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INTRCDYCTION

Stochastic intesration with respect to Brownian motion was
introduced by Ito. Stochastic integration with respect to martin-
gales (and semimartingales) was developed by Kunita-Watanable [247],
risk [97], Courrege [3_] and Meyer [331. In this thesis, we study
the 'pathwise stochastic calculus' restricting curselves to con-

tinuous semimartingales, Here is a brief summary of our results.

In Chapter I, we obtain a 'pathwise formula' for the
quadratic variation process <M> of a coutinucus local martingale
M. Recall that <M> is the natural increasing process in the
Doob-Meyer decomposition of Mg. By a pathwise feormula for <M>
vwe mean a fornmula describing explicitly a w-path of <M> in
terms of the corresponding w- path of M. . Observe that existence
of such a formula already implies that <M> depends neither on
the underl -ing probability nor on the underlying filtration. The
broof of our formula for <M> is simple and docs not assume the
existence of <M>, thus providing a simple proof of the existence
as well of <M>. Proceeding as in Kunita-Watanable [247], we also
deduce that <M> 1s the only continuous increasing process A
such that M2-A is a local martingale., We also give an elemen-—
tary vroof of the lesser known fact that almost every path of a
continuous local martingale has the proverty ¢ On any interval,
it is either a constant or of unbounded variation. This result

also provides a proof of uniqueness of <M>,
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(ii)

If M is a continucus local martingale such that
A< (t) € at, then integral with respect to M can be defined
as in the Brownian motion case for all progressively measurable
integrands. For a general continuous local martingale M, we
show that by applying a ‘random time change' we can reduce it
to the previous case. Once stochazsztic integration with respect
to & continuous local martingale is done, extensions to cover
continuous semimartingzle integrators and to allow vector or
matrix valued integrands and 3 &8 are impedizte. Then
using ‘random timc change® and Doob's maximal inequality, we
obtain an estimate on the growth of stochastic integrals. fThen,
we obtaln a ‘pathwise formula' for the stochastic integral of a
TeCslel. process by showing that the 'Riemann swms® calculated
for appropriate random partitions de¢ indeed converge to the
stochastic integral. Then we shall prove & 'pathwise' version
of the well known Ito's formula. The procf highlights the
"pathwise’ nature of the stochastic integrals, It should be
pointed out that Bichteler has alrecady considered 'pathwise!
integration in [ 17]. He considers right continuous semimartin-
gale integrators. His approach is to look at the stochastic
integral as an integral with respect to a vector valued measure
as in Metivier-Pellaumail [357] and Wussmaul [257]. Bichieler

uses a factorisation theorem of Maurey-Rosenthal and changes
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(iii)

the underlying probability to achieve a nice estimete on the
growth of the stochastic integral, whereas we use &4 random

time change.

In Chapter II, we consider the stochastic differential

equation
.t
(1) ¥(t) = #(t) + J bl.,u,¥)dX(u)
O
under uswal conditions on b, X bef scontinuous semimartin-

gale. We prove existence anthﬁiqugdggg#;f the solution among
the class of all continuous processes. In fact after making
a time chdnge our proof imitates the proof of the Brownian
notion cage. A slight modification of the usuzl successive
approximation procedure gives us & 'pathwise formula' to calcu-
late the sclution. We also consider stability properties of

the solutions. In the last section, we consider the equation
t
T(E,x) = Y(t) = x + [ b(.,u,Y(uNaX(u),
o

and get a pathwise version Y, which is jointly continucus in

t and x. This in turn gives a slight improvement on the well
known homeomorphism properties of the solution. The existence
and uniqueness of sqlﬁtions‘to (1) was proved by Protter [39]
(in the case when ¢ is a semimartingale) and Dolcans-Dade

[ 5. uhereas Protter considered continuous semimartingale
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{iv)

integrators Dolecans-Dale considered gencral (r.c.l.l.) semi-
martingales. However, their techniques are different from ours
and do not give a pathwise fornula. Independently of us
Bichteler [ 2] gave a differcnt pathwise formula, but as men-

tioned earlier, his methods are more complex.

In Chapter III, we shall consider multiplicative
stochastic intcgration. Multiplicative int J}on with respect
to Brownian motion was introduced by L.i@aﬁggééj. ery [ 7]
considered multiplicative integration with respect to general
serimartingales and showed that the multiplicative integral is
linit in probability of 'Riemann products's We follow Emery's
approéch of using stability properties of stochastic differenw
tial equations to obtain results on nmultiplicative stochastic
integral, Working with contiruous semimartingales we are able
to show that the Riemann products over appropriate random parti-
tions converge almost surely to the multiplicative integral, thus
giving a 'pathwise formula' for the multiplicative integral., We
obtain 'Peano series' representation of the multipiicative
integral ; formulae for the determinant and inverse of 'Exponen-
tial' of a matrix valued semimertingale s ‘'integration by parts'
Tornula for the multiplicative intcgral and a stochastic version
of the 'Trotter product' formula. A4s a consequence of our inte-
gration by parts formula, we show that any ‘invertible’ matrix
valued senimartingale can be written in 2 unique way as a product

of a local martingale and a process of bounded variation.
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O« Notations @

CHAPTER I

STOCHASTIC INTEGRATION

({),B) is a fixed measurable space. 4 filtration F

is a right continuous family (Ft)t>0 of sub-o fields of B.

P will denote a Probability measure on (e 2, B and f will
denote the filtration obtained by augnentiL ,dfdét by P-null

sets in the

P~completion of B. For a g and P as above, let

C(E) = 4X !X is a continuous F.adapted process t(
E = %X + X is a right continuous F-adapted process )
= = ) =
L having left limits }
{
¢
W(g) =1X 1 X is a F-progressively measurable processé
(B ={7T:T isa P-stop tine |
i 1
AE) = J, Xe C(E) 2 X(0) = 0 and for all w, the map [
} t —> X(t,w) is of bounded variation,_?
L ont bounded intervals. j
{
15 (B} =1 Ae A(F) ¢ 4 is increasing
L . ‘\
yg,P)szsgg): X(0) =0 and (X(%), E,) isal
L P lceal martingale j
If XeW(F) and 7. T(F), define the stopped processes
xt ang X py
T
L0, w) = X(t~ T(w) yw) 1 Qw)
and

tw ST(w)> QJ’
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XT=(t,w) = X(t, w1 (W) i
£ Swh s T (W) t}
Thos X° is the process X stopped at T except for
the fact that XT =0 on (T=0). And XT"' is the process X

up to but not including T and O after and including time T,

Observe that these processes are again in W(E).
For Ae A(F), let }i]e A(F) be its total varigy >

process, l.e.

-

%
!AI(‘b,W) = g ’dA(u’W)'

For A4,A;c A(F), say that A, dorminates 4, (A4 << 4y)
if A,-4A, e AT(E).

Let E = C[ 0,x) be the metric space of Real-valued

continuous functions on [ 0,%) equipped with the topology of

uniform convergence on compacta,

For pebl and O£t~ Ilet

lely = sup e(s)]
0<s<t

1. Quadratic Variation Process of a Continuwous Iovcal Martingale .

1t is a well known fact that if Me I(F, P), then there
exists a unique < e A'(E) such that ME_D 6 (EF,P). This
follows from & nore general and difficult result of Meyer [29 ],

[30], [31]. A simple proof of the result of Meyer was given
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by Rao [38]. In this section, we start with yet another simple
proof of this result. Moreover, we will give a pathwise fornula
for <D, i.es <M (t,w) will be defined cxplicitly in terms of
paths of M, thus showing that <M> neither depends on the

filtration F nor on the underlying probability neasure P. |

This process <M 1is called the quadratiC;ggriation.process of M,

Now let Me C(F) be given such 4 "M(0) = 0. For each

n, define a process K, @as followsys

K (t,w) = j if there exists .{ti”g such that

0 = b Cty<eadiLt,

IM(t;) =Mt )] = 270 [ 0gi <]
and [M(t3) ~M(W | <27 ir ue [4,%;,), 0€i<]
or i=j and ua[tj,t].
X_(t,w) ' |
Let X1 ('t,W) = lim sup '£—2-'—-
n
n =

Xo(t,w) = X, (4~ , w) if t>0
= 0 T =0

U{w)

inf 4430 3 Xp(t,w) AXy(+ , Wi
(As usual infinun of the empty set is « ),

Thus U 1s the first point of discontinuity for %y and

X 1is the process X1 truncated at U and so defined at U. as

to make it ocomtirygons,
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Then we have
Thecrenm 1 o
1) Xea™(D
(11) For all P such thet Me KF, P), M-X: KF, P).
froof : Fix a P such that Me F,P). For n21 Phe

¢ F * ) - -
§ i . 12_0} inductively by

™ = 0
O

n 2 ¢ - |
Tier = inf <X T8 0 u(e) -T2 27" 7,

let z.(t) = EO(M(tr\Tn-,)—M(t/\Tn))

Observe that for each =n) 1, T? goes to infinity as i
tends to infinity. (It may be eventually infinity.) Thus for

each (t,w), the sum defining 2 _(%,w) is in fact a finite sur.

Further,
> . b s n ml’l
hn(t,w) =3J iff Tj £ t K< Tie1 *
Thus
K, (%,) K, (t,u)+1
—2_2-1”“_- S_ Z \'t W) < "'-—-"7——
so that
L (t,w) = lin sup 2, (b, w)

1
Clearly 2z, e G(F) for all n. Thus X, ,X,s W(F), Ue I(F) and
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hence Xe W(F). Since X is continuous and increasing by
definition, we have Xe A"(F). 4lso, if X, (oyw)  is continuous
then X1(t,w) = X(t,w) for all +. Thus Amgomplete the proof,

suffices to prove

(1) Y  converges a.s. P ({AnEY t0 & Ye L(EE P)
n X == ! k]

where Y (4,w) = M2(t,w) - 2_(%,u) .

Further, suffices to prove (1) assuming M is bounded
(say by X). Since, in genéral we can get stop times Smﬂwn
such that Msm is bounded, the result will follow from the

special case,

Now, writing M°(t) as

o) = 2 (P (ta 1,0 - W aTh)
i=0
we get
Y, (1) = T 2M(t Tn)(M(tf Tr‘ 1)—M(tf\‘I‘n))
i=0
= }iozn l(t) (Say).

The fact that M is a bounded nartingale implies that for each

m;, iy (Zn,i(t)’ Fy) is a martingale.

Also, for fixed +t,n, \ Iy, ;1 (8) 2 ig_OE is a martingale
difference sequence, so that
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2 2 S _ 2
E( & Z, i(t)) = I EZ° .(%t)
i=p i=r ’
< AK° 2 B ATY, ) <Mt 4 1)
i=r 11 .

ACE(ME (tf\”n oq) =M 2 19 Tp))

(]

-— 0 as 1,8 ==> o,
Thus = Z_ .(%) converges in L2, so that for all =n,
i=g Mt
(1, (%), B, P) is a martingale.

For cach n, let M, be the process defined by

= n n
Mp(t) = M(T3) if TRt <o), .

It is not difficult to vorify that for all w, N

{n . . T - % AR
T (w) 12_Oj'(= {i? (w) 3 205 .

71
Thus
T, () = §O2Wn 1 EATDGIEA T ) - MGA D).
Hence
- = 2 : \mn - 3’1 P
BT, (8) - T, 1(+))7 = B] f.o( MOEATT M (£ATD))

M(t A Tl?”) - M(t/\T?))]

£ 4 5 E(M(*I;/\Tn)—-l\f 1(tz\Tl?~))2
i=0 . )

(h(tf\' oq) =Mt f\Tn))
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(Use Fatou's Lemma and the fact that the summands form & nexrtingal

difference sequence.)

2 2 n
& i 3\4 A ,abi tATS))
2(n’1) JL (M~ (. %T ( 5

| T

g 119 Ebﬁ(t)
o°n

Now by Doob's maximal inequality

E sup |Y,(s)-Y_((s)|° ¢ SE But(e) .
s¢t 2
This, by Borel-Cantelli lerma, implies that Y _(.) con-

verges a.s. P in E o some process Y (say). Further, ¥, (%)

converges to Y(t) in I? for cach 4. Thus Y is a continuous

rmartingale,

As remarked earlier, this completes the proof.

Remark 1 ¢ If Me.g(g), then observe (with the notations of the

theoren) that
: ,
12, (t,w) ] ¢ pv M1 (t,w)

so that X = 0,

1f moreover Me L(F, F)
MZ

then by Theoren 1,
£ E(E ’ P) S0 that M = 0 HaeSoe P .

Bepark 2 ¢ If A is any process in A(F) such that M

and
w2 _ A belong to L(F, P), then

A~X belongs to L(F,P) and

hence by Remark 1, 4 = X a.s, P, Thus the process X obtained

in Theorem 1 is the process <M mnentioned carlier,


http://www.cvisiontech.com

Remark 3 I Kunita-Watanabe [ 24,p 2127 proved that if {70113 0

is a 1 partition for M, <M, t ana if norcover thesc parti-~
2n ] ?

tions form a chain then Z. defilned as above CoONVErges QeSe foa

<> « Thus the existence of <> 1is assuned in their proof.

