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INTRODUCTION

An experiment or a statistical structure consists of a
set X and a family of probability measures P on X, incexed
by 2 set (H), The set Y together with a o-algebra & of
subsets of X is the sample space and the set (B witha
o-algebra C of subsets of (H) is the parameter space, To
avold trivialities we consider only situations where the vara-
Letrization is one-one, i,e, if 91 and @2 are distinct then
850 are Pe1 and Pg?, Various notions of sufficiency of a
o=0}gebra E is ceﬁsidered in statistical literature, ‘Anong

these are the following ,

(i) Classical, ' Conditional probability of (X, A} given

B 1is independent of &,

(ii) Decision Theoretic, PFor every decision problem given

any decision procedure there is an equivalent decision
procedure based on B.

(iii) Bayes. @Given any prior ¢ on (H), the postevior
distribution of © given (X, A) is the same as the
posterior distribution given (X, B).

In what follows we will refer to (i) simply as sufficiency
(ii) and (iii) will be called D-sufficiency and Bayes sufficienc

respectively,
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P

(1), (ii) and (iii) are known to be equivalent when
%PG:G e (E)} is dominated by a o-finite measure, Burkhclder's
cxample of a non-sufficient o-algebra containing a sufficient
o-algebra shows that in the undominated case neither (ii) nox
(iii) is equivalent tol(i), In this thésis we investigatie the
relationship between (i), (ii) and (iii) when all the oc-algsbras
involved are countably generated, Interest in countably gener-

ated o-algebras stems from the fact that these and only these

arise out of real valued functions,

Our attempts center around a conjecture of Blackwell,
During a conversation, in the winter of *77, Blackwell conjcc-
tured that, when both the sample space and the parameter space
are standard Borel, then for countably generated c-algebras (i),
(ii) and (iii) would be equivalent, (i) and (ii) turn out %o
be equivalent without any Standard Borel assumptions, However
tho situation is different in case of (i) and (iii), Txamples
show that without Standard Borel assumptions (iii) need not
imply (1), We cafzzxkido s0 in this thesis, that for a class
of Standard Borel experiments (iii) and (i) are indecd equi-

valeant, The general case still remains unsolved,

In chapter I, we study the first part of Blackwell's

conjecture, viz, (i) <==> (ii), It is shown there that a
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D-sufficient o-algebra always contains a sufficient o-algebra,
L theorem of Burkholder then establishes the cquivalence of

(1) and (ii) in the countably generated case,

- Chapter IT is devoted to & study of Bayés sufTicicuney
in the countably gen:zrated casc, The first theorem relates
Dayes sufficiency to sufficiency on sets of measurc 1, Ilore
procisely a o-algebra B is Bayes sufficient iff for every
prior ¢ on (H), B is sufficient for Pgs on a sct of
r-measure 1, In the countably generated situation Bayes
sufficiency is also shown to be equivalent to pair-wisec
sufficiency for an enlarged class of probability mcasurcs,

Using this result we show that ' Test sufficiency®” which is
weaker than D-sufficiency, itself implies. Bayes sufficicnéy.

We then give examples which show that‘without Standard Dorel
agsumptions on both the Sample spacc and the Parameter space
Bayes sufficiency may fail to imply sufficiency, While we have
not been able to establish the equivalence of Bayes sufficicicy
and sufficiency in the Standard Borel case, we show that ¥ Boyes
sufficiency implies sufficiency" is equivalent to the apparcentl;

weaker ' Bayes sufficicney implieg Test sufficiency™,

In chapter III, we take up the class of Standard Borel

Discrete experiments, In this case, that is when the samrle
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space and the parameter space arc both Standard Borel and the

PG s are all discrcte,pairvise sufficiency itself implics
sufficiency, Since pairwise suficicncy is weaker than Baycs
sufficiency, this result settles Blackwell's Conjecture in the
discerete, Standard Borel Casc, In the later pvart of Chapter III,
WC stuﬁy some guestions related to the existence of minimal
su’ficient oc-algebras, Pe $ belng discrete, there is & natuwrel
ninimal peirwise sufficient partition, The existence of minimal
sufficient o-algebras is shown to be equivalent to some sect
theorctic conditions on this pairwise sufficient partition, Ain
cxample shows that even if the P9 s are discretec, minimal

sufficient o-algebras may not exist,

The first part of Chapter IV, is cssentially a gencerali~
sation of Chapiter III, Here we seck conditions under which
pairvise sufficiency would imply sufficiency, We introduce the
notion of weak coherence and Borel localizable measures, both
Standard Borel adaptations of known cencepts, It is then showm
that for cxperiments dominated by a Borel localizable measure,
a complction of any pairwise sufficient v-algebra yiclds a

sufficient o-algebra,

The last part of Chapter 1V is also concerned with palirwise

sufficiency, except that unlike the rest of this thedlis, in this
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ccotion non-countably generated o-algebras are of prime intercst,
In this part we give two cxamples, The first describeszo.gitua-
tion wherc & minimal pairwise sufficient g-algcebra doec not cxist
and the second shows that a theorem in [jE:} cannot ho improved,
Ghosh, Morimoto and Yamada show in [127] that, in what they call
wealkly dominated experiments " a sub c-algebra B is pairwiso
sufTicient and contains 'supports of Ty 1if and only if the
prronnbility densities admit a factorisation with respcet to B
Thus in these situations. for the statistician interested only
in the Likelihood function, pairwise sufficiency provides the
most natural reduction of the sample space, This fact togcothor
1ith casy verifiability makes pairwise sufficiency, a concept of
siatuistical intercst, Our cxample shows that a factorization
tiacorem of the sort mentioned above is not valid, if the cxperi-

rent ie not weakly dominated,

Parts of this thesis is in the proccgs of publication,
Chapter I and parts of Chapter II constitutes (287, [267] is=
cssentially Chapter III. The example on non-cxistence of minimal
palrwise sufficient g-algebras will appear in [ﬁ2], The rest is

1ot yet submitted for publication,
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CHAPTER 1
INTRODUCTION

et E = (X

?
A, Pg 1 8 (@) and T = (Y, B, Py e (D)
be two experiments, Blackwell [ 3_] defined ¥ to be sufficient
for E, if there exists a transition function Q(,,,) from

(Y, B) to (X, A), such that for all & in () and & in 4,
_é‘ Ay,») ar D = P M),

Later in [ 4] he showed that, if (H) is finite then, P is

gsufficient for IE iff for a certain class of decision problems
¢

given any decision rule § in IE there is a decision rule 6

in I which is equivalent to 6§

Suppose g is a sub-o-algebra of 4, then by considering
the experiments E = (X, 4, Pg: 9c¢ (M) and F= (X, Q,PQ;@E(E)
ve get 2 notion of sufficiency of B, Decision theoretic intcr-
prctation of this notion of sufficiency, when (H) is infinite
w&a given by Brown, Brown ]:B:I defined a sironger equivilence
rolation between decision rules and introduced the concept of
adequate (D-sufficient in our terminology) sub o-algebras,

Drown further showed that adequacy (D-sufficiency) is cquivalent

to sufficiency in the sense of Blackwell,
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In this chapter we study the relationship between
sufficiency and D-sufficiency, The main theorem staics that
any Dwsufficient o-algebra always contains a sufficicnt

o-algebra,

Section 1

et E = (X, 4, Pg 31 0 c (D)) be anciexperdment

Definition 1,1, A sub o-algebra B of A 1is sufficicnt for

C, 4, Pyt @c (B)) if given any bounded rcal valucd 4 -
measurable function f, there is a B - measurable function £

*
such that f is a version of E (£{B) for all € in (D,

We will now consider a weaker notion of sufficiency

Iet (D, D) be a set D equipped with a o-algebra

-

(D, D) will be referred to as the Decision Space, By a
decision rule 06(,,,), we mean a transition function from

(T, &) to (3, D), i,e, for x in X 6(x,,) is a proba-
bility measure on D and for every E in D, 6(x, E) is as
& funetion of x, A - measurable, A decision rule o(,,,) is
said to be B - measurable if, for all E ¢ D, 6(x, B) is

B -~ measurable, Two decision rules 6 and 6 arc equivalent

if for T in D and 8 in (@ |
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}J;’d (x; B) dpg = }ga (x, B) dp, B R

Definition 1,2, A sub o-algebra B of A is D-sufficicnt

-

- D

1f given any decision space (D, D) and a dccision rule 65(,,.)
: t
there is a B - measurable 6 (,,,) which is equivalent to

5(.,.) i,e, forall E in D and 9 in (B

I's (x, B) ap, = fﬁ'(x E) dp, .
X : 9 X 1 /i

This notion of D-sufficiency, we believe was introduced
by Brown in [ 8], where it is called adequacy, However, since
the term adequacy has gained currency in ctatistical literature
w0 denote a similar but distinct concept, We prefer using the
word D-sufficiency (for Decision Theoretic Sufficiency), The
following easy but intercsting proposition also appears in

Drown [ B8],

Proposition 1,1, B is D-sufficient for (X, 4, Py s 6 (I

iff there is a B - measurable transition function Q(,,.)

from (X, B) to (X, A) such that for Aed and 6 ¢ (I

- = 3 — = < -1
= i

g (x, A) ap. = P.(a) T
X.Q X, o ¢ (
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Proof, Suppose Q(,,,) satisfying (1,2) is given, Then for

