

-

Observation 1, One of the following holds s

(1) G; is haniltonian ahd given a,, with s ecwven

there is a t 21 (med 4) (resp, t = 3 (nod 4)) such that U g

Y54 @ppear consecutively in & hamiltonian cycle of G

(2) G; does not satisfy (1) and V(Gi) can be parti-
~tioned into two sets Viq» Vip such that if Usg s Wiq 8 Viq
(resp, V.,) and s -t =0 (nod 2), then s~ % = O (nod 4y,
Purther [ vy, ], G]:Viz,j are either both hamiltonian ox
both KQ'S.

We say that o, 1s of type 1 or 2 according as Gi

satisfies condition (1) or (2), Without loss of generality,
we assune that o, is of type 1 if 1 i ¢ ® and o, is of
type 2 if 6 + 1 kil g A, We chocose and fix Vi1 and Vi2 as
A

e sasy .

in Observation 1 for i = 8+1, 6+2
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Given i,j, 1 <1 # 3 < A, we definc ¢, < Gj if sone
even vertex of Gi ‘is adjacent to sone od@ vertex of G
If Gy 4 G, , then in particulor uig Ry £ B(G) and 0
1—?: Ui € u(G) implying tha't Gj.< Gi' Thus, cither C-i £ G,j

or G < Gy (or both),

After a suitadle relabelling of T1reees¥gy WC DOV
assune by Rédei's Theorem [ 16], that

Similarly we also assune
Ggeq < Ggun < eee € Gy o

We now define two subgraphs G,q and Gio ~of Gy for

1,2

i=e+1, 6+2,,..,h, TLet Coet i © Co41 L Vo1 50y K = 152,

After defining G,, and G;o 4 define

i1

if some even vertex of Gi‘l is joined to some o0dd wvertex of

v, #1,1 Otherwise we define\

Gi+‘! k 1+1|:v1+1 3—-1{] k=1,2,

We now nake a2 few observatlons

Obscrvation 2, Tet 1 < i ;é 3 & MV IBE, 1GaC Gy then

every even vertex of Gi'- is joined to some odd vertex of G,
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a2l every odd vertex of Gj is joined to some cven vertex

of Gi’

Observation 3, TLet ©+1 < i < A=1, Then every ceven
vertex of Gik‘ is joined to some odd wvertex of Gi+1,k oru
every o@d vertex of Gi+1,k is joined t0 some even vertex of
Gip 0 B 5 T Zy

- L
of typc 1,

Obscrvation 4, If for g5 of type 2 and Oj
Gy < Gy then cither (i) for each s = 1 (mod 4), ujg 1is
adJacent to some even vertex of Gsq and u_j’s+2 is adg;qonu

to some even vertex of Gy, or (11) for cach s =3 (mod 1) ,u,,
iz adjacent to spme even vertex of qu and uj,s+2' is

adjacent to some even vertex of Gi2'

Obscrvation 5, If for o5 of type 2 and gj of vypc 1

!

) < 95 then for any k e {1,2} and any cven vertex u in
Gj , there exist an odd vertex v in Gj and an cven vertiex
w in Gy, such that uv is in & haailtonian cycle in Gj 2nd

v.l'}-r & E(G’).

Observation 6, ILet 1 < i # 3j <A, If Gi_e{Gj, 0 is

an cdd vertex of Gi and v an even vertex of Gj’ then

uv e E(@),
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Wz now give hanmilteninn paths # in [l

A g , : : _
| G » B'=1,2, uhich will be uscd in’ comsitruciing &
I=e+1 , : | =3 ¥ 3

(p-33-path in G, We oxhibit &

tde

n Figure 4,1 by @ broken -

line, It is constructed os follows @ start at an arbitoaxy -

0 99

PIGURE 41
- - b A
(of@ and ovan vertices are dunoted by 1. on’ 2
raspectively,)

ofd vertex x of Gy, trace a honiltonian path of Gy, Haen
;o to some od: vortex of G, (this is pOssible by Observation 2,

since Gi < G,;), then truce a hamlltonz nkéathrof  G2; Loceed

1ilzz this until Gq 14 is covcrcﬂ and an odd vertex of Gy is
sesched, ﬁhen trace a haulltonjqn nath of Ge ending in &n
cven vertex vy, Ve note that & can also be constructed by

storting f on an arbitrary even vertex y in Gy wn going

'
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f

Lackwards and in this process by Observation 1, the final 0dd

vertex x can be chosen to be some uy, with s =1 (mod 4)
or 3 (mod 4) at will, In either case we will denotc the
vertices adjacent to x and y in £ by z and w
respectively,

The path n, 1is obtained exactly like # with
Gg+1 ,k'! Ge}Q,kya 2. fG}\k I‘eplacing G'i !GQ! cow ’G@r and
e Yioo By wk replacing X,y,z,W respectively, exXcept that

ity is arbitrary then x, cannot be chosen at will,

k

The can be chosen such that instead

of the initial vertex xk, the next wvertex Zy is arbitrary

Further, by Observation 1,

hN

(see Figure 4,1),° -

We are now ready to show the existence of a (p~3)~path

in ¢, We deal with the cases © > 0 and € = 0 separately,
Caseg 2,1, € > 0, Here we consider four subcases ¢

————— 5 O

Case 2,1,1, 8 =1 or (Ggq < Gy and Gy < G)), By

Observation 4, we may assume without loss of generélity that

b4
for 211 s =1 (med 4), wy_ 1is adjacent to some even vertex '
of Gguq o Then the (p-3)-path is obtained by traping mny

L A
from x, to w,, then going to some even vertex y of Gg,

then tracing # backwards choosing x %o be some wu;, with
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g =1 (nod 4), then going to sormc even vertéxs‘zg of Ge+1 o
s . . 9
and finally trocing n, from gz, to yo.
We note that if € = A, the above path is actually a

haniltonian path,

Cage 2,12 Ggep $ @y and Gy § G,, Then the (p-i?vpath
is obtained by tracing n, backwards fron y, to =z, , then
going to some odd vertex x in G1 , then tracing I fron

(this

il

x to w, then going to some even vertex-_y1 of VGK{
is possible by Observation 6), then tracing ny backwards fron

i

¥4 to g

Case 2,1,.5, Gge 4 G1 and GgX Gh°‘ Then the

(p~3)-path is obtained by tracing 4 from x, o wy, then
going to some even vertex y of Gg then traciﬁgﬁiﬂ Pvackwards
from y Yo =z , then going to some 'odd vertex x, of G9+1’2
(this is possible by Observation 6), then tracing mn, fron

X, %o y,.

‘ Case 2,1,4, q@+1 ¢ Gy and GQ £ Gh‘ Then the
(p-3)-path is obtained by tracing 0, from x; %o y,, then
going to the odd vertex w in u (tﬁis.is'possible by obéorva—
tion 6 since w is an odd vertex of Gy and Gg {‘GA)' ‘then

tracing ¢ 'backwardSWfrom w to z ,‘then going to same odd
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vortex x, of Ge+1,2 (this is possible by Obscrvation 6,

then tracing n, from x, to y,.

Case 2,2, @ = Q,

Here we consider three subcascse

Case 2,21, G, 4 G;. Then the (p-3)-path is obtained

by tracing T fron x4 to Wy, then going to sone even vertex
z, in 7, (this is possible by Observation 6), then tracing

N, from =z, %o Vo . , E:

Case 2,2.2., G, < G, and there cxist zn even vertex
‘ A : that
yq of G4 and an odd vertex X%, of Gy, such/ xgyy e E(@),

In this case a haniltonian path can be obtained which contoing
the edge X5¥1 traces 4F backwards fron ¥4 to X4 and

\
traces n, from x, to y,,

Case 2,23, GK <-G1 and no even vertex of Gh1 is

adjacent to any odd vertex of G45. In thiz case by Observation e

every even vertex of G is adjacent to some odd vertex of Gqq

Al
and since 02 e Aut (G), every even vertex of -G?\2 is adjacent

to some odd vertex of G12,

Now, since G is comnected, for some i,j, therc cxist

U € V(Gi1) and Usy © V(Gj2) such that U gUsyq © B(GY;

Uithout loss of gencrality wec assume that s is odd and 1 is
cven (Otherwise we interchange the roles of Gy, 1 and th for

= Edmprasgich, SCR, web’obt
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A
et ¥ = || V(th) y X = 1,2, Then in Figurc ~,2
h=1

wve conatruct a haniltonian vath T1 in 6w, ] which hes

u, . @s an end vertex and a path P2 in GLY,_] which covers
) g .
as an end vertoex,

&1l but one vertex of W, and has .

L i}

A 2 t
Yhen P1, P2 and the edge gives us a (p=-2i-nath in

Y5554

¢, as is indicated by a brokon linc in the figure,

P Eh e e g o = oaw

. e - e =

PIGURE 4,2

hY

(odd and even vertices are denoted by 1 and 2 resvoctivaly!

Thus we have shown that every connected bipsc gronh

(€,m) with ¥_((¢,2)) # ¢ nas a (p-3)-path, whoeve b = e 1.
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Hext, given an integer + 2 2, we coustruct a commceied
pipse graph (G,P), with ©_((G,B)) # @, on p = 4% verbices

which has no p-2 path, The scts of T arc

o2}

Gy = iu1,u2,,,,,u2t§ and A, = iv1,v2,,,,,v2t§ o The wveriices
u.  and vy B&re Joined in G iff i £ j £ 2t-i, 1 ¢ i < &, or,
T2 -31<§<i,t v <128, Clearly, (6,P) is connected

g : |
bipsc and o = T (U‘iviu’@‘t*‘] _i v2‘t+1—i) e @m((G,P)), Purthor
i=1
UpsUpaqs Vqy Vop Ore end-vertices of G, Thus G has no

(p~2)~path,

Firally, given any integer t > 3, ®e construct a
connected bipsec greph (H,Q) with ¥ ((H,Q) =¢ on 4%
vertices in which the maxinum length of a path is 2t + 2, The
scts of Q are By = 3ug,p,...,up} and By = {v15V2r00es94}
and  E(H) ={uivj|1 321,11 t1¢ | § 9V |

2< 3 g2t} | %ut+1v1§ U iuiv2t1t+2 £i<2t} ., Then
clearly (H,Q) is comnected bipsc, t;m((H,Q)) = ¢ and

t 2t
g5 I (ugupp,q )Y CTT (v))e z;p((H,Q)). Now since
i=1 i=1

v, t+1 € i { 2t are eni-vertices of H, it follows that o path
of H can include at most + + 2 vertices of B,, and sincc H

is bipartitioned, it follows that if a path includes +t + 2

vortices of R 3t 40 5 mewined wmath. o Waw oong soh i PDIECimpresE

Z
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is Bga1 V9 0 Vo Uy L., Ve g Bo1 Vi W Vo Wyuo . Thus in H

1

he naxinum length of a path is 2%+2,

ot

This completes the proof of Thocron 4.2, [I

We next prove the following theorem, which gives a
sufficient condition for the existence of o haniltonian path

in a bipsc graph,

THEOREM 4,5, Let (G,P) be bipsc and o ¢ G, ((6,2))

have the disjoint cycle represcntation
c = 01 02 *» e 0]\ L]

et Gi be the subgraph of G induced by < o; >, IE Gy

is commected for 21l i, then G has a haniltonian path,
PROOF ¢ PFix i, 1 < i < A\, By hypothesis (a,,T

comnccted bipsc and o, = tgHJ(Gi,Pi)), where P, is the

restriction of P +to Gi' By Theorem 1,12 and Corollary 1,15,

ci g Aut (Gi), o takes vertices alternately fronm Ay and Ay

i
and |ci| 2 0 (mod 4),
= ' 2 A
Let o, (ui1 Wi .. ui,4fi—1 ui,4fi)’ where ug e Ay
(resp, 4,) 1f s is odd (vesp, even), As before we call
b;, 0dd or even according as s is odd or even, Since Gi is
ERS — ettt

connccted, it follows by Lemma 4,1 that one of the following

STl Ehi :
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1% G, is hamiltonian,

(2) V(Gi) can.be partitioned into two subsets Viq ond
Vi2 of size 2{1 gach such thed Vi1 comtains all v o with
g =1 (mod 4) and either all Uy with s = 0 (mod 4) or all
Uiy with s 2 2 (mod 4), Purther GLV,,. ] has a hamiltonian
ciele Gy, k=1,2, ’

We now prove the following

Claim ; Given W & V(G,), there exists a hamiltonian

path in G; with u;q @8 an end-vertex,

Indeed, if G, satisfies (1), our claim follows trivially,
Suppose now G, satisfies (2), Then since G; 1is comnected,
sene vertex uiso of Vi1 is joined +to some wertex uito of
Vip. Since of ¢ Aut (6,), it follows by (2) that any vertex
of Vi is Joined to some vertex of vi,B—k, k= 1,2 Now,
given uy. e Vi, let u;4 be a vertex adjacent to u. o on

C To get the required hamiltonian path, trace a hamiltonian

ik
pat% of Cik from U o to ;4 then go to some vertex of

Vi,B—k and trace 2 hamiltonian path of Ci,3~k' This proves the
claim, We note that since G; hes 4(1 vertices, the end ver-

tices of any hamiltonisan path of Gi have different parities,
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Given 1i,j, 1 { i # J <, we define G; < Gj if an

cven vertex of Gi is adjacent to sone odd vertex of &. .
Then, as in Theorem 4,2, we have cither Gy < Gi or Gj <Gy
also, if Gi < Gj, then every cven vertex of Gi is adjacoent

%o some odd vertex of Gj and cvery odd wvertex of Gj is
acdjacent to sorme even vertex of Gi' By Rédei's Theoren E16{],
it now follows that the cycles of o nay be suitably rclabelicd

sco that

Gy <Gy < ,., <G

LR 4

3\ e
We are now rcady to give a hamiltonian path in ¢, Trace

2 harpiltonian path in G1, starting from an odd wvertcx of Gj,

then go to an odd vertex of G, and trace a haniltonian path

is

in GP' Proceed like this uvuntil an odd vertex of GA

rcached, then trace a hamiltonian path in G This gives us a

K.
haniltonian path in G,

This completes the wroof of Theoren 4,3, [l

Next, in Theorem 4,5, we give sufficient conditions for
the cxistence of a hanmiltonian path in an r-psc graph, v > 4

-

We first prove the following prelininary lemna,

IEMMA 4,4, TLet (G,P) be r-psc with = > 4 and

-

o e B*UGP)), Iet T bea cyelo of o with [I_| > 4

A


http://www.cvisiontech.com

- 80 -

Tet H be the subgraph of ¢ induced by < (> and u an
arbitrary vertex of H, Iet £ =1 T |, Then one of the

following holids

() for any integer 8, 0 { s (¢ ,éh— 1, therc is a
haniltonian path # in H 1in which the wvertices
T—2S(u), T—28+2(u) appear consceutively and which has
T-2t+1(u), T—2t+3(u) as
0<t< é' =i

vertices, for sonc 1,

[

4!

o

(») for any integer s, 0 < s ¢ é, -~ 1, there is a
haniltonian path 4 in H in which the vertices
T_28+1(u), T_23+3(u) appear consccutively and which
hag T_zt(u), T_2t+2(u) as end vertices, for somc

t, Oﬁti’éj~1.