Remaxk 4 ¢+ If %T? r 1s a sequence of partitions satisfying

(1) (T -M(wW ] ¢ = if ae (TP

11 )
on i “i+1

L 21 g B o= one . = J
@) {1300 130, Cym 7w 1 grof,
then the proof of Pheorerm 1 shows that Zy (defined as in

Theoren 1) converge to X a@.s. P in E.

Now suppose My, M,e L(F, P). It is possible to chouse

j satisfying(i) and (1i) sinultaenicusly for M, ,M, and
: . . 2

My + M, o Now using the incquality (X+y)25;2(x +y2) and Theorer 1

one can d~duce that
<zv11 + Mp> K 2(<M1> + <Mz>) :

Sinmilarly if 1My, My, ..o, e I(F, P), then using the inequality
(X1+...+xk)2 & k(xf+...+x§}, we can deduce
k

M;> <k T QM> .
13 i=1 -+

<
i

§ R

In the proof of uniqueness of <P 1in Renark 2, we used
the formula for <M>. We now give an indevpcndent proof of
uniqueness of <M>. We give an clementary proof of the following

result, which implies uniguencss of <%, 'almost all paths of a
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continuors local martingale hLuve the properiy on any ?erval,

it is sither a constanmt or of unbounded variation! i

For 2C[0,=), let VI(£) be the variation of £ on
¥
[a,b]. It can be easily shown that Vi(f) is a left continuous
function of x and if VH(£) < = then Vo(£)  and v (£)  are

continuous functions of x on Ca,pJ. We shall now prove

fheoren 2 ¢ Iet Me I(F, P). There exists & P null set W
such that for wy¢ N,

V%(M(.,w) =0 or « for all 0galblw.

Procf ¢ First obsecrve that it is sufficient +o prove the theoren

when M is a martingale. We prove the result in 3 steps.

If for every w, V.g(M(.,w)g_O<oo, then M(.,w) 2 0 a,e. P.
To see this observe that for each +,

t

MECE, W) = M, w)aM(y w) (Riemann-Sticltjcs integral)
7 ]
0_ .
i £(i+1) vl
= lin ZTT*I('E‘, W) (M(__l’.'i—_’W) - M(_}T’ W)) e
n I= '

The- assumption that Vo1, w) $ C and the Dominated convergence
theoren together imply that the above limit holds also in T} (P)
S0 that EMQ(t) = 0. This inplies MCo,w) 5 0 a,s,P,

For >0, let 4a(t,w) = VMo, w))e Then for & P null
set N_, w¢ N inplies a(t,w) =0 or o, To sce this, let

T, = inf {_t.?..o AW > r'f" « Then left continuity of A(t)
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= 10 =

B T
implies that A ™ <n, 4lso M isa martingale and

T T
oM M. ,w) = AT (w),w) < n. Hence M ™,,uw) =0 a.s. by the
previous step. Thus if 7T = lin Tn, then (by continuity of M)
n
M'(.,w) 20 a.5. P. Now it is easy %o check that a(t,w) = 0

if 1 Tw) and =« if t > T(w).

Finally, for every ratiomal r > 0, consider the martingale
(Mr+t)t> o (adapted to the appropriate filtration) and by the
previous step get N, such that P(N&) = 0 and for wi N, ,

VIM(e,w)) =0 or = for every b>r. Iet N = U N, Then for
- . r

wil, V%(M.,w)) =0 or e« for all ratiomals r. Fix a < b,

Then if Vo(M(.,w)) < =, choose r e (a,b), r la, r  rationals,

T
V%(M(.,w)) < o inplies Vbn(M(.,w)) = Q0 for all n and hence
V%(M(.,w)) = Oe This completes the proof.

Remark 1 . Observe that uniquencss of < follows from Theoren 4

Remark 2 ! Concerning a weak form of the above theorenm -~ which

is good emough to imply uniqueness of the process <M - see
Fisk [10,p 3837 and Dellacheric [ 4,p 1117,

We now prove a result connecting M and <D, Sce
Kallianpur [16 ,p 727] for (iii).
Ierma 5 ¢ Iet Me I(F, P). Then

(1) If M is amartingale and EM°($) (= for all 4, then

M2-- <> 1is also 2 martingale.
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- 11 -

(11) If E AD () <= for all +, then  and M°— b ape

martingales,
(113) POM[Y > @) < PO (8) 3 B) + Ba=2 for all positive a 8.

Proof ! (i) Since M° . W e L(F, P), get T & D(B), Tn~'foo such

2

it
that (4" - <aD) ® is a martingale for all n. Thus in particular

EM2('!:/\Tn) =Z Aa> (tAT) for all u.

. o *
Doob's maximal inequality implies that E[M].t2_<_ 4EI42('E‘,) oo,
and hence M2(t/\ Tn) — Mg(t) dry ] by Dominated convergence

lim BEQD (1A T )
n n

Lim EMO(5A T )
n I

EM ()
<°°-

theorem. A4lso EQD (%)

]

Thus M2(t/\Tn) - M (‘t,’\Tn) converges in 7 to Mz(t)-<M>(t)

and hence M° - < is also a martingale.

T T
(11) Zet T e (), 2 T be such that M 1, (M2- qp) B

are martingales, Then

m2(t/\Tn) SEAD(BAR ) (B AD () < =,
and hence {M(t 2 Tn) en> 1 f 1s uniformly integrable. Thus
M('t/\'f[‘n) —> M(%) in Iﬁ and hence M is a martingale. By

Fatou's lemma,

E1‘42(t),<_11m inf EMQ(t.f\Tn) LE M ()<=,

Now the result follows from (i). 2Ry VAL lrésf‘r;r;"j}\\
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- 12 -

.
(1ii1) Tt Ty =inf s I <A (s) » B,

and T T.Nt.

-1
Then

POIMI} » @) ¢ P(T <) » POt L > )

D :
L BE(T<CE) + amEM($))°  (by Doob's maximal

inequality and part@i) above)

P(T<4) + a=2EM2(T)

CP(AD(R) 3 B) + a™2B Qb (T)
<P () > B) + a~2p

2, Strict Bime Change :

Definition ! (See Ito-Watansbe [14,p vi7]) o = (op)yy o (2 (D)

—_— =

is called a strict F-time change if o (w) =0, 1lim oc(w) = o
- T =—>oo
and t —> oy{w) is a strictly increasing continuous function

for a1l wve ().

For a strict F-time change o and Xe W(F), let oF

denote the filtration (E"t)t?- 0

gressively measurable process oX(t,w) = (e (wh,w).e See

and of denote the off pro-

Meyer [[31,p 67 and p 73 J. Iet X, 'the inverse of o' be

defined by AL(w) = u if o, w) = t,

The next result gives some properties of a strict time
change. See 2lso Ito-Watansbe C14,p vi ],Jacod [15,1) 3117} and
Kagamaki [ 22 7] .
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= 13 =

lerma 4 ¢ Let o be a strics P-time change and A be its

inverse. Then

{a)
(v
(e}

(a)

(e)

Procf =

Further

If TeI(E) then Ape T(cF) and E, = (oF)

T Rep

A is a striect oF-time chenge and A(c¢F) = F
) T A

If XeW(F) and TeT(F) then o&E™) = (oX)

T
A
and o(X7) = (oX) T .,

The map X —> oX is a bijection between (G(F), G(aF))
wnere § 1is any of the class of processes defined in
section 0.

Tet 4c 4(F), fe W(F) and X be defined by

.t
X(t) = [ £(0)dA(w) (Riemann-Sticltjes integral). Then
O

(6X)(s) =  (of)(wa(sa)(w) .
]

() Obscrve that v F. = V F eee (1)
0 s>0 s
’
Ae B => A,-‘”‘i(Ts_ct)eEGtﬁ 20
=> A0 (A<t e (cB)y ¥ 320 eeo (i)

Taking A = ( ), we get Aps T(oF). TFow (i) and (ii) imply

#Also,

Ep (C (o), .
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- 14 -

Ae (oF), = AtGp&te (eB)y ¥ 120

=> A 1(2¢0y) s ggt ¥ t20

== Ai?’(Tg_ct){z (o, <8) . P, ¥1t20,820
=> AfI(T<s8)e I, ¥ 820 o vl T Jide)
Now (1), (iii) and right continuity cf [, imply (UE}RT(; B e
(p) follows from (a)
(¢) and (d) are easy to verify and (e) follows from
*change of variable formula' for Riemamnn Stieltjes integral.

Regarding the following lemma sce also Xagameki [ 22,p 58]

Temma 5 ¢ Let 4e¢ 4(F) and B> 0. Then there exists a strict

P time change o such that for all w, the map t —> ocal(t,w)

is absolutely continuous with derivatives bounded by B .

Proof I Define Gt(W) = inf {sgﬁO : (5_11A|(s,w)+ s) > t+.Conti-

nuity of A implics that

-1
BT (o] (t,,w) = o jA (b ,w)) + (w) - (w) = t, -1, .
o|a|(t,,w olai g2 ¥ ctg W 0t1 v > -ty

This implies the required result.

3. Definition of Stochastic Inteceral .

For a filtration ¥, let U(F) be the class of all

i
1
b
o
-
-

bounded simple processes T of the form T
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15 =

where Ty ¢ T(F) and Ty am arz F, neasurable random variables.
For Ae A(F), let
: . ,
V(F,4,P) = er WE) 2 [ X°(afal(w) <~ for all t, a.s, Pj
e == 0

Observe that any Process X in p(F) 'is already in

V(F,A,P) for all 4 A(F) and P.

We now define the stochastic integral for simple integrands,
n

Definition : et Me L(F,P) amd f = 3 11 e U(F) ,
— — -=1 — —
B ETi’Ti+1)
Then define the stochastice integral [fAM of T wer.t. M by
t n
PEAM = 2 £ 0T, A £) - M(T. » £)) .
o 1. =i =% i+1 &

It is routine to verify that this definition does not depend on

the representation of &

The following proposition is immediate Trom the definition,

Troposition 6 I Iet Me {F,P) and FeUF). ILet X(t)

% 4
= [ fAM amd Y(1) = [ £2a<M> . Then
8] 8]

(@) %,X°_7 . (x, P)
() If o is a strict Z-time change, then ofec U(oF) and

' %
(X)) = | (of)a(eM) .
QO

The next step, as usual, 1s an approximation result,


http://www.cvisiontech.com

Lemma 7 ¢ Tet MeL(F,P) aud fe V(F, <M, P). Then

A =l P
(1) there exists a sequence | nj'(— U(F") such that
Tor all %,

4
[ 1£-%, 1°a<> —> 0 in P-probebility
(8] )

}

(ii) ir {fnf is as in (1), then ['f dM 1s an E wvalued
| 5 =
sequence which is ‘cauchy’ in P-probability, and hence converges

(iii) irf gfni and {fn{i’ are as in (i) then

P-lim [ £ aM = P-1im [ T aM.
n o 1 n o o

Proof + By lemma 5, get a strict P-time -change ¢ such that
d<oM> (1)

<oM>(t) 1is absolutely continuous, 35 &1 and
(o3

1Y fPaan ¢t

o

Tet g=9of and N =i, Then <> = o, ge V(oF, <I>,F)

t 5
and E | g54D ¢t < o,
o]

Let g = g-(iﬂé—’”\—k). Then g e W(0E) and is bounded.

|

Get g , ¢ U(F) such that
g Lol —

.t
E I ]gk«gk’nizdu —> 0 for all t, as n —>w .,
o)

This is the standard approximation result used in defining
stochastic integrals for Brownian motion. See Ito [[12,p 176]
Kallianpor [14.v 60 1.
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Wow L ¢ 1 implies

t
E ] igk-- gk’nf?'ftﬁ‘b —p 0 as n ~—>e for all k, t
o}

and Dominated convergence theorem gives

1
E J lg-—-gkl2d<N>' ~~> 0 as k =—> o for all t.
Q

Get %nki such that

k
2 =
E T [gk-gk’nk! A< ¢ 2 k
0
v g . Ly A s = .
Let g = 5k,nk end f, = A(gk), where XA is the inverse

of o, Then

%
E [ g -gl°a®d ~—> 0 as k —> « for all t,
O

2
i.e. B ft]fk—‘flzddfb —> 0 as k —> = for all %,
o

t
This implies that j ]ﬁk-fI2d<M> —> ¢ in P-probability ¥ t.
G ‘
t
For (ii) let %fn3 be as in (i) and let X (%) =

2
|

fndM .

% i

Then <X -X>(t) = [ |f -f |d<M> . So, hypothesis implies that
Q

EK,-X> (t) —> 0 in P-probability as n,m —> «, This by

Temma 3 implies that X, is cenchy in P-probability. (iii)

follows by the usual interlacing argument,

In view of the above result, we make the following

ar
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Definitici ¢ Tet Me I(F,P, and f£feV(F,<D ,P). Then

define
[fdM = P~ 1lim JEaM
0 n o
where,{fn% approximates £ as in Temna 7.

Uswally integration we.re.t. martingales is done only with
predictable integrands. See Kunita-Watanabe [24], Meyer (341,
Kallianpur [16_]. However, when the integrator is a continuous
local martingale one can allow progressively measurable integrands

ag was observed by lto-Watanabe [:14,p'vi].