L
any deeision rule &8(,,,) the rule 6§ (,,,) defined by
1
5 (x, E) = }.{fa (y, B) Q (x, dy)

is %,_ measurable and equivalent to &,

For the converse choose (D, D) +to be (X, 4) and set

L
6 (x, A) = I,(x), Then the B - measurable & (,,,) which is

LN

equivalent to 6&6(,_,,) satisfies (1,2),

ave
D-sufficiency implics sufficiency if {_PQ 0 ¢ (E)} 3

is dominated by a o-finite measure, Any o-algebra containing

a D-sufficient o-algebra is itsclf D-sufficient, Conscquently

Burkholder's [[9_] example of a non sufficient o-algebra

containing a sufficient o-algebra, shows that in the andominated

case D-sufficiency does not in general dmply sufficiency, TIrom

the above remarks it is clear that, rather than implication,a

nore meaningful question would be " Does & Desufficient

g-algebra always contain a sufficient o-algebra 7" The wmain

theorem in this section answers the guestion in the affirmative,

Let B be D-sufficient for (X, 4, P, 3 @ ¢ (M) and

? =9 e *
Q(,,.) be the B- measurable transition function satisfying

(1,2), It is tempting to conjecture (see for instance Cs
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that Ev, the o-algebra generated by { Q (x, A) ¢ A ¢ é?' is

sufficient and Q(,,,) is an omnibus version of the regular

]
conditional probability given B | 1t turns out that if é

1

is countably generated then B is indeed sufficient, However

even when A 1is countably generated Q(,,,) may fail to be
the required version of the conditiomal probability, This is
shown by the following example,

EXAVMPIE 1,7

e
il

{.1’ 2 Dy 4—3

& = B TPower set of X
4 WEl e g
= Lzr7,70 7
s 1 1 3 3
L Lg.5,5.5]

Q (i,g j}.) is the element Q 3 in Q given by
?

o O O =

1
Then B = A, But Q (i,J) 4is not a version of the conditional

probability,
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de now come to the main theorem of this section,

LLUREM 1.1, Suppose B is D-suffieient for (X, 4, Py : 6 ¢ (),

Then B contains a sufficient oc-algebra,
Proof, Tet o(,,,) bea B - measurable transition function
satisfying (1,2), Por each bounded A - measurable function T,
define
T £(x) = ;ff(y) 0(x,dy) .
Associate with each bounded A ~ meagurable function £,

*
a g - measuravle function T as follows

3 n
f(x) = 1im % £ ™€ £(x)  whenever the limit exists,
” k=1
n ~—> oe
0 otherwise ,

*
Let §O=c{:f; f bounded A m%mmﬁﬂe}
B, (C.B and we shall show that B, is sufficient,
By Hopf's ZErgodic Theorem (see [24)) for all € ¢ (ID

£ (%) = Eg (£lBg I ¢ )

where B, =< A ¢ A

iR
[ 8

~

7 atiey
. \-
o
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Py (1.3 B =By [Py])., Hence again using (1.3)

£60 =B (¢ | B) [2,]

eat@blishing sufficiency of Eo

IHEOREM 1,2, If B is countably generated and D-sufficicnt

then B is itself sufficient

froof, By theorem 5 of Burkolder [ 9] any countably gencratcd

v-algebra containing a sufficient c-algebra is itself sufficient |

COROLLARY, If A is countably generated then the s-algebra

QG generated by { Q (x, A) = A ¢ é.} is itself sufficient,

L}
Proof, Since A is countably generated so is B, PRurther

. . ) ' ]
since Q(,,,) is B measurable, B is D-sufficient,

Theorem 1,2 now completes the proof,

Weaker forms of D-sufficiency can be obtained by con-

sidering restricted class of decision spaces such as
(Dy) Compact metric decision spaces
(Dg) Finite decision spaces

(Dz) Two point decision spaces,
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When the sample space is Standard Borel D‘i would Dbe
equivalent to D [ 8], 3)3; is known in the literature as
'Test sufficiency’, We do not know the relationship between
1)1, Dy, D.j,' in the undominated case, For a discussion of these
problems in the general case we refer to Brown | 8 ] and

Morimoto [227],
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CHAPTER II

INTRODUCTION

This chapter is devoted to an elucidation of the concept of
Dares sufficiency, & statistic T. (or equivalently a sub
o~2lgebra B) is Bayes sufficient for (X, 4, Py 9 ¢ (D} if,
for every prior ¢ on (H), the posterior distribution of &
given A depends on £ only through T (B - measurable), In
the first part of this chapter we show that Bayes sufficiency
is ecquivalent to sufficiency on sets of measure 1., In the
later sections we investigate the relationship between Bayes
gufficiency and sufficiency, Our atitempts in this direction
center around a conjecture of Blackwell, Rlackwell had conjec-
tured to us that in the Standard Borel casc, Bayes sufficlency
and sufficicney are equivalent for countably generated sub
o-algebras, While we have not been able to settle Blackwell's
conjecture, dur cxamples show that without standard Borel
asoumptions Bayes sufficiency need not imply sufficiency, Ve
2lso show that " Bayes sufficiency implies sufficiency is
equivalent to the apparently weaker ¥ Bayes sufficiency implies

t=st sufficiency"™,
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Agsumptions and Notations : The following assumptions and

notations will be valid throughout this chapter,

((B, ©) is a measurable space and €@ —> Pgll) is
a transition function from ((B), ©) to (X, 4, (B stands

for the set of probability measwres on  (

=

, C), For cach

iy
probability measure ¢ on (I, A is the probability measure

2
on (X x (M, 4 x ) defined by

A, (Ax0) = g}?e(ﬁi)dg(e)

and PE is the merginal of A, on (X, 4, X x ¢ denotes

the o-algebra of sets of the form X x C, C in c, 4x (@D
and B x (H) are similarly defined, Functions defined on X,
arc sometimes looked upon as functions of x and 6, More
precisely, if f is a function om X, then by T we shall

mean the function on X x () defined as f (x, 8) = f (x),
Section 1.

Definition 2.1.1 A sub cg-algebra B. of 4 is Bayes suffi-

clemt for (X, 4, Pg i 6 ¢ (M), if for all C in ¢ and ¢

N
in (I

EKE’(IXXc | B x () =E?\E(IXX0 I A x (),
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The following proposition is essentially a restotement

of the definition.

Froposgition 2, 1,1, The following are couivalent,

(1) B is Bayes sufficient for (X, 4, Pg: e (@),

(ii) The o-algebras 4 x () and X x ¢ are conditionally
independent given x () on the probability space

B
_ . ~
X x (D, 4 x g, KE) for 21l ¢ in (M,

(1ii) For every bounded 4 - measurable function f on X,
3
there is a B - measurable function f  such that
% AN

f =E, (f | BxQ forall ¢ in (@
|2

[

Proof, Immediate from proposition 25,3 A of [ 207

Theoren 2,11, Suppose A and B are countably generated,

Then B is Bayes sufficient for (X, 4, P, : & ¢ (D) iff for

e *
~
every ¢t in (f), there is a set E, in g of ¢- measure T,
sach that B is sufficient for (X, 4, Py : 8¢ EE)'

Proof, ‘'If part®,

Given ¢ ‘there is a EE of ¢ measure 1 such that B
is sufficient for (X, 4, Pg: 9 EE)‘ Now for any bounded

.x.
4 - measurable function f, choose an f , B - measurable such

that
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*
T (%)

= Bg (f | B) for 6« E, .
Now for C 1in g and B in g
Pt sk I el Che ) [ S )
= | ar,. (x) ar = | ap de (6
¢ B E ¢B 6 ) cflz, 3 ot®) e
= I T rap,(x) ae(e) =T T F ax
¢c/E B e E ¢ B &

£

tHlep]

- %
Therefore, B, (f | Bx Q) =f =E (f |Bx (D
o A
and by Proposition 2,11, B 1is Bayes sufficient,
'Cnly if part',

AN

Fix ¢ ¢ ()., Given f bounded A - measurable there

*
is,by Bayes sufficiency of B, a B - measurable f  such that

£ = B (F|BxQ
Now [ [ £ (x) dP.(x) de(®) = J J £(x)ap (x) dr(8) for all C in ¢,
¢B . ¢ B 8 =

Therefore J £ (x) dPe(X) = [ £(x) dp (x) a e, ¢ for each B in
B B

figd

By rwming B through a countable algebra generating B, we get

I £ dPg(x) = I £(x) dPg(x) for sll B ¢ B outside
3 B =

@ ¢ - noll set N, Thus £(x) = By(f | B Tor @/ N, .
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Now,taking a countable union of null sets with 1 runa-
ing through indicators of sets in a countable algebra generaling

4, the theorem is proved,

The next proposition is rcpecatedly used in the sequel,

Proposition 2,12, Assume that B is countably generated,

Iet f be a bounded 4 - measurable function, There is then a
version of Eg (f | B) which is jointly measurable in x and @,

with respect to B x €.,
Proof, Let %_BT y Boy eee } generate B,

B be the o-algebra generatecd by By , By .... B, and

1 2 k(n) ,
By, B, yeseeesDy denote o the atoms of En .
FTor A ¢ JC:l 5
k(n) poa ) BD
2 (x) = = 6 1 (%)
€ 1 p.H B
8 "'n n

is a version of Eg (1, l gn) which is jointly measurable with

respect to En X

1@

*

Define f;(x) = lim fg(x) whenever the limit exists,
n

0 otherwise .
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By Ievy's theorem [[21] for each @ fg (x) conversos

¢ | .