REMARK : ©Note that br Theoren 1,13 tnd Theoren 1,6 (ii),

£ is even,

FROOF : By Theoren 1{9, 5% e Aut (), Tet n = IIT_]_
Since m > 4, by Theoren 1,13 (i) we have that vin isk
n-periodie, Heuce if we < (>, then v, T (v), Tﬁ2(vﬁ, T°®@
2ll belong tec different sets of F, Without loss of geuerality,

we now assume that u ( (w) ¢ E(G), For, if not, then

T - (u) u e E{(G) and (a) or (b) holds for u according os
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(b) or (a) holds for —(_"1(0.), Since o° & Aut (G) , it
follows that for any; s, 05X é’ - 1, we hawve

o : M |
T%w T W ¢ B,

We now consider the following two casecs

Case 1, u _(_ (0) ¢ E(G), Since - e Aut (G) or any
Sy 0$S$§—1 we have Tz”()Tzs (@ e BO), Lot ty
'bo.t_he_ (£-3)-path T (W) u T (w) T (u), T2 () -(- (0 ,,.
43w Tg"'zl"(u). Since o° e Aut (@), either
Tt T2 e 8@ or T T « B,

We obtain a hamiltonian path & in H by combining
/4 with the 2-path. T’("r( w) TK'" () Tf 1(‘.1) or with the
2-path T A2 (w T4 (w T W accord:mg as
T4 T2 e 3@ or T T = B0,

Note that either Tz'"4(u), —(—K"z(a)- appear corsccutively
in 4 .and M has T'('J(u) and TN a8 its end vertices,
or, _(—K-' Tf appear consecutively in # and £ has
Tf— “(w) and —('K"E(a) as its end vertices, Now since [ is

even and 0% ¢ Agt (G), it follows that either (a) or (b) holds,
Case 2, 'u TBCU.,) ¢ BE(G). Then we have

T THY - E(G), Since ,0_2 e hut (¢), it follows that

T2S+1( w T2S 4(11) e E(G), for all s, 0 £ s ¥ g- 1, Further,
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cither u T %(w) e E(G), or T-K"BXuJ-?"K_1;u) e E(&), We now

construct o hanmiltonian path 4 as follows 73

Let #; be the path u T W T;d(uO,ZHBfuJ T %w !
the last term being T'K_B(u) or T'K_1(u) according as
£ =20 (mod ) or {52 (nod 4, Tet £, Dbe the path
T%w T2°W Téw TTw (@A ..., the lash tern being
T_I"1(u) or T_K*B(u) according as [ = 0 (nod 4) or
£ 22 (mod 4), Then /£ is obteined by combining #y and &5,
using the =dge u T%w or T_z_3(u) 1_1"1(u) whichever
cxists,

Note that either u, T2 appear consecutively in
# and # has T_K_B(u) and T‘z"1(u) as its end verticces,
or, T!K—3(u), Tﬁf"1(a) appear consecutively in # and 4 has
u and T-g(uj as its end vertices, Now since [ 1is even

and o® ¢ iut (@), it follows that either (&) or (b) holds,
This completes the proof of lerme /4,4, []

THECREM 4,5, Iet r > 4 end (G,P) be r-psc, If thove

cxists o e yg*((G,P)) such that o has at most one cycle of
length T and every other cycle ( of o satisfies

l

IT"] > 4, then G has a haniltonian path,
PROOF * By Theorem 1.9, o- ¢ Aut (G), We nov consider

two cases,
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Cuse 1 o h&s no cycle of length 1, TLet
g = 61 02 = X GK

be the disjoint cycle representation of o. Let G, be the

subgraph induced by~ < o, > and Ki = jci By ‘Theoren 1,13

and Theorem 1,6 (ii), £; is even,

Por sach 1, 1 { i A, fix a u; e < o; >, Then

define a vertex v e < os; > to be odd (resp, cven) if for
4 (0 e .

sone integer 35, 0 < s ¢ 1% ~ 1, we have v = G§S+T(ui)

(resp, v = cis(ui))_ Two odd (resp, even) vertices Vi,Vp & <90

are gaid to be consecutive if either vy = cg(vg), or v, = Gf(v1),

f'ow, by Iemma 4,4, we have

Observation 1, For ecach i, 1.¢ ig A, one of the follow-

ing holds -+

(a) for any two consecutive even vertices VisWy e <o >,
there is a haniltonion path Ny in G; dinwhich v,,w, appoar
comsecutively and which has two congeeutive odd vertices

Xi,¥; & < o3 > as ¢nd vertices,

(1) G; does not satisfy (a) and for any two conscecutive
od¢ vertices ViaWs e < 9. >, there is a haniltonian-path s
in G; in which ve,W, appear consccutively and which has two

consecutive even vertices X,y £ < o; > as end vertices,
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Goven 1i,j with 1 <1 #J <, we lefine Gy < Gj if
none vertex v oof Gi is adjacent to some vertex w  of Gj
with v odd or cven according as G, satisfies (a) or () and

v oven or odd according as Gj satisfics (a) or (b),

Suppose now G, 4 Gj° Since IIGil ; ]Ioj] > 4, there
exist vertices v of G, and w of Gj such that wv,w
belong to different sets of P, with v 04d or even according

as G, satisfics (2) or (b) and w even or odd according as

il
G; satisfies (a) or (b), Now wvw £ B(G), hence o(v) o(w) ¢ Z()

and it follows that Gj < Gi'
Thus, for any two cycles o; and Uj of o, either

G < Gy or Gy < Gy, Hence, by Rédei's Theoreg [16€], o,'s can

be suitably relabelled so that
By <G uges ¥ G
o
Using the fact that o7 ¢ Aut (G), we have the folloving

Observation 2, If G, < Gj then (1) given any veriex

v of G; with v o0dd or even according as G, satisfics
(a) or (b) therc cxists sone vertex w of Gj with w cven
or odd according as Gj gsatisfies (a) or (b), such that

vw e B(G), and (ii) given any vertex w of Gj with w even

or odd according as Gj satisfies (a) or (b) there cxists sone
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vertex v of Gi with v 044 or cvon according as Gi

satisfies (a) or (b), such thet vw e B(Q).
'?, i ¢ H

To complete Case 1, we will prove the following clain

vy induction on i

3

Claim + for- T <1 <N, there exists a- haniltonian path

e ]

Hy of Gy [J Goild vas LJ G; which has as end vertices two

consecutive odd or two consecutive even vertices of Gi accord-

ing as G; satisfies (a) or (b),

Let Vq,Wy Dbe two consecutive even-or consccutive odd
vertices of G, according as Gy satisfies (a) or (b), "ake
N4 @s given in Observation 1 to be #1. This proves the claim
foﬁ i=1, @Given uié1, we constiruct Mi as follows, <Since
G; 1 ¢ Gy thé-end vertices X; ¢ and Yi_q of Hs 9 are
adjacent to some vertices v. and Ww; Trespectively where v

and wi are two consecutive even or consecutive odd vertices of

G. according as G; satisfies (a) or (b), Now #, 1is obtained

by combining “1—1 with Ny - viwi‘, using the edges X; 1 Vs

and Vi

1 w.', where N3 is as given in Observation 1., Thus
the claim is proved and #4, 1s a hamiltonian path of €, This

1

completes case 1,

Case 2, ¢ has a cycle T of length one, ILet

-

i ANk

) [
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be the disjoint cycle represcntation of o, ILet < T> = iu} A
Without loss of generality éssume that U e Ar' Then by

Thoorem 1,13 and the hypothesis 4t follows that A =§u} .

Iet H=G -~ u and Q the restriction of T +o V(I ,
Yhen (H,Q) 4s (r-1) - psc and a0, .;. o, ¢ tg*((H,Q))
satisfies fase 1, Tet #, be the hamiltonian path of H
obtained as in Case 1, We now make & few observations, In
vhat follows Gy, vy, Wy, X ¥; have the same meaning as in
Case 1,

Obsexvation 3, Either w is adjacent $o all even

vertices of G, or u is adjacent to all &dd vertices of Gy o

Observetion 4, Either (i) vy and w, are both even
and Xy and y; are both odd br (ii) v, and w, are both
odd and Xx; and ¥; are both even,’

Now if u is adjacent to x, then we obtain a hamilto-

A
nian path of G by combining £, with the edge w12 Tiu
is not adjacent to Xy then by dbsérvations 3 and 4; u is
adjacent to Vo Tet i be thé smaliest integer such that

u is adjacent to vi. If i=1, we geta hamiltonian path of
G by replacing the edge V1AW1 of UK -5y the'2;path fi u oWy,
If 1> 1, then since u is mot adjacent %o vy 1, it follows

that u is adjacen£ to X5 q and a hamjiltonian path of G is
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obtained by replacing the edge X1 vy of #, by the 2-path

Fi-1 Vg .
This completes the proof of the theorem, E

: From Theorem 4,5 and Theorem 1,11 de Jmmea7ately have

he follow1ng

)

COROLLARY 4.6 (Claphan [17]), Every sclf-complementary

graph has a hamiltonian path,

We now show by examples that the conditions on Lhe cycle

1engths of “c' in Theorem 45 cammot be omltted

.let 1 be an integer > 1, 'We‘construct.a.4mnsc graph
(¢,P) with o ¢ ig*((G,P)) on ‘p = 64+ vertices puch thet
g has exactly two eycles 91,9, with |c1| [I .J = 3 and
o5 :

G hés no hamiltonian path,_ The sets of P are
={u?5 bor = Iviiosy® o4} s Af "““{‘”1"---"”2% e
{x1,,,,,x2t§ and E(G) = {u Vis A We,s, x|
Ted <1 § U {v& B4§ 0 Mges Xy #ivjl“1 £4,5< t}
U ViVi s Vgag Xpag s X vt+J| 1< i,érg t z,_ Clearly (G,P) is
bipsc and o = (W (vqw, Va1 Ygaq Xguq VoWoky Vin Wy s

K2 wan VWEXLVoy Woy Xo0) e B *((G,F)), We will now show
that G has no hamiltonian path, We note that given any path

HoAn G, there exists i, g, k,, t+1 < 1oy Bg L2t 15,4,
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such that Vi My, X
0;4- o 0

aru not cut vertlces of o Thus at
o £
nast one of V.

w. X
? .
1%0& 3 “ko

4o is not hamlltonlan ‘Thuq G h&s no hamiltonian path,

dobs not belong to K, . Heace

!
L

Wext, let % be an integern . 1,..Jo constract 4 5ipsc
o 1 = ol G ] . Vertlces I
greph (6,P)  with o e BX(G,P)) on p = 44+2/ such that o

hes two cycles of&lbngth 1§mevery othor cycle . of .o hak ? '

3

le,j 4 and .G hasnnb namlltonlan pa$h‘ rThe sets of Ty >
arc {1.11,[12% }1’,“1I iy"fF jd ’V:té ~% A?;-L. gw 9...,"{%%} _,;.l Fg,i
4 {,"&,’wﬁﬁ&i{t‘g I(’J*ﬂiﬁ (%(Y'H,) ,‘y.t% Q?@&!?éﬁ)h imi 5‘%,,& Xr\l_l A
5_.—-_12 1<igt}. U{WJ ,rw1;53,_xiyj}1<1,g <t
1ﬁally (G, P)_ is dipsc angd g = (uy) (ug) (- TT(v WYX e))
2°= 45
is disconnected with 2t+2 components, it follows that G has

e zg*((c; P)) Now since {4, |] A3| = 2% and G - A

1

no hamiltonian path,

These examples show that the conditions givenpin;.f

Theorem 4,5 are best possible,

All the results in this chapter willaappear h 57 [Tf];
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CHAPTER 5

. DISCONNECT D MULTTPARTITE -
SELF--COMPIEMENTARY GRAPHS

In thls chapter we deal excluolvely*w1th disconnected
;-pscuﬂraphs Disconnected r—gscrgraphs~w1thout-jaolumod
vertices are,completely’charactcriée It is also eatablished

that for. every-diacannactad bipﬁc»gra@hJ €GVP) E;pgcqrylb

We first characteris& dlsoanndeted P=pSC, gr@pna unwen _

do nct ‘have any*isalated vertex in thu ﬁollawing

THECOREM 5.1, If (GQEQr is-audisconnagtad-rq?arﬁiﬁigned

graph vithout isolated vertices, then (6,P) is r-pme iff

=2 and for 1.=1,2, A, can be partitioned into 4vo sets

3.
Ai1 and  A;, such that |Aj1[ |A 5| for s@m§ J and
B = |J {uviu e hpg Ve o) L
=1 .

FROOF : Iet (G,P) 'be disconnected r-psc and leve no
isolated vertex, Iet Gy , 1 £t <k be the oonnccted;domn

~

ponconts of G,
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By hypothesis, there exists an edge uv in G1 and
an edge xy in G,, Now in G(P), every vortex is adjacemt
to at least ome of wu,v,x,y, Also either ux, vy e B(G(P))
or uy, vx & E(G(P)), Hence G(®) hnas at most two components,
Henee k =2, If now r > 3, then we cah choose the above
cdzes uv and xy} such that at least three of wu,v,x,y
belong to different Ai‘s_ It is theh easy to see that G(P)

is comnected, a contradiction, Thus r = 2

Define mow Ay, = A, f] v(6), 1, t ¢ {1,284 | sSince

G has no isolated vertices, Ay, # @,

We now show that uv ¢ E(G) if u e Ay, and v Aoy s
Indeed if uv is not an edge in G, then in T(), uv is an
cdge, Further, in G(P), every vertex of hff; is adjacont to
‘evory vertex of A2 5 % and every vertex of A2t ig adjacent
4 ’-' Fa gl "
to every vertex of Ay z , . Hence G(P) is connected, a
et

contradiction, Thus, for + = 1,2

E(Gt) = {uvlu £ A1t , V ¢ AEt} .

Wow let ]Aigt-l =n Then G =X

j : T
iy njj,ngy U 15,00,

and G(P) =X_ K . Since ¢ and G() are
’ S R EAerP U Bq2:121

isomorphic, it follows that Nyq =Ny, Or N,y =n,,, This
proves the 'only if part' of the theorem, The 'if paxt is

trivial and the theorem is proved. []
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In the next three thuorems, we study discomnected

bipsc graphs (G,P) and show that zgp((G,P)} is aluays

non~empty, We will find it convenient to use 4,8 For the

scts of T (instead of A1, A?); Also, given a bipartitioned
graph (¢,P), if ,AT (L4 and By (TB then G[:A1|B1:]
denotes the bipartitioned graph (H,Q) whers H = G[:A1LJB1:]

and the sets of ¢ are Ay and By, Further, §1:31I31:]
will be used to denote the bipartite complement of G[:Aj]ﬁlj,

IHEOREM 5.2, Tet (G,P) be a disconnected biparti-

tioned graph having no isoclated vertex, ' Then (G,P)- i8 bipsc
iff there exist a partition §81,8,} of A and @ partition
{B4,B,% of B such that

. |

E(G) = U {uvlu € Ai y V & Bi}
i=1 '
and cither ]A%] ='|A2} or |Bq| = [By|. Purther, if
Go((G,P)) # 4 , then A = A = iB41 = {B,{.

FROOF ; The first part of the theorem follows directly
from Theorem 5,1, Suppose now T;HS(GaP)) has an eclement o,
The o(A;) & §4,,B,,3,% . But if o(Ay) = A,, then
o(By) = B;,a contradiction, Hence either o(Ag) =By or

o(44) = B,, We comsider two cases accordingly,
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Case 1, o(Ay) =3By, Then o(By) =4, and o(B,) =4,

Thus, lBgl = IA1| = |B1l = A5,

]
o>
2
o
q
Cain)
b

2

[
el

ey

Casc 2, o(iy) =B,, Then o(By) A,
Thus, lA,| = [B4]| = [A4] = |B,],.
This completes the proof of Theorem 5,2, []

THEOREM 5.3, Ict (G,F) be disconnccted bipse and

let u & A be an isolated vertex of G;- Then éither

G ((6,P)) = Egp((G;P)), or, for some positive integer n,
A can be partitioned into (m+1) sets Ao’ A1""’Am and
B into m sets By, B2,,,,,Bm sﬁch that injh=_|Bj[ for
all i,j, 0<i<m 1.¢3<mn and '

uvlu e A; , v e B.t.
{ g §

m
B@ = |J
i=1 j ’

(et

TROOF ; First of all, we observe thut all the isolated
vertices of G belong to A, because otherwise &(P) is

connected,
Suppose now  B((G,P)) # ‘Gp(((}f-,P)),_ Fix a o in

% ((G,P) - B, ((¢,P)), Define

A
0

I

{u e Alu is an isolated vertex of GE

and ,
A, o(A ),
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We then prove the following ¢
0 - : : 4
04 Ca- A, and G‘EA1 {:[ =K,

To prove this, let u e A , Then dgep) (e(w) = 0,
£ o(w e B, then d,(o(w) = [A]|, a contradiction gince
d,(w) =0, Thus o(u) ¢ A, If o(w Aoy then dgesy (a(w) ={B[,
a contradiction, Hence o(w) ¢ A - A . Also since
gy (e(w)) =0, we have ¢Lo(w (B =k, Now 1° follows

cagily,

o)’ U(A..Ao_) =B and o(B) = A"'A'l ‘

To prove this, note that G[A-A_|B]) == G[ A-A1]B]
and o (restricted to (A~A ) U B) is an isomorphism between
them, But G[ A-A_|B7] is commected, since G[:A.!L.[Bj'z K
and no vertex of A.A o 1s isolated in G, Hence either
U(A-AO) = A-A.I , oOr G(A-AO} =B, If G;(A-ijlo) = A-a@.,\, then
(B =B and so o ¢ ‘Gp((G—,P)), a contradiction, Thus
s(A-A ) =B end so o(®) = A-A,, This proves 2°,

We now define -'Bi, hisqr 1= 1,2,,,,. inductively as
follows ¢

Bi = o‘(Ai) A

¢ 214 T U(Bi)'
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Clearly B, (T B, We now prove the following @
3? Iet t be any positive integer, Suppoce that

A C A-A, 1 i< t, Then,

(1) B, Ne,=0,1<75 <11,

(11) A, N a 1:+1= , T<3<s,
(iii) G[A—UA|B] K
Jj=1
1
(4v) e[A; 41B ~ |[] B; 1 =K,

j:‘] n

We prove 3° by induction on 4, Since Ay (C h-h_,

it follows that B, (_ B, 1 <1 1,

First let t =1, Then (i) is vacuously tree, Also

-

A, = U(AO) and A,

one-one, (ii) follows, Als.