We now list down several properties of the sitochastic

integral,
Theorem 8 3 Tet Me I(F, D),

(a) Tet feV(F, <M, P), X = [faM and Y = [£°d<M> . Then
- = o o

(1) X,X°-Ye (P, P)
t
(ii) It o is a p-time change, then (cX) (%) = [ (of)d(oM).
O
(iii) If Te T(F), then

T

¥ = [ raMt
o

= fi-am .
Q

(b) Tet f;eV(E, <>, P) 1=1,2 be such that £, =%, on

B %
[1y,2,), where T,e2(F), and X, (%) = J£;dM. Then
B o}

XT(’G-I\ T,) -Xq(t A'T1) & X2(tA 7,0 —X2(t;"\‘1‘1) 5
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(e) Tet e WF, <M, P) be such that S ifn—f[2d<M> —> 0
= ) \

in P-probabili tr. Then

IfaM — [ faM  (in L) in P-probability .
G o] .

(@) et T, :T(F) be such that T, Toe For xy 1, 1et 8

be ag‘Tk feasurable random variable, Define r = k;-: ekT
L 0s Ty
Then fe V(F, <M, P) ang
-t o .
Oj_ faM = kioek(z»f(mk+1 Nt) - M(Tk ~t)) .

(@) Iet fey(r, an P), W= [ram,
= _ Y

2t
then g e W(IY, <>, P) iff gfe V(EF, <ib . P) ama

Fgdl = [ gram ., \
Q o

Froof ¢ (a) Tet «%fn'f be the sequence constructed in Lemma 7(i},

+

3 el e A V,‘ 2 e — | i ” = a3

) a8 in Lemmo ;(..-), f2y = “fng g = agf . N = O'M, Xn('t) - Cj; _LndM ’
+

T (t) = £ <D . Then

I o n

L 2
E g ~egl“aam — o
O

50 that oX (t) —> oX(t) in 17 } -
1
and oY (t) —> o¥(t) in 1!

But  oX, , o(X -7 ). LEF,?) and E GEP(t) =Eo ¥ (t) <=,

Thus by Temma 3, X, U(Xi- Y,) are martingalesand hence by (1),
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oX, a(X°~Y) are martingales. This implies (i). (ii) and (iii)

Tollow from similar nroperties for fe U(F).

For (b), observe that by (iii) above,

%
X, (6) = X (tAT) = [ £.1 am
1 i 1 5 [T1 , )

and hence

t
X, (PAT,) = X. (5 AT = T £.1 aM

which gives the required result.

t t
For (c), let X, (t) = [ £ daM, X(t) = | faM, Then
o o

_ > |
K, -X(1) = ] |fn-f12d<1v1> by (i) above.
0

Thus <X ~X%> () —> 0 in P-probability for all +. This, with

Lemma 3, implics that Xn - X,

~

n t

For (d), let & 6, 1 =f_JThen | |f. - £]%4> —> ©
i k=1 K O I T o

k* k+1

in P-probability so that the result follows from (c).
For (e), observe that <I> = [ £73¢M>, so that
O.

[gam = | g'rla an ,
O

o)
and hence the first part follows, IT g is & simple funciion,
then [ gdN = [ gfdM follows from (iii) above., For a general g,

t

0 0
get g, simple such that [|g - g/%a<> —> 0 in P-probability
[0

1
for all t., Then [ fgnf- gfi2d<i"1> —> 0 1in P-probability For
o
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o 4

all + &ad hence

i e dN — | gdN
& 0

and
g £AM —> [ gfau
o] a C

in P-probability by (c). The result follows from these

observations.

4. Vector Valued Semimartingale Intecrals and the Crowth

lnequalitv

vie make the following

Definition ¢ X is called a continuous semimartingale

(XeS(F,P)) if X ocan be written as M+ A, where Me IL(F, P)

and Ae A(F, P),

Observe that in view of remark 1 following Theorem 1, for
Xe 8(E, P), the decomposition X = M+ A is unique. t us call

it the cancnicul decompogition of X .

X 1is called a semimartingale in the literature (See
Jacod [[15,p 297]) if ¥ can be written as a sum of a local
martingale M and a process 4 of bounded variation on compacta.
It is also known that if S is continuous, there exists a decom-
position X =M+ 4, where A is predictable, This decomposition
is unique if we insist that A be predictable and in such o case
both the processes M and A are continuous (See Jacod [ 15,p 297).

So our definition coincides with the standard definition.
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For Xe 3(F, P), let us define <X, [X| by
D = NS
(x| = |4]

wnere X =M+ 4 1s the canonical decomposition of X .

Extension of the local martingale integral to semimartin-
gale integral is immediate. Observe that D(I) (T W(F, 4, P)

Tor 21l P and all Ae¢ A(F). From now on we consider integrands

from D(F),

Definition 2 Let XeS(F,P) ard X = M+ 4 bhe its canonical

decomposition. Iet feD(F). Define

JfAX = [JfdM+ [ T4 .
o Q O

Hemark § The first integral on RHS is stochastic integral
defined i: Section 3 and the second integral is Diemann Sticltjes

integral.

Now, we extend the semimariingale integral to multidimer-
sional casc. Iet I{m,k) denote the space of mXk matrices.
When m=lk, L(m,k) is denoted by I(k)., To simplify notations,
we say that a.matrix (or vector) valued process belongs to a
class of processes if cach of its components belongs to the class,

For exemple if M is a Rdvvalued local martingale, we will write

Me I(F, P)  (or Me L(F, P) ®ivalued).)
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Definition I Iet XeS(F, P) ®RF-valued) and f- (B (Lim,k)

valued)s Then Y = 5" fdX is the R™ velued process defined by

o
¥ t . -
(¥(8)); = j; Offijd;xj , 1<iglm.

The properties of "semimartingale’ integral follow easily
from properties of local martingale integral (Seotion 3) and the
Riemann~Stieltjes integral, the most important being invariance

under strict time change (see Theorem 8).

et B, B, denote C([0,=),R5), ([ 0,=), L(m,i))
respectively equipped with tcpology of wniform convergerce on
compacta. When it is clear from the context, we will write &

for Ek or Em,k'

For pe]:;:k or F-‘-émk and t > 0 1let
v

*
,pi.t = Bup :P(S)',
O0<s<t

where |.| dencies the norm - root of sum of squéres of entries -

on BE o I(m,k) .

How we introduce a subclass of semimartingales, Q(B) (also
called Ito-processes isee Stroook-Varadhan L42,p 92 and p 113 °])
and obtain an estimate on the growth of the stochastic integral
vhen the integrator belongs to Q(f). This inequality with the
invariance of stochastic integral under strict time changes is

the key step in all the Convergsnce arguments in the later sections.
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For B > 0, let Q(B) = Q(B, P, P) be defined by

-

aB) = xe ¢ \

=t

, PI2 <D (t, w) and  |X[{t,w) are absolutely
continuous functions of + with derivatives(

bounded by P d.e. P. /

Observe that 1f Xe Q(B) and X = M+ A then D> = << B so

that M is already a martingale.

emma 9 ¢ (a) Iet Xe S(F, P) (L(m,k) valued) and P > 0. Then

there exists a strict F-time change o such that
oXe Q(B) = Q(B,oF, P).

(b) Tet Xe Q) and heD(F) be bounded by b, Then Y
4 ==
defined by Y(%) = | hdX belongs to Q(b(1+b)3).
o 2
k
() Let X; ¢ Q(B;), 1<{i<k.+ Then X defined by X = %
k | 3
belongs to Q(k = B
i=1
Proof ¢ (a) Iet 4= 5 (X..>+ X .]). Then 4cA(F)e Ghoose
o as in lemma 5, which does the job,

(b) Follows Tron the relations

T,
‘<Y>(t) = | hod<d
and 5
.t
[Y1(t) = | |nlajx]|.
O.

(c) 4s noted earlier, if Mie (F,P), i=1,...,k then

k k
2 M> Lkt <M.>
ooi=1 T i=1 2
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so that
' k k
<ii1Xi> X< kii1<Xi>.
Also, .
i k
,ii1xi‘ << 1211Xi|.

The result Tollows from these cbservations.

We conclude this secticn with a growth inequality for
stochastic integrals,

We have belatedly come to know that a

variant of this appears in M

etivier and Pellaumail [£36], [377].
Theorem 10 ! (Growth Inequality)
et XeQ(B) (B valued) amd pe
Then

D(E) (I{m,k) valued).

t

S * e

E| Inax|[® ¢ exb(1+48) j Elh|“(wdu.
o] 0

Proof ; Iet X = M+ 4 be the canonical decomposition of X
Suffices to shoiw that (1)

and (ii) hold,

1) B ; a1 ® < 4xP . in|%au
O
and o
i) E] 7 nasli® ¢ 62 | iniau.
o] G
Now,
m k 3 o)
B hdMl SEsup (2 (2 1 on, .au)9)
| I t st =1 §=1 o T4
) m jis o o
£k = S E sgp (s hy .dM,)
i=1 j=1 s¢t o * J
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Thus by Doob's maximal inequality,

m k

Bl J hikf," g 4k i B r_,u hy ;M )2
0 i=1 j=1 o 1J
Observe that if We I(F, P), then (t) CEAD(E) ¥ t.

In tact if ECI>(t) is finite then EN (1) = BCI> (1) by Lemma 3.

Applying this remark to N = f‘fide-, we get
&

J
. * m k t
Elf hdM]t2 £ 4 = 3 E(J hf A<Mty >)
c i=1 j=1 o
< 4Bz 3 B(J by (u)du)
.,1 i=1 o

4B | E[hjg(u)du.
o]

(i1) follows similarly.

As remarked earlier, this completes the proof of the growth

inegualit -,

5. Pathwise Integration Formulae

Let he g(g) and X~§_(£ P)s Then Y —fndX as defined
in Section 4 depends upon the underlying probability measure in
more than one way, Firstly, the canonical decomposition X = M+A
depends on the probability measure. Secondly, | hd¥ 1is defined

as limit in probability of integrals of simple approximations.

A natural question to ask is whether we can choose a

rocess Y such that for all.measures P under which X is a
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semimartingale, Y dis a version of [ hdX. We answer this gues—
tion in the affirmative. In Tact, we-choose the common versicn
vathwise -~ i.e, Y(.,w) is defined explicitly in terms of h(.,w)
and  X(.,w).' This has also been done by Bichteler [ 1 ,p 65°] by

using different techniques,

A similar question can be asked about [hd<X>. again, the
answer is in the effirmative and as before, we can choose a path-
wise version. In rarticular, we get <O explicitly in terms of

pgths of X,

Now we introduce ‘random-partitions' which are crucial +o
get almost surely convergent good approximations to stochastic
integrals.

]
4

4 random partition (of [ 0,o)) is & Segusnce {Ti s i Oy
of F- stop times such that T =0 and T; 1s increusing to =,
For a ranfom partitian {Ti . iz_Oi, define the operators J and

Hi,120 from D(F) into itself as follows. Tor a he D(F),

@Rt w) = B0, 4F D) ¢t <, ()
(H;h) (6, w) = h(Z; 4 (W A t,w) - ﬁ(Ti(w)f\t,w) .
A random partition {Ti 5 iz_oﬁ is said to be an a-partition
for the processes hT,hg,..;,hm if
[9n5-n.] <o, j=1,2,0.0m.

In the rest of this section (and the subsequent sections)

we will be dealing with = sequence <TT I i 2 07. n> 1 of rondor
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partitions. The operatcrs J and Hi for the partition

Tf o B Oi; will be denoted by J% and H? respectively.
Lemma 11 ¢ Let hy e D(E) (Tdm,k) valaed), 1{j<r, and <« > C.
Then there exists an o art ‘tlon@T for the procecsses hJ .

1£j<r. Further, {T < 1> O} can be chosen such that for all wﬁ

fTi (w) ¢ i> Oj( is defined explicity in terms of the paths
?‘ hyCoyw) 1<3<rl :
Proof : Define <T, : i} 0} inductively by
To =0
T5,q = inf "ét 2 Ty 3 Ihj (t)-hj(l‘i)l > ¢ Tfor some j,‘l_(_j_(_r?

This.partition 45317 has the required properties,
Now we are in a position to get a Pathwise integration
formula (for | hdaX),
et heD(F) (L(m,k) valued) and Xe C(E) (2* valued) be
such thet X(0) = 0. Tet 210 213 0} be a (parthuise) 4
N - 2]’1

partition of h (existence is assured by Lemma 11). ILet

Y (1) = 5 h(Tn At) [Hn X(t) .
i=0

P

et () o= ]}w : Y, (.,w) converges in B

and ¥(e,w) = lin Y _(.,w) for we ()
o 0
= 0 otherwise

Then we have
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Theorem 12 ! For all P

such that Xe 3(2, P}, we have

(1) 13([10) = 1
‘ 1
ana  (ii) Y &) = | hax
0
%
Yroof I Fix a P such that Lz S(F, P) Let 2 = [ hdaX. 7o
R = = o
prove the theorem, suffices to preve that Yn —> Z &a.,8, P in
E

- To this end, observe that

t
Y (t) =  (I"ndax .
(0]

Let o be 2 strict F-time change such that oX«c (1),
Flx. %3 Oy

Then by the ‘growth-inequality' we have

.
EloY, - 02137 ¢ 8(TetE T [0 (™ - 1) (w) |2an
@

< 8k(1+t)t2~ |
oy

1/2

*

Thus, by [Eonn— oz ,tgj < . By Minkowski‘s inequality,
1=,

this yields

o0

by

,O’Y - UZ,*2 < oo a.S. P -
n=1 B .