2t
almost everywvhere to E, (f | B). Therefore o) = I
The proof cin now be completed by considering simple fuwachions
ant their limits,
Our next theorem relates Bayes sufficiency to pairuise
sufficiency for an cnlarged class of probability mneasures, For

A
cach ¢ in (), Iet P, be the measure on (X, 4) defined

by
A = [P (&) dr(e
PE( ) %) o8} de(e),

?E is really the marginal of hz on (X, 4),

Theorem 2,1,2, Assume A B and ¢ are countably gencrated,

Then B 1is Bayes sufficient for (X, 4,P, : 6 ¢ (B) iff 3

A

is pairwise sufficient for (X, 4,7 £ e (B,

-

2
Lroof, Suppose B is Bayes sufficient for (¥, A yTg v e (o7,

fhen, given qu ana PEQ’ cons%der the prior ¢ = ékjﬁn 580

§ is then by Theorem 2,1,1 sufficient for $ 2, : @ & E, }

= ¢

where EE is a set of ¢ - measure 1, Therefore given any
bounded A - measurable function f, there is a B - measurable

%
funetion T such that

*
6 (B & Bg (' BY {For @& E, .
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It is easy to soe(singe EE has also £q and En  MLAGUTC 1)

that

” *
f (x) = E, (£ [ B and £ (x) =B, (f | B
-1 = E2 =

For the other part, given any ¢ in éﬁj, we shall show
that for any bounded A - measurable function f£(x), there is a
B - mcasurable function f%(x) which is & version of
E, (£ | Bx ). This will cstabish that Ax (B and Xx¢

A
are conditionally independent given ; B x (H) under My

let gn be & sequence of increasing finite algebras

generating C , Lek C;,;;,, Ciﬂn) denote the atoms of Cis
Fizx n, Consider the k(n) measures t,, osererby(n) OB (i

defined by
p, 1

N - a\CEGCn)

I e

g (C)

#" e (Cg is zecro then we do not define €4
A
Now ¢4 » Epreeerbi(y) © (%), Further B is pairwise
sufficient for (X, 4, P, lEe () and pairwise sufficicncy
inplies sufficiency for cecvery finite collection of PE s, in

particular for { PE , Pi o 91y i, Therefore, for any
1 2 >


http://www.cvisiontech.com

s 2l s

bounded 4 - measurable function f, therc is a B - measurable

*
function f_  such that

*
fn(x) = B (E | B for 1= 1,2, 00e k() ,

P
£1
From the definition of €4,t5,...,%(p) it is casy to

see that

T = Eka(f| BxC),

Since Bx ¢ T B x ¢ and E% (f | B x gn) forms a martingale
- 2

£5(x) = lim f;(x) =E, El3xQ,
n €

— —
.,

* <
Since f° are all B x (B) measurable so is f and this

proves the theorem,

Scction 2,

In this section we investigotc the relationship hetween
Bayes sufficiency and other notions of sufficiency, 1t is
immediate from the definition that sufficiency implies Bayes

sufficiency, Theorem 1,2 establishes that D-sufficiency implies
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sufficiency, In fact,even the woaker notion of test sufficlency
Bayes
implies/sufficicncy, Before we prove this we recall the defini-

tion of test sufficiency,

Doefinition 2,2 1. A sub o-algebra B of A is test suffi-

cient for (X, 4, Py : @ ¢ (D) if, given any bounded & -~ measur-
able function f  lying between O and 1, there is a2 B - mecasur-

* *
able function £ , 0 < f < 1, such that

f£(x) ap, = [ f (x) @, for all @ in (D,
X X 8 -

e

It is known [22]] and can be proved via the Neyman-learson

lemra, thet if B is test sufficicnt then it is pairwise sufficient,

Theorem 2,2,1. Assume 4 ,B and C are countably generated, I

B is test sufficient for (X, 4,P5 : 6 ¢ (@) then B is

Baycs sufficient for (X, 4,P5 % @ ¢ (.

Proof, Note thut since B is test sufficient for (X, 4,P i0e ()
Tor ~ B
it is also test sufficient / (X, 4, P, lE e (1)), To sce this,given

f,0¢f <1 and A - measurable,get B - measurable T satig~

fying [T dPy ﬁ'sﬁf*&Pe‘-*for @ in (B, Now for the same £
J2G) @, = 1T £60 dpg(0) ar(@ = 1 £ (x) dpg(x) a;(8)

=J £ (@ ap, (x) ,
4:
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4
¢ e (i),

~

Conscouently B is pairwise sufficient for (X, 4, P *
Y: b= W

By Theoren 2,1,2 B is Bayes sufficient for (X,4, Py 6 e (),

We now turn to the converse, Docs Bayes sufficiecucy
elwoys imply sufficiency or even tesit sufficiency ? 1t 1s lmown
thatif{?e P90 (E)E is dominated by 2 o-finite measure then
Baycs sufficiency indeed implies sufficiency, It is also clear
from Burkholder's example of a non-sufficient o-algebra conidine-
ing a sufficient o-algebra, that in the general undominstcd case

Bayes sufficient o-algebras nced not always be sufficient,

We give below two examples to show that even with some
additional assumptions on the o-algebras involved, Bayes suffi-
ciency need not imply sufficicncy, Both these examples are
strongly set theorctic and for the results_}_rslot theory we refer

%o [16] ena [17].

Bxanple 2.2 1

This is an example to show that even if all the o-algcbras
considered, namely 4 ,E, C, are countably generdted still Bayes

sufficiency nay fail +to imply sufficicncy,

it

X=@ =[o0,1]

it

D A non-Borel universally measurable subset of [ 0,1 ]
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B = Borel c-algebra on [ 0,1 7]
! . e B S ?
A = ¢ o-algebra generated by 7 B DS I
Pg(8) = 1,(8) i,e. Py is the measure degeneratc at €,

Cleim, B is Bayes sufficient for (X, 4,Pg 1 6 ¢ (D) dub

not sufficient |

To see that B is Bayes sufficient, given any ¢ e (E)
there is 2 B, in B such that BE, ﬂ D and Bg N D° . B and

ned o

t (Bg) =1, is then clearly sufficient for (X,4, Py 2 6 ¢ B;?)
Dy considering I (x) it is casy to sce that B is not sufficient

for (X, 4,P5:9 ¢ (D)),

Example 2,2 2,

This ecxanmple shows that even the additional requirencnt
that the sample space be Standard Borel is inadequate 1o cnsure
that countadbly gencrated Baycs sufficient o-algebrns arc sufficient,
Thig example heavily depends on & theorem of Blackwcll and |
Ryli-Nerdzewski [ 6],

Tet X be a Borel subsct of [ 0,17] x [ 0,1] such that

(1) Projection of X to the first coordinate is whole of [0,T]

(ii) X does not contain any Borel graph
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(iii) X contains a Co-analytic graph, that is & Co-analytic
set (H), which is the graph of a function on [0,1].
Tor cxamples of such sets sec [ 7). Wow let
4 be the Borel o-algebra on X
B be the vertical oc-algebra i,e, sets of the form B x E@;D
B - Borel in [0,1], and
(ED e the Co-analytic set in X which is also & grapa
L (Y (E) = 2(‘[‘., ()Y ¢t ¢ ]:O,']]} . et

c=4 [} (@. Finally let
Py Y¢ the mcasure on X which is Jegenerate at
Then P, is a measurable tronsition function from () to X,

2]
B is Bayes sufficient, To sce this we argue as follows,

Given ¢ on (H) there is a sct E, Bor I in X,

contained in (H) and of ¢

=

measore 1, TLet BE be the
projection of EE to the first co-ordinate, BE is clearly
Dorel in [0,1], Since z (t, 2()): t ¢ B, } =E, isa Borel
set, @ restricted to BE is a Borel measurable function,
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Define a transition function QE as

Q (t,y, Ay = IA ('t, Z(t)) for t e B

|2 E

H

I, (t,,y,) t / B,

Then for all 4, QE
further a regular conditiomal probability given B for all

(t,y, 4) is B - measurablec and is

Therefore by theorem 2,2,1, B 1is Bayes sufficient,

9 in E
£

On the other hand B is not sufficient, For if 3 were
sufficient, there will be a B measurable transition function
which is a wersion of the regular conditional probability given
3 forall @ in (B [18]. Since .;f Py i @ ¢ (E} contains
all point measures on B  this version must nccessarily be
everywherce proper, The cexistence of an everywhere proper

2 measurdble transition function would imply by a theorem of

Blackwell and Ryll-Nardzewski that X contains a Borel groph,

Unlike the othoer notions of sufficiency considercd
carlier, Bayes sufficiency involves the structure of the para-
meter space, The priors to be considered depends on the o-algebra
on (M), which should be rich enough to ensure that € —> P

is & measurable transition function, Examplc 2,2,2 nakes this
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devendence on the structure of the prameter space evident,
Thus any theoren of the kind " Bayes sufficlcency inmplics
sufficiency"™ will neecd restrictions on both the sanple space
and the parancter space, In this context we mention below a

conjacture duec to Blackwell,

CONJECTURE (Bleckwell), If (X, 4) and ((H) © are both
Standard Borel then any countably generated o-algebra 3 which

is Bayes sufficient is also sufficient,

We have not been able to prove the conjeccture completely,
In the next chapter we will prove the conjecture when the Pg s

arce discrete,

The last theorem in this secticn is o kind of mein
theorem, We show below that ™ Baves sufficicncy implics
sufficiency™ is eqaivalent tc the apparently weaker " Bayes
sufficicnecy implies test sufficiency® , Towards *"is we will

Tirst »rove a lecmma,

Let (X, 4, P51 @ ¢ (M) be an experiment, Tet B be
o countably gencrated sub o-algebra of 4 and let SlBi; 1e IN?