0(B1), Since A ﬂ B, =% and o is

GLA-4,18,] =BLo® oI = e[43] =K
This proves (iii), Finally, . |
E-]'}cxgm_}a1 ] =GLa(By |o(a-8 ~A4) ]
' ‘;‘_: GLA-A ~A (B, ]
= K (by (iii))

Now since A, (C A, (iv) follows,
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.Next; assuming the result for t =.s¥1;ﬂ we will prove
it for t =s, where s b iy~ I 1) prove‘(i), first‘pctp that

By = q(Aj), T £33 £ s, By induction hypothesis, Aj n Ay =10,
1:£;j < s-1, Sihce o is oﬁe;one;'(i)'féllbws, To prove (ii),
- note that Ay = o(h) and Ayoq = o(Bj),,, 15_3 £ s, Now

io B =0 ‘,E'infi by (i), By M By = @, 1< § ¢ s-1, Since o
is one-one, (1i) follows, Next note that |
' ' s=1

o GRA - [ 4513,] =FLo® - | 9(By) [oCar) ]
et A
' 8-1
= ¢[4A, B - U BJ]
j:

= K (by induction hypothesis), -

This proves (iii), Finally,

- s - ' Wer=
3=1 | o=
N S '
= (:}]:AA - U Alesj;
= §=0

= X (by (iii)),
Tow since By (Z'B, we have A_,, (T A and (iv) follows,

This completés the induction and proves  3°
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How, let m be the :mallest integer such that .
dpet VA, =8, Then &, (CA-A_, 1 <4 ¢m, Hence by 3°
(i) - (iv) hold for any positive integer & & m, TLet
weh o 14, Then

eLamdglo™ (T = 6L ® o~ (w ] = FLup] =&
(the lagt step follows since u e‘Ao), IAlsb 'sin(;e e Am+1 .

L

N : . m _
.0—1 (0) e B, 5o from 30_ (3ii) we haye G[:A = U Aj|0-_-'1 (W] =X

o ¥=
‘ _ m : il - ¥
Hence (A-A) [] (& - U A =@ 1, &~ [ Ay =@ and
3=1 R R

m Tomn n
A' = 1 = —) d = = r
. U AJ . Clearly now B = o(A-1)) =0 (1l=J1 A.) ]:J B;

j=0 ‘ i=1
'Fllrther I'AOI = ]A‘]I! |Ail % ,Bil = IAi-l-‘[ l for i - 1!000 ’m—1
and BENE [‘Bml, Hence |Ai] = |Bj| for all 4&,j, -Also by

3% (131) and (iv) we have

1t :
G[A_UAj[B_b]=K,1§_t§_m'
3=1
t .
G[AtﬂlB—UBj]=K,1$t_gm_
3=1 |

Now since G[ A{|B]] = K and c[4,18] 5 X, it follows that

m m
B = | | {uvlue_Ai,v.e.Bj‘g._
i=1 j=1 ,

This proves Theorem 5,3, [l
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THEOREM 5,4, If (G,P) is a discornected bipsc
graph, then ISPC(G,P3} £ 2.

PROOF ; We consider the following two cascs ®

Case 1, G does not have any isolated vertex, Then

by Theorem 5,2, thcre exlst a partition {41,,2§ of & and
o pertition §B,,B,} of B such that

E(®) {uvlu s 4y ? e B;}

H
(el

i
and gither ClAq] = |Ap] o ‘1B1|'? [Bol, Iet 4y = iu1"'°’%3}’
by =§Uuqreecrtaipd 0 By =iV Vo2,

and without loss of generality assume that a

B2 -~ {vc+1’olt’vc+d§

b, Then clearly

g = U (u.i u23+1—i) -l—l- (V )

belgngslié ZSP((G,P)),

Gase 2, "G has at least one isolaﬁed-yertex,‘ Without
loss of\generaliﬁyllet e A be an isolated vertex of G,
Then by Theorem 5,3, either G ((G,P)) = Ep((G,P)), or for
some poéitive;integer m, A can be partitioned into (m+1)

sets Ab,'A1,,,_,Am and B into m sets BJ' BoyesesBy such
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y0£inmn,1<¢j<s<n and

m m :
E(G = |} ] fuviu e A, y Ve Bj},
i=1 j=1
In the latter case label the vertices of fii with

Ui 1) s+1reeerlys For 1 =1,2,, ,,m, Ilabel the vertices

of A, with w o, 4,4, U1y s 2nd label ”theﬂ vertices of

Bi with Vii_1)5+11001 V45 for 1 =1,2, ,.,m, Then it can

be casily seen that

+ + : +1
E(m'12)6 1 ] [m62 :l
o = i'[;]; (uy u(m+1)6+1-—i) j--g; (vj vm6+1-;j)

belongs to @p((G,P) ).

This completes the proof of Theorem 5,4, []
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PART II

'DEGREE SEQUENCES OF BIPSC GRAPHS
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Tn Part I1 we deal with bipsc graphs and their degrce

sequences,

Throughout Part 1T, we will usa (G P) 1o den'-o'te a

b:partitmned graph and A B will denod;e -blae sn*l;s of P,

G:.ven & bJ,E:I"bi'blOlle graph (G E), ;z_”' A ( 4 and

B, (_ B ihen GEA1|B1 :] denotes the blﬁaartitionﬂd Jg;raph

(H,Q) where .,Hr" G[;A_1 ]_j]_B1 and the sets of Q arc 7A1

and :8.1’ F;U_’Cther if AT = {u“-,..,,ll } al’ld B‘I {v‘loo-’v'tE ]

then we will write GELLI,,,,U. ]v.l,.,,,vtj to mean
G Ay 0By ], F:Lnallx GLaql3, ] will be used to denote the

bipartite c_plement of G]:A.] |B1 Ep

if (C- P) is a bwartitlcmed graph let A= {%,,,.,um}
and B = {jv1_,.,,,vn§ where dn(uy) > ,..2 d.(u) and
da(vy) 2...2d.(v ), Tet d, =4d,(u) and e;i = dG(vj), then
the bipartitioned sequence =((G,P)) = (dino-!dmleh'"’en)

is called the degree sequence of (G,P).

If 4 ;_u'l*ﬂ"um} and B = {v1,,.,,vn} , then we
say that 8 = (uq,.,.,u |V 2o o sVin) is an ordering of (G,P),
The bipartitioned graph (G,P) with the ordering
(%,...,umlf.l,,.,,vn) is said to be a realisation of the

bipartitioned sequence 7= (d4,...,d_leq,...,e,) If
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de (U.) and dg (v ) = éj‘ for all i “apd  j. We also
say that (G P) is a reallsntlon of T if (G, P) with some

ordering S, is & rEQllbathh.Of ke blyart1tioned

sequence: nis. saldf%ﬂ be

4“*hlc<if %hﬁre is a realasuﬁloa

'of_n, Pyrther, -m. iS’Sald to be. “vﬂ; aphic if given any two
real 1uatlenq G,?) and (H,P) n",-there~isman isomor-

phism o fron G omto -H such that o(B) =
Pinally, if: wawas.;q,WEk- are distinct vertices of
agraph © amd 1f Wi vy, (WIth Wy =) 18 sn clge

of G or not accordlng as i is odd.or gven, then by an

intérChange along .(w1,,,.,w2k,w1) we mean renovlng the
edges Wy Wi .4 for odd i and adding the edges Wy wi*T

for even 1,
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CH.FTER 6

 POTENTIAILY BIPSC BIPARTITIONED SEQUENCES ,

Throughout this chapter T will denote the blp%rtltlonod

scguence (d1,¢,,,dm]e1,,,,,en) where n 2 d, ; ;g, > 4, > 0
gr_*gmz-e‘]}-lnoozeﬁ?_oo |

A graphic bipartitioned sequence 7 is said to be

potentially bipsc if there exists ot least one bipsc roalisa-

tion (

G,P)

of m.:

E

In this chapter we characterise when a bipartitioned

sequence 7T is potentially bipsc,

Th1s characteris tlon 18

in terms;of”the following three 00ndit10ns C}, 02 and 03 on e

c1

c2

C3

f‘
.
j
L

m+1~1 -

5 ¥ Cne1-j

I
B

m = n is even,

4y *iopetg =By
d2._‘1 3 dZi ¥ 1 S
n/2

all even integers,

<

-9

idn

jsin.

T
I~
=
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T2 what follows, we mote 5 by r if m is gven

n is even, Moreover, if m =n is cvean,

and 5 by t 4

i

al el “

then we denote % =35 by .,

In our characterisation we will use the following

result by Clapham and Kleitman [ 2 :I 2

RESUIT 4, If (f4,f,,...,f,) is & graphic scquence

satisfying

> 0

(11) £5 + £y q 0 = Mk-1, 1 <1 ¢ 2k,

(111) £, 4 = ;21-, 1<1i<k,
then"‘(f%,fé};j,,f4k) is the degreg sequence. of a:s?lf—
complencntary graph G with a complemepting‘permuféﬁion
¢ given by '

k i,
where  w, is the vertex having degree £, in G,

We can now state the main result of this chapter as

THEOREM 6,1, A graphic bipartitioned sequence

T = (d4yu00ydyleq,..,,0) 1s potentially bipsc iff it satisfies
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&t leas” one of the followi:g conditions @

(1) €1 holds and exactly one of m and
n is odd,

(2) -1  holds, both m &nd n are cven, and

either 4, =d =%, or ey = €41 i.%:

s+1

(2 & s4end, 83" holdh
(4) C2 holds,

The necessity part of the theorem is proved in two
cascs, We prove that if (G,P) is a bipsc realisation of
n , then 7 satisfies at leastIOne of conditions (1), (2)
and (3) in case f?p((G,P)) # 0 and 1t_sa%isfies condition
(43 in case ng((G,P)) = @, The sufficicncy part 15 dlse
split up into two cases, If n satisfies at least onc of
conditions (1), (2) and (3). then we use the principle of
induection to prove that = i§ potentially bipsc, If =
satiéfiés condition (4), we use Result & +to prove the

sufficiency,

Proof Qf Necegsity in Theorem .1 ¢ To prove the

necessity let (G,P) .with the ordering (u1,,..,um[v1,,,,,vn)

be a bipsc realisation of =7, We consider two cascs now,
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'Clse‘i,Ep((-G,P)) A8 et o= @p{(G,P)), Then
we will prove that 7 satisfics at lcast one of conditions

(1, (2, 3),

We first prove that 7 satisfies €1, Since (&) =4,
the seguence (n—d1 , nydz,,,,,n_dm) is a rearrangenent of
@y , dpyu..,d ), Similarly, (m-eq , m-ep,..,,m-¢)) 1ig 2

.2 a
=o 1

L J

rearrangement of (eq,es5,...,8). Since dy 2 4, 2

and eq > e, 2 .., 2 &,, it casily follows that = satisfiés
C1, |

Now since G and E(Pf. have the same number of cdges,
it fellows that G has %? edges and so at least one of m
and n is even, If exactly one of m,n is even then =

satisfies condition (1), So let both m and n be cven,

If now o contains an odd cycle we will show thati .ﬂ
satisfiecs condition (2), Ieu ‘T- be an odu cycle of o,
Yithout loss of generality, 2ssume that <T> (; A, 1ot
| T] =2£+1 and we < (>, Now by Theoremn 1,9,

o? ¢ aut (@), So dyet(m) = a (), 1= 0,2,,.,,2¢,
(02£+2(w))

Thus dG(W) = d dGCc(w)), Since

G
do(o(w)) = n -.dg(r)(d(w)) =n - dG(w), it follows that

do(w) = t, Now since m 1is even, o contains another odd


http://www.cvisiontech.com

- 105 -~

cycle ¥ with < ¥ > (C A, By the above aﬁ:gument, <Y¥>

contains a vertex x with dG(x) =%, Since " dy 2 ... 2 d,

n satisfies C1 and iwo d.'s are equal to %, it Tollows

that 7 satisfiecs condition (2),

Finally, let all cycles of o have even lengihs,
Then we pmay assunz that the vertices in A and the veriices
in B are sc labelled thafc dy 2 ... _>_ dm.’ e.l.}_‘ cee 2.Cp

0(A1) = A-A, and o(B;) = B-B; where M, = 'iuw,,.,,us}_

and B,= {vq,,,,,vt} . Let gy be the number of edges in
¢CAy B, ] end g, the numbor of edges in Gl Aq18-By 1.