This implies that

oY, —> oZ a.s. P in E, which is same as
Yn > 7 eI in B .

This completes the proof as pointed out
earlier.

Iet XeS(F,P) and X = M+ 4 be its canonical decomnposi-

is defined by <X = 4O .

tion. Recall that <&

For
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X4, %55 8(E, P), define <Z,;,X,> by the polarisation formula

o' A N :1_ ~r " L3 N
<f\.f [ -1"8-2/ == 4 o <-A”T * J{2> ‘= <X-E = X2> ? L )

In order to get a pathwisc integration formula for
fhd<Xﬁ y 5> , we need the following lemma which is a special case

of *Ito's formula?,
femma 13 {1 Iet Xe¢ S(F, P). Then

X2 (t) = XAX + <X>(t) for all 1, a.e. P.

o ‘—ﬂd.. NH':'

. . : 2 " .
Froof ¢ Since X", JXaX and <X are continuous processes

suffices to prove that for every fixed T,

A
X2(t) = 2 [ XdX + < () a.c. P.
O

So, fix a 1> 0. By a strict time change if necessary, we
can assume that Xe Q(1). If X = M+A is the cancnical decompo-
sition of X, then observe that Xe Q(1) implies <M>(u)<u and
hence by Iemma 3, M and M2-<M> are martingales. A simple

computation shows that for two stop times Sy1455,
P BT ‘ o
ECM(S,) - M(S;)) - <M>(S5) + <M>(S1)I=_E_‘S1) =0
7
Now, let {T?‘I i>»0) bvea jﬁ partiition fer X,M,4 and
iy

D and lot s;E_l = T?/\.t . Then

2 B 2rall
X (1) = f-o(X (5%, - 22 (s1)
= 7 (XS XEE, ) - XD + (D) - 2(sH)HP)
i=0
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2 Bl

-2 [ (Pryax . z (1 (4))° oo (1)
e =0
%
By Theorem 12, [ (I™)dax — fXdX G.e, P cee(2)
[0 e}

Tet 8 o r(H:‘;_lX(t))2— (HfM(t'))2:’
i=gl |

A _ E ve) 2 n
and 2, —ii [(HiM(t)) -Hi<M>(t) ]
= ¥ (Hnm(t)) - (1)
J.= 2
Then i;:O(HinX(t))z =Y+ zn+ D (L) ., cee(3)

In view of (1), (2) ana (3) suffices to prove that Y.s2,~>0

Se@e P

Now, Y| < iUE:O[H;IA(t).(H?X(t)+ B (4)) ]

2 n !
£ == OJHDA()]
2

The observation made at the beginning of the proof implies
that the summands in the defination of Zn form a "martingale
difference' sequence. Thus

2

BZ_ z E[ (Hnl~f(t))2- Hn <M (t)]

<2 ?f L[(zﬁ«t))“»f agan (£
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5_% 2 [(IIHI )%+ 1 <M>(t):l
2 i=0
- 'é% <M:>(-t) . ooo(4)

Since E<KM> (t) <, (4) implies that Z_—> C a.c. P

=

(as in Theorem 12) and 28 remarked carlicr

&k
&

, this completes the

proof.
Now given g,X;,%,¢e C(F) (Real valued) such that
X;(0) = X,(0) = 0, 1ot {T¥ 1 )0} be & '215 pathvise partition

for g,X; and X,. Existence of such partitions is guaranted by

lemma 11. Iet

T (%) = 2: g(T /’\t)(HnX1 (t) (anz(t))
Ci=0

and () = ?w : Yn(.,w) converges in Z§<
o 3 e
and Y(.,w) = 1lim Y (,,w) for we )
P A = <0
= 0 ¢lsewhere
Then we have
heorem 14 ¢ TFor any P such that X,,X,e 8(F, P), we have
e t
PCLY =1 and Y(4,w) = J glu,w)dX, , X,>(q,w) a.e, P.
Q

Proof ¢ Fix a P such that Xy ,X, ¢ 8(F,P), By polarisation
suffices to prove for X4 = X2 = X, First'éssume that g 1is

bounded by say K.
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¢ hY
By lemma 12, we have (by considering X (%) = X(t)—X(T§/=t}J

mn A .t ~
2 i+1
E{(Tn,lf\t)-X( \ )_‘J I [X(u)—X(T?-;‘t)jdX(u%H?C‘O(t).
T At

Th
us e 5 B
v(t) =217 (%) () [ X - I J(wax(w) + § (%) (w)a<® (w).
0 o

By choice of | Ty i?-Of,lJng-g[s_-glﬁ — ?Jng(X—JnX)lsfﬁ .
Proceecding as in Theorenm 12, we can casily show that the first
integral gees to zero &a.e. P in E. Usual properties of

Stieltjes integral imply that the second integral converges to

L
J glw)a<x>(u) (in E).
o —

Flnally 1f g 1is unbounded we can get stop times Sm’fm
such that g8 is bounded for every m. To prove the result it

is sufficient to show that for every =,

t A5
Y(EAS ,w) = f " glu,w)a<X,,X>(u,w). This follows by

S _ G
considering g B in place of g and applying the earlier calcu-

lations.

Remark 1 3 Theorem 14 shows that the ‘pathwise formula' for
‘ouadratic variation' of a local martingale, given in Section 1,
when applicd to a semimartingale X gives <O ¢ the guadratic
variation <M> of the local martingale M in its canonical

decomposition X = M+A.
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Remark 2 I Combining the pathuise integration formulae proved
earlier, we can get a pathwise integration formula Ffor the
symuetric. (Strantanovich) stochastic 1ntegrd1 (See Ito-Watanabe

[14,p x]]) defined by

[YodX = f¥aX + XY, % for Y,Xe3(F,¥).
If 097 142 0] isa - partition for X and Y then
L 2‘-
o Y(Tz:lfxt)-e-Y(TI.’l )
2 (1) = ¥ (i Ll Ty R ) - X (T Ag))
n i=0 ) i+1 i

converges a.s. to [YodX. (This follows from Theoren 12 and 14

and the identity @-&_é"-'— d) = a(c-4a) -« %(b ~a)(c-4a) for real

numbers a,b,c,d.).

6. Ito's Formula ! a Pathwise Version o

In this section, we ob7ain 'Ito's fornula' for £, b, X6, wh
Proceeding as in Xunita-Watanabe [:24] and wsing pathwise integra-
tion formulae of the prov&ow section, we shall obtain a pathwise

version of Ito's formula,

Let 01'2([0,00) XRE)  pe the spuace of continuous Functions
£(4,x) on [0,) X35 for which the partial derivetives

2f of ¥ WCr . .
fo ==X s fj =_;—;C-- and Ijm = ox -x  exist and are continucus.
24 J 4] ji‘) m i ’

Let Xe C(F) ®F_valued) be such that X(0) =


http://www.cvisiontech.com

. 25
Tet £ ¢ () X [0,0)x8X —> R be a function such that

(b) ¥Fwe ), flw,.,.) ¢ ¢! ([o ) XRE) .

Let Yj(t,w) = 2500, ,X(,w) 0Lk

and (tw)"f 26X, W) T¢Ik, T¢mlk.
: an L] ( = _1_ (] 1 }
_Ife‘b [Ty ¢ 12 OJ bea2n partition for XJ, J.Og_aﬁ_k}r
and %Zj n + 1834k, ’!5_m_<_k§ , where Xo is the process
2
X (t) =t
) Yo E 7 v, a0 (R, (1)
Iet q = T noY. (M at X
Wty w £{w,0,0) + N i H? 3
k k oo e
+ %5 T 1oz (TRAR) R (6) (K (1),
j=1 m=1 i=g 9B % 2 S

et () = gw
o {

‘.‘In(.,w) converges in E ’;;‘

and W(,,w) = Lim W _(.,w) if we ()
n = ¢
= 0 elgewhere,

- - ~
Iet ( _)_‘1 = ;_rkw Dw(t,w) = £(w,t,X(t,w)) for all t;. .

Then we have

Theorem 15 ¢ Iet P be such that X ¢ S(F, P). Then

(1Y P _)_ and
W(E) = £(.,0,00 + J SR, u,x(w)adn + 3 L L (L, X(@)ax (W
o ' j:'1 ol < j J
1 kB kot a2 g
+ 5 311 mi1 i alj’bxm("u"X(u))d'<A3"£m>(u)'
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@iy HCUY =T Dk
W:" = f(‘m’,'t,}t(.t,'\e‘f)) for all 't, Sefle s

Proof ¢ Fix a P such that X ¢ S(F,P). Then (i) foliows from
vathwise integration formulae (Theorems 12 and 14). For (ii) we

proceed as follows &
First, fix s> 0, and let U = T{'..s. Observe that
n P e N gt 1
f(., 1+vX(U;+1)) f(.,Ui,X(Ui)) w,;(.,Ui+1,l(Ui+1))-f(.,U X(Jl+ﬁl

+ 20, U0, XU, 1)) - £¢,, U5, X030 .
Now by Taylor's formula, there cxist a?(w) and @?(w)
such that U £ a <4 Un and 5? lies on the line segment
joining XU and X(U@ ) and
i i+1
: n 1 Ny
£a, U, 4, XY, ) = £G, U, XD = £ (o, o, X, 4 (0T

k
n n T~ “'n
. i?f:}( UL, X)X (TF, ) - X, (UD)

kok
1 A a Ty e n = e n bt
el e £inCe Ve P (K5 (U, ) - 2 (UP) (X (T, =X, (U])
Thas
flw,s,X(8,w)) -~ £(w,0,0) = ?O(f(w Ul 1T, ) = £Ge, U3, X))
= wn(s’w) + ZORi(S w) b eIl

where
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Rio,w) = [ £,(0, 0,00 )¢ o082 ] (o, - oy
| 1 k n n
a3 m_1[f3mc.,u§‘,ﬁ ) - 24, T, XD .

(H@g (t))(HnX (t)).

For a g= C(L0,=)xB%), £30, 030, c>0 1Lt
vig,t,a,e) -.Jsup lglsq,xy) - g gls,,x,)] ¢ RS KL R 2[_
| {

i

and. I.J.I-szl(e, |x1-x2[<a'_,j.
Since EO,‘[:] X gx . !xl 4 a} is compact, we have

lin U(g,'t t,e) =0 cee(2)

e=~> 0

for every g,t,a,

Now observe that for s{t,

[BICs,w) | € uis, (W), t, I ORGSR

k k '
1 i 1 n

Hence

[ IRn(.,w) f] < vl (), }Xl:(w)\,ﬁﬁ).t

o
2ok
¢ ] L G, L
_ji1 mi1u(fjm(w),t, ’X't(“)’zn)v?m(tv‘“’)’
Where . ] 000(3)
_ 8 "5 HI.IX.(s)“HpX()
V?m(t’W)"O_g_ugs_t(i Olz,g , l:_ms ')
1, 4]
- - 2,2
</{ sup Z (EX . (s)Y 2/ g (HX_(s))°!
(ogsg_t i=0 * (!j '\O<sg§_t i= im® /
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8

Now, by Theorem 14, ;

i

nooa

(H?X-Cs))21f¢ <X >(8) in u.cece a.s. D
0 J J

| Tor all 1¢ j <k
so that

lim sup V?ﬁ(t,w) < ((X.>(t,w))1/2(<X >4, w12 5.
n J 2

{ o GeSe P,
vee(4)
Thus, using (4) (3) and (2), we get
= .
lim [.2 lR;f_‘(.,w)]:, = 0 a,s. P, . «es(5)
n i=0 + . |

Now, (5) and (1) imply that
wn(o,w) — f(w,.,X<.,W)_) ~ f(w,G,O) ‘a-;s. in Eo

This, in view of (i), completes the proof.
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CHAPTER 11

STOCHASTIC DIFFERENTIAL TQUATIONS

1. Preliminaries &

In this chapter, we consider the stochastic differential
equation

' {
(2rnil) Y(t) = g(t) + 1 vle,u,)dL(u)
0,

where  fe G(1), Xe 8(F, 2) (R, B¥-velued) amd b is & fune-
tion from (7) X [0,2) X B, into L(d,k) such that (2.,2) holds

—

. . *
(i) If >0 and if '91~p2ft = 0, then

(2.2)

| b(w,b,00) = blw,t,p0,) for all .
!(ii) For all Ye C(F), f defined by -£(t,w) =b(w,t,Y(w))
:

belongs to D(F).

Since condition (2.2) involves all processes in €(P), here

is a simpler condition on b that implies (2.2).

) (i) v p&:lf'id, b(-.,o, p) g 1_)(_]?)
(2 2)?,§ = e
[ (11) ¥t > 0, b restricted to (T)X [0,t JX Egis

L —

neasurable with respect to F, (z)gt (E)Nt .
0 o c

(Here B, is the Borel o field on Lo,t, ] and N,
“7o "o
i1s the smallest o-field on E3 with respect to which the family

of maps {p—ﬂdS):sito}ismammﬁmeJ
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Observe that if b satisfies (2.2) for the filtration Lo
then it satisfies (2.2) for the filtration EP as well.

