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Absiract— This paper deals with the probability density estimarion uging a kernel-bused approach whers the
window size of the kernet is found by & daga-driven procedure. It is theoretically shown chat, under ceréain
assumptions, the estimuted densities on bovndad sets can be asymptotically unbiased when the width of
window is ohiained from the minineal spanming tree of the observed dace. The theoretical developrment
initialky earried oul on #7 is applicable to higher dimensional spaces. The resulrs are experimentally verified
atl boundad sets with different types of distibutions, The behavigur of the estimator in Lhe case of the
unboutided set as in that for Ganssian density is also experimentally seen to be good, Some applications of
the proposed density estimation technique is demenstrated. One applicalion is the representative poinc
detection algorithm, which can be applied for data reduction and outhier rejection. Another application
invalves detecion of border points of a dot nattern as well as (inding a thinned version of the dot pattern.
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1. INTRODUCTION

This paper deals with the non-parametric probability
denaity estimation from a given set of data in mula-
dimensional space. Density estimation is useful and
important in statistical approaches to various prob-
lems of image processing, pattern recognition and
artificial intelligence.

Perhaps the earliest attempts on nen-pararnelric
densily estimation were based on histograms with
uniform and random partitions!" The method of
splines, such as histoaplines, is another approach to
obtain a smooth density mapping Reports on these
two techniques consider mostly one- and twvo-dimen-
sional data and their applicability fo problems in
arhitrary dimension iz limited. The method of ker-
nels'®* and the k-nearest neighboors are fwo most
popular estimation procedures that can be applied to
data of arbitrary dimension. Amoeng others, the
method of orthogonal expansion vsinyg, say, igonom-
elric basis functions can be mentioned. Functions such
as Hermite polynomials may also be vsed [or the
expansion.™ The methods of delta sequences,™ pen-
alty functions*' ™ and stochasiic approximationt ! are
among the other technigues of density estimation. For
a general review on the topic, see Wertz!'® and
Prakasa Rao ¥

Kemel method

Window selection

Asymplotically unbissed estimator

The work presented here s related to the method of
kernels, The idea behind the kernal method is as
follows, A window function satisfying the conditions of
probubility density funetion is chosen. For amultivari-
ate datum x, the density estimate f,(x)is defined as the
average of the window [unclion values at x with arigins
centred at the data points, where # is the total number
of points. A parameter &, which iz the width of the
window, decides how well the local variation in the
actual density 1 will be reflected in the cetimated
density ', When the number of samples tend to infin-
ity, f, becomes an asymptotically unbiased and con-
sistent esdmator of § under certain restrictions on ki

Clearly, the choice of A, has amajor effect on f(x). Tf
h, is too large, the estimale will euffer from too little
vesalution. If &, is too small, the estimale will suffer
from too much statistdcal vardabiity, In this paper, the
window parameter ki, is found by a data-driven pro-
cedure. Tt can be understood that the choice of b,
should depend on » as well as the relative diglange
between points in the data set. The dependency of
it and interpoint distances is combined here by con-
gidering ki, as 2 function of the length of the Minimnal
Spanning Tree (MST) drawn on the data set. The
cholce of the window sive f, and the proposed density
estimation procedure have been described in Section 2,

In the origingl kernel methods of Parren'™ and
Cacoullos™ f, is a sequence of numbers, while in our
case i, will be a random sequence. Henee, we should
have i —0 and skl — o in probability as m— oo,

e
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Thus, the consistency and asymptotic unbiasedness of
our estimation do not directly follow the arguments of
Parzen and Cacoullos and should cherefore be proved.
The theoretical aspects of the proposed acheme are
treated in Section 3. Experimental reaulcs on simulated
data for specific densities are presented in Section 4.
The applications of the density estimation method o
representative points detection. border poinls delec-
tien and generatien of a thinned version of 1the dot
patern are also presenied in Section 3.