Since o(A,) = A-A, and o(B-By) =B, , 1% fcllows that the

1
nmber of edges in “C?[A-Aj |B, ] is g , so the number of

cdges in G[A—A1 Iqu is s.‘t-qg, Hence

ek

. 8
e, = aq + 8%~ qp = 3

1% '.di +s_t-2q2,

J
Thus 7 satisfieg (€2 and hence. it also satisfies condition

(3), This finishes Case 1,

Case 2 @’p(((},}’)) = @, We then prove that =
satisfies condition (4), By Theoren 5.4, G is connected,
Now from Corollary 1,15 it follows that there is an clement

o in B _((6,P)), Also, if T is any cycle of o, then
. hoil H ? ?
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0 (mod 4) and T -akes vertices clternately from

| T |
‘aﬂ and B

Thus o(A) =B, and so n =n and m i cvei,

Also by Thecrem 1,9, Q?E-Aut (@, Fufther, the secquence
(n - ey, m~-e5,,,.,0 - e) isa rearrangement of the

scauence (d1,d2,,,,,dm)

Since d4 2 d, 2 2 &, and

L LR N

-6, 2 ... 2M =6 2m - ¢y, it follows that

i

d, + e =m, 1 {1 <{m Since G2L8 Aut-€@) and the

i m+f-i ~ -
length of every cycle in o is a nultiple of four it also

Follows that 4 = d

211
condition (4), This finishes cose 2 and the necessity is

1 ﬁ i<t Thus n© satisfics

proved,
1

Proof of Sufficiency in Theorenm 6.1 ¢+ The proof of

sufficiency is divided into two cases depending on whether
n satisfies one of conditions (1},(2),(3) or = satisfics

condition (4),

Cage 1, m 1is graphic and satisfies one of conditions

(1), (2) and (3), Without loss of generality we assunc that
if n satisfies (1) then m is odd and if © satisfics (2)

then ds =4 =,

s+1
We now prove by induction on m that therc cxists a
bipartitioned graph (G,P) with an ordering

S = (u1,,,,,um[v1,,.,,vn) satisfying the following
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Condition Q. : (G,?) with S is a bipsc realisa-
tion of T and @p((G,P)) contains
Pty

X "
IL (ug w g 4) j-l;[l (V‘j vn+1-j)

Q
—
1]

if n satisfies (1) or (3)

Woyq_y) (u) (ug,q) TT (v Vn+1 ;])

it
e :Il

if n satisfies (2),

If m=1, and ® satisfies (1), then by C1,

T o= (,t|1t, f)t), Let 5 = (uy lv.I,,.,,vn) ‘and (G,P) De

the graph with ordering S defined by ¢ )

ce T

E(Q) = $uy vyl (s S O
Clearly, (¢,P) with -S° satisfies Qn g
If m =2 and © satisfies (2) ‘,' thein.'by o1 .

no= (£7]25, 17ET of) for some r, 0< T < t, Now lot

?
S = (u.l,uglv,l,.?,,,vn) and (G,P) be the graph with ordering
b, defined by 3
. B(@) = ;.u‘lvj“ [ - %U iugvj|1_<_ jgr or
Tv1¢isn-1}.
Tt is easy to check that (G,P) with s satisfies Q.
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If m =2 and 7 satisfies (3), thea by C1,
o=y, n-d1|2r, Tn’Qr, 0°) for some T, 0L » < H,
Also

4

(ej- 1) & d,

is even by C3, Since n is cven and 7m is graphic it
follows that dy~ r and n-dy- r are e¢ven non-negdtive
integers, Now let 8 = (uy,us|vy,.,,,v,) and (G,P) be
the graph with ordering S and degree sequence n defined
thus ¢ VisesesV, BTC joined to both 2y and u, § among

dy—- T ‘
the first 12 and the ‘last di;r

v

r+lrecesVpn no
vertices are joined to uw; and the remaining vertices are
joined to u,. It is easy to check that (G,P)  with S

satisfies Qn b

Now let n 2 3 and assume that if a bipartitioncd
sequence © = (d1,,,,,qu2|e1,,,,,en) satisfies the hypothesis
of Case 1 (with m-2 wreplacing m) then there exists & graph

(G,P) and an ordering S satisfying Q -

Tet ™= (d1’!°°’dm|e1"*"on) satisfy the hypothesis

of Case 1, Then define a new bipartitioned sequence

% ¥ % 0%

¥* N —_
Y = (d"'-‘f'Fd---‘_?[e‘?f:ﬁr?el‘)

x
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whoere

and

e
* - - 1 . 1 .
ey = ej - if dm+ B & dy s
&ej if d1+ Pas < n,.
* *
We note that 1 2 see 2 e, may notKhold,
Let m = (4 reeey & odey L., ¢, ) whore
a;* = a¥ forall i 1 < g 21 Bl atalo x | 1
§ T ¢ forall i, 1 <4 ¢ n2, €3 —'eg(j) for‘alm

J, T£J<n and (a(1), 6(2),,,,zﬂ(n))- is a permutation

: p S * = L 3
of (1,2,,,.,m) such that “e1 2 ®a(1) 2 Ca(2) 2 ses 2 Ca(n) «
* *

- Note that sinée ej + @

'n+1uj:= 1< ﬁ'n,~it follows that

n-2,

a(n+1-3) = n+12a(jd), 1 ¢ j < n,

| | ; :
We will now provc that m = satisfies the hypothesis

*¥
of Case 1 (with n-2 replacing n, d; replacing d, @and

eg* replacing ey for all i and j), This is done in
several steps,

Step 1, We show that T and hence nf*” is graphic,
This follows fron the folloﬁing lemma since % is the degree
sequence of the bipartitioncd graph obtained from (G%,P) by

deleting the vertices w,u ,
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be a gravhic

:Gmfla-. Let T = (d‘ls-oo_o:dmle‘]!ooo!(;n)

bipartitioned sequence satisfying €1, wherc n # 2, Qg 2.0, 20

and eq 2 pd e Then there exists a bipartitioned graph

(6" ,F) and an ordering S = (u1,,..,um|v1,,.,,vn) o’ (GW,P)

*
such that (G ,P) with 8 is a realisation of 7 and

W (ui) = {vJIT <3< dig for 1 =1 and n,

Proof of the Terma ; Throughout the proof of this

lerma, let S be the fixed ordering (uq,,,,,uﬁ|v1,,.,,vn).
1r  (G,P) with the ordering S is a recalisation of T , then

we define for 1 =1, m

7.{us) = I dxs
S ! ) B »
. ui'ﬁ?j e E(G) .
£ (G,F) and. (H,P). with the ordering . S are realisations
of 7 , then we write H < G if either (1) Zp(uy) <.2,(u) or

(i1) Zy(u)) = Za(uy) and Zlu ) < Zou,), Clearly the
relation < is antisymmctric and transitive, Hence there
exists a graph (G*,P)_ such that (¢ ,P) with S is a
realisation of 7 and if (H,P) with S is any other realisa-

* * i
tion of ®# them H { ¢ We will prove that G  has the

-

reauired property,


http://www.cvisiontech.com

- 111 -~

Suppose first Nux (o)) # {le1 <35 £44% . Then
there exist integers a { dy and b > d, such that
* *
uy v, £ B(G) but uy vy, e E(G), Since e, 2 e, for
_ B L
some_ ¢ #1_ we have u, v, ¢ E(G) but u, vy, £ B(G ?.
How if H 3is the graph obtained from G . by an interthange

along (uy, v, W,y Vg u), then (H,P) with 3 isa

*
realisation of m and H < G , a contradiction to the choice

of G, Thus NG_*:(LL,I) = {.Vj“ =1 d1} . If now m =1,

we are done, So let m > 3,

g (Ssoa :
Suppose next, NG*(um) # ~1vj[1 £dX dm} . Lct
a £ d  be the smallest integer such that a, v, £ E(G) amd
b > a be the smallest integer such that u, %b cE(@G),
*
Clearly e, 2 oy and w v, e E(G ), We now consider two
casaes as follows ¢

Case (i) + There exists an integer ¢ # 1, m such

¥* *
that u, v, e EG ) but a, vy £ E(G ), Then by an intcr-
.
change along (u., vy, U,y Vg, u ) from G we arrive 2t a

contradiction,

Case (ii) ; Case (1) does not hold, Since e, 2 6y,

* * . .
w, v, # E(G) and w v, e B(G), it follows that

x
= o “al
G, = €y, Wy vy £ E(G ) and s0 b > d4, We also have

Nox (v,) - {qul = Nox () - fu b =W (say), Now by Cf
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Thus e, = e =73 and so [3] = ._1 >0 as n > 2, Let
w, e N, We will prove that if k_z_a then v, or Vo4 e

* . 3
is adjacent to u, in G according 2s e, = % or not,

H
k3

If k =a then clearly w v, = E(G ), S0 let k> a,

. . _n '-)(-_\ .

Suppose first e T 5. If Wy Vi, 4 Vi € E(G 7 then,
; *
since e, = % and U Vv, £E(G), for some c#1, m we
*
have w, V, € E(G) but u, v £ B(G ), -Now by an intcr-
*
change along (u, vk, Wy Vo w,) from G we arrive at
o contradiction, Thus v, 1is adjacent to at most one of
' *

u, and w_, WNow if wu v £ E(G ) then, since e, =

i, n

o

¥
and U, Yy, W Vo€ B(G') it follows that for some c
3* ¥
ve have u, v e B(G) but u, vy £ E(G ), Then by an intcr-
change along (W, Vys Qs Vys Ys Vg u ) from ¢, wue
*
arrive at a contradfction, Hence W, V. € E(G),
Next suppose o # %, Then e, < % and SO

: S o
Chil.x 7 2 .
and B Vy, W, Yy o€ E(G*), it follows that for sone c #1,n

*
Now if w V.4 ) £ E(G ) then, since e, =73

+*
we have U, V., q_ ) © E(G ) but u, vy u(G ), Then by an

interchange along (u., vy, uc; Voel_kr W0 Vas um) fron @ 5

we arrive at a contradiction, Hemce wu, ¥,.9 ) € B¢ ) %


http://www.cvisiontech.com

- 113 -

Thus if k 2 a then 'vk O Vine1l 8 adjacent to
¥*
Uy, in G according as n =% or not, Thus corresponding
to each k > a, there is a distinet vertex adjacent to W .,

It now follows that

4, 2 n-a+l > n_Qm.” = d

+1,

1
2 contradiction, since 4, 2 4 .

Thus  Ngx(u ) {ij <3i< dn% . This proves the
lerma, '
i~

**

Step 2, T satisfies C1, This follows easily
fron the fact that o=

¥ * ,

I * gy 51y 11 < m-2,

* »* A : ...,(6.1)
e +. 9p+1_j =} n-2, 1T <J < n,

'Step 35, If n satisfies (1), (2 or (3), then so does

¥

First let n satisfy (1), Then mn and hence -2

*
is odd and = satisfies (1),

Next let n satisfy (2), Then nm amd n are even
% g e .
and 4, = diyq. = T, Since d; = d;,4 » 1t easily follows
¥**
that = satisfies (2),


http://www.cvisiontech.com

- 114 -

Pinally let 7 satisfiy (3), Them n, n are even and

t  x  s-=l
Betve - L= 53 di - (s-1) %
j=1 J i=
1 8 N
= ¥ sl Berdoa. 54 % (=24
j=1 4 g=1 1 | 2

is even, Now

*% t *

t * ) ‘
T e, = & max (e, ) (6,1)
=1 4 ge1 @y » Prsrg? Py (e
t
= & e, (mod 2)
of!
o
. * * _ ‘ : % e
since ej +.en+1-j =n is even, Thus = satisfies C3

and hence (3),

¥ % .
Thus 7 satisfies the hypothesis of Case 1 and so
R

: )
by induetion hypothesis there cxist a bipsc graph (¢ ,T )

*¥
and an ordering S = (Ugy-oorum_1'va(1)z-r-’va(n)) such
* :
that (@ ,P°) with the ordering S = is a realisation of

* %

n and fgp((G**,P**)) contains

m+1
R Ey i
17 gz; (o gm+1—i) II ; Variog’

if 7 satisfies (1) or (3),
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= W15 o

and.

#*% 8-1 ' : t
o, = JJ'Z (uy wq_g) (o) () ;}D; (v, Vye1_3)

it = satisfies (2),

* % 3
Hotice that in 94 and 9y we replaced

t 4 | _
jT-_-[]- (va(:j) va(n+1.-j)) by J-EE <Va(j) vn+1...a(j)) since
a(n+‘i-j) = n+1-a(j') , 1 < 3 <n,

Now construct a graph (G,P) with the ordering
5= (g, ,..,0, )7y veeasVy) from (6P ) by adding tyo
new vertices g, w, and joj_nimg u, to vy, VoseassVy

i
for 1 =1 amd n, Then clearly

P
iz

dplu) =d, , 1 ¢4

o.nd

il
]

dG(vj) y 13 &0,

Thus (G,P) with S is a realisation of = , Purther

X% %% S T

¢y, u. 1B = ",p ) is bipsc and 51)(.(@ , P )

i * ¥ K% : EYEn) o

contains o4 or o, according as =« satisfics (1) or
* %

(3), or = setisfies (2), Also G[ uy, u.[B] is by

) as a bipep,

t
construction bipsc with (u, u_) H1 (Vj Vieieg
S


http://www.cvisiontech.com

- 116 -

It now follows that (G,P) with S satisfies condition

Q, .

This completes the induction and proves the suffi-
ciency in Case 1,
Case 2, 7 is graphic and satisfies condition (4),

By C2, m=mn is even, We now define & new sequence
' _
n = (f‘}’ f2’noo" f4_'t)

where

g¢1*+ 26 =1 2 1. 1.2 2%,

if 2t+1 < 1 & 4%,

et (6,P) be a realisation of ™ , Then = is graphic
since it is the degrec sequence of the graph obtained fron

G- by joining all (%}) pairs of vertices in A by edges,

We next show that =n  is a non-increasing sequence
of non-negative integers, Clearly 12 o0 2 Ty and
Togeq 2 eee 2 E,44 2 0, Now, if dpy = 0 then by €2, e, = 2,
a contradiction to the grephicness of n ., Thus dog 21 and
S0 eq X 2%, It now follows that Tpy > oo . Thus
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I
e

< % S0 we have

ngatn by C2, d?i-T - dgi’ 1

[l

¢ 2%, then by C2,

=fo,, 11 <1, Alsoif 1¢

Iﬂ2i--_-1 i

[T
Thus 7 satisfies conditions (1), (11 and (iii)
of Result A (with ¥ replaced by t), Hence by Result 4,
it follows that © is the degree sequence of a éelf—
conplementary graph G' wifh a complementing permutation

g given by

4 .
=5 ;EE “’25,-1 Wat+1-23 Y23 W4t+2'_25_.>

t

vhere w. is the vertex having degree f, in G, Tet

A= {W?!ooo’ Wg.b; y B = §w2t+1.’"°"w4t}' . Then blearly

Q
Py
b
HE
L
il
tve)

2% t
Since n is graphic, % d, = ¥ e, , and e. < 2%

1 =1 j=1 ¢

for all j, Thus egﬁality holds'when r = 2% in the following
Frd¥s-Gallai criterion (See [ 37]) :
4%

r
£, {r(r-1) + 3 nin (r,£,), 1

{r <4,
i=1 i=r+i

Hence it follows that in G any two distinct vertiges of

A are adjacent and any two distinet vertices of B ave
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53

nomadjacent, Now let S = 1,,,,,w2t|w2%+‘,,,,, wge) and
(¢,P) +the graph with order:ng S be defined by 3

B(@) = B(G) - iv: 2 |1 £1¢3¢ 2t}

Then clearly (G P) with is a realnsatlon of T, Now
since in G, o(A) = B, it follows that (&,P) is bipsc
with o ¢ Bn((G,P)), Thus 7 1is potentially bipsc,

This finishes Case II and the gufficiency is proved,

This completes the proof of Theoren B D

We now list a few corollaries which follow directly
fron the proof of Theoren 6,1,

COROLLARY 6,2, A graph'rc praI"tT tloned sequence

n o= (d‘l’“-’d |e1,,,,,e ) is the degree sequence of a bipse
graph (G,P) with tgp((G,P)) £ @ 1ff 7 satisfies at least
one of the conditions (1), (2) and (3) in Theoren 6,1, Also
then (G,P) and an ordering § = (g,l,,_‘_”rll.lm[v.:],,,,,_,vn} can
be chosen so that (g,P) w11:h S is a bipsc realisation of

T and BPC(G,P)) contalns

:

oy 2k

2
17 E ‘ (U‘i um""f—i) jD:i (v *'1+1—,]) E

L]

if ©n satisfies condition (1) or (3).
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.b
o, = T]:I (ag wpq_y) (vg) (o ) 1T vy v )

j_—_—‘] J n+1 "j

if ® satisfies condition (2) and d;ﬁ..F ds +;]5t,

t =
Fon fTT (0 %pq_y) gth(vj vn+1—j) (vt) (vt*i)

if ®© satisfies condition (2) and e

t
COROLIARY 6,3, A graphic bipartitioned sequence

m= (4, ,”,,-dmle.l,',,,,en) is the degree sequerice of a bipsc

graph (G,P) with a2 bipep o which sends 4 t0 B iff 7

satisfies (2, Also thenm nm =1, n is even and (G,?) and

an ordering S = (Uyy,4,0%, ]V u0e,¥;) 81 be chosen so that
(G,P) with S is a bipsc realisation of n and E’m(({},l?))

contains

g =

ﬁ (o5 4 Vmatog Yoy vn+2—2_i) .