For b satisfying (2.2), Te T(F) and a strict F-time

change o, define b " anmd ob by

B (wyt, ) = blw,t, o)1 ()

O,T(w) )
and E

ob(w,t,0) = b(w,3,(w),\p)

where A is the inverse of o and (Ap)(t) = p(RgG0)).  Clearly
b T satisfies (2.2), Also, ob satisfies conmdition (1) of (2.2),
To see that ob satisfies (ii) of (2.2), fix Ze C(oF) and let

¥=AZ and f be defined by f(t,w) = blw,t,¥(w)). Then

ob(w,t,Z2(w)) = blw,o (), T(w))

(of) (W)

and hence ob satisfies (ii) of (2.2) (with respect to the fil-

tration Gg Vs

If Ye g(gP) satisfies (2,1), we say that Y is a solu-
tion of (241) for (#,b,X) (cr (@,b,X,P) if we want to stress
that the stochastic integral in (2.1) is on (), B, P) ).

Lemma 1 ¢ (i) If Y is a solution of (2,1) for (#,v,X) and

] y T, : ) T, T T
Te T(E), then Y  is a solutien of (2.1) for (¥ WD T, X,

(i1) For a strict time change o, Y is & sclution of (2.1)

for (#,b,X) if and only if oY is a solution of (2.1) for
(o@,5b.0X),
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(1i1) Tet Ye C{F) be such that therc cxists a sequence

of ¥ stop times increasing tc = with the property thasd

I
in.o
T

7 o
Y ® isa solution of (2,1) for (2, b2 ,X ™) for all nd 1.
Then Y is a solution of (2.1) for (4, b, X).

Proof I Obscrve that

b (w, 6, TG0) = blw,, TG o1 ()
Co,7w))
and '
(o1 (w,t,6Y()) = o(b(w,t,T(w))).

Fow (1), (ii) and (iii) follow from the properties ((a) of

Theorem 1.8) of the stochastic integral.-

2. Existence and Uniguensss of Solutions :

In this section, we show that under a Iipschitz condition,
the existence and uniqueness of sclutions of (2.1) can be proved

as in the Brownian motion case by using & strict time change.

The existcnece ard uniqueness in the one-dimensional case
was proved by Kagameki [ 271 using strict time change. In the
multidimensional case Protter [ 39| (assuming that ¢ is also a
semimartingale) and Doleans-Dgde [ 5] proved existence and
uniqueness using more complex methods. Whereas Protter consi-
dered only continucus semimartingales, Dolcans-Dade allowed

TsCalel. semimartingales.
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The form of ILipschitz condition we impose on b is

Qﬁthere exists & locally bounded process K such that

3 |b(w,t,p1)—-b(w,t,p2)l <K, W oy~ eply Tor all t,w, 04,0

[

(Ke W(F) 1is said to be locally bounded if there exist T e T(B),
LA . 4=

Tnfrm such that K ™  is bounded for each n.)

Theorrem 2 : Iet @e G(F),Xe S(E,P) (RY, RF.valued) and b
satisfy (2.2) and (2,3). Then there exists a solution Y of
(2.1) for (#,b,X). Further, if ¥, and Y,e C(E)) satisfy (2.1),

then P(w I Y;(¢,w) # Y,(t,w) for some t) =0,
Proof ¢ We shall assume that @,b satisfy (2.4)

There exists a constant € such that

2

[8(5,w)]|

(2.4) ¢
p(w,t,00| < ¢

b, t,pq) - b(w, %, p5) [ < Clog=pply Tor all t,w,pq,0, .

Here 0 is the function = 0.

T -
Otherwise, get T e T(F),T Te such that ¢ ",» * (.,.,0),

M, =

X % are bourded and iet Y~ be the unique solution of (2.1) for
N R |

(@2 w = X3 By uniqueness and part (i) of Iemma 1, there

T
exists a Ye¢ g(gP) such that Yn =Y® a,s. for all n. Now

by part (iii) of Iemma 1, Y is a solution of (2.1) for (#,b,X).
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If Z is any other solution of (2.1) for (g,b,X), vy Lemma 1
T ™
W, 28%=y =y®n @s8. for all n and hence Y = 7 2.5,

Suppose o is a strict time change. Then ob satisfies
(2.3) with the locally bounded process oK. Thus by Lemma 1 (ii),

we can assume that Xe ac1).
Observe that (2.4) implies
[blw,t,0) | < C(1+fof}).
Now, define Y, inductively by

Yo(t) g(t)

Y, (1)

1l

‘ t
() + | ble,u, Y )dX(a) , n) 1.
h :

Then, the ‘growth-inequality', the assumptions (2,4) and the fact
that Xe Q(1) imply

E‘Y'! B Yof? < 8(7%)1{02(1’«0)2‘1‘.
and

*2

*2 2 t
ElY Y 17 < B(1+t)ke gElYﬂ—Yndlu du.

n+1~
. *2
Thus if a (£) = E[Yn+1 —In[t' s then for each t, > 0, there
exists a constant C; such that
Cto('t) S' 01 ‘#

and . gn B e E
]
(8 < ¢ éan_J(u)du y
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By induction, it follows that

Ida! ..L\,n
Nt ey

]
o (£) < C, = 0Lt t -

4As in Theorenm 1,12, this estimate implies that Y, converges
2.8. in E 1o say Y. IFurther we have

o om1/2
5 [EIYH—- flt_l <w for all t.

n=1 =

Thus by condition (Z2.4) and the growth-inequality we have

JBCa,u, v )&(0) —> b, u,¥)AX(u) a.s., in E
C 1 0 -

and hence Y is a solution of (2,1) for (#,b,X).

Now if 7, @nd Z, are two solution of (2,1}, then (2.4

and the growth-inequality imply that
5 &
PR i 2 e
E'%,-Z51,7 & B(T+H)kC g EIZT“ZE!Q du .
} *
This and Grownwall's inequality imply that B|Z,-7,[, =07 t,

and hence P(w 1 2,(t,w) # 2,(%,w) for some t) =0 as

Zq.25¢ G(F). Ls remarked earlier, this completes the proof.

3. Pathwise Soclution ¢

In the last sccticn, we have seen that the equation (2,1)
under the Iipsehitz condition (2.2) has a unique solution Y
which can be obtained as an almost sure linmit of successive

iterates Y. Iin view of the 'Pathwise integration formula’
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(fheorem 1.12), we can define each Y, pathwise and thus defining
Y 1o be the wnifor linit of Y 's whercever it exists, ve got

& 'pathwise solution' which satisfies (2.1) for 2ll P under
which X is a semimartingale. This Remark is due to Bichteler
Eslme 74]. But this definition of Y invﬁlves a double limit
which is unsatisfactory. In this section we show that by a
modification of the successive iteration preocedure, we get a
‘pathwise solution’ as a single limit. Independently, Bichteler
[2 ] has obtained a different formula involving a single limit

using more complex methods (when X is r.c.l.l. senimartingale).

Let #,Xe QCE)(Rka~Valued) with X(0) = 0 and b satis-

Tying (2.2) and (2.3) ve given. We shall define processes Y,

for n > 0 and random partitions fT?, i>o % for n> 1 induc-

tively as follows ¢

*

Yb(t,w) = g(t,w) .

. ) n., . ‘ 1 :
. 5 v et . % i > g — £
Having defind et 2ot 4T, 14> u} be a on (pathwise)

randon partition for the process fios defined by

T (t,w) = blw,t,Y, 4 (w)),

and then define Yn by

L = e I
Y ($,.) = @(t,.)+ iz_t;ob(.,Ti » Y ) CH;E(E)).
Obscrve that for each (t,w), the sum above is a finite sum.

-

Let lo==‘iw « Y.(.,w) converges in E;, and
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Y(.,w) lim Yn(.,w) if we ( lo

= 0 glsewhere.

Observe that Y(t,w) is defined pathwise i.e. explicitly in

terms of 51 @u,w) ; X(u,w) ; Blw,u,p), 0Z u_<_'t3' .
Theorem 3 { For all P such that Xe S(F, P), we have
(1) P(())=1
o :
(i1) Y is a solution of (2.1) for (#,b,X,P).

Proof : Fix a P such that Xe8(F, P). as in Theorem 2, we
will assume that béﬁ sg.‘tisfy (2.4). Otherwise get S_e I(F),

Sm’]*oo such that ¢ ™, b ™ satisfy (2.4) for each m. The

S S
argument that follows will imply that 'Ynm — ¥ ™ a,s. in E

S '8 S- S
and Y™ is a solution of (2.1) for (g®,p ", x ™, By

lemma 1 (iii), this will imply Y 4is a solution of (2.1) for

(8,b,%).

We also assume that Xe Q(1), Otherwise let o be a

strict F +time change such that oXe Q(1), Let Sg_l = X "
= o
.|

where A is the inverse of o . Then 531'1 1>0,n>1 and

¢t
i

oY ,n21; can be obtained by the same formula in terms of

was

S

(of , ob,0X) by which {T?, i>0, n31 and Y ,n21
defined and thus the arguments that follow will show that oY is
& solution of (2,1) for (o@,ob,0X) which implies the required

result in view of Lemma 1, (ii).
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How, observe that

%
Y (8) = g(t)+ J (Jnfr_)(u)dx(u) :
o) i

n n+i < W ) 12 2 n+1 2
(I = 4 17 ¢3(]a LI AR S M ESVOTE Sl SR b

n
& . 2

S é‘?ﬁ+3[fn—fn+1, P 000(1)
(Sce section 1.4 for definition of g2,

Now, using the pgrowth inequality, the condition (2.4), the

fact that Xe Q(1) and (1), we get

BIY. ¥ 12 ¢ s(etnit6.2-20, [ g *240
. n+17 'y 2 {E . - R n-1ly du;
and

E{Y,-Y |37 < 801+ t0(1+6P)

Thus if an(t) = Eh{nH = ¥ {:2

x y Then Tor to > 0, there exists a

constant 01 Such that for 0 < t ¢ to,

a (t) ¢ cy

and %
I T e R S G
n = J-] O n_.-] t( 1 ¥ = L)

By induction, it follows that
B8C,t

p=eny y OLELH ,mn2 1.

a () ¢ 2C,.

This as in Theorem 2 implies that 'Yn CONVETges a.S, in

E. Thas PCC) ) =1 amd Y, —> Y a.s. in E.
2 g =

* . )
Further, E]Yn~ Y]_t2 —» ¢ for every +t. In view of the Iipschits
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condition on b, this implics that E|f -f{," —> 0 wvhere
£(t,w) = b(w,t,¥(w)), Using the fact that IJnfn_fn[ { ==, W
*2 N A .

get ElJn‘fn- f't ~> 0. This in turn imp.ies by the growth
inequality that [ (I )dX —> J¥AX. This verifies that ¥ is

o L G
z solution.
Remark 1 ¢ The proof of Theorem 3 is only a minor nodificaticn
¢f {the standard successive approximation tecchnique used in

]

Thevren 2. 4lso, notice that in the proof above, we have not
used the existence of the scluticn.
Remark 2 ! Although Y is not F-adapted, Y is F' adapted

for any P such that Xe S(F, P).

4« Convergence of Solutions :

In this secction, we consider convergerce of solutions as
the ‘"data's (ﬁn,bn,Xn) converges {in an appropriate sense) to
(¢,v,X).

For n> 1, let 7 =D(F). Tet Z:D(F). Following
Protter [39] we say that Z,—> 2 (IMQ}) (read as locally in
Maximal Quadratic mean) if there exist L s (; LG 5 Teo a.s,.
such that E]Zn_zi,;i goes to zero for &1l i > 1. Observe that

for a strict time change o, Z > (IMOM) if and only if

0z —> 0% (IMQM). 4 simple application of Borel-Cintelli lemma
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gves us the following useful criterion : Z,=>7 (IMQM)  if add

only if for all t > 0, e > 0, there exists a T I(F) such that

PTEW e and E(7,-2)7% —5 0. From tnis observation, it

edslly follows that if for some stop times Sk
S

s
“, 5% — 2% (qu)  for each k, then 2 —> 7 (IMQM).

increasing to

i

Now let b and b, for n > 1 satisfy (2,2). Iet @
and @ for n> 1 belong to C(F)e Iet X and X, for n 1
belong to S(F,P)s Iet Y and 'Yn for n2 1 be given by

t
Y(t) = g(t) + ] b(e,u,Y) ax
and S b B

%
() =g ()« g_bn(.,u,Yn)an-
o Xn) and Y solve
(2.1) for (g,1b, %), In the next theorem, we give sufficiont

[&]

in other words, Y, sclves (241) for (ﬂn, b

conditions for Xn's to converge to Y.
Theorem 4 ! Iet
(1) g, > g (ImeM)
(ii) Zp => 7 (IMQW), whefe. z(t,w) = blw,t,¥(w)) and
Zp(t,w) = b (w1, Y(w),
(iii) there exists a time change o such that oX e Q(B)

and o(Xn.-X)e Q(f ), where By —> 0.