= L

be a countable algebra generating B |
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Iet (B, = %(egﬂ NG N o}y

Poa ] B
for (@,n) e (H) define P by P, (1) = -2 W, g
R =0 J@,I‘l g,n T (2 )
8 \'n
doonote thet if (E) is standard Borel so is (E)O . Purthow

{(8,n) —> Pg.y 18 & ncosurable transition function if & —> Py

]
is, Finally test sufficiency of B for § Py n:(@,n) £ (E)O }

)

is equivalent to sufficiency of B for i Pyt O (E—)} 3

Lemma, If 4 and 3B are countably gencrated and if L 1is

Bayes sufficient for (X, 4, P, ¢t @ & (I)) then B is also

y £y Tg s
Boyes sufficient for (X, 4, Pg . ¢ (8,10 e (E)O)_
]

1
Proof, Iet ¢ Dbec & prior on (E)O_ Consider ¢  the

marginal of ¢ on (E), Since B 1is Bayes sufficient for
%, 4, B %-8e (@) there 3 2 subset E,, of (D of
£ neasure 1 for which B is sufficient, Define B, os

Then ¢ (EZ) =1 and B is sufficicnt for

E,‘ _ 0 e
Eg . Hence B is Bayes sufficient,
¥ Theorem™  The following propositions are cquivalent,

Proposition &  Suppose (X, 4) and ((H), C) are Standarad
Borel, If B is a countably gencrated sub o-algebra of A

which is Bayes sufficient then B is sufficient,
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Propogition B Suppose (¥, L) and ((@, ¢) arc Standard

Borel, If B is a countably geunerated sub o-algebra of A

vhich is Bayes sufficient then B is test sufficient,

Proof, Proposition (A) trivially entails Proposition (B,

Now suppose proposition B is true, To see the validity
of proposition (A), let (X, 4, Py : 8 ¢ (B)) be any cxpori-
ment where (X, A) and ((, ¢) are Standard Borel, Suppose
B (:.g is countably generated and Bayes sufficient for

(X, A, Pe e (D).

Consider the experiment (X, 4, P@,n +(8,n) ¢ (EDQ,.
It follows from the lemma that B> satisfies the assumptions
of Proposition B, Consequently B is test sufficient Lor
(%, 4, Pe,n 1 (8,n)e (E)O) and hence sufficient for (X,4, Pgi® ¢

n

Section 3,

In this scction we show that, under certain conditvions
a conpletion of a Bayes sufficient c-algebre is sufficient,
Those results are analogous to those in pairwise sufficicncy

proved by Hasegawa and Perlman,[ 14
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Iet (X, g, Pe M (E)) be an ¢xperiment, ILet ;’:‘Q{;;)

be a family of functions satisfying

(1) £ (x) is bounded and measurable in (8,x),
iy Sl
(i1) for every ¢ in () , there is an E’E, L (O rwof

£ measure 1 and an A - measurable fE,(X) such that,

for & ¢ EE,

fo(x) = fz(x) [P .

In what follows we consider cxperiments in which cvery
family of functions satisfying (i) and (ii) above, has an
cquivalent 4 - measurable function  More precisely given
any fo(x) satisfying (i) and (ii) there is an A - ncasurable

function £ such that

for all & in (W), o) = £(x) [P,

~

‘o these experiments we statce the following theoren,

-

I

&)

% I\Tg denote the class of g — neasurable PE null acis

and W={] W

Theoren 2,3 1 If a countably generated o-algebra B is Bayes

VY
suf “iciont then B = (] B v N, is sufficient, Conscouently
E

A
if B = B VN then is itself sufficient,

{lvb}
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let f(x) ©be bounded A - neasuradble, OSince L s

cowmrtably gencrated there is by Théé;em 2,1,2 & jointly ncasur-

b=

able version f; (x) of Eg (f | B), We will now show thad

f;(x) satisfies (ii), Since 3B is Buyes sufficient there is
by Theoren 2,1,1 a sct Eg of ¢ mneasure 1 such that I 1is
sufficient for (X, 4, Py 1 8 ¢ EE), Consequently, there is an

fZ(X), B - measurable, such that
% *
fa(x) =f@(x) [P@] for € in EE,‘
Thore is thenm an £ (x) , 4 - measurable satisfying

£ =) [P, forall @ in (D,

.x.
Since fg(x) is B - measurable and

P * 2=
i Z.X.fﬁ(X) #f(X)J

t
Lo % . )
AR EEACRE @ | @ (9 IRefx: % X)L (“); ax, (8)
: "
= 0

#*

-

(x is B Vv N, mncasurable for cach ¢, And this completes
Y

the proof,
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CHAPTER I11

INTRODUCTION

In this chapter we study Discrcte Standard Bowel
experinents, Specifically we consider experinents in which
both the sample space and the parameter space are Standard
Borel and further the Py, s arc discrete measures, The main
theorem in section 1 asserts that in this set up pairwise
sufficiency is equivalent to sufficicncy, Since Bayes suffi-~
ciency always implies pairwise sufficiency, the theorcm scitlcs
Blackwell's conjecturs on the equivalence of Bayes sufficlency
and sufficiency in the Standard Borel case for discrote prova—
bilities, In the later part of this chapter we study questions
related to the existence of minimal sufficient sub o-algebras,
The exristence of minimal sufficient sub o-algebras is shown 10
be equivalent to some set theoretic conditions on the nininal
pairwise sufficient partition, We also show, by = c¢xanple,
that even in the discrete case minimal sufficient o-algcbras

need not exist,


http://www.cvisiontech.com

33 &

ASSTMPTIONS

Throughout this chapter, unilcss otherwise mentioned,
ve assune

(i) (%, 4 and (), O are Standard Borcl,

(i1} TFor cach ® in (H), Py is a discrete probability
on (X, 4), Farther 6 —> P (,) 1is o transition
function from ((B, O to (X, 4) .,

¥

(i) If A e 4 and Py (A) =0 for all & in (D then

A=,

Jection 1,

We begin by defining pairwise sufficiency,

Defindition 3,11 A sub o-algebra B of A4 1is pairwisc

sufficient for (X, 4, Py : © ¢ (B)) if for cvery pair

¥ 2
&, %6 in (B, B is sufficient for (X, 4, Pg s Pgel.

* =

It is casily noted that sufficiency as well as Bayes
sufficiency always implics pairwise sufficicney, It is also
cagy to construct cxamples of pairwisc sufficient o-algclra

wiich are not sufficient, In fact exanple 2,2,1 of the last
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chapher is one such, MNote that in cxample 2,2,1, the Py @
considerced arce all digereote We show in this geection that such

situations cennot arise in the Standard Borel case,

Only the ** only if* part of the following thooven 1s
nceded in the sequel, The " if*™ part, we fcel, provides a
justification for considering the Borel o-algebra a4 on X

vathor than the power sct,

Theorcn 3.71.1 Under the assumptions P@(x) is & transition

function iff Pg(x) is jointly mcasurable in © and X,
Proof, Suppose Pe(x) is a transition function,

Iev M =2“A (C ¥z s P@(Ax) is nmeasurable in 8 and X
M is closed under finite disjoint unions and 15 &

moitotone class containing rcctangles and hence contains the

product o-algebra, UWow since D, the diagonal in X x X,

belongs to M, Pe(x) = PQCDX) is jointly nmeasuravle in

£ ond x

For the conversc note that S =2 (6,

x) ¢ P@(x) > OB

™

is o Borel set in () x X, Purther the 6 scctions of 5
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are atnost countable, Thercfore there is) by Lusin's

Tacorem |17 ], 2 ceoncnes of measurable functions £

L

defined on (H) and taking values in ¥ such that

R EICS), O

iyl

S

Define a scquence of functions En(G) as

p,(8) = P (£,())
P,(8) = P (£,(8)) if £,(8) # £ ()
= 0 Otherwise
ﬂn(e) = Pg(fn(g)) if fn(O) # fi(Q) for any i=1,2,,,, -1

0 Otherwise

1

Then for any Borel set A in 4

PQ(A) = E I, (fn(Q)) @n(g),

Since for each =n, £ (8) and I, (f (8)) are ( - mcasurable

o s

as functions of & , Py(4) is also - neasurable,
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.
s

Theorem 3,.1,2, A countably generated sub o-algebra B of

I

is pairwise sufficicent iff it is sufficicent,

~roolf, Given any bounded A -~ measurable function fi, sdace.: B
is countably gonerated (gec Proposition 2,1,2). there is a
Tunction fg(x) jointly mcasurable in © and x such thai

for all 6, f,(x) =E5 (£ | B,

We will now comstruct a B - measurable function £
*
such that for all &, f (x) = £ (x) [P,], Towards this first
note that § = { (8, x) 1 Pglx) > 0 f is by Theorcm 3,11

-

Borel in (H) x X,

Define

Since fo(x) =Eg  (f | B) and B is pairwisc sufficicut, for
gach X, fe(x) is constant on S, Thus for caci € in (H
£ (x) = fe(X) [:Pe:]_ e now show that f  is 4 - measurable,

fxef'm>af =lx:omrgwsaf - pe[ (@02 700 >af 18
g ' "

where PX denotes the projection to the X co-ordinate,
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Since for cach X ,fe(x) is comnstant on the =x-scciion of 5,

| - )
it <oy ={x : sup £,(x) cal= p},[g (6,%): £400 ga} nsJ.
L g% j i .