COROLLARY 6,4, ' A graphit bipartitioned i‘secgulc:ame

T o= (d.1"'°1dﬁle1’°-"en) " is the degree sequence of a

connected bipsc graph (&,PY iff
(i) milfl (4, ,e,) > 0,

1) 74 {00 |1, Ony,nn)}
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(2ii) n satisfies at "east one of co:ditions

(13, (2), (3) and (4) in Theorem 6,1,

PROOF ¢+ Hecessity follows easily, To prove the
sufficiency, let * satisfy (i), (ii) and (iii), By Theorem 6,1,
there is a bipsc graph (¢,P) and an ordering S = (111,...,%1]
ViseessVy) such that (G,P) with S is a realisation of =,

If G is comnected we are done, Otherwise, by (i) and Theorenm 5,2,

mn-—Im. N-
1 y Oy

n
= n{(G,P)) = (1111‘, (n-n,) for some

lmy”, (m-m,

integers my, ny with O < m-my {my , 0 < n-n < n and either

b =D :
Tiq 5 or mn,
struct a graph (

Also by (ii), min (my,ny) > 2, Now con-

s

,P) with ordering S by joining

u, o vy, Vo,...,V if 1 i< m,-T

™
um1't° Vq s Vgs...,_‘rn1_1 y Vn1+1 ’

um1+1 tO n1 n1+2’ vn +3!-co,v 1 and

v, if m1+1$i<m

u, to v +7¢ vn_|+2!ooo$ n - s

17 "o,
ilote that (H,P) with S is a realisation of m, Furthex

since O ¢ m-my < my, 0 < nn, {n; andmin (my,ny) 2 2,
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it follows that H s comnccted, Finally it is easily

scen that (H,P) 1is bipsc and ?gp((G,P)) contains

2]

v

5 - )
(9 gy ;;'-D; (vy) i my =3,

]
i

B

~(uy) ;1-]=—|-1 (V_j vn+1—j), if n, =35,

i

i
"

This proves the sufficiency and Corollary 6,4 is proved, []

A1l results in this chapter will appear in [ 5],
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CHAFYIER 7

FORCIBLY BIPSC BIPARTITIONED SEQUENCES

7.7 MAIN RESULT

Throughout this chapter ® will denote the bivartitioned

soauonce (d1,,,,,dm]e1,,,,,en) ‘where n > d, > 28,20

e ®

.’:.’Z..l..l-@- n >e—t.>_o°'zel’l2'0.

A bipartitioncd scquence m is said to be forecibly bipsec

if ™ is graphic and every realisation of m is bipsc,

In this chapter we characterise when = bipartitionﬂd
Ssquence W is foreibly bipse, This characterisation is in
werms of the conditions €1 and 02 asg given on page 101,

L1t also uses the characteriscsion of foreibly self-conple~
nentary sequences as obtained by Rao [1Z] and the characteri-
sation of unigraphic bipartitioned sequences as obtained by

Korem [9 7],

Henceforth, given 7T = (d1"°"dﬁlo1’°"’en)’ we denote

I

5 oY s if n is even and by t if n is even, Morcover,

if €2 holds then we denote

PO rofis

= % by t. We note hore tant

if 7 satisfies €1 and dj = d.4q_; Tor some i, then =n is
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cven amd sc t  ds well-defi.ed, Similarly if 7T getis{ics

Cl and e, = e

. Tfor sonme j, then s is well-defincd
d n+i.j < e .

In what follows, we assune without loss of gencrality

thot m satisfies the conditions (1) - (I11) given below

giince

, if any one of (I} - (II1) 4is wviolsted by ™ dthen

T = (eqy...,e 1dq,...,4 ) satisfies all of (I). - (IID),

() If 4y > d_. then e; > e,

Ti 3 ___Ifl i :2
(I1) If sone ey =% , then some d&; =3

: w ol [
(II1)  If dy>d , e > e ,.sme d; =5 and

X . I
sorne ej =5, then dp - n+q > eqf n+p

where p mwc{imi>t§ and
a=nex §3le;> 8}
We are now ready to state the main theorem of this

chaplter us

THEOREM 7,1, A bipartitioned sequence ™ = (d1°-°-’duk

GT""’enP (with the sbove assunptions (1) - (11I1), which can

be nade without loss of generality), is foreibly bipsc iff

T n
% di = % e, and 7 satisfizs one of the following Tour
i=1 Jj=1

conditiouns ¢
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(1)
(2)

(3)

(4
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1
(2 holds znrd the se.ience T = (d1+ 2t“1""’d2t +

2t - 1, eq,,..,8,y) is forcibly self-complementary,

€1 holds, &y =d_, ¢q = e  and cither nin (s,t) ¢ 2

or, nin (s,%> = 3 and rax (s,%) ¢ 4,
C1 holds, d, = d_ and if k is the number of ey's
in © which are equal to zero, then either t-k £ 2,

cor 7O =((t-k)n|ek+1,,..,e2t_k) is one of the

foiiowing bipartitioned sequences .

T, = (212 0) n (g 220y
e = ( (tQk)_mltnl_1)t”k, 1578 ‘
Ry = (Gt 3,22 D) gy my (529|201, o, 1),

C1 holds and if p is the number of di's grecater
than % and q the nwiber of ej‘s greater than

3 , then 0 < p <3 and 0<qg 3 . Purther if h
is the nunber of ej"S' in n which are not less than

n-p, then

(8) n is even,

P n
(b) IR di = (n-h) p + &% Cenn
- i=t j=n-h+1 Y
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h it

(¢) © e, =h (n-p) + = d; s
j:‘! J izm_._p+']

(@) Either p =3
or t -h 2

is one of m - g &iven in (3) above, with

t replaced by t-h and k reéplaced by O,

(e) The bipartitioned sequence = = (d1—n+h,,,_,dp-n+h]

€p h+1reee98y) 1S unigraphic,

The proof of-Theorem 7.1 is lengthy and we split it ﬁp
into several sections, In Section 7;2, Wwe prove certain
srelininary lenmas which will bé frequently used iﬁ the noin
body of the proof, 1In Section 7.3, we prove the necessity pdrt
cf the theoren and finally, the_sufficiency‘part'of the theoren

is provea in Section 7,4,

In the diagrans which will be uscd in the .course of

proving the theoren, we will frequently represent sets of

vertices by sinegle vertices for convenience with the following

understanding ¢
If xy is an edge in the diagran then x (or every
vertex of x in case x is a set) is adjacent to y (or

cvery vertex of y in case y is a sot),
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7 2 Plt..LJI MlNil:{

o g n

In this section we prove a few prelininary lenmas
whrich will be used freguently in the course of proving

Theoren 7,1,

IEMMA 7,2, If m is a bipartioned sequence not
sntisfying €2, and (G,P) 1is a bipsc realisation of = y
then ‘@p((G,P)) £ P,

PROOF ¢ Suppose ﬁ?p((G,P)) = ., Then by Theoren 5,4,
¢ is connécted, and so by Corollary 1,15, there is an elencut
s in Tg((G,P)) such that o(d) = B, Now by Corollary 6,3

it follows that 7T satisfies €2, a contradiction which proves

the Lenma, [

LEMMA 7.3, TLet 7 = (4 leq,0..08,) be a forci-

Yeee? I"'l
b1y bips. bipartitioned sequ.ncc not satisf,ing €2 and lct
(G,P) with the orderlng S = (u1,...,uplv1,...,v ) be a

reaiisation of m, ILet 1,j be 1ntegers such that
< Em;‘] andi 1 <jikg ]: ] and let IL {ul, Safreces

gm+1—i§ y B T {:vj’vj+1’°"’vn+1-j} o WEECCNE B o

d; 4> ¢&; and (2) §j =1 or €41 > ey s
*

sequence n = (G A,|B;]) is forcibly bipse,

then the bipartitioncd
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¥* *
PrOCPR 3+ Iet (G ,T ) with the ordering

} be any realisation of

: = '
¥ "ui!ooo’%_.g.‘]_i_lvj,ooo,vn-;-‘]__j
T, Construct a graph (i,7) oo (GP) Dby replacing

* #

c;[.:x1 [:51] by (G ,P ), Then (H,P) with 't’lf, ordering S
is o realisation of =n, BSince m is fofclbly;blpsc and’
docs not satisfy C2, it follows by Terma 7,2 that zgp((H;?}
Iing on elenent o,‘ Then by (1) we get "0(31)‘=_ﬂ1 and by (2},
o(84) = By, It now follows that o restricted to 4, |J By

; : : * * * *
iz an eclement of g p((G , P)), Thus (G, P ) is bipsec

and 7 is forcibly bipsc, This proves the lemma, []

IEMMA 7 If m satisfies C1 and eq = en then x

is graphic,

FROOF : By hypothesis, m is even and 7T = (d19...9ds,

n-d n-d, Is™ . Tet (G,P) be the bipartitioned graph with

r"""’

i%---ﬂes% ) B = (Ve vpy ond
E(G)={uivj|15_jgdi,1$i$s%
1 {ui Vildpgeqog * 1 L3 &M, 541 L0 g 23%,

icorly then (G,P) with the ordering S = (uq,.,,,u25|v1,,,,,vn)

is a realisation of 7 and = is graphic, This proves the

lemna, []
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IOMMA 7,5, If (G,P) with the ordesing

5 :‘(u1,.,,,un|v1,,,,,vﬂ) is any realisation of

T

(2n]m—u, n-f, B, a) where 1 ¢ a (B¢ % , then
\t;p((G,P)) contains an clenent o such that

o“(vj}=v5 19 1 S. 3 $. 4‘.

Iet A be the set of 2ll vertices adjaccut

: i3
FELFEE

to both vy and vj in G and nij =

Then since every u; has degree 2 in G, we have

ﬂij | ’

L ni + & n,. =4d,(v,) + d,(v,) =n (7,13
. R /}‘ 4_ LY P
BT SR PYRR B A
S1lso since nyy = nji fo; allr i, j, we get
;1 LIPS (7,2)
by by e =m0 & d V',- M= T “es .
i=1 j=i+1 *J 2 j=1 E -

Subtracting (7,1) fron (7,2) we obtain Ny, = Nz, Now any

permutation o of V{G) satisfying

()'(.{L.] 4) = .h.‘.23 ’

o(w) =u if u Ao U i1§ U %24 U A34’

r-

2
has the properties required in the lemma and the leima is

proved, ||
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Wy 1.2, 2

ImvMe 7,6, 1f (G,P) with the ordexring

) _ Sg, N
5 = (u1,,,,,a28|v1,,.,,v4) is any rcalisation of "= (2%,
then Cgp((G,?)) ~contains an eleuent o satisfying
of{v;) = v, foerall j,
3 j |
ERCOF ¢ Tet Aij be the set of all vertices-of G
: jacer = - o .. = HAL . i j I
adjacent to both v; and vy and 1 5 | 131’ 1<1#J<L4,
Then we have
o n.. = d (v_) =3, J =] 1,...,4 r .’.(7.3)
1# B %
Surming (7,3) over all j and using the fact that: nyg = Ny
we zet
4 |
2 2 n.. = 2s veo CTOA

=1 15

Subtracting the equations (7,3) corresponding to j =1 and
J =2 fron the equation (7,.), we get Nyo = Nzy, By syrmctry,
Ny = oY) and 'n14 = Nyz, Wow it ecasily follows that any

rernutation o satisfying
c(Aij) = A & 1.1 # 3£ 4 and

$x, 1} ={1,2,_3',4§ . {i,j)g

c(vj) =V E =T, e

is 2zn elenent of"fgﬂ((G,P)), This proves the lenmna, []

and
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i

Irva 7,7, If (G,P) with the ordering

s
|

= (Uy00esnglvy,...,7v,) is any realisation of

2g-2

= (3, 2 , 1|s4) then ng((G,P)) contains an elenent

o such that o(wy) = Uy and “<u25) =,

PROOF : Iet (H,@) = 6L uy,.eustlsg q1Vqseeasvy .
suppose first oy and Us g have disjioint neighbourhoods in
¢, Then = ((H,Q)) = (228—2|(s-—1)4), By Iemma 7,6, it now
follows that tgp((H,Q)) has an elenent o such that
c%(vj) = V5, 1 ¢j< 4, Clearly then o = U*(u1 uy) is
an elenent of ‘tgp((G,P)) having the required properties,

Next suppose that some vj is adjzcent to both uy and Usg

e assune without loss of generality that wy vy is noi an
252

g, (S~1)2, s-2), By Iemma 7,5, it now follows that Tgp((H,Q)}

cdge and  usg vy is an edge in G, Then T ((H,Q)) = (2
* * N *
has an eienent ¢ such tha” o (vq) = vy, wmd o (v,) = vy
* -
Clearly then o = o (uy u,) is an clement of @p((G,P))

having the required properties, This proves the lemra, []

IEMMA 7,8, Iet = = (dy,...,d_ leq,...,e,) De graphic
and i any integer such that 1 < i { nn, Thon there is 2o
bipartitioncd graph (G,P) and an ordering S = (u1,,,,,un|
VisesssV,) such that (G,P) with the ordering S is a

realisation of ® and u., is adjacent to va,..,.vy in G,
i ‘ N
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PLOOF ¢« For any bipa: titioned graph (H,F) such that

(H,7) with the ordering § = (u1,,,,,um]v1,,,,,vh) is a

realisation of 7™, define o(H) +t0 be the number of veérticcs
BI0NE  Vy,...,Vy which are adjacent to wu; in H, Tet (G,P)
be such.abipartitioned graph vith the naxinun value of a
Thcn we show that ug is‘adjacent to Vireesr Vg, in G,
OtherwiééA vy is not adjacent in & +to vj foi goe  J,

& 32.< di‘ Then vy is adjacent to Ve for some k,

d; +1 <k {n, Since F > e, it follows that there is an

r # i such that 'ur is adjacent to Vs but not adjacent to
v, . Iet (H,P) be the graph obtained from (G,P) by an

interchange along (uy, vy, W,, Vi, 9;), Then (H,P} with the

J’ ,
ordering S 1is a realisation of n and a(H) =a(G) + 1, a

contradiction which proves the lemma, []

IrMMA 7,9, If n is cven and T = (d1,,,,,dm|eq,,,,,en3

is « graphic bipartitioncd sequence satisfying C1, then there
is @ pipartitioned graph (G,¥) and an ordering 5 = (a1,,,,,uﬁ|
v1,,,,,v2t> such that (G,P) with § is a rcalisation of =

- - : 1
and w; vy is an edge of G -for all i,j, 1< i< [F_]
and 1 < J £ t,

PROCF ¢« We prove the lemma by induction on @1,


http://www.cvisiontech.com

- 132 -
17 n=1, then T = 'tl?t 0*) and . ny realisation

(G,P} of T proves the theoren,

H

2 ‘ ~
If n=2, then == (4, 2t-q[2%F, 15T %),

where 0 < r < t, ITet (G,P) be the bipartitioncd graph

-

with A =§_u,' u2£ {v,l,‘“,vm;E and

Bk :.}lu,]-vj-}‘lj_jid‘]% U 51‘12?]1 <3 <r or
d1+15_3_<_2‘b-1*},

Clearly then (G,P) with the ordering 5 = (uy,Us|Vq,.essVoy)

i3 the rceguired realisation of 7,

 We now assune the lemma for n-2 and proﬁe it for n
wviaen n > 3, For convenience we will take e, =10 and
Cppeq1 = 0 in what follows, Iet r be the number of ej’s,
in ‘ie1,,__,e2t§ such that ej - 92t+1_3-1 2, Then sincc

Cf 2 wes 2 oy , it follows hat O < r <t Also by C1  we
hove ey, > piq o Now let
P° = (a |e e2.)
Q’Oo-v Il 1 teses~ 0t
vhere
ej’— 1T if 1 £ 3% d1
o .
@, =
J ej Otherwise,

Ty lemna 7.8 (with i=1) it easily follows thet 7° is graphic

L T T - W SRR L
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Wew let k = nin '{f, d.% . We will *hen show that

B e} 0] O (o] o ) ) \
C = {01,,,,,ek . ed1+ T,,,;,eZt_kg is the seit of?thc largest

. O o 0 Y= e
d, clements in D —-_{81,,,,,32t3 . By C1, |C] = d.. 8o

let e =nin ¢ and B = mex (D-C), Wec will then prove tnot

azﬁ

First let k < 4., Then o =nin {e,- 1, eg_t_kg and
5 = nax §e, -1, ep4 n+1s + AlSO k =r . and by the defini-

thn ?f r, we have e~ eEt—kf1 > 2 and Cp+1™ Coti <1,

It cusily %ollows now that a > B,

>

Next let k =4, Then C = %e?,,eg } and
= - Tl

-

2 f eq =1 Also B = maxriedn+1_1_? ey +1% . Since

L 1
r>»d we have e, - ¢ > 2 and it easily follows that
- Il d""f_ d.] +1 — " ) ]
a 2_ B .