(iv) b and by, for n> 1 satisfy (2.3) with the samec

Process XK.
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Then Y —>» ¥ {(IMQM)

Froof ¢ By a timc change if neccessary assume that Ep-Xe Q)

Xe Q(B). By changing B if nccessary, we can assune that

X Q) for all n, in view of Lemma 1.9. Since we can get
I . _ L %D

{Sk% C(m, Sy T= such that for all %1, E|#, - ,@’lsk - 0,

S,= S,—-
K and x K arc bounded, we can assume that

E[ﬁn—m:g O O Eizn—21:2

i
Elzn-zfsk “=> 0, 2
—>0, Z 1is bounded and for some
constant X,

*
Ibn(w,u,p1)—bn(w,u,p2)[ < Klpq - pol, for n>1

and ‘ .
. *
Ib(w,u,%)«--b(‘W,u, ol < Klog - epf, -
Now,
Yn('b) - Y(t) = Qn("b) - B(%) + An(t) + Bn('t) + Cn("t) 5
where
t ‘
A (%) = 6( (b, (e,u,Y ) - by, ey, ¥))dX (u)
t
B (1) = g (b, (v,u,7) - b(.,u,1))AX (u)
£ .
and C (t) = 6{ b(e,u, VA ~X)(w) .

By the growth inequality, for each (fixed) t there exists a

constant X, (depending on B,K ete.) such that for ogtg_t‘o

t
*2 *2
ElAnIt <Ky {Elyn_Y]n du,

’
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*2 *2
E[Bn]t < K1E]Zn- Z’t

. and

*2

Thus for O_(_'ts_‘to 5
‘ ‘ t
*2 ] *2 %D *2
EfY - Y[5? ¢ Ke[EIQn—QIt $BIZ 2l e by S Bl du]

= t
*2 *2 *2
£ Kg[E-lﬁn—Q]t +E|Zn--Z]t + B T B Y| du]-

_ o o o
This and Grownwalls inequality imply that

(M EIYn-Ylt < Kz[Elﬁn—ﬁ1to+E|Zn—tho+Bn]e , 08t

*

In view of our assumptions, this impligp EIYn-Y[tz-—¢ 0 for all
t 2 0. This completes the proof.

Inequality (1) above shows that if we assume specific rates
of convergence (fast enough) in canditions (i),(ii) and (iii) in
the above theorem, then Y  indeed converges to Y almost surcly.

For instance

Corollary 5 ! Assume that there exists-fsi:§(; 2(¥),S; '~ and

constants Ci such that

1) Elg_-d15° ¢ ci;——n
1

- *D 1
(ii) Elzn..z|si < 05.2—:1

(1ii) +thore exists & +time change o such that Xe Q) and

X_ e 0(p-L)

&
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and (iv) b and b ,n>1 satisfy (2.3) with the sane

process X.
Then Yn —> Y alnost surely.

Proof ¢ Under these assunptions, the inequality (1) reduces to

B[Y -Y[° ¢ K == , 0t <%
n £ a3 on - " = Yp?

which inmplies Yﬁ —> Y a.s.

Repark : The comdition o(X~X)eQ(F ), B, —> O is oo
restrictive, For sonme convergence results under more general

conditions, see Protter [397], [40] and Emery [77], [8].

5. A Honeonorphisri Procertv of Solutions .

In this section we consider the equation
.7 i t |
(1) () = x+ [ ble,u,T(a))ax(n)

and show that we can get a pathwise version Y(t,x) which is
continuous in (t,x), Corbined with a known result this impliés
that the set of w for which x —> Y(f,x) is not a homeonor-
phism of RS for some +t is P-null for all P under which X

is a senmimartingale.
We need a  IF growth inecquality.
lemna 5 + (Burkholder's inequality)

For p > 2, there exists a constant Cp such that for all

2

Me (R _P) freal valund),
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2
E[M[ip < CpE[(M)(t)jp/ :

Fer a simple proof of this lenma seé Stfoock—varadhan
[42,p il Uelng this inequality, we can derive a Lp-growth

inequality for stochastic integrals exactly as in the iz CaASE
Lerma 6 @ (IP_Growth Inequality)

Let Xe S(F,P) Mat) B¥ valued) and ne () (I(rm, k)
valued) and p > 2. Then

o *p i D
Bl /haX{:® < ¢ JEIn|®(Wdu, o< t¢+4
Q O o

where C 1is a constant depending on Pk, b .

We now state a nultidimensional andlogue of Kolriogorov's

theoren on the existence of centinuous modification of a stochastic

Process. A procf of this can be glven following the argunents of

Corollary 2,1,5 in Stroock~Varadhan [427] using exercise 2.4.1.

These details are also worked out in Stroock [}1:].
Theoren 7 ! Iet B be a separable Banach space and 7 be a
neasurable functicn fron (7} (X) R inte B, such that for
sone constants p,C, a > 0O "

Bl 2(xg) ~ 2(x,) P ¢ ocx, - x, (K*C

- il ik = 1 2
for &1l x,,x, in RY,

Then
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( restricted o any bounded subset of diadici
Piw ¢ Z(e,w) k 5
rationals in R™ is trufornily continuous |

In particular, Z has a continucus modification.
Now, let 'b' satisfying (2.2) (I(k) valucd) be such +hat

80 that we can write it as b(w,t,x). Assume that b satisfies
(2.3) and let Z(t,x) be the 'pathwise’ solution of (#,b,X) for
# =x. Fix a P such that X S(E,P)e ILet T be a stop time
such that KT" is bounded. Tet o be a strict Fotine change
such that oXe Q(1). Since 2 is a solution for (x,b,X),

is a solution for (x,bT7,XT) so that o(zT) is a solution of
(x,o(de), o(XT)). We have for X4 ,X252Rk’ by the C, inequal
Lipschitz nature of o(b'™), TP growth ineqiality and Crowmwalls

inequality
T I L :
Blo(ZCo,x9) = 27,2 5P < elay - %, {P 0L ¢t
Tor & suitable constant C, so that

»*
E12Ce,x) - 2Ca,x 0P ¢ Clxy ~x,|P, 0Lt

o_tf\T

Thus for a sequence of bounded stop tinmes Snﬂ\m, we have

.x.
E|Z(.,xy) - Z(.,xgnsi < 0 lxy-x,|P,

; T -
(For instance Sy = T,/Ne /A0 where T, e is such that K T

is bounded for each n)., This by Theorenm 7 (applied for ‘ach
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)

fixed n) implies that a.s. P, 2 is a unifornly continuous

function on diadic ratiocnals in bounded subgsets of Rk. Thug if

¥(.,.,w) = extension of Z{eye,w) by uniform continuity
if Z(t,x,w) is a unifornly ceatinuous function
fron diadic rationals in bounded subsets of RE
into C[ 0,e).
= 0 otherwise.
Then for all P such that Xe S(F, P),
Plw : Y(o,x,w) = 2(.,x,w) for all xeBRS) =1.
Thus we have
Theorem 8 I Iet b satisfying (2.2), (2.3) be such that
Then there exists a * pathwise solution® Y(%,x) such that
(1) for all w, (t,x) —> ¥(%,x,w) is continucus
P)

(11) for all x and for all P such that Xe E(

LS|

¥(.,x) is a solution of (I) for (x,b,X,P).

Funita [237] (see also Stroock [#1] ) has given a procf
of the fact that if Y is any jointly continuous version of the
solution to the SIE (1) then for almost all w, for all 1,

x —> Y(t,x, w) is a homeomorphisn (Cn’? honeonorphisn if
b(t,w,e) is ) of BX into itself. The hypotheses on b in

Kunita's proof are different but the sane proof works for our case
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as well. Since our solution does not depend upon P, the set
(of W) where Y(.,%,w) fails 1o be a honeoriorphism for sone -
is a 'universal®' null set. More precisely we have

Theorem 9 I let b,Y be as in Theorern B, Iet

- &
() =

L X J

5 X —> Y(t,x,w) is homeomorphisn for all ti.

Then
P(C) ) =1 for all P such that X S(F, P).
] o

Parther, if n > 1 and if b(w,t,.) is ¢®, then

P(C) ) =1 for all P such that Xe S(F,
where
) =~{w P x = Y(t,x,w) is a 2! homeonorphisn 3

o : for all t
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CHAPTER 111
MULTIPLICATIVE STOCHASTIC INTEGRATION

1. Definition and Propcrtics of Multiplicative Integral 3

In this chapter we define nultiplicative stochastic
integration and obtain its prcperties. These include 'integra~
tion by parts formula', fornulae for the inverse and deterninant
of 'exponential' of = seninartingale. As an application of
'integration by parts fornula', we cobtain a ‘nultiplicative
decomposition’ of (invertible) matrix valued semimartingales.

We start by defining (additive) stochastic integration wer.t. a

matrix valued senimartingale.

Definition : Iet feDR(E) (L(m,k) valued) and X: S(F, P)

(L(k,r) valued). Then JfdX is defined to be the L(m,r) valued

process whose (i,j)th conponent is

4 i aXx
P B .
g=1 15 Sd

Remark : [dX.g and [f aX.g are defined analcgously when £,X

are as above and ge D(F) (L(r,d) valued).

41l the properties of [fdX 1listed in Section 1.4 continuc
tc heold when X is matrix valued, the inportant ones being inva-
riance under time change and effect of stopping. We shall state
the éGrowth—inequality'.5 The proof is exactly same as in the case

when X is a vector valuead serdmartingale.
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Lemma 1 ¢ *Growth- -inegquality*.

et XeS(E,P) Q) and he D(F) (both I(x) valued).
Then

| E| g th}Ig < 8B (1+18) fE!hlg(u,w)du.
Iet Xe¢ S(E,P) and heg(g) (both I(k) valued).
Then the SDE‘
¥(t) =1 + ;ymx
has a unigue solution. This follows easily from Theoren 2. In

fact this result holds even if he W(F) provided [hdX exists.

But we shall not deal in this generality.

Following Masani [26], MeKean [287], Ibero [117] ana
Enery [ 7] we define

Definition I Tet XeS(F,P) and heD(F), (both (k) valucd).

The nultiplicative stochastic integral of h with respect to Ky
denoted by TT (I+hdX) is defined to be ¥, where ¥ is the

0 i |
unique solution of the SDE Y = I+ f Y hdX.

Remark ¢ The notation suggests that TT (I+hdX) should be the
lirit of 'Rienmamn-Products' in sone sense. That this is true

when he@_(g‘) is proved in the next section.

We now obtain sone properties of the nultiplicative

integral
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Theoren 2 § Iet Xc¢

:lm
Can)
lM

P) and hag(g‘) (both L{k) wvalued).
et Y =TT (I+hax).

o

(i} Define Y, inductively by

X =1

O

Yn+1 — I + ({Ynhdx -
Then Yn —> Y a.s. in E §

I+

t
i) TT (2 + hdX)

0 .

h(u)dX(u)

+

Ok Oqer

Olﬁm

h(wd@X (u)h(s)ax(s) + ...

u

L S g ‘
(11i) TT (T+haX) = TT (T+naX).JT (T +hdX), o0¢s<t
(0] O g

i ol
TTHIT+h'ax), h'(w) = h(wW1_ (2) ).

1

t
(where T] (I.+ hdxX):
B

| 0 S ,)
, ' 7 L
(iv) Por TeT(®), Y (t)+I.1 - = TJT (I+h ~dx)
s BT “T=0; »

1]

4 T
T (I+hax™).
0

(v) For a strict F time change o

(vi) Let h,eD(E) be such that |h ~h| < 27" | then

TT (I+hdX) —> TT (I+hdX) a.s. in E.
0 0 =
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froof : (i) Get a strict tine change o such that oZe (1)

where 7 =[hdX. Tix a stop time T such that Y is bounded.
g T, *¥2

Lot g,(8) = Blo(rD) - (e (}2,

Then by Ienma 1,

2 t
#,(t) < 8K"(1+1) é g, 4 (Wdu

and go(t) £ €.« (for some constant ¢),

Thus for fixed t, > 0, Tor some constant Cqs

@ ¢
2, < —;:— 0Lttt .

T . . . i .
Hence Yn —_ YT 8eSe in « Since we can get stop tines

ntz

Ti’fm such that YTi is bounded, the proof is complete.

(i1) followsrfron (1) as the first ﬁ terns on the right hand
side in (ii) add upto Y, 1.

(1i1) follows from‘uniqueness-of solution to the SDE

t
Z2(t) = H(t) + [z hdX , 1> s,

S

fOI‘ any He g(g) .
(iv) and (v) follow from the corresponding propertics of

the additive integral.

(vi) follows fron Corollary 2,5,
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*

Remark { (i) is the usual procedure of successive approximation
to the solution of SDE given in Section 2.2.(ii) is the‘Peanc
series' representation of the multiplicative integral. (iii)

gives the multiplicative nature of the multiplicative integral,

2. Pathwise Integration Formula 2

In this section we obtain a pathwise formula 'to evaluate
TT (I+ gdX) in terms of paths of g and X, This is achieved
0
by proving a,.s. convergence of Riemann products to the multi-

plicative integral,
Let Xe C(E), geD(F) (both L(k) valued), X(0) =

Por ny 1, let {T% : 130} be a = partition for the
’ 2
processes X and g. For this random partition, define the

Riemamn sums and products by

Y, (1) z g(Tn)(Hn X(t))

=0

il

and

-Zn('t-) 'F]‘ I+g(’i‘n)(H X(t)))

i 5. N
et () =<w ¥ (.,w) and z.(eyw)  converge in BT

Y(o,w) = 1lin Y _(.,w)

"V ' -

¢ if we ()
Z(a,w) = li.lm 7y Coyw) 2

and ?(.,w) =0 ='E(.,w) otherwise.