. 2 *
Thus being projections of Borel sets<{ x+ L (x)> aiz and its
conplenment f 0 £ (x) ¢ a { are both Analytic and conscquoutly

3
Borel [16]. Hence f "0 is A - measurable,

b3
That £ (x) is also B - measurable follows from Black-

well's Theoren [ 15]. To sce this note that if x any 7 belong
to the same atom of B then f@(x) = fg(y) and henee f*(x}

is constant on B - atoms, Therefore { 54 £ @ > a} is a

A - measurable set which is a union of B atoms and so belongs

to B.

Remarles 1) Assuption (iii) namely " if P@(A) =0 for all 6
then A =g 1is not neccssary for the Valiéitj of Theorum BLEAE,
To sce this, note that X = 5x : Pglx) > 0 for some & being
the projection of S5 = g(e x) 2 PQ(X) > O }-18 analytic,
Therefore given anmy T Dbounded, A-measurable, by restriciing

£f %o X‘ and imitating the proof of Theorem 3,2,2 we Coi

* 1 +*
aet an T dofined on X This T can now be extendced as

93]

B - necasurable function to whole of X,


http://www.cvisiontech.com

R ena—

- 38 -

2) Proof of Theorem 3,2,2 shows in essence that the
discrete Standard Borel experiment is weakly coherent in the

the sense of Chapter IV,

Pairwise sufficiency being weaker than Bayes sufficiency

the fellowing corollary is immediate,

Corollary, A countably genecrated oc-algebra is Bayes sufficient

iff it is sufficient,

Certain other notions of sufficiency in terms of deci-
sion spaces, nanely 2-point decision spaces and finite decision
spaces were discussed in Chapter I, Pairwise sufficiency being
the weakest of these it follows that, in the set up of this

chapter all these notions are equivalent,

Scetion 2,

He now turn 10 the existence of minimal sufficicnt subd
v-algebras, Since Py s are discrete there is a canonical
pairwise sufficient partitvion, Theorem 3,1,2 leads us to
beleive that the minimal sufficient o-algebra should be descri-
able in terms of this pairwise sufficient partition, The Theorems

in this section substantiate this belief,
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We begin by defining the canonical pairwise sufficient

sartition, For © in (B, Sy will denote the support

2
™ . R = : 8
{X 2 bg(x) > O_} of Py, For &, 8 in (H) define ?5—?—§g.
Pg = PG(X)
p—aaee (v} & for x in B
Py + P Pg(xf + Pe,(X) 6
= O for x not in Sg.
Let B be the smallest o-algebra gencrated by
Pg . {
—=— =8 8 ¢ () (., The o-algebra B is atonmic, in
Pe + Pe. 4 i j = y

fact each aton is atcmost countable, and this gives risc to a
partition of X, This partition of X will be denoted by
P (8), It is noted in [12] and can, in fact, be easily chccled

that B is pairwise sufficient, contains supports of Py, and

.

¢ also nmininal with respect to these properties, That is if

1]

Lk

is any other pairwise sufficient o-algebra containing Se 8
t

then B (_B .

Theorem 3.2.1, The following are equivalent for a sub o-algebra

c of

e

(i) ¢ is nminimal sufficient
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(i1) ¢ is the smallest countably generated c=algebra

containing g

(1ii) ¢ is sufficient and ¢ =[] BV Ng.
o =

Proof, (i) => (ii) ; By Theoren 3,1,2 any countably generated
o-algcbra containing B is sufficient, Further, by Burkholderdbs
theorem [ 4 7 C is itself countably generated, Hence { is

contained in any countably generated o-algebra containing B,

(ii) => (iii) That € is sufficient follows from

Theoren 3,1,2,

Vle will show that

¢ = R V Ny, Towards this we will
9
first establish that ¢ = [}
e =

no

i Ng,

Let A e 187V,
AR

- atoms, For, if there is an atom C of ¢ such that

We clainm that A 1ig a union of

<K
w

MA#¢ and cC r] AC # ¢ , dhoose 91, 8, such that
6]
1391(0 14 >0 and ng(c 1A%

N

0

L

Since B and comsequently ¢ is pairwise sufficicnt

C VN, = C VN s
Q g e.ﬂe." 81+
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t

Therefore, given A, there is A in

such that

iz

By (A445‘A'j = 0 and Pg (A D A') = 0, But this ig not
1 & '

T

g .

possible, Blackwell's Theorem [5 ] now yields ¢ =[] ¢V
== 1 E

=

5 (C¢ dnmplies [Jpvug(CNgvyg=g¢
2 L& A A s

“he other inclusion will follow from the following two facts,

a) Atoms of B are same as the atoms of ¢,

Suppose not, Since P (B) (_ ¢, let E be an aton of
containing more than one atom of Then the o-algcbra

[ Rwsi

¢ = NED Vv El 4sa tably generated
¢ ¢ { E ! s a countably generate

o-&lgebra containing B and strictly contained in ¢, This

contradicts the minimaldty of C stated in (ii),

9]

b BEed,and E is a union of B atoms, then, @ ¢ M
- B 8

i

T

Since for each 8, Se is a countable set in 3 and &

is a union of B atoms, I(x), Ig (x) is for each & in (ID
B 5 2y

B - neasurable, Therefore E e [] BV Ny .
B

7 N,
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(iii) => (1) [] B VN

= C 1is sufficient, Hence C
o =

o

is countably generated [ 97], That ¢ is minimal now follows
from minimality of B, and from the fact that every sufficicnt

sub o-algebra of A is necessarily countably gencrated,

Wle need the following before stating the next vproposition,
Any ctondic o-algebra on X induccs anequivalence relation on
L,nanely x~o y iff x and y bvelong to the sane atom, Ve
say that an cgquivalence relation is Borel if the set
i‘(x,y) t XUy .} is a Borel set in thc product, A partition
is s2id to be induced by @ real valued measurable function f,
if f is Borel measurable and f(x) = f(y) 4iff x and ¥y

bclong to the same aton,

Thecorenm 3. 2.2 The following are equivalent

LT

(i) B is induced by a real valued measurable function,
(i1i) The relation induced by B is Borel,

sy -8 @ Ny is sufficient .
e

Proof, (i) =D (ii) is immediate For if T is a function

inducing B then x Aoy <= T = T{(y),
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(ii) == (iii), We shall show that if B inducce a
Borel relation then given any set A ¢ A there is a jointly
measurable function fg(x) such that fg(x) =E,(1, | B LEg.d

for all 8 ¢ (I .

P (A [1 RS
Define fo(x) = Iz (x)
2 () 8
whore R = S’(x,y) t X~y ?,
L P

An argument similar to the proof of ®2,1,P shows that fe(x}
is jointly measurable in € and x, Proof of sufficicncy of

N BV YN, is in the same lines as that of theorenm 3,1,2,
e

(iii) ==> (i) is clear since sufficiency of [] 3V S
A

inplies it iz countably generated and hence given by a real

valued neasurable function,

Theoren 3,2,2 yieclds some sufficient conditions for the
cxistence of a minimal sufficicnt sub ¢-algebras, The relation
induccd by B can be easily characterised as the interscction

of the two relations

i) (x,y) &« Ry Iff Pg(x) > 0 <= Pyy) > 0
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ii) (x,y) e R, iff for all 4, , 8, such that Pe1(x) Pe1(y} P 1,

P91(x) Pez(x)
P P ; 0 =
ez(x) e2(:{) > and .fg:fiT fg;TﬁT

R? can be written as
PE{(G,IJ): Pgx) > 0 ,Pe(y)-':o'? i {(G,Xy): Pg(x)=0, P (y) > O}]
Rg can be written as

B ] . }
B! §F91,92,x,y).P91(x) P91(y) PGQ(X) Peg(y) >0 ¢

Py, (X)) Py (x)
$ e 0mn,y 7 1(y) i z(y)f]
1 o %2

Yhere P denotes projection to the X x ¥ Co-ordinatc space,

Clearly both R? and Rg are¢ analytic or Ry and R,
are coanzlytic and the intersection Ry [] R, is also in general

coanalytic,

.In general B will not induce a Borel relation, equiva-
lently there will not in general exist 2 minimal sufficicnt sub
g-algebra even in the discrete case, Below we give an cxanple

of this, We note that in the example 6, # 6, => P, # Py .,
1 2 91 92
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___E__E}{am le (E) v E),E], X = E"'“) 2:'«

.