Thus C is the set o the drl largest elenents in D,
Since 7m° is graphic, it follows from Ienma 7,8 (appliéd to
n°  with e?,,_,,egt rearranged in non-increasing order) that

LI

. TE -'.:-‘(dg’...’dl}-.]'le-l,..‘,62_.!;) :
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is graph.c, where

@] .
=M Efy =B <L
e 7 S
) eg =ey -1 Tif k1 < § < 4y
6. = < : =B _
J = O = A .
oy =1 =e; =1 if 44+ < § < 2tk
Leg =ey - if 24-k+1 < § < 2,
Clearly then
* -.
ey * e;t+1—j = n-2 for 1< j <t ees (7.5)

We next show that y> 5 whiche J = nin {01,,0,,52 %
* * o
and 6 = nax %et+1""’62t>§ . Now ¥ =nin {ek—2, et—TE

and 6§ = nmax {et+1—1, e2t—k+1§ . Sirce e, > e HE have

r+i ?

e -2 > er—2 2. -1 > e

K s

Cre1™ 1+

Llso e and .o

otr ° C2t_p+]

€~ e e2t—r'_1 2 Cop sl X Cotl+l

Purther e -2 C2t—k+1 since r > k, It now easily follows

that ¥ > 6,

Now let ®© be = permutation of % 1,2 t% such that

Yo eose?
e ¥

Co(1) 2 eee 2 Co(4) - Mxtﬂﬂd ® 1o a pernutation @ of
{ 19...,2t§ by defining 8 (j) = 2t¥14-6(2t+1~j) if
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tx T <7 L2, Iet
3% ®% T
T = (d2,.'..’d£1_~1 le.! ’,-.,egt) B
VEICTe
*% % '1<_<2
° T e 12382,
o T B aa .
Thon eclearly "m0 -ig a rearrangenent of 7 and so is grapiie,
203 % ' ! — *¥ 3* 3¢ ]
{1so €1 2 ehe 2 ey by definitiod of @ , et‘rl ei,q . Sinee
%% ' ¥R _ o L Rk
Y > 6, and ©te1 2 oo 2 €5y by (7,5), Thus €1 2 vee 2 €54 .
R TI : 3
Since T satisfies €1, it follows from (7.5) that T also

satisfies C1, Hence by induction hypothesis, thore exigta o

vipartitioned graph (H,Q) and an orde ering s = (u2,,,,,u1 11

ﬁ(1)’°"'vﬁ(2t)) such that- (H,Q) with S is & rgallsatlou

of W and ay vg( ) is an edge in H"whenéver
E :} and 1T <-j < t, Then (H,Q) with the oxd. oring

*
(ug,,,,,bm_1|v1,,,,,v2t};vis 2 realisation ¢ = £lso. since

*

{ﬁ(ﬂ,,,.,ﬁ(t)i = {1,_,,,tg , 1t folloys that wu, vy is an
cdge in H whenever 2 ¢ i ]:n:1

Now construct a bipartitioned graph (G,P) fron (3, Q)

by adding two new vertices uy and . and joining
uy to v1,;,,,vd1,

rum to Viveen sV vd1+1’i°"v2t—k *
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Thamelearly (G,P) with the ordering S = (u1,...,um|

j is an edge

is & rcalisation of 7 and u;, v
in 6 whemever 1¢i¢ [P and 1¢j¢t, This

V'1 teee ,V2_t}

coipletes the induction and the lemma is proved, []

IEMMR 7,10, If 7 is graphic, n =n and 4; =c;

for all i, then there exists a bipartitioned graph (G,I)

and an ordef%ng S = (u1,_,,,um|v1,,,,,vh) such that cach

non-trivial component G—h of G has an automofphism oy

with o (A [] ) =B {] V&), |

EEQQEé; wé Qill actuzlly prove, by induction on n,

Tha following dlaim : there é#ists G bipartitioned groph

(¢,7) and an ordering S = (Qgyeensy7yye,.,7v,)  such that
| (i)  (6,P) with the ordering S is a rcalisation

of ®,

(ii) u; vy isan edge of G iff uy.v; disan
edge of G, 7
(iii) u; and v;  belong to the sane conponent of

G Aif di > 0,

It then casily follows that o =T[ (u; v;), where the
product is token over all wu; in V(G ), serves as the

recauired antomorphisn of G

" provided Gh is non~-trivial,
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Ths clain holds'tfiviilly for n =1 since then
= (1|1 or (0]0). So we:assume the clain for n-1 and
prove it for"m;‘ where ny 2, If d1 < 1 the clain is
trivial, so let dy 2 2, By us:mO megu T, 8 twice we see
that the bipartiticnead sequence

=1 d, )

T o= (d2-1,...,dd1'1,dd1u1ya.., ldg 9...,5-(11 5 d1+1""’
ig graphic, By 1nductlon hypothe31q, there exists a blpa¢t1*
tioned graph (G, P P) ami an ordering S~ = (uQ;;,,,qu
Vorees,V) satisfying (i) - (4ii) for nT, Iet’ (,®) be
the blpartitlonﬂd graph obtalncd fronn (G, Pf)-_by,adding“twq
new vertices u, and 7y and7301n1ng u, te ?'v.,.-;,.,,,vd1 and
v, to u2,_,,,ud1% Then clearly (G P) with the ordgrlng S

satisfics (i) ~ (1ii) and “the lomra is proved, []

: Finally, in the following lenna wé shbw that unigra-

phicness in. blpartltlonec SOQHGHCLS as deflned by Koren [:9:]

LN
€]

ce also page 100) is equlvalenj.tq an apparently weaker
condiiion,

IEMMA 7,11, 4 grophic bipartitioncd scquence

T o= (d1,_,,, mie1,,,,,en) is-wmigraphic. iff for any two

realisations (G,P) and (H,P) "of =, G is isororphic. to I,
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PLO0E ¢ The 'only if wnart' of the lema follows

Cirectly fron the definmition of unigraphicness;

To prove the 'if'part', it suffices to consider
bipaptiﬁioned sequences 7 with dm > € and e, > G, Sb
let a,> 0, e, ” O and = satisfy the condition stated
in the lemnma, TLet (G,D) and (H,P) be'ahy'tyé fbdlisatious
of  m, We will then show that there exists an isoﬁOrphism

o fron ¢ onto H such that o(B) = B , whore 4 and B arc

i,

he sets of P,

By,h&pdfhésis, G is isonmorphic to H, ZIet

Gq,y Gg’---,Gk '(reépectiﬁely Hy, Hé""*Hk) be the conmnected

conponents:of .G (respectively H), Then we nay assuie with-
out loss of generality that G, = H; , 1 <1<k, Define
AN V(Hi) and

4 =4[] Wy, B; = B [] v(¢), c,

Di = B ri V(Hi),‘ Since G, ond Hi are o mectod bipartite

I

sraphs it follows that there exists an iSomorphism di' fronm

G4 to Hi such that either (o) oy (Ai) = Di or (b) 75 (Ai)

“ithout loss of generality let (o) hold for. i = 1, 2.5 and

(b) hold for i=r +1,, ..k Ict B el ety B ] By
i=1 i=1
. T o T
C = |J¢ and D = ] by . Now by (B,
i=1 i=1
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(G [u-n |B-B ]) T(H[ A 0*13—1)*‘]_). al30

w((e,P) = ﬂ:(('H,?')) =" +%, - Hence
% def v el =

o= n@fo D" = nela¥E )

= n(HL D j¢ ) . by (),

*®

Since m and so T  has no zero-dnv aes, it follows

H i . *

vy Lerma 7,10 that there oxists a realisation i I ) of
3 : : * *

T such that each conponent Hi of H has an.aut0uorah¢

3.

i
#* ';'r —
scts of P tobe C and D . Yow let (H, P) be the

* 3
with  9,(¢" V(H ) =1 ) V(Hi) where we take the

bivartitioned graph obtained fron (H,P) by replacing
H[C {D 1 by (H, ?). Then (H, P) is a realisation of =

~

and by hypothesis H is isoriorphic to H, Hence

B¢ |D ] = (1", ),

£ F -
Now since the conponents of HCCc | ] are H1,,,,,H

we nay take without loss of generality the conponents of H

ar
&

to be 1{1,,,,,H£ with Hi:-”’Hi , 14i<r, Let 8 bean

igonorphisn fron Hi onto Hi . define now
p " Ly
g = e- ,@- @ -
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- ,
Jipale il o4 is an auntonorphisn of Hi napping Ci onto D:L
o . o, R * . PN
since either 8,;(C;) =C M V(H;) or 8;(¢) =D M v(H;0,

Tow define & pernutation o of A4 U B By s

*
o, o; on A U B
o; + .oon (A-i ) |] (B—B)

It is easy to see that o 1is an isonmorphism from G to H

and o(B) = B, This completes the proof of the lerma, []
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7,2 TPROOF OF NECESSITY

In this scction we establish the nccessity in Theovon 7,1,

50 let 7 be foreibly bipse, Then 7 is graphic and so

Tl n - n 3 :
L1 —,‘t

b3 di = £ e, , We now prove the nccessity by showing the
i=1 j=1 : -

if m does not satisfy (1), then =* satisfies one of conditions
(2) = (1), So let m not satisfy (1), . Then cither " T docs not
satisfy €2 cx m = (@4*+ 2% - 1, .., ,45,% 2t = 1, ey,,0.,054) "

is not forcibly sclf-complencutary,

We first prove that n satisfies C1, If 7 .dogs not
setisfy €2, then since =n is also potentially bipsc, it
Tollows by Theoren 6,1 that 7 satisfies €1, Suppose now 7

v H ' w
satisfies C2 and © is not foreibly sclf-complenentary,
] ¥

Let G be a non-sclf-complenentary realisation of 7w,

1
Let u; Dbe the vertex of G having degree Gyt 2t -~ 1 and

fj be the vertex of G hasring degree T 1 <£1,] £ 2%,

et A = glh,...,ugt% and B = %‘H!---:Vgt%‘- Then clearly

AN 24
5 d w,) = 2% (2t ~ 1) + = e, ,
e j=1 3

Hence,

it follows thet ¢ [A] =X and 6 [B] =K,

Consider the bipartitioned graph (G,P) where G is the

i b
graph obtained fron G by renoving all edges within 4,
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and the cots of P are 4 cad B, Clearly (G,P) with tho
~ordering 5= (u1;,;,,u2t|v1,,._,v2t) is a realisation of 7,
-Since n is foreibly bipsec, it follows that (¢,P) is bipse,
Suppose now t;p((&,P)) = p, Then by Theoren 5,4, G is
connecféd, and so by Corollary 1,15, thsre is an elenent o
in {5 ((¢,P)) such that o(A) =B, It can be easily ﬁerified_
that o also éCtS‘aS an isomorphismxbétwéén:-‘f}v ’and"g' and |
so G is self;cémplementary, a contradiction, Hence
tg‘p((GyP)) £ 0, -By‘Corollary.6,2, iﬁ nov follows that m

satisfies C1,.
We now consider three cases as follows |

Case 1’. d1 = dm and eq = en,.

Case ?. c11“=rc'iv1 ond ey } e,

-
e

gase 2, 4y > d,

Clearly, these three cases are exclusive and exhaustive,

We will now prove that if Case (x) holds, then =
gsatisfies condition (x+1) of Theoren 7,1, x =1, 2, 3,

= o _ —_ 7228 2%
Case 1, d; =d. and ey =e,, Then == (t|s ),

e assure without loss of generality that s £ t, Ve will then

prove that m satisfies (2) by constructing a non-bipsc realisa-

tion of n if s> 3 and t > 5 or s =1 =4,
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First 1ot s > 3 and t > 5, Let (2,T) be the

wipariitioned graph given in Pigure 7,1, whore

PICURE 7.1

i {LLI,_..,U.S_-S% ’ .4_2 = '\U_S_‘_ ,...,1.128 é ’

1T iv“""vtﬂ% RG B R g"m%..-ﬂ’zt% , it is
r to check that (G,7). is a rezlisatien of mw, Ye nou

i

A

show thaet (4,7) 1is net binsc,

e first show thet thoere is 2 wiique X b % in @
‘o —
g ?

T

(with the s vertices coning from .Y, For conveniciice e
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write A'E = A.l U 'g_u‘s-‘?’ Ry ‘us} and A,-; = A - A3 .

Cloorly now G[ A|B, ] =K . To show the uniqueness
311 Ta,t-3

supposc G[ C{D] = Ky, 43 where € (C .o, D (T B, Then

note that N.(y) = C for all y in D, If now B, inter-

sects D then %ug+1, U 40, us+3g (; C , but the nwiber

¢l vertices joined to all of Ugetr Ugeps Ugyz 18 only | t-4,

o contradiction, So B, (] D=0, 1f now B, f] D =@, then

o (; '{Vt—Q’ Vt_1""’vt+4% and it can be easily checked that

K (x) # N (y) for any two distinct vertices X,y in D

(note that they exist since t S D el ééntradiction_ So By

intersects D, hence ¢ = Az and D = By, This proves that

G has a unique Ks,t-3’

Suppose now (G,P) is bipsc, If E?p((G,P)) containg
an clement o then since GLA,|B,] = Kg,4-3 it follows
that o(.3) = Ay, -Now the only vertices y in B  such that
|NG(y) rT ABI = 3-1 are Vi o 8nd vy 4, Als? the only
vertices y in B such whai jigepy (3 [] olhg)| = s-1 are
Vi o and Vi g e Hence Evf_Q’ vt~12 is inveriant under o,
Now b,_4 d1s adjacent in: G to only one of Vi o s Vi_q ©nd
hence d(us_1) is also adjacent in G(P) to exactly one of
V4_2 s V4 1. This is a contradiction since ofag 4) e Ly

Thus E?p((G,P)) # @, Since G 1is connected, it follows by
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Corollary 1,15 that Gn(((},}"\.) contains arn clenent o such

Iy

that o(A) =B and o(B) = 4, Cluarly now s =t, G a's
oo gue 'Kt b 2 (with-thc t vertices coning froom L, bub
. =N < E Ly oL S )
ek t.3 occurs twice in. G(¥) (with the t vertices coning
vy b= - - b . B ] -

Tron o(4)), viz, EEA'I‘V‘I:H’“-’vEt] ] and _Y__G"[___.AZ]V'_.I,:,,,,V_QZ],

“his comtradiction provds that (G,T) is not bivnsc,

=

Next Jet s = %= 4, Then consider the bipartitioncd ™ -

3t

crimh (G,T)  given in Pigure 7,2, Clearly «G,I) s o

u"[ & _" g /‘3"9 v‘[

FIGURT 7,2
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vealisation of n= (48i48), It is casy to see that u,,u,

sre the only two vertices in A  with the same neighbourhood
in G, hence G| u Va yVnyVz,V is the unique X, , in
iy ol Lugyplvy,vo,vs,7, ] 4 2,4

& (with the two vertices couning fror A), Sinilarly

ben)

[:u1,u2,u3,u4|v1,v2:] is the uniaue K4,2 in & (with the
four verticcs coning from A), Also the union of these two
subgraphs has only 8 vertices, Now @[:u1,uglv5,v6,v7,v8:]==K2,A,
Gl u ,u6,u7,uaiv1,vg:] = K, , 2nd the union of thesc two

[ A% r,

subgraphs of G(¥) has 12 vertices, Hence (G,P) is not bipsc,

This proves that in Case 1, ©m satisfies (2),

]
nrove that n satisfies (3),

Cagse 2, d, = dn and ey > €. 1n this case we will

So let k¥ %he the nunber of ej's in n which are

aqgual to zero, We first prove the fellowing ¢

S = = 2

1'. Bither t ~k £ 2 or e ,q Teg OF &, =7,
Supposc not, then we obtain 2 contradicticn by constructing o
non-bipse realisation (GP) of w,

I

nofid

Tet Cop 3o = X and ey.4 T Y. Then 0L x <y X<

and so x + y < n, Now let A1 = %_uqs...,%xi ’

L ¢ - [
i LTINS S EE S S e
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P S y
% um._x-l-’j Fuee ';Un and