Then we have
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Theorem 3 « Let P be such that Xe §¢(

=

(1) BT =1

O

and (ii) Y

] gdX
0

Sk
I

TT (T + gdX).
9]

Proof ¢ Fix a P such that Xe S(F, P) and let

Y = [ gaX
G
and , ,
Z =TT (I+ gaX).
8]

We will show that Yn —> ¥ and Zr -5 7 A.8, P, This will
complete the -proof,

We shall assume that g is bounded by K (say)e. %ince
given geD(E), we can get 8 ¢ W(E), S_Te such that g™ is

bounded, the general case will follow from this. We also assune

that Xe Q(1). Otherwise get o such that oXe Q(1) and let

the ;

A besinverse of o. Iet S? = A n* Then for each n> 1,
.

L .

OYn, GZn can be obtained from og, oX and the partition

& 1T .« . ¥ . -~ Y- T 3 ;
(5§ *120; by the formuls defining Y.,%, in terms of g,X,
iTi‘ . i_>_0} « Thus the arguments that follow will imply |

that OYn —> oY, UZH > 0% @.8, in E which is same as

Yn —> Y and Zn - Z el in Eo :
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For the prcof of the theorem, we first observe that
. s, Tl . iy IC ) - -
(1) 2y ¢3i20; is °n partition for 2
.t

. N "

(ii) zn(fc) = I+ g AL

1
(iii) Ye Q(8) and Y e Q(B), Y -Ye Q(ﬁ;ﬁ) for n>1,

for a suitavle constant 8 .

P (0%g)ax so that

O

Y -3%, = (T, (-3 .

For (i), observe that Y (t) =

Now (i) follows from this as g is bounded by X and

n 3
IX = & X < 2—11'

For (ii) observe that

7,08

n

- oD . il
iT;TO(I + Y (% "Tin) - fn(tf-Ti))

= OT : AT iy D
I« -iozn(t‘ 1) (T (84T ) - Y (34 TH)

{]

-t
n,
I« O.f (J an)dYn.

For (iii) observe that

ik
Y(t) = [ gaX
O

and it
Y (1) = ! JPgax
0

sc that

%
Y (t) - ¥(t) = OI (T%g - g)ax .
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Wow Lemma 1.8, the fact that Xe (1) and the inequalities
gl <&, |T%-g] ¢ -233 inply (iii).
To complete the proof of the thecrem, we show that (1),
(ii) and (iii) imply Yn —> Y a.s, P .and Z,=> 2 & .5 P.
Growth inequality and (iii) (applied to h =1I, X = Yn-Y)
directly gives Y, => Y a.s. P. We will assume that Z is

bounded (say by C€) by the obvious stopping argument.

Fix a to > O« Now observe that (ii), (iii) and the growth
inequality imply

* .
Blz,ly < 2+ E] S0y, (19)

& t -
< 2k + 81:2(1 + tB8)8 Izziannluzdu)
O

o t *2
2(k + 8k (14—ﬁ5)ﬁ\j'E!Zq!u du) .
E Y

| ZaN

Thus by Grownwall’s incauality, there exist constants K1, K,
(independent of n) such that
Kot
: s - 2
.Eiznlt LKye , 02t <t .
By (ii)

N, . r+n
T, - 372, = (38 (Y - JnYn) :
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Thus
ny (*2 , x2 o Kot 0<t<t e (1)
Elzn-J an[t _<_—2~g1711<18 ; 2Lt .
Now writé
t n, t
zn(t) - Z(t) = ({ (J n)d_fn - g 7Z4Y
= 4 (%)« B, (%) + C, (%),
where "
A (t) = c{ (JnZn-Zn)dYn
i
Bn(t) " ({ (Zn-z)dYn
and +
Cn(t) = Oj za(yn-Y) .

Now, growth inequality, estimate (1) and the fact that

Y., Q) imply (for a suitalle constant K)
%D 1
E,An’t _<_I\_3 "2"2'2-1" ) Os_ts_toc 0..(2)

Growth-inequality and the fact that Y, e QB) inply

: t
*2 N *D
BB [.° ¢ Ky OfE]Zn-Z]u du, 0¢tg tE v (3)

(for a suitable constant K#).

Finally, boundedness of 7 amnd the fact that
oY Q(ﬁg-n) togother with the growth inequality inply that

B, % € Bt e et (4)
nft < 591'1 ’ = PR tee

o<
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Combining (2), (3) and (4), we get (for suitable Ke y Kq)

X LTA ) e t £

drrE - *2
E’Zn-.ﬂit _<_;\7.2E+1(__8(£Blzn-—ZIu du, O_(_'tsto
and hence by Grownwall's inequality,
1 Kt

e on ©

<
 Fa
ot
[ 7a
ch
.

*D
E]Zn—Zit S .f.\_r?l{
This implies Zn —> Z1 12.8. 2%
48 remarked earlier, this completes the proof.

3« A More General Product Integral

Iet £ be a C° function from R into itself such that
£(0) = 0. Then symbolicelly 'f(at) = £'(0)at’. To this symbol

staterent we attach the following meaning : for a (say) continuc

n-1
function g, the Riemann suns of the form ¢ g(t )f('b - 'ti)
i=0

t
converge to [ g(wf'(0)du, where O = b <t eee <t =t and
O

the linit is taken as the 'norm! of the partition goes to zero.
This can be proved casily by Taylor's formula. The sanme problen
for multiplicative integral can also be considered. See for

instance Dollard-Friedman [6,p 5071,
in ilie same spirit we write for a Brownian motion B8(t),
£(ap(t) = £'(0)aB (1) + & £7(0) (aB (4))?

= £ 0)apet) o Letoyat
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Again, this symbolic equation represents the statement *

For. any continuous T - adapted process g,
n-1
2 g(T, )£ (B (T

> )= B(T,))

1+

converges to

t

i
g g(u)f' (0)aB(w) + - g gl (0)du

=

&long a suitable sequence of randonm partitions O:=TO<IE1<...<T =%,
In this section we prove this (and a sinilar stetement for multi-
plicative integral) for a continucus semimartingale. Emery [ 77
considered this problem when g = 1 for both the additive as

well as multiplicative case. He proved that the Kismann sunms and
products converge in probability to the respective integrals, We
shall allow any process g in D(F) and obtain aluost sure
convergensde results. This erables us to obtein pathwise integra-
tion formulae for [ g.f(dX) and TT (I+ g.£(dX)) in terms of

~r

paths of g aad X.

For the rest of the section we fix a twice continucusly
differentiable function f from IL{k) into itself with £(0) =
and with the second partial derivatives [Lipschitz in a neighbour-

hood of (O, Here O is the matrix with all its entries zero.

For any XeS(P,P) and De L(k), we use the following

]:7f(])) X]

notations ¢

.X
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and
- 2

i <
[j?zf(D}j<<fi>;1 = B 3 ==} f(D).<Xij b K o> e
g i,d 1,8 8Xij 2*rs

With these notations, Ito's Tormula takes the siuple form .
3 [Xomenndh Si G 6 5w 8 b
df (X) = |7/0(0),aX | + 5 |7 TF(X),a<> |

Now let Xe C(E) and geD(F) (voth L{k) values) be such

that X(0) = 0. Fer each n>1, let ST‘;_I . 12_0} be a 5117 randon

partition for X and B

Define the Riemann sums and products by

- o n . mil nomil
Y (%) = iiog(Ti)'f(X(tf' Ti+1)uX(t. Ti))

and

— - n Ak n
Zn(t) = iIIO(Ia-g(Ti).f(X(tfsii+1)-X(tf\Ti))).

Agein, for each fixed +t,w these are finite sums and

products and hence Y ,% e C(E) for all n.

~
~

Tet _(_")_O =<Lw : Yn(.,w) and Zn(.,w) converge in E}
Let Y and 2 be limits of Y and z, on () and

o]

cqual to zero on ()® . Then we have

o

Thecrem 4 + For all P such that Xe S(F, P), we have
PCTY ) = 1.

o}
Parther, it R(8) = [<72(0),X(8) |+ 5 [T P(0) <o ()]
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Then
t

T(4) = | gaR
o
and
o it
Z(t) = TT (I+ gdr).,
o

Remark I We can write the last two equalities as

t t
I gf(aX) = [ gar

o 0

and

8" t

TT (T+g.£(a%)) = TT (I + gdR)

o 0

’zn

respectively. In view of this theorem, we can write symbelically
"£(dX) = ar*,

where by definition, the left hand sides are limits of r,

Proof 3 ¥ix 2 P guch that X S(F, P}). As in Theoren 3, we

assume that g 'is bounded by 01 and that X belongs to Q1)

Let

Y(t) = [ gar
Q.

and

Z{t)

1t

%
TT (I'*'ng)-
@]

A8 1n Theorem 3, suffices +o prove that Y, —> Y and

Z,—> 2 a.,s. in B, To thig end, we will show that

C
‘3 S o e LS. { _— .
(1) (Ty +120¢ is a g partition for Y, for all n)1
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R () P

= & t n
(idi) zn(t) = I+ Sf (J zn)ﬁyn
and
[}

(1ii)  Ye Q(B) and YraQ(BQ"n) for n>1 (for a sultable

constant B).

This as in Theorem 3, will imply that Y, —> ¥ and

Zp, 7> 2 a.s., in E completing the proof of the thecrem.

Now,

Y, -3 = (U)X~ I"K) for ny1

1l

and hence fglg_c1 and  [X~J3™< 2™ imply (1), (ii) follows

gxactly as in Theorem 3.

1t remains to prove (i1ii). 1In the rest of the vroof, we
will be using Lemma 1.8 time and again. Since Xe (1), we
conclude that Re Q(a) (for some ¢)., lNow the boundedness of g

implies that Ye Q(B) (for scme 8).

Observa that if S; £ S, are two stop times and N is =&
semimartingale, then Ito's formula applied to the semimartingale
HO(E) = N(4) - Wb A S;) and the function f (remembering that
fC0) = 0) gives

]
3

£(N(8,) - 1(8,)) = £ (5.)) = £(0)

g S
2 T 1 2 i .
C{ [‘?Ff(N (u)),au (u)]+%— i Efzf(N (1)) A< >>(u)]
o]

il
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22 S 4
= f v/ y _ +1 \172
" e §(5,)),an(w) | §sf1 k £(NC)-I(S,D), A () .

Thus

L, mil

s / _ t Ty " -

TEGEA T, ) =X 7)) = Eﬁ;f(X_J X),dX_‘
iy

1
n
1 .tATi+1 2 n
+ tf-‘ - ]::7 F(X-J X),d<<X>>].
~pl

Hence, using the definition of Y, we get

t
L0 = [ @ [Tex- ) ,ax]
o
R AP, B n
e R ag X),d<<X>>:,-
Q
= An(t)*-Bn(t) (say).
Also, let
, 1
A(E) S ¢ gr’-"}”ffo),dﬂ.
0 L-n
and
SN ¥
B(t) = 5 § gl f(o),d<<x>>-_f. :
o

-

Then by the definitions of Y and R, we have
7(5) = A(t) + B(t). {

Let 02' be the bound of first and second partial deri-
vatives of f on the unit ball of IL(k). Iet Cs be the

i
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Idpschitzs constant for the sccond derivatives on the unit ball.
{If the second derivatives are Iipschiiz on & ball of radius
a {1 around the origin, then the arguments that folleow are itruc

for n such that 277 ¢ o, which suffices for our purpose.)

Write An(t) = A0k = n1(t) + ng(t) , waere

7, (4)

i

t
i (g ) [een- g™, ax|
. ‘

and

T
n,(t) = [ glve®- It - ‘T‘ff(o),dﬂ.
J

Now, [dPg-gl< 2™, Xe¢ Q1) and the fact that the Tirst deriva-
tives of £ are bounded on the unit ball imply that n, e Q(C52™%
for a suitable comstant Cz. also |g/<C;,Xe Q1) and the
fact that second derivatives of £ are bourded on the unit ball
imply tha® 7, Q(C42ﬁn) (for some C,). Corbining these two

observations, we gei A -Ae QlC-2™) (fer some 65).

oimilarly, using that the second derivatives of f are
Hipschitz on the unit ball, we get B -3Be Q(C62"n) and hence
Yn--Ye Q(CTZ'H) (for suitable constants 06’ CT)’ This completes
the proof,

We remerk that gf(@X) and T[] (T+gf(aX)) cen be

defined when g is IL(k,m), X is I(r,s) valued and £ is a

_suitable function from I(r,s) into IL{m,k). Theorem 6 holds
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good in this case as well with the sane proof. The same is true

of [f(dX).g and TT (I+f(aX).g).

-

4, A Trotter Tvype Formula ©

In this section we apply resulis of the last section to
specific function f. To consider a simple but useful situation
wssume that f 4is 'analytic’ and is gzero at the origin, that is
for some a > O and real numbers by the following expansion
is valid for De L(k) with |[D]|<«

_ n
(D) = niﬂbﬁD .