A is a Symmetric non Rorel analytic subset of [[ -1, 1:[-

8 1is a measurable map from L1, 2] onto 4,

Define 91 and @, two measurable. functions on () to X as
?,(8) = &

g(8) on [1, 277,

~8 on [0, 17

Po(B) =5 Iy (2,(0) + § I (2,(8))

]

2,(9)

B then has atoms (x, -x) for x in AC N 1, 1) =ana
singletons otherwise and this is not induced by a Borel func-

tion ,
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CHAPTER IV
INTRODUCTION

Pefore giving a2 summary of this chapter we will briefly

describe the relevant work in this area,

Let (X, 4, Py : ® ¢ () be an experiment, ¢ the
o-algedbra on (H) and B a sub o-algebra of A, It is lmown
and can be proved easily(see [ 13]) that if { Pyt O (E)j%

i1s dominated by a o~finite measure, then pairwise sufficiency
inplies sufficiency, There has been attempts to generalise this
result and show that even in the undominated case pairwise
sufficiency is related to sufficiency, TFitcher [25 ] intro-
cduced compact statistical structures, Basu and Ghosh discrete
statistical structures and finally,Hasegawa and Perlman Coherent
experiments, It is now known that coherence is equivalent to
compactness and the discrete structure a special case of both,
That these concepts are natural generalisation of domination by
o-fimite measures was established by Dipenbrock [10], who
showed that compactness and cohercence are both equivalent to

domination by a localizable neasure, Theiy theorems conneciting
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pairwise sufficiency with sufficiency is of the form " if 3B

is pairwise sufficient then [j BV NG is sufficient ',

8
2
, 8,,6, 12

While experiments dominated by & o-finite measure are
coherent, Rogge [27_] showed that if A is countably generated
then any coherent experiment is necessarily dominated by a

4 particular in
o~finite measure , Thus in countably generated sitvations, in /
the Standard Borel case, compactness is not more general than
lonination by a o-finite measure, However, in view of Theoren 3,1,2,
witich asserts that in the Standard Borel case if the P@ s are
disecrete, then pairwise sufficiency is equivalent to suflficieney,and

1.

since Pg(x) can be thought of as densities with respect to
the counting measure, & similar gencralisation gsoens possible,

The first part of this chapter centers on such a generalisation,

The first part of this chapter is motivated by the work
of Hasegawa - Perlman and the theorem of Dipenbrock, We dciing
iie notion of weak coherence, Borel localizable and Berel decon-
posable measures -~ all Standard Borel adaptations of lmown
cencepts, and then show the experiments dominated by Dorel
localizable neasures satisfying an additional measurabilily

property are weakly coherent,
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In the second part of this chapter we give two examples
oviained in response to questions raised by J, K, Ghosh, In
[127] it is shown that in dominated (by a localizable measure)
cxperinents therce always exists a minimal pairwise sufficient
c-algebira, 'le give an example to show that minimal pairwvise
sufficient o-algebras need not exist in the general undoninated
case, The second example is in the context of Neyman factorisa-
tion theorem, It is shown in [12]], that for experiments
dominated by a localizable (locally localizable) measure, &
sub c-algebra is pairwise sufficient and contains " supports®
iff the densities admit a factorisation with respect to it,

The question then arises as to whather such a theorem is itruc

without the assumption of localizability of the dominating

neasure, Our example answers the question in the negative,

section 1

et (X, 4,75 : € e (E) be an experiment, Assumc
Turther that (H) is equipped with a o-algebra C and that
6 —> Py is a measurable transition funmction from () Q) to
(X, 4). Throughout this section 4 ,B,( are assumed to be

countadbly gencrated,
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Definition 4,1,1, A family of functions fe(x), jointly -

measurable in € apd x, is weakly pairwise coherent if given
L

94, 9, there is an §} - measurable function I,

(x) such
y 977

that

fe'}ez(x) = f91(x) [P91]

£, (%) P -
ggx [ 92]

f (x} is weakly coherent if there is an A -~ measurable fuac-

tion f(x) such that

£(x) = 00 [Py forall & in (B,

Definition 4,1,2, An experiment (X, 4,P 1 € ¢ (M) is

weallly coherent if every family of weakly vairwise coherent

functions is weakly coherent,

Remark, Coherence in the sense of Hasegawa - Perlman can be
obtained from weak coherence by taking g to be the power set

of (B .

Weakly coherent experiments form a subclass of experi-

" ments considered in section 3 of Chapter II, Even in the
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Standard Borel case, there are experiments covered by Theoren 2,3,1
of Chapter II, which do not fall in the ambit of weak coherence,

Below is an example of one such experiment,

Example, ¥ = (D = [o0,17],

Borel o-algebra on [ 0,1 ],

oy
i

Ge + %'K where &

nf— [

Py = is the point mass at o

>

and A is the Lebesgue measure on | 0,17} .

Considering the diagonal in [0,T] x [0,T] it can be scen
that (X, 4,P5 ¢ 0 ¢ (D) is not weakly coherent, On the other
hand taking ¢ to be the Lebesgue measure on (H), for any
function fe(x) satisfying (i) and (ii) of scction 3 (Chapter II)

it is easily seen that
fox) = f(x) [Pg] for all & in (D
vhere f(x) = fx(X) i
We now #&ntroduce Borel localizable and Borel decomposable

measures, These notions correspond to the well known (sec for

instance [29]) localizeble and strictly localizable mcasurcs and
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unlike them Borel localizability turns out to be equivalent to

Borel decomposability ,

Definition 4,1,3, Iet (X, 4) be a Standard Borel space

4 measure m on (X, A) is Borel localizable if there is a
Standard Borel space (T, T) and a Borel subset E of T x X
satisfying
. t
(1) 0<m (B") ¢ =
| by b,
(11} t, #t, then m@E 1 E S =0

(iii) for all 4 in A, m(A) = £ n@ [ EYH
- teT

(iv) If B is a Borel subset of E, then { BY ¢t . T‘}

has an m essential supremum in A,

Definition 4,1 4, A Borel localizable measure m on a Standard

Enl

Borel space is Borel decomposable if there is an F satisfying
(1), (ii) and (iii) of Definition 4,1,3 and also
e ' ot k2
(1i) ¢y #t, then E (1 EB° = g,
¢
Any set B satisfying conditions (i), (ii), (iii) and (ii)

as
will be referred to/a Borel decomposition of (X, 4,m),

HYe note that in case of Borel decomposability condition

(iv) is automatically satisfied, For,if E is a Borel decomposi-


http://www.cvisiontech.com

~ 52 .

tion of (X, 4,m) then for any Borel set B (CE, L] BY is
t
itsclf Borel and acts as an essential supremum of { B £ tiiT%’

theorem 4,1,1, If (X, 4, m)  is Borel localizable then it is

Borel decomposable,

Proof, ©Since m is Borel localizable get a Borel decomposition

savisfying
(1) 0<aE® <o
- ty t,
(11) for t, #t, m(E ' 1 E ) =0

(1ii) m@) = = m [] 2%
teT

(iv) for every Borel set B (CE ’ th_: t e T} has an

n essential supremum in 4,

*
e will construct an E , Borel subset of T x X, such that
(1) forall 4.7, EX =E'° [n]

ot .t
(1) B 'NE 2 = g,

Let { C119Cosennnnn } be a countable algebra generating T
t

-

for cach i define Fi = ess sup E
i
t e C
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*
How define E by

*
Then B is Borel in T x X, for E ={(‘t,x) ¢ B (t,x) = 1}

vhere B (4, =TT [I, (8) Ip () + (1 - I, () (0 - I ]
1 i i i o

*
It can be easily verified that E satisfies the required

properties,

Examples of Borel Decomposable. measures

(1) (X, 4) Standard Borel and m a o-finite measure on
(X, A__) . GChoose T = and {En ‘ne JN} any decomposi-

tion of (X, 4) into sets of positive finite measure ,

(1i1) (X, 4) Standard Borel, m counting measure,

Choose T =X and E +to be the diagonal in X x X,

(ii1) x = [0,7] x [0,7], 4 Borel o-algebra on X,
(, T = ([0,T], Borel o-algebra),
m(A). = T T S ST the Iebesgue measure

on [0,1] .

%
t
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Iet m be a Borel decomposable measure on (X, 4) and
¥ Dbe a Barel decomposition of (X, A,m), For each t let

m. be the measure m restricted o Et.

Definition 2.1,5, We say that m is strongly Borel decompos-

able if there is a Borel decomposition E of (X, 4,m) such

that for 211 Borel subset B of E
t — mt(B) = n(B [ )Y is measurable in s

Note that cxamples (i), (ii) and (iii) above are indced
strongly decomposable, Example (ii) can be modified to get a
dccomposable but not strongly decomposable measure, For this
choose a non measurable positive function £ on X and sct

m(x) = ),

An experiment (X, 4,P, ¢ @ ¢ (D)) where (X, &) and
((ID, ¢) are Standard Borel is domimated by a strongly Borcl
decomposable measure m, if
ap
(i)  for ' - ina nd =2
i or each & in (@, P, is dominated by m and =
exists

(1i1) EP 'GS(H:SZE m i,e, PG(A) = 0 for all 6 ¢ (I
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We have assumed " strong' Borel decomposability rather
than Borel decomposability to ensure the measurability of

cordain functions, This is exemplified in the following lemnma,

Lemmz 1, Assume that (X, 4,P,: € = (H)) is domimated by a
B si'.:f’o:a_glyW Borel decomposable measure m and let E bhe a
strong Borel decomposition of (X, 4,m), Then for each Borel
subset of T x (H) x X, the following functions are measurable
in (8, 1%) .,

(1) (8,1 — Py @9 where 357t < g-x : (0,t,x) ¢ B-}

(i) (8,t) — o @HY 1 &hH

Eroof, (i) Yet M = éiE("'(H) xT x X Py (Be’t)
v ( —

is measurable in (e,t)}

M contains all rectangles, is closed under finite
disjoint unions and is further a monotone class, Con-

sequently M contains all Borel sets in (@ x T x X,

BC@W xTtxx:n @YY

(1i) m'=S
11 M !N

is measurable in (9,t);§

V ¥
That M contains all rectangles follows from 'strong'

¢

decomposability of m, M is closed under finite
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S ; ) t
disjoint unions, Further, since for all t, m (E™) < =,
]

is also a monotone class,

£
&

o

i

Lemma 2, Tet D =§, (6,t,x) ¢ Pg EY > 0 and x ¢ Et}-
<
and Dy be the projection of D %o the (H) x X space,

Then the function 6 —> m (D? M A) is measurable in € <for

¢very Borel subset A of X,

Proof, D is Borel in (I} x T x X (by lemma 1), Purther
for sach (©,x) there is at.most one t such that (&,%,x) ¢ D

Therefore Dy is Borel in (B x X,

Let D, = { (6,t) : Py &% > ﬁ}.