1. PROPOSED DERNSITY ESTIMATION APPROACH

Consider  the  given st of points I =
X, %4, %, =4 The kernel-based approach for
density estimation is as follows,

Suppose K{¥)is a Boret scalar function on &9 such

that:

SupiKivll <o [ Kiylldy =
a

Feit!
i yK@ =0 | Kivdy=L (1]
|+ == a

where |y; dencies the length of ihe vector y an 3% K(¥)
is termed the Lernel of the density estimator. Let £i¥)
be the actual density function on &9, Let:

L S 2
flll'x:l_}'lrl:u‘.:_.=| .|5]- 3 £ .]

£l

where X, %,....%, are independent and identically
diseributed random vectors following the density
fand k. }isasequence of positive constants satisfying
b, =0 and nh? — 2 as 5 — oz, Then al every continuity
point x of f, we have
i L0 = 10

Note that, if &5 are sequence of numbers satislying
h,—0 and nfd — oo as w— o, then f(x}is an asym-
ptotically unbiased and consistent estimate of f{x) for
every g%

We propose the following approach for density
estimation whers A, i3 computed by a data-driven
procedure. We want to combine the number of data
and the interpoint distance through the MST intro-
duced by the data,

Consider a zet 4 which is path connected, compact,
cllIntid) = 4 in & conaining the ser 2, of random
VEGLORE Xy, Mo, . ..o N, Consieuct a ninlieal spainlng tree
(MSTM % on 1, where each x, denokes a node and if x,
and x;are connceted by an edge then the edge weight is
defined as the BEuclidean distances between x; and x;,
Let the sum of the edue weights ol MST of £, be termed
the length ! of the MST. Then it can be shown (see
Appendiz) that (! /a] =0 in probability and {, — ac in
probability as i — oo, Mow, if we take:

.f!'“ 1
h,,=L—) . g2, (3
I

then i, — ¢ in probability and »h) — x in probabilily
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as n— . For any g =2, we can obtain a sequence
of random  variables B ke o0 the basiz of
% Xg, .- Such that &, —0in probabtlity and #h! — 2 in
probability as # — 2. We take the kernel Kix)as:

!
= it fr,—sdsl ¥is1,2...
Kxi=1{2 s, — x5l = i=1, N .4}
L{) ntherwise, :
where x;={x;, %35 x,) and x={x, x. ... %[,

and ' denoics the transposs. Mote that K{x] satisfies the
properties (1} of a kernel given above.

Using eguations {2)--(4) the density at every xe#Y
can be estimatad.

It may be mentioned here that k, as defined in
equation (3} was also found Lo be wselul in sel eslima-
ticw problems 4

3 THEGRETICAL STUDY

This section deals with the theorelical properlies of
h,. Weshall deline two sels of and %, Jor ihe sake of
mathematical clarivy, Al lirsl, we congenirats on 2-D
[wo-timensional) space. Here we rigotoosly prove
that if we use equations (2)H4) for density estimation,
then the cstimate will be consistent and asynptotically
unbiased as stated by Theorem 1 and Theorem 2 be-
low. Hewever, to prove the theorems several lemmas
are necessary. A1 first, we state the lemmas (with proofs
givett in Appendix), Next, the theoremns are staced aned
provid.

31 Analysis tn 2-D space

Let & =14 =#% A path connected, compact,
cliintidi =4, Int{d} i5 path connected and
AAmellA =0 where »~ denoles the Lebesgue
racasure in # . o is the collection of all those subscts
of #° which support the density function. Let
W= =0 f is continuous on Int-d),
Fixi=0 wxcfu(d) [,fds=1, 3T=0 such that
| )= 1 ¥ xs A, where T is finite, fix) =0 vxz A%},
TAexf, ie ¥, is the ser of all density functions
with support 4. The results concerning the consist-
encyv and asymptotic unbiasedness of # (%) are stated
below.