Als‘or le‘b

i L F B, = ‘ TRITL = %
= iv‘!“""’k% r S2 ivl:+2""’vt-1} artds {Vt+2’°“zv;‘2t—k-:‘l‘§
30T 3 VoppetseeerVoy§ @04 T = 3y =--+-’V£2t% . Hote what
B, # # since t-k > X, Vow teke (G,¥) +to be the gzr.ph siven
in Figure 7.3, Here if vy e B, then
FIGURE 7,3
¥, 48 joined to the first ej-(m-—-y) verdices of g and
3 _
Ui coriuspondi ertex v : I is joined %o the
responding vertex ,, V4415 of ?33 is joined %o

Teivining vertices of Lo,
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Clearly (G,P) is a realisation of 7, Also T dces

net satisfy €2 since 4y =d_ and ey > e So if (G,®)

is bipsc, then by Iemna 7,2, Z;p((G,P)) # @, But there is

no isonorphism o from @ to G(P) such that o(B) = B,
_ ang A

since G has a vertex v (ranely vk”) satisfying

L) * ’
(1) v  has degree n - x,

(ii) if v is a vertex in B with degree n - x
— ¥*
then N(v) ( N(v ),
(1ii) there is a vertex v # v in B (nanely Vk+2)

— *
such that da(v) > % and N(v) (C N(v ),

but G(P) has no such vertex in B, Thus (6,F) is 2 non-

bipse realisation of n and 1° is proved,

Now to prove that n satisfies (3), let t -%k> 73
and  1° = ((t_k))mlek+1,.__,ezt_k), If (G,P) with the
ordering S = (u1,,,,,um[v1,_,,,v2t) is any realisation of
n then we noté that =n° = n(GEA]vk+1,,,,,v2t_k:[), Hence

- o . y ! .
vy Lemma 7,3, 7w ig forcibly bipsc, We now consider several

cases

*

g, 2(4_1
Case 2(a), =2 Then n° = ((t—k)2°132‘t kJy

Flar Tl W T A D
Fow since n° is forecibly bipsc and % - k> 3, we have by

Case 1 that n° is ome of T, LR
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l.’“

:..- ) 1
Lase <i0) =l [ = - Foxm BOn
Case 2(b). € sq = €4 > 5. Then ey .4 = n-X for wone
. % ) ] o UK 3 -
x, T {x< %, “le now prove tha T = T by construciing o

H —

mon-bipse realisation (6,7 of = if x> 1,

Thus et x> 1. Tet Ay = 3up.a.,%ox o
&

{um—-”xﬂ"“’ m-*n-Q} '3 zg% P T % and
iuap..., m% Alsgo let }31"_: i vfl.‘,?f”vk % ,"
{v"”"“’vt 175 , t+?’--"v2t k%

§v2t 1c+1’“-’v2t§ and B = év.] ""’VZt% Then take

(C,_, to be the graph given in Figure TA

PICURE 7.4
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Clzarly  (G,P) is a rsalisation of =, If (G,P)
is bipsc, then since n does not satisfy €2, it follovs by
Lerma 7,2 that Zg_p((G,P}) has an elenent o, Tow

( )} ) = gll=
ai {v-t-{-‘]’oco,vg_t—kg ) évk+19...,v_t§‘ D.ud_ SO
2t-%k
¥z ey vy

] - t

6L U M [vyuieenss¥og ] and G0 |
J=t+1 j=k+1

VieeqreeesVy] 8re isomorphic, but the first is commected ond

the second is not, This contradiction proves that (G,?) is
& non-bipsc realisation of = This is a contradiction since

n ig forcibly bipsc, Hence it follows that x =1 and so
o=
6 .

0 11
Case 2(c), €4 > 64 . Then by 17, we have ¢, = %
b
and so T = ((tnk)2s{28—a, SQ(t_k-1;, a) for some «a,
1 42 s =1

We will now prove that =n° is Ty O g, For this

¥

® o= ((3-)° (t_kﬂ1)25“2a, (t«k_Efisg(t“k“T)).

*
*
Then by Iemna 7,4, 7m  is graphic, Iet (H,0) with the
* = s
ordering S = (u1"'°’u2s{v2’°°t’v2(t-k)-1) be o realisation
%
of n _, Get a new bipartitioned graph (G,P) from (H,Q) by

adding two new vertices, say vy and Vo(4-x)» 2nd joining
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vy to Lgagreanslog and Jjoining ‘v2(t—k) to Uog qa]reeestog e

Clearly mow (G,P) with the ordering (u1,,,,,u23|v1,,,,,vz(tﬂk))

0

. h ! o
1s o realisation of T,

Now n° is.forecibly bipsc and doos
*
not satisfy €2, 2g-a > S, and w = TE(G[U.",..',,ULQS|V2““,

* b
v2(t—k§—1:]’ hence by Iemra 7,3 = is forcibly bipse, Hencc

(=10 %, (bl , (B-x-2)%)

is also forcibly bibsc, and so by T2 appiied to. this sequence
we have ; either ¢ < 2 or a =1 (note that the number of
terms on the right is -2s and none of fhese is gzero), Now

5 £ 2 inplies s =2 and o = 1, hence we always have o =1,
Thus 7 = (t-k, (t-k-1)25"2 g.3.2|s2(t-k-1)y

)

o If now s = 2,;then o= . So let s 113, Then

aefine

o= ()P st R2 g )2 (oi2) TR

Then it follows that 1« is foreibly bipsc by argunents

R
sinilar to those used above for = , Now the number of terns
on the right of =« is 2(%-k-1) and nonec of these is cqual

to zero, Since %~k > 3, it follows from g appliéd'tb T

thet t-k=3 amd o = a4,

This proves that in Case 2, n satisfies (3),
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Cige 3, 4d

4 > d,. Thoa by’assumption_ﬁi?, ey > ¢,

e’ now prove that T satisfies (4). Iet p be the nwiber
of di's greater than % and ¢ the nunber of ej‘s
greater than 3 , Since T satisfies C1, it follows that
0<'p & % and 0 < g gl%, Also let h be the number of
cy's which are not less than ﬁ-p, Then we will prove that

n satisfies the conditions (a) - (&) of (4),

) ) L 0 A m o e '
If n is odd then by C1, exy =% and so Ly assuip-

tion (II), some dij = % , & contradiétion, This proves (a),

Next we prove (b) and (c) together, This is donc in

several steps as follows ¢

et (G,P) with the ordering S = (WgyauestylVysenesvoy)
be any realisation of =, Since 7n is forcibly bipse, (G,P)

is bipse, Define

A.l=§.ui|1_<_i_<_p%, Azzgu’ilP"’.‘Si.ﬁ Em;/]].}s
Aé:%ﬁ][mgj +1$jugm@},

| isn i,

¥, B, =§§rj[q+ 154 i %k

By =§vylt +1<J <2t~ qlam

f

A = :
Ay iui|m - p+ 1

e

B =§vj“f1 i<

Y

td
~

 =S$vilet - a e 1 gy gty
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180 Jet By = §vi|1 < §<n} end By, =75 - By,

Byq = %v.f‘zt -—a+1<jg2- h} and By, = B, - B, .

e note that if B, # @ thea by assumption (11), |4, | = |1x3] >0
and so < -2- . We will now show that B4 (= By, Iet v e Bqyq.

£ B, P, then p<3F and a(x) >'m - p> If B, =P,

NojE3
ol

then d(v) 75% , but d(v) > m - p > ‘Thus, in either case

adv) > I—;— and v e B1 . Hence Byq (: ]31 ., oinilarly it can be

proved that B,, (T B,,
Vle now show that there exists an elenent o of
% ((¢,P)) such that o (hy |J 131) =4, |J B, and
0(4:12 U AB U B, U B3) = .a!.2 U i U By U B If @ =@
then any elenent of & ((G,P)) will do, If: n 75 n then =
does not satisfy C2, hence by Lemma 7,2, ‘@p((G,P)) # ¢ and
wve take o 't‘o be any elenent of @p((G,P)),’

Fron the result proved in the prece'ding paragraph it
follows that G[ 44]B, G[A4|B£:| and G[ 4, | A3|
By U Bé__ G[A2 U A3|182 LU B3—[ © Now by ITerma 7,9, we
can choose (G,P) * such that G[A.I U As[By | Bg___] = K
Throughout the rest of Case 3, we let (G,P) be such a groph,
Since every vertex in A, (resp, By) has degree 1t (reop, %),

it follows that G[4,|By || B,] =K ona GAsJa,IB,] =X,
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Ckoose now & o in Y ((G,P)) with “he propertics
siven above, Then it follows that G[:A4|B4:] = K since
GCa, | 2308, {J By ] = 6L 4, [ 4518, ] B3] arnd the

Terner has at nost 2(s-p) (t-q) edges whereas the latter

GC4q1By] = K, also if 3B, # 7, then siice

has 2t least 2(s-p) (t-g) edges, it follows that

i ‘ ' = 7 ] 2 1 ~] 3 - s ‘l
¢[A5|Bz ] =X and o(d, || By) ds cither 4, || By or Ag||B,,

We now prove that G[ A |Bz] =K, We may toke By # 0

(hence B, , A, and ﬂé non-enpty) since otherwise the clain
is vacucusly true, If o(4, |] By) =4, |J B3 , then
T4, U 44185 [J Bpd =64y [J 4518y |J Bo] =X, so
G[}i4|B3:] = K . Since every vertex of B, has degrec s 1%
. Seo let G(A2 [J B2) = Ay LJ Bo .

Then we can prove as above that G[ As(By ] = K, Thus v, is

follows that G[ A, Bs ] =X

joincd tc all vertices in A - ﬁ4, hence cq > 28 - p, so by

sswiption (III), a2 2%t - aq, If possible, let wu e 4y and

v & By Dbe non-adjacent, Since atw > 2t - g it follows that

0

T
there exists v ¢ By adjacent to u and since d4(v) = s it
follows that there exists uw « A, adjacent to v, Noy if =
is the graph obtained from G by an interchange along

1 ]
(u, v, u, v, w, then (H,P) with the ordering $ is a
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vealisation of ., HL A8y =k ema u[.,[8,] #K, &

contradiction, This proves that G{:A1}B3:] = K.

- B8ince the degree of every veritex in By is 8, it

—

follows that G[ 4, [.133,'_"] =K,

Next we show that G[:A3§B11:] =X, If possible, lut

Wweig and v e By, be nonadjccent. Simce a(uw) = %, i
follows that there exists vlue B4 adjaéént io a énd since
d(v) > n-p, it follows that there exists u':e Ay adjacent
to v, Now by an interchange along (u, vr,}ﬁr, v, u fron

¢, we arrive at a contradiction, Hence G{ZA?]B11:] = K,

Next we show thet G[iz|B,, =K, If possible, let
Wwels and v e By, be adjacent, Since d(w) = t, it follows

that there exists v' e By, non-adjacent to u and since

1

a(v) < p, it follows that there exists u e Ay non-adjacent

1 ?
to v, DNow by an interchange along (u, v, u , v , u) fron

G we arrive at a contradiction, Hence G[:A3|B42:] = X,

Next we show that G[ 441D,y ] =X, If possible, let

follows that there exists u' € A3 adjacent to v, Since

1 t S
d(u ) =1, it follows that there exists v e By, non-adjacent
L 1 t

to u Now by an interchange along (u, v, u, v, w fron

»

G, we arrive a2t a contradiction, Hence G[ﬂA?IBC1j1 = K |
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Next we show that G[ 14[312] = K, f possible, lci
wed, and v e By, be adjacent, Since d(v) < m-p, it
follows tha'l;,there exists ag € A3 non-adjacent to v, Since
8 1

a(u) = t, it follows that there exists v ¢ Byq adjocent
1 t t

to u, Now by an interchange along (u, v, u, v, w fron

G, we arrive at a contradiction, Hence G[J’L4IB12:]‘ =K,

Summing up, we obtain that G[ 44 |B-B,, ] =K,
c[4,)B-3,,] =K, GLa-dy[By] =k and 6[A-4]B,T =K

Fron this we immediately have

P ) 2%

2 d, = (2t-h) p + = e.
i=1 1. j=2t-h+1 J

h _ n 7
% e, = (n-p)h + I als =
i=1 J i=m-p+1

This proves (b) and (c),

We now prove that (d) holds, If p =% , then we
arc done, So let p <%, If t-h 2 then (d) holds,

Solet $-h2 3 and
m =R ey - Pheeasenyy — D)

Cleorly n = n(g[ﬂ2 U A3-IB - Byq - 13.42]), We now prove

that = is forcibly bipse, If = does not satisfy €2, then
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this clain follows by Lemma ,,3, So let = satisfy C2,

Then n =n and di‘= e; for all i, S0 p = ¢, Since
5:-[,,11 B ~ 342] = X, it follows that dp 2. n-4q=n-p,

+ A 1 '
4+ Thus 7" = TE(G’[Az U A3|

with the ordering

henee eq >nn - p and B11 = B
Jo UBsD., et (¢%,
(up-p’],‘to,un Plvq+1".” 2.t q) be any I‘Oalisa‘tion of

+ 4 )
T . Let! (H,P) be the graph obtained from (G,?)

veplacing 6L 4, || As]B, | B;] by (6%, O,
with the ordering §

by

Then (H,P)
is a realisation of ™ and henge (H,P)
1s bipse, Hence,

as shown on page 153 y there is a

UBQUB3)=
52 \, A3 k} 32 \j B3 . It now follows that (G+, Q) is bipso
with the restriction of o 4o Ao ij AS U ey By Os o

bipcp, Thus 7 is foreibly bipse, Since +t - h > 3, it

g e E((H P)) such that o(a, || A

+ +
now foll*ws from Cases 1 and 2 (applied to n') that =

is one of my - mg with % replaced by t-h and k replaced

by zmero, This proves thot (¢) holds,

Finally, to prove that (e) holds, let

*

T = (d1-n&h,;,,tdp—n+hje )

n_h.g.‘l" L NE] en .

ote that ® = m(G[4,]Bp, 1) = m(GL4,18,,7). Since "

doecs not satisfy condition.(1) of Theoren 7,1, it follows
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want eitir m does not sati fy C2 or, ®™ satisfies (2
Y -

omd mo= (4 + 2% - Tyeeasdoy + 28 = 1, eT,,,,,th) is

1ot foreibly self-complencntuary, We accordingly cousider

twe cases,

Case 3 (a), m does not sautisfy €2, ILet (Gy,P,) and

..x.
(G5,P5) be two realisations of =n , ILet (H,P) be. the graph
obtained fron (G,P)} by replocing G[:A1|B42j] by  (Gy,04)
and G[AAIBH] by ('62(132), P,). fTken (H,P) is a realisa-
tion of ® and so is bipse, But T does not s&tisﬁy c2, so

TgIJ(H,P)) contains an element o, Clearly 0(A1jf5 S

and 0(342) = By, . Hence

H

Gy HI:A1|B42 = H| 4yIB4d =Gy,

* .
Thus any two realisations of T  are isomorphic, hence by

%
Lermia 7,31, it follows that =  is unigraptic, Thus (c)

holds in this case,

Case 3(b), n satisfies €2 amd 7 = (a44* 2t - 1,,,.,
Cog * 28 =1, e4,,,,,654) 1is not foreidbly self-complenentary,
*
e now prove that (e) holds by assuning that T is nob
unigraphic and obtaining a contradiction,
* * .
We first show that if (G , P ) is a rcalisation of

b

" ¥ * * 3% *
n  then there isa o e Q((G, D)) such that o (i) =T
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K. %x ~ * . oo,
vaicre 4 and B are the s ts of P Sirze ©® 1Is not

wiigraphic, by Lemma 7,11, there exists another réalisation
3t * * * ’ % -
(H, P) of 7® such that & - H, ¥ow let (H,P) %Dec
the graph obtained from (GF) by replacing G A 'IBQ:] by
e * - * * :
(G, ?) and G[:A¢JB11:] vy (H (), P), Clearly (i,P)
is o realisation of © and so is bipsec, if now @p((H,P))
ntoing s1lane an i =.4% 7 : =
cortains an element o then o(iy) iy and U(B!,re) B4,
*
nence G =2 H, a contradiction, Thus G (H,P)) =2,
Hence by Theoren 5,4 and Corollary 1,15, it follows that
% ((H,P)) contains an elerent ¢ such that o(4) =3B,

Dow since m satisfies €2 it follows that m = n, d; = ¢y

F-fy

for all i, and so as in page 157 we have Bqq T By and

=2

Bjp = By. Since n =n, it also follows that o(dy) =B,

and 0(34) = Ay, Now the restriction of ¢ %o Ay U 3,

*
scrves as the required o

Iet now G be any recalisation of =wn, ILet
)

(resp, vi) be the vertex with degree d;+ 2t - 1 (resp, ey

1=
G']:B] # X, then

i= 1’000921-" Also define A‘I!coo! 4_ ’ BT,-..’B[I as before
and let A = U A_i , B = U B If now G EA] #K or

2t 2
Eo(a; +2t-1) <2t (2t - 1) +
i=1 b

ck

N
wy
9]
TN
oA
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[ ] - -
& contradiction since d&; =c; for all i, Thus G LE] =&

{A,B} and (G1 ,P) the biparti-

1 —
and 6 [B] =X, Let P
)
tioned graph chtained from G by deleting the edges in .,
Then  (G4,P) is A realisation of 7, and it follows from (b)

s

and (c) that

G1'[___A1|B—B4] =X , GTEA..;“H[B_‘,:'] =X ,
G1EA‘A4IB1:I =K, G1[514|B-B1_—]. = X "
»*

TE(E1[;14]B1]). So by the result

Hence m(Gy[ 4 B, ) = =
proved in the preceding paragraph, there exist o eﬁ(G,I EA‘I I-B_ﬂ_])
such that o (A} =B, and o, ¢ B (G, [1314!131 1) such that
02(34) = By, Now consider the pernutation o of 4 |J B
defined by |

9y (x) if =x ¢ Jl,j U }34 .