D, is a Borel set in (@) x T such that each 6 scction
of D2 is atomost countable, Therefore by Lusin's Theorem [ 17 ]
there arc measurable functions g;,85,...., defined on (B

talking values in T such that
D, = |J (@,
i=1

Pix any A" in 4, Define a sequence of functions #,,(8),8,(8),,,,

oy
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g4 (8)

2,(8) = m (@ ] A
8,(8)

7,(8) = m (8 [1A)° iT 5(9) # g,(8)

= 0 if g4(8) = g,(8)

8,(8

g.(8 = m (B[] A) 1f‘ 8,(®) # g;(®)

fOI‘ l = 1’2!0"’11-1
0 otherwise,
Then m (& [) D?) = I Qn(e) whiéh is measurable in € ,
n=1

Theorem 4,1,2. If (X,4,P5: 8¢ () is dominated by &
strongly Borel Decomposable measure m, then there is a jointly
ap
ey o aprai - 9
neasurable version of T *

Proof

t +
let D = { (6,t,x) : Py (E") > 0 and x ¢ B }
and D, be the projection of D to the () x X space,

Then D1 has the following propertics
(1) Py (D) =1 forall 6 in ()
(1) n (D) is o-finite for all 6 in () .

To see (ii) note that DS = L 5 ana {f : PGCEt)><3}
t

t
Py (E”) >0

is at-most countable,
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Liow fix finite algebras gn generating A and denote the

atons by, A, ,..,,aK0
] - 2. (0)
z km) « poa NEd ) .
Define f () = 21 z b I (x) g° (0)
- i =1 e i a1 : Jjv
/ ntalflzd Ty A4 NE

where Qé(e) are obtained from the 813 809.00.. Of lemma 2

&g follows, Fix some ¢ outside T and declare =& = @ .

7,(9)

H

g1(9)

7o) = gy(8) if g,(8) # g,(8)

I

% if g,(8) = 8,(9)

2,8 = g.(&) it g (&) # g, for i-=1,... 01

= 13 Otherwise ,

Then by a well known theorem (see [217]), since m is finite

Qi (& dp

on E " fg converges to ?E? . Since for each n, fg(x)

is jointly measurable, fgo(x} defined by
fe(x) =  lin fg(x) if it exists
n
0 Otherwise

is the reguired version,
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Theorem 4,1,5, If (X,4,Pg5: @ ¢ (D) is dominated by a

strongly Borel decomposable measure then it is weakly coherent,

Proof, It m be the dominating‘measure‘and E be a strong

Borel decomposition, By theorem 1, we choose a jointly measur-
3P _

8

able wversion of e

o s o
Penote by 5 =7 (e,X) o “d.,‘]":’*) O

L

Suppose fe(x) is weakly pairwise coherent, Then by

xiend

©

ictting fo(x) to be zero outside S, it is possible to
e ’

o{x) as a weakly pairwise coherent family of functions on

(X,4,%:3c @)

wvhere (B = 5 (ag) a; >0 = a; = 1}1x @ x @D x,.,

.=

and Px

O
1
— 1
)
1.d

Therefore we will assune without loss of generality that
% Pe g el g (E) } is closed under countable convex. combinations,

Ve will also assume for simplicity that fe(x) = I (x) ,
9

He will briefly descride the idea of the proof, On cach

gt » Pg 18 a family of measures dominated,in fact,equivalent
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t
Et Therefore there is some 8

to the finite neasure mnm

such that Pgr Zm on EJG . 4lso since BG(X) I.t 1is

E
cohcrent, By IEt will be a Py cquivalent version of
Ng I; for all 6, Our proof shows that By, on E° can be

e

. L
defined independendently of © and also can be done ncasura-
abvly in t, Having got Bt s we piece them together to get

a B,
N j I , %
Define h on D, = z(@,t)-: Pg (BT > 0 { by

hos = BE" 59
n(E®)

thorefore D = % (6,1) ¢ h(s,t) = 1‘§ is Borel in (I x

Hl

Mote that (8,t) e D, iff P, is equivalent to n on

E, , By the theorem of Halmos and Sawage [ﬂ3:} for every t

L
[

there is atleast one @€ such that (6,%) e D It can he

scon that T 4 T A = IBQ? %Et [Pg] forall 6, if

48 before choosc 4 finite algebras generating 4

n
1 2

Let A, AD ,..,,Ai(n) denote the atoms of 4 . For fixed

(6,t) in D,

is necasurable in (©,t), and
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L

k() w@l s, NEYH
(X) I t(X) = 1lim 5 g ﬂ & ﬂ
iz

B I . "R b t
n—> o i=1 m(4, MNeE"

8

-

n(al 13, 125
EKAg ﬂ £Y)

We will show that for cach i and n,

is independent of € and is furthgr a ncasurable function of %,

Fizst note that (8;, 1), (8,, 1) ¢ By => 391 . :[EJG = 392 IE_b (o |

m(al B B m(Ai:(] B f1 EY)
and hence it rw 91£7 = _: - egﬁ .
n@; 1 EY m(s, [T BY

m(al ] 3, ] &%
On D  look at the function g (8,t) = . e .
2 a1 EY
m(.:!.n I

Then g (8,t) is measurable in (6,1) and is constant on each
t section, By arguing in the same lines as in the proof of

*
Theorem 3,1,2 g () = sup g(8,t) is measurable in t and

Dt
0

. *
Turther g (t) = g (8,%t) if (8,1t) i) J

n(al ] By (] 2% .
n(al (] &% g° M al

ik

Therefore for ecach (i,n)

is @ neasurable function of only + and x y and therefore the

function ft(x) defined by
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k() nat 134 1Y

folx)'= Mim - 1 n if the
T n 1 m(A; ﬂ Et) Etf}Ai
limt exists
0 Otherwise

ig Zlso measurable in  (%,x) , Further since for each 1  there

is some @ , (6 ,%) & D, amd £, (x) = IBG Iy [n]],

£, (x) = (x) I ,(x) P for all 6 in (),
% g e [ 2g.]

Now we can define f(x) = I ft(x) 1 t(X) and then
e(x) [ Pg] for all e,

f(x) = Ip

This completes the proof of the theorem,

Theorem 4,14 Suppose (X, 4,P5: @ ¢ (D)) is weakly coherent,

If B is a countably generated sub o-algebra of A which is

pairwise sufficient then B = Nev N, is sufficient,

e
Froof, Tet f be any bounded A - measurable function , Get
Tg(x} a jointly measurable version of E(f | B), Since B
is pairwise sufficient, f@(x) is weakly pairwise cohereut,
liow since (X,A,P, t 8¢ (H)) is coherent, there is an e
such that

* -
£ (x) =f,) [Py for all ®
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. *
measurable;, £ (x) is BV H

Since each fg(x) is B s

v}

measurable for each €, -

semarle  Since B is pairwise sufficient

Flue}

K
8

VN, = N gv1\191,92_
e
19272

Therefore in the above theorem one can assert that

N BV Ny o is itself sufficient, Combining Theoren 4,1,3
1

e & 1272
and 4,1,4 we get,

2

Theoren 4.1.5 T X

A o e

, A,P5 1 € ¢ (D)) is dominated by a

strongly Borel decomposable measure, then for any countably

= gvrH is
2V lg o
1192
91:9

Hles

generated oc-algebra B, the completion

sufficient,

Remark, Suppose B is countably gencrated and pairwise
sufficient and further if m admits a decomposition E such
that for each 1, Et is B - measurable, then B 1is itself
sufficient, This is immediate from the construction of ft(x)_

In fact this is precisely what happens in the discrete case,
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Por, in the discrete case given a countably: generated pairwise
sulficient o~algebra B, it is egsy to see that the atoms of
3 are countable, Hence for T one can take the space of
atoms of B, (Quotient space) and for each 1t take ok to

be the t - atom, T is in general analytic, however

Theorem 4,1,3 goes through even when T is analytic,

We will now give an examnple to show that Theorem 4,1,5

Fal
cannot be improved in the sense that while B is sufficient

B itsclf need not be

OO=xpPO, ® =0T U {25

1l

Exanple 4,1,2, X

A = Borel o-algebra on [0, 1] :_5[0;1]
¢ = Borel o-algebra on [0,T] || 22}
for 6 ¢ [0,T] Pg = Lebesgue measure on € x o,
P, = Lebesgue measure on the diagonal in X,