For Xe S(F,P) (L(x) valued) with X = M+a, let

X, =M, N be_the unigue L(k) valued process: in é(g)

such that M°-<M,M> e L(F). In other words,

it

W
G055 = QUM
¥
™M W ot
QMM

m?—-'!(Xim » Xy o

i

i

Then following the same notations as in the last section

we have

=

=-i‘:ff(o),xj = by X

and

‘G'zf(o)',<<x>>_J = 2b2‘ <X,X> .
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Iet R = b, X+ by<KX,X>. Then by Theorem 4, we have

t
I £(aX) = R(%)
)

and

¥ t
TT (T +£(ax)) = T (I+dr).
C 0O

Recall that by definition, expressions of the form [f(dX) or
7T (I + £(dX) represent limitg of "simple* approximations as in

Section 3.

fheorem 5 : Iet X S(Z, P) (I(x) valued). Then

+t £
(1) TT ea@x) =TT (I+aX+ 3} acx,x>)
0 o
it + 1
(11) TT @ +ax)y =TT e(dX - 5 A<X, %),
0 o
0o Dn
(Here e(D) = = —) .
n=G nti
. w ph
Proof ¢ ILet f(D) = § =~. Then 7 satisfies the conditions

g
mentioned at the beginning of this section and e = I+f. -Thus
(1) follows from the consideratiocns preceding the theorem.
For (ii), let X, = X=X, X. Then as X, - Xe A(F),
g, %> = X and hence X = X, + ;<X,, X5, Now (ii) follows
Trom (1). This completes the proof of the theorem.

For XeS(F, P) (L{m,k) valued) and Ye S(F, ) (L(x,r)
valued), define <X,¥> (L{m,r) valued) by
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k
<X'Y>is . J§1<Xl.‘.l ’ Y;fs>

Now, we obtain ‘*stochastic version' of a Trotter type
product formula for (deterministic) multiplicative integral.
(See Masani [27]). ' |

£

Theorem 6! let X, Ye S(F, P).(I(k) valued). Then

TT e@.e@D = T e(ax+ av+ Sa<x, v - Jacy, ) .
0 . 0 .

-

Proof : Define Z by Z = (X,Y). Define

£ 3 L(k,2k) = L) (DLk) —> (k)

by
£(4,B) = e(4).e(B) .

o)

Then observe that
f(A,B) =1+ A+B+ L A2+ %—B + AB+ higher order temé.
Thus .
[‘Vf(0,0),ﬂ =~X""+ Y- ¢
and _
[vzf(o,O),«z»:l = <K, <Y, D> + 2K, T
Thus by Theorem 4,.

TT e(ax).c(@y) = TT £(az)
(o]

0
= -IT (I‘i‘dR) 8 ® '..(T')
b [
where R = X+ 7Y+ %(X,X) +;—<Y,Y) + <X, .
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But, by Theorem 5,

TT @+ an) = TT e(aR,) ceal2)
e} 0

1
R~ <R,R>

#

where R1

= Xa-Y+-(X,Y>1-%<X,X>+-%<Y?Y>

- FCH,E> + <, T + <K, T + <T,X5)

=%+ v+ ko - v, o | e (3

Now, (1), (2) and (3) imply the assertion.

Remark 1 ¢ The result can also be stated in one of the following

equivalent forms :

(1) TT e(ax+ay) = TT e(aX).e(ay,)
&)

(6]

1 1
where Yy = Y - 5 <X, 1> + 5 <V,X>

(1) TT e(dX+ay) = TT e(ax;).e(ay)
Q

o

1 i
where X? = L-5 &K, 0 + 5 <Y, .,

To see that (i) is equivalent to the theorem all we need
to observe is fhat if Y-Y1e.§(§) (Y,Y1s §(§, P)) then
X, ¥ = <X,Y¥,> for all Xs‘g(g, P). That (ii) is equivalent to
. the theorem also follows similarly.
Remark 2 ¢ If X,Ye A(R,P), then <X,¥> =<Y,X> = 0  and hence
we get the Trotter type product formula for deterministic Mﬁlti—

plicative integral.
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Bemark 3 ° Let B be a Brov uan motion (real valued) and let
f,ge D(E) (L(k) valued) and let X = [fdB, Y = fgdB. Then
‘X, T =[] fgdt and <¥,X = jgfdt so that

X, T - <T,X = [(fg- ef)dt

iICf,g7]at . (Ca,87)= 4B~ BA).

“hus Trotter product formula takes the form o

-

TT e(288).e(gdf) = TT e((£+g)ab + L[ £, Tat).

0 0

5. Integration by Parts Formula and Multiplicative Decomposition

of Semimartingales 3

In this section, we obtain a 'stochastic® analogue of the
"Integration by Parts' formula for nultiplicative integral. (See
Masani [267], [277]). Using this, we obtain a nultiplicative
decomposi “ion of matrix vall :@ semimartingales. Before proving
the integration by parts formula, we get formulae for the deter—

minant and inverse of eXpoaeusial of a continuous Semimartingale.

Jefinition ! Tet Xe S(F,P) (L(k) valued). Then the exponential

of X, (denoted by EXP(X) is defined by

1
EXPCO{) = T (I +ax) .
‘ O

-

Remark ! If X is a real valued Semimartingale, then by Ito's
formula, it follows that EXP(X)(t) = exp(X(t)-%<X,X>(t));

(ere exp is the usual eXponential function on R.)
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Theorem 7 I Tet XeS(F,P), Y = trace X,2 = izj<Xij,in>.
y

- =

Then

(1) det(EXP(X) (1)) = exp(Y(t) - 22()),

.t
(i1) det(TT e(dX)) = exp(Y(t)).
o

_ ‘ 4
Proof I (ii) follows from the definition of TT e(dX) and the
' 0
relation
| (TT &) = expC 3
det A.) = exp(brace £ A4.)
i=] * i=1 + : .

for Ais L{k). (i) Follows from (ii) and Theorem 5.

Part (i) of the previous theorem shows that for Xe 8(F, P),

EXP{X) is "invertible's We now obitain.a formula for the inverse

of EXP(X). Call a IL(k) valued process % 'invertible' if

Z'1 {(t,w) exists for all t for almost all w.

Theorem 8 ¢ (a) Tet XeS(F,P) and Y = EXP(X), Then ¥ is

an invertible process such that Y-Ie S(F,P). Further

3 - ¥ 7
EXPX)~T)" = EXP(-X + <X ,X >) .

(b) If Y is an invertible process such that Y-IeS(E,P),
then there exists a unique Xe S(F, P) such that ¥ = EXP(X).

Proof T Let X4 = X--;—< X,X> . Then by Theorem 5

Y:Tre(dX1). ‘ 000(1)
o]
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Now observe that if 2, W,  approximate T[ e(dX,) and
. 0

- % U '
II e(d(-Xy)) as in Theorem 4, then Z,.W, =1 and W7, =I.

Thus
TT e@@x) . (0T e@-xIN =1 ee(22)
o i G
and :
(TT e@(=xN".TT e(@x,) = I eee(2D)
0 Q=

Another application of Theorenm 5 gives

4 : t : |
TT eCa( -x;)) = TT (I+d(-X,) + % d<-X, , -X.;>)
0] , &

TT (I+aCx)+ % a<x, %" sracx’ x's)

¥ ? t
Now <X,X> =<X ,X >, Thus
.b

L -t 'S | ]
T e(d(-X)) = TT (T+a(-X )+d<X ,X>)
0] (]

= EXP<-x'+ K ,X'5) | cee(3)

Now (2) follows from (1), (2) and (3)

For (b), let 2 =Y-I and X = [ Y14z . Note that
1

J
| 0
Ye C(F) and Y is invertible implies Y- Q(E o Now

I'yax
o

1

It
H N O,

n
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Thus Y = I+ [ YaX and hence Y = EXP(X). To prove the unigueness
(8]
part, observe thau af Y = EXP(X,), then

o1

™
(o]

O

1
o
&

0

X;(8) .
This implies uniqueness. The proof of the theorem is complete.
In view of Theorem 7, we make the following

Definition ¢ Iet Y be an invertible process such that

Y-Ie8(F,P). Then define logarithm of Y, denoted by IOG(Y),

by the'equation'
. o 1 1
oG(M(t) = J ¥ aly-1).
e

Remark & Observe that for Xe $(F, P), TOG(EXP(X)) =X, If X
is invertible and X-Ie §(¥,P), then we also have EXP(LOG(X)) =X.
Moreover Xe L(FF,P) if and only if EXP(X)-Ie L(I',P) and

Xe 4(F) if and omly if EXP(X)-TeA(E)). N

4s a first step towards proving integration by parts
fornula for multlpllcatlve stochastic 1ntegrdtlon observe that
Itots formule implies the following '1ntegrat10n by parts formula ¢
for additive stochastic -integral ! For X,Ye S(F,P) (L(k) valued)
we have g

t i W '
X().Y(E) = [ X(wa¥(w) + § &X(u)Y(w) + <X, > (%) » ‘
o 0
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Theorem 9 (Iﬁfegré.tion by Part Formula)

Tet X;,X%,e8(7,P) ‘(L(k-) valued) and let Y, = EXP(X;)
for 1=1,2, Tet W= JT,ax,¥;' amd 2 = EXP(W).
Then

EXP(X.I + X2 + <X1 ,X2>) = 2.,

—

il

1
EXP(J'Y2GX1Y§ ).EXP(XZ) 5

Proof { Z.Y, = I+ (Z2-I).(Y,-1I) + Z+Y, - Ny

I+ J(@Z-1)a(Y,-1)+Ja@z-1), (¥,-1)

+7 + Y2+<Z-I,Y2-I>

3 I+J2a(Y,-1)+ Ja(Z-1).Y,+<5-1,Y,~I>.

But by the definition of Z and Y, , we have

T - 1
Z2~-1 =17 Y,6%4.Y;
and '
Y, -1 #7Y,8%, .
Thus ; -
= 1 ‘
2Yp = I+ J2Y,0%, + [ 2Y,0%, Y5 'Y, + <2~ 1,7, - I>

= 1+ [2Y,d%, + [ 2Y, 8K, +<Z-1,Y,-I>. \'

Further, observe that for any w1”,w2 e S(E,P) and ge (D

(g invertible) we have

ry
<Javg.g o, f‘gdW2> = W, Wpd
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so that
@-3,7y-T> = ¢ TBTAK, 1, [7,a%p>
= < fIY,8X,, X
= [7Y d<X1,
$hu§ ,
ZY, = I+ | 2Y,d(X, + X, + XKy, X5 .
Hence ZY, : E):(P(X.!- + X+ <Xy, X))

This completes the proof of the theorenm.

Remembering that if X1.~i15.£(§) then <X, , 2>’"<X1’ x>
we canrrewrite the integration by parts formula in the following
equivalent forms

(1)  EP(X, +X,) = BXe( J vya%, v5 ). me(x,)

[N
where X1

Xy~ <X, , X5
and ¥2 = EXP(Xg) .
- ) [oN - 1 m
(i1) EXP(X14-X2) = EXP(_[YédX1.Y5 ).EXP(XZ)
- Xy, X

EXP(X,) . .

where X2

“H

We now proceed to show that any invertible' (continuous)

semima;tingale .Y can. be uniqﬁely factorized as Y = N.B
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where N i$ a ‘invertible' local mertingale and B isg a
*invertible‘\process of bounded variation. This fcllows as a
simple application of "integration by parts’ formula., For
nultiplicative decomposition of resl valued seminmartingales,

see Ito-Watanabe [13], Meyer [32] anmi Jacod [_15,p 1997].

Theorem 10 ! Tet Y be a "invertible' process such that

T-1e8(F,P) (L(k) valued). Then there exists a decomposition

Y =N.B, where N and B are ‘invertible' vrocesses such that
N-TeL(E,®) amd B-IcAF®). Further, if X = M+4 is the

canonical decomposition of X = 10G(Y), then

B = BXP(4)

and N ='EXP( [ BaM.B~').

It

Hence, the decomposition Y = W.B is uni%pe.

Proof I Iet X = 10G(Y). Iet X = M+ 4 be its canonical

———

decomposition., Let B = EXP(A), N = EXP( [BAM.B™'). Using

integration by parits formula and the fact that <M,4> = 0,

we getd

<
I

EXP(M + A)

EXP( [BAM.B™ 1) EXP(4)

]

NeB. . '

It remains to show that the decomposition is uni que.

et X,N,B,M and A be as above.
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£ pate

e Y = 148y De any *decomposition’ of Y such that
Ny, By are invertible processes and N-Ie ;(EP,P) and
B-I¢ A(F"). Define |

My = TOG(H,)
iy -1
ar'.d. M1 b J.B1 dM2 .B—l .'

Then A;eA(F) amd M, ,Mye L(FF,P).  Further

Mp = IBjaM,.B] )
so that .
C N, = EXP(M,) | )
= EXP( JByaM,.57")
Thus
= N1 .B,}

il

EXP( IB1dM1.B;1).EXP(A1)

1

EXP(M; + &)
by integration by parts formula and the Ffact that My, A1> = 0.

Hence « . g

I{I.[ + A

1

1 Iog(Y)

1

X

M+ A,

il
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Now, by the uniquencss of (additive) deccomposition X = M+ A
(sec Theorem 1.2) we get M; =M and A, =4 so that N, =N

and B1 = B, Thisgs completes the proof.

Remark 1 ¢ We can also obtain a ‘right decomposition' Y = BN
of a invertible éemimartingale Y. This can be done either by
interchanging the roles of M and A in the proof of Theorem 10

. i L
or by obtaining the ‘left decomposition® of Y .
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