=1 .

62 (x) lf X A4 U B-] » .

Vogu1oi u; = by |J *"’-3 ’

g if X_-V-j,E'B2U33

g(x) =

if x

‘ t N}
It is casy to see that o 1is an isomorphisn between G and G

1 1 5
Henece G is self-complementary and = is foreibly self-comple~

nentary, This contradiction proves that (e) holds in this case,

Thus in Case 3, ©n satisfies (4) and the proof of ncccs-

sity is complete,
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7,4 TFROOF C" SUFFICIENCY

-

In this scction we uutwpllbﬂ tihe sufficiency in

Theoren 7,1, So let @ = (4 [e4s0eerey ) be a

‘I?oo-’ 1

) ‘ 2041 n n
bipartiticned sequence satisiying B di = B e, and at
i=1 3=1
least one of conditions (1) - (4), We will prove that =

is foreibly bipsc, We divide this proof into four cascs |,

Case 1, m satisfies (1), 4s 7 satifies C2, we

have mn = n =.2%, We first prove that 7 is graphic and

doy » O, Since m  is forcibly self-conmplementary, it is
X T
also graphic, ILet G  be a realisation of. n, Ieot
L
A = ilﬁs..o,UZt% and B = gwq,...,vgt% , where uy hag

degrec d; + 2t - 1 and v, has dugrec e; in G

Then clearly

2% ) 2%
2 d,(u) =2t (24-1) + 3 e, ,
= & i=1 1
fionce it follows that G [A] =X and ¢ [B7]

Consider the bipartitioncd graph (G,P) where G is the
) ,

groph obtained from & by deleting all edges within A and

the sets of T are A and B, Then (G,P) with the order-

ing § = (u1,,,,,u2tlv1,,,,,v2t) is & realisation of = and
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s¢ m is grapnic, If now d =0, then by ce, eq = 2%

wad 80 T is not graphic, a contradiction, Hence dEt > 0,

We next prove that any realisation of T ig bipse,
et  (G,P) with the ordering S = (y,...,041Vq,000,V0y)
ve ony realisation of =w, TLet G' be the graph obtaincd
fron G by joining every pair of distinct vertices in 4
by on cdge, Then G' is 2 realisation of ﬁ'. Since n'

j T
is forcibly self-complenentary, it follows that G is

solf;complementary, Iet o be a complenenting pernutation

1
of G, Wow if o(u;) = u, , then since d,, > 0, it follows

that

A AR I LI CTO R LI CTO R I I

o contradiction, Hence o(i) =B and o(B) = A, It now
follows that o is also an iscnorphisn between G ond G(T),

Thus (G,P) is bipsc and 7m is forcidbly bipsc,

Cagse 2

-

n satisfics (2), Dy Lemma 7.4 , it follows
that n is graphic, Without loss of generality we assumé thot
5 < t, It then follows that = is ome of (+°[1°%), (+7]27%)
0138, 839,

If n= (t2]12t) and (G,P) with the ordering

S o= (uy,0|vy,...,V5) 1is & rcalisation of =n, then without


http://www.cvisiontech.com

- 163 =

loss of gencrality one can tege
EﬂG) = g Uy V5o, 2 vt+j|1 £J <&t % a .

Cizarly (G,B) is bipsc and s (g1u2)3EE (Vj) € Egp((G,P))a

If m= (t 1?2t) “then it follows by Lemna 7 6 that
every realisation (G,P) of 7 is bipsc with j} ((@,P)) # Q
If n = (36| 6) - then one can verify that 7 has exactly
Six non-isomorphic realisations (G,P), and each of these is
bipsc with tglg((G,P3) # §. We give these realisations and a

complementing permutation for each of these in Appendix I,

ir =n = (46|38), then one can verify that 7 has exactly
twenty non-~isomorphic realisations (G,P), and each of these
is bipsc with ESEK(G,Pj) # B, We give these realisations and

a conmnplementing permutafion Tor each of these in Appendix II
This proves that 7 is forcibly bipsc in this case,

- ‘ ) ) Pt | ge m, &k .
Case B, W satisfiea (3), Then = = (\wm~ , Spsqrecer
0%)

By Lemma 7,4 (applled to n with d1,_,,,dm and

S2t-k?
e1,;,,,e2t interchanged) we get that T is granhlc et
(G,7) with the ordering S = (u1,__,, m|v1,,..,v2t) be any

realisation of n ., Then clearly u; v, is an edge whenever
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T <idn and 1 {j<k, .fnow t -k =0 then

n t
o Y ; - E ¢,P)) and T is forcibly.
o 1T=T1 (uy j-l;[i (v, V2t+1-3) e 5 (€6, ! is forcibly

vipse, So let t - k > 1, Then let (6°,p°) = G]:u1,,,,,u1q[

v"c+1""’v2"t—k]' If we now prove that (¢“,T°) is bipsc with

: k
0 0 L0 3
o & @p((G giE )), then o = & JE (VJ V2t+1—j) = 69((G:P))
and it follows that =m is forcibly bipsc, Thus it remains 1o
prove that (3 p((GO,PO)) O,

First let 1t - k = 1_, Then without loss of generulity

ve my take E(GY) = %uiv'tﬂ <ix etg §1 g‘ui Vi

e, +1¢iK m% . Clearly then o¢° = _I—[; (u;) (vy viiq)

e B ,0@°, 29,

Next let t - k =2, Then 7n((¢°, .9)) = (2m|'et_1 ,

LJ

-

€gy M = €4 , W — &y 1), Hence by Lemma 7,5, ‘61)((@0, PN A8,

Finally let t -k » 3, Then =n((G°, %)) = =° amd

8" A o .
by (3}, =™ .1's cne of My -Tg , If 7w is ome of my - 7Tg
then as proved in Case 2, @p((GO, P £ 8, |

Let now 7° = me o= (- (- Bk 1ty 14

235 %vk*r‘l""’vt% e el = gvtﬂ’---’vzt_kg‘- 220
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T <1 {m, let By; Pe the set of all vertices of By mnot

adjacent to u;  and B2i the set of all vertices of B,

ad jacent to'ru; , Then since IB; | = IBé] =1t -k and

dno {uy) =‘t - k, it follows that [By;l = iBysl. Also since

8’

the degrée of every vertex of B, ism~1 in G, it follows

that By, end Byy,, are disjoint if i # h, Similarly, Boj

m
and Bpy are disjoint if i # h, Purther By = By; and
i=t 7
m A
B, = .La Byo; o Now if ¢ is any per@utation such that

o _ 0 = o) _ e
o (Ji) T8 5 © (B1i) =By; and o (B2i) = By; for i=1,,, , ,m,
then ¢° ¢ tgp((GO, PO)).

Then by

Next let TI:O = TET = ((t_k)4l3’22(twk—1), 1)

Terma 7,7, @F((GO, ) #£ 8,

Pinally let n° = m, = (3°%|2s21; 8% 1) 1et

(H,0) = GO]_—_U_.I,.__,u28|vk+2,,',,v2t_k_1j, Note that +t-k = 3

and so Viesp = Vg and Vot 1l = Vo o

First let Vi o and Vs have disjoint neighbourhoods

in 6%, Then =((H,®) = (2%5|sh. Tow let Ay be the set of

all vertices adjacent to both Vi ey 2nd V404 in H and

n;y = [Aijl, 1 <i# 3 <4, Without loss of generality we also
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ascwie that the vertex adjaccat to v in- @° belongs to
T3

"13—4 . HNow,
= = 1 = - 3
iij ni,j dH(v -—2+j) S’ J 1!.-.!4 .,.(T.Ca
Swruing (7,6) over all j and using the fact that ny5 = My5
e gzet
3 i' 7.7
)X 5 n,. =28 ... (7,
§=1 A=Y ) -

Subtracting the equations (7,6) corresponding to J =1 and
j =4 from the equation (7,7) we get Ny, = Doz, Now any

nexrnutation s° of V(%) satisfying

) = Ay,
u if u e A12 U A137U A24 U A34 ’
¢

o (v;) = Vogeig 0 U - 2<3<t+3,

14

2° ()

2 (A

J

is an element of fgp((Go, P))

& y 7 1 + .l
Next let some uy; be adjacent to both vy , and v,z
in GO, Without loss of generality we assume that in GO, Qg

is not adjacent +to Vi_2 and Us g is adjacent to Vi+3 o

Then =n((H,Q)) = (3, p28-2 1|s4), Now by Lemma 7,7,

?

G p((H,Q)) contains an element ¢ such that o(w) = uyg

GiBEEy,
SR R

#
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and o(ip) = w . It now £.1lows that o(v, o ve,s) & G, €677 0

Thus we have shown that t;p((@o, ) E g " = T,
Lg cxplained before, this proves that 7= ig foreibly bipsc in
Case 3,

Case 4 T satisfiss (4), Then n = 2t, Tet

D _ 2 2 8
..-Ii..l = iu‘],...,u‘pg ’ Ae = %um—p+1’°"’um% y B—] "'S(‘-V—],...,fh.}
and 32 = %_v2t~h+1""’v2t% ., We then prcve the following

Claim ¢+ (G,P) with the ordering S = (uy,...,%]

VisesasVoy) 1S @ realisation of 7 iff

!
=i

K, G[A-44]B5 ]

X, GEA2|B—B1] = .

(1) ¢[A;|B-B, ]

!
i

(i1) G[ A-A5|B, ]

(1i1) 6[A;|B,] with the ordering (w ,.,,,upi,'

Vzt_h+1 2¢0 8 ,V2t) as Well as -G-EA2 I:B.I j

with the ordering (%,,,,,%_p+1|vh,,.,,v1)
is a realisation of W

?

(iv) thA—A1aA2|B—B1—32:]V with the ordering

<up+1""’um~p|Vh+1""’v2t_h) is a realisa-

. +
tion of ™
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che 'if part' of the claim is trivi “l, To prove tho
Tonly if part', let (G,F) with the ordering S = (U_J’,,,,,u;_j
VT""’th) be a realisation of 7, Then (i) follows by (b)),
(i1) follows by (¢), and (iii) and (iv) folloy from (i) and
(ii), This proves the clain,

Now a graph (G,P) satisfying (i) - (iv) above oxists

+

*
since by (e), 7 is grephic and by Lerma 7,4, T is graplic

By the claim proved above, such a graph is a realisation of =&

and so T is graphic,

Next let (G,?) with the grdering S = (u1,,,,,qm|
v".l,,,,,v2_b) be'a realisation of 7, Then (i) -~ (iv) of <tho
above claim hold, Also since = is unigraphic it follows

L E *
from (1ii) that there oxists an isomorphism o  from
— ¥*
‘ GEA1 'ng to GEA2|B1] such that o (A1) = A, and

o (By) =By,

If now p = then no 4, is 321- , hence by assumption

e
l.

(1), no ey is 5,80 g=F=h, Thus 4 = Ay | A, and

B = By J Bo. It is casy to see that the pernutation o
defined by

L, 3( g on A1 U B,
= £ .7
Lo on 112 U ZB1

E6mSrsssivhenc R iwelbpt Gp" fsing &

AT
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‘ext let p <

noj =

- = A 4+ - ]

and the permutation o defined by

o(x) = J 0'*_1 (x) if x e A2 U B.]

£ = if xe 4 -4, -4,

is an element of Y5 ((G,P)), 8o let » <% and t-h>O0,
Then by (&), (G A-A,—~Ay|B-B;~B,]) = ((t-n)™P|

Chaq™ ProvesCop_p~ p) satisfies condition (3) of Theorem 7,1
with t wreplaced by t - h an& k replaced by '0, Hence by
Case 3, it follows that gp(GEA“AFAQlB“BT’BZ]) contains

an clement c+_ Now the permutation o defined by
.o on Ay U B,
o' on 4, || B
Br| 19
is an element of @p((G,P)),

Thus © is forecibly bipsc in Case 4, and sufficiency

ig established,

The ma2in result of Ghapter 7 is included in [ 47]
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Below we verify that the bipartitionad sequence mn= 17|07
nas exactly six nonisomorphic rsalisations (G,T), and each of Vo
i bipse with tiy((G,P\‘ # @ e label these realisations o9
Eyyiqy (G, BuY, ..., (0,7 Y, and exhibit & complementing poriniciio

o5 -2lov each graph (G,,F;),

2a ISy 2 i
} e, ¢ 3 . )
i A& § 'k ; a ¢
5 . 3 e
1 a a

a1 P
3 c e
" A 4 .
2 O""—->~.< = 2 5 & 2
=T 52 < f 6 £ -

P

!"5;‘

iy iy o = (M2 (45 06==(13(2}(35?{46
(6 {af (e {ca® (af) (ve. (¢,
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I

ATPEYDIX i1

o~ p
~, A - : N = O [
Telow we verify that the bipartitioned secuence == {4°]3

N

nen exactly twenty nonisomorphic rszalisations (¢,0), an

5
s

aach of

these is bipse with § p((G,PEY # 0, Ve label these realiseiions

() =

as (Uy,%47, (G2,;23,,,,,(GQO,P20), anl exhibit & comple: enbing

peivwtation o, below euch graph {Gi,Pi),

—

A~ WL

(o2 TN |

o= (D22 (3 (1 (5) (6]
(ah} (bg) (of) (de)

a
1 J

2
2 o)
—" |
4 <
= ¥
P

o
* ¥ b
]

n

) Ps)
on= (16 (25" (34} (a) (1) i
(e (@ (el (B (2
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W

o

& 0

L= v S I

0= (13 (2Y (3) (45¥ (5
(ah} (bg} (ce} (&)
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g.= (18 (25) (36) (2) (D) | o = oo

(M (@) (X (D) (&) ()

5447 (16> (25> (34 (2) () 45" (15X (26) (34 (2) ()
Cer (e (eg (D (e) (gl {0 (T &
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1
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N
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R ASTE

oy WU o

Fis ‘ (G1 4,?14) :-J

944" (13 (2) (35 (465 (5

(ag) (bd) {cf) (ch.

(SRR | . T A

A (Gyg,F15°

Y (2Y (34) (57 {6,

. 8
‘\(j-’,}

7,6= {1
(~

Y el e

() o

1B

[ [a ]

25
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1

W

717= (16 (25) (34) (&) (b
{c¥(@e) (fg) (W)

s (G19,

a10= (16)(25) (347 (2) ()
(e} (@) (e} (£g) (W)

Prgt, B
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:
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4 <
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: e e
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