To construct m , take 1T = [0,T] L {2} For t e [0,T]
dofine E = t x 0,1 —?‘-t',_’c--} and for t = 2 define

Bb - diagonal in [0,7] x @’g .
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: : t ] '
We now define @m by m(A) = £ A@A") + a (4 [T D)

te [Ovﬂ
bl : '
where X 1is the Lebesgue measure on [0,T] and A  Iebesgue
meagure on the diagonal,
In this example, the o-algebra of wvertical Borel sets,

i,e, sets of the form B x [0,T], is pairwise sufficient but

not sufficient,

Seebion 2

¢ e e

In thig section we give two examples both in response
to questions raised by J,K, Ghosh, These examples are in
vndominated situvations and unlike the earlier chapters can

occur only when 4 1is not countably generated,

Exanple 4.2 1. This examples describes a sifuation where a

minimal pairwise sufficient o-algebra does not exist ,

et I be an uncountable set

X = (0 = {0,131

4 i Product of discrete o-algebra on 20,1;

is for each © ‘the point mass at @,
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It is easy to see that a sub o-algebra of A is
paiyrwise sufficient iff it separatqs points in X, Be will
show that é‘ does not contain a minimal separating o-algebra,
lore precisely we will show that any sub o-algebra of 4,
which separates points in X, contains another separating

?

s-algebra,

Iet B be any separating sub c-algebra of A, For
every B in 4, consequently for every B in B, there is
a countable set X(B) (C I which determines B, X(B) will
be called a support of B, Note that any countable set con-
taining a support of B is also a support of B, In wvhat

follows ey 8 take the value O or 1

Let x, = 0 g = 1

Then there is a ‘Bo and B, in B such that x e B, %y ¢ B,
and B f] By =9,B, LJ By = X. Iet K{(1) %be a common support
of B, and 3B,, We now define four points Xqn, Xg1 s X0 » X9
by
x = g, on K(1)
€1 €p 1
on I - X(1)

£2
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We now obtain sets B8 . in B, vpairwise disjoint
1 =2 i

covering X and xe1 e € B81 eo

L
.

Let K(2) DX(1) denote a common suport of

381 gl oy W 0 or 1} . We now define eight points ‘
9 TP . b
XE‘-I 82 83 by
x81 AL & ety b x(1)
2 "3 ‘

en O K(2) - K(1)
= on I - K{(2)

Corresponding to these points we get B ‘
E-] 62 63

Continuing we get a Branching sequence of sets BE :
- il 52

and corresponding supports K(n) , Since |{J “K(n) is countable

y weao !.Sn

?

n=1 ‘""i -2
[o'n]

o

for any sequence g = (e.] . 52,_,‘,,) , Be) = ﬂ B g 1evest
n=1 °1°2

n

ig in B and is also non-empty,

c . . . i
C or C is contained in countably

-
-

Define Cf= {c c B

many B(E):S; . Now observe that

(1) € separates points in X,
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If given x,y there isa B in B such that
x e B,y ¢ B. Now choose ¢ such,that x e B(g)., Then

xeB [} Ble) and B [] B(e) is in C, However y # B,]rTB(g:_)

ii) ¢ 1is property contained in B,

By, e B , but B, does not belong to C

Before giving the next example we start with some

prelininaries, mostly taken from [127] (See also [ 187])

Iet (X, 4) be a measurable space, We recall that
LA is not assumed to be countably generated, In fact such an
assumption would make most of the following trivial, ITet =n
be a measure on (X, 4), with the finite subset property,
i,e, for every A in A, with m(A) > O, there isa B =z 4,

B (C A such that O < n(B) < =

-

et A (F) ={A e A m(A) <oo}

i}

A(D) {E(:X:Eﬂ}&gé for all A in A (F)?

The measure m can be extended as a measure m to A(1) by

nm(E) = sup n(d ﬂ E)
A ¢ 1_1__(13‘)

%, 4, m) will be called locally determined if A(1) = A
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on A is called localizable (respectively

locally localizable) if it satisf%ﬁs the following condition,

Suppose that F

cxists an essential supremum of E with respect

is any subfanily of A(F) . Then there

te m in .g

(rcepectively 4(1)) ; i,e, there isa F  in 4 (respectively
A(1)) such that
a) m{E=F) =0 (respectively o (F - FO) = 0) for
all F in T
b) = (F - A) =0 (respectively @ (¥, - A) = 0) for
all A4 in 4 which satisfies "m (F - 4) =0 for
all F in ET,
Note that m is locally localizable iff ® on 4(1) is

localizable ,

We will need the following theorem regarding localiza-

bility .

Definition 4,22 A family gjf(x,A) ¢ i e g(F)‘g is called

an n-cross section if it has the following property

(1) f(x,A) = 0

outside

A
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(i1} for any A, B in A(F) it holds that

“~

f(x,8) I (x) = f(x,B) I (x) [mn]]
Al B A=

Theorem 4,21, Suppose m is a neasure with the finite

subset property, then m is localizable (respectively locally
localizable) iff to each n - cross section ff(x,ﬁ) T A e Jf;:(F)}
there is-an # - measurable (respectively 4(1) measurable)

function f£(x) such that
£(x)  I,(x) = £(x,d) [m_| forall A in A(®,

An experiment (X, 4, P, ; € ¢ (H)) is said to be
weakly (locally weakly) dominated if there is a localizable
(locally localizable) measure m on (X,4) such that

dPg

(i) for each 8-,'Pe‘< < m and —% exists

(ii) gP@ * Q¢ .(E =m i,e, PQ(A) = Q0 for all @&
iff m(A) =0

»

In the next theorem by a2 support of PQ we rean the

dPQ dPe
set X3 > 0 for some version of -

dm L 4
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Theorem 4.2 1 (Ghosh, Morimoto, Yamada)

-

Assume that (X, 4, Pyt & a () is locally weakly

dominated by m and let B be a sub o-algebra of 4

Then 3 is pairwise sufficient for (X, 4,P,: 0 ¢ (D)

' _
and conmtains the support of ibPe * 0 ¢ (E) % iff it has a
Neyman factorization
T S 8® hx)  [a]
whore gg(X) is B measurable for each € and h(x) is a

non-negative 4 measurable function,

J, K, Ghosh had asked us whether Theorem 4.2,1 is true
without the assumption of localizability, Below we give an
exemple to show that this is not so, In our example each Pq

adnits 2 density with respect to @ measure m, but there exists

¥
a pairwise sufficient c-algebra containing supports of
iPe t 8 e (D E for which factorisation of the form described

in Theoren 4,2,1 does not hold,

Our example is based on a theorem of Fremlin (page 166

[117]), ©Note that "Maharam " spaces in Fremlin's terminology
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ig same as " localizable ' in ours Further a measure space
. L
B 8
(Zy 4, #)  is decomposable if there are pairwise disjoint sets
y L " P
Fy s+ Fe ]"‘% of positive finite # - measure, such that

or all A ¢ 4,

p#(d) = = H(Fy 1 &), Por a fornulation of
e

viroduct measures in the context of localizable measures we

refer to Fremlin [117]

Proposition [ Fremlin”], A complete locally determined measure

space (X, 4, #) is decomposable iff its complete loczlly

deternined product with every probability space is Maharam ,

In [11] Premlin gives an example of a complete
locally determined nmeasure space which is Maharam but not
dgcomposable, Now by the preceding proposition, there is a
probability space such that its product with Fremlin's example
1s not Mrharanm or equivalently localizable, This product space
ig an instance of a space (X, A,m) satisfying the propertics

listed in Example 4,2,2 below ,

Dxanple 4,22,

Assume (i) (X, 4,m) is a non-localizable, locally deter-
nined (hence non locally localizable) measurc

Space with the finite subset property.
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- -

i1y B (C sach that (X, B, n) is localizable and

9=

has the finite subset‘lproperty,

Iet {Ey Ve [ ; be & collection of sets of positive
finite measure in A, such that { E), :Y e [} fdoes not
have an essential suprerum in ﬁé . Without loss of gencrality
gny s We Z can be taken to be almost disjoint i,c,

m(ES,‘1 N Eyg) = 0 whenever Y, # Y,
Define 4 as #'(a) = 3 a@ [ Ey)
Y e ﬁ

1
e is casily seen to be a measure .

1

Define 4 as U4 =m + 4 |

Then m is equivalent to £ and % does not exist ,

Wow lot E={Fs1=3: 0 < (M <°°}.

o

Mon&

FEE% where PF= IlT(mﬁ_ "

il

Define P

[ B )

Then

(1) ® = m

(ii) B is pairwise sufficient for (3 A P) and

4
contains support of EPF t FePF -52
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- T4 =

. ae

s

We will show now that EﬁE - cannot be‘factorised,
e %
dPF
Suppose = = gp(x) , h(x) where gp(x) is B mneasurable

and h{x) > 0,

dp
‘éﬁg K H?ﬂ % lp = &0 .h(x)
or %% lp = nl® gp(x) h(x),

Now ) m(F) g (x) ¢+ P e F is a B neaswable cross
by £ &

[ A Ny

section, Therefore there is a g such that

IF(X} g(x) = gE(x) n(F)

dm

. g{x) hx) = T Contradiction !
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