Lat %, X;,. .., X,.... be independent and identically
distributed random vectors with density e S 4
such that (e .. Let B, =[5, %.....x.}. Let {, be
length of MS5T of 2. Let k, = /(! /n) and

J,’L-"4 ity l=1 and |y, =1

Fv) =
(x) i otherwise,

whets ¥ = (¥, v.).
Let the distribulion [unclion of o, be represented by
Bl e

Pih,=ay=Flx Fx=0
Lemmma 1. Plrhs = M= 1 as n— oo for every M > (L

Lemma 2, Pih, e )= ¥ agn— oo for every &, = 1.
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Leeinna 3. _
; 1 _[fx— xlj

Proofs of Lemmas 1-3 are given in the Appendix,

Construciton. We can construct two sequences of

munbers 1, and y, such that for every >0, M, =0
such that:

i Pit,zhzwl=l—8 ¥ nzM, (5

{iiy 7,=0 and ntf = a8 n— 0 1]
fiii] v, —0 and wvi - as n—w )]
i) [r 40— 1 a5 f— ]

The validity of the construction is also proved in the
Appendix,

Leming 4,

i F[ zix(‘ xi)]—r;ﬂ{x] I

|'| '

[ii} E|: E K( )i|—>j'[xj a3 f— o
rn! r|

The proof of Lemma 4 i3 straighiforward™ under the
condition ().

Letusdefine 47 () = {32, — 1| S o 5 — 70 =32,
¥y ={r., ¥, where x = {x,. %,

Avyswerpiion b, Ler =M = 0 such that Fix, e 47 {oy
b, =)=t ¥r=AM,>0and ¥a

Let us define 8,; (87} = @R — [0, 1] be such that
S48, C)=Plx, =B, h,cC) ¥Be A(AY), CediH#) and
Wi = 2 et py B, 2= Plx, s8h, =a)¥eand ¥y = 2.
Lzt & be a small positive real nuntber. Lt the sequence
of sets A, be such that Plhed)=1—: ¥r Lel
vl = Plh,e Ay = £k Let A = v 04,).

Aszumption 2. Lot there exists M, >0 such that
tafdd =1 —a ¥ n> My and ¥ and for every such
seguence 4,

Femma 3. Let gix, h)={LhYEKx—x,/%)

Then
g
| gix,.h)ds, {Ti Wnz= M,
T
and
M
| alxph,)dS, qui W= M,
Tz
where
I,y =the[09,]10x, = #%)
and

I ={h,=[t,, =] b (x, =287

Femma . Let by 08 %) = (1N Kx — &0 A5 and
b if =l Kix— )15, Then for &, =0
= M4 =0 such that

[ b (&xbide — | by (£x)dE| < el fix]— &)
x &

Wiz Max(M,, M,

172

and also for 4 > 0 2 M, = 0 such that:

5[& Dol & XM AE — § BonlEx]dE = ol fix) + )

Yo MaxiM ;ML)
Prools of Lermnmas 5 and 6 are given in the Appendix,
Thesrem 1 {asymptotic  unbiasedness). ELfix}] —
{{x} for every continuity point x of § in #°,

Progf.

and

Mow both 7, and [, are lesa than (M, 2/4) %0 = M.,
by Lemma 3 In 4, =1, =h, =72

e |

where
_ x—¢
l.izf"' ( i )
and
x— £
— ds,.
e[
SGjrd-m_.ﬂ.x}ﬁIln_.fijgjﬁn_fl:x]'
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Mow

20 —fix} = Ming|ly, — fx). |5, — (=N §

and

an =S = Max{ |1y, — )] Mo — £
Mow
|fa —Fixh| = e fx)+ d5) Vi Max[M;. M), from
Lemma &

and f., —fix) Zelf(x)—d;) Yoz Mex[M, M.],
from Lemma B,

Thus

[F20 — FIXM = e( (X} = 6,) ¥ = MaxPM,, M, M1
MNow

ELfx) ] —fxd =1 + Ly, — fx) + 1y,
Therefors,
[ELSh] = S| = [yl = o — 500+ 15,

Let us choose W = Max{ M, M, M, M.}
Thus,

[ELfx)] — flxd| < (oM /40 + e(f(x] + 8,0+ (88, /4)
Wi - J..ﬁ'-l

=E((M 2 4 E) ) Pz N

Since (M,/2) + f(x)+ &, is a finite quantity and & is
very small posilive quantity, we have:

E[fix)]— fx) as n— 20,
Henee the theorem. |
Let us define:

) ()]

Y=

and
1
= FB EXie ¥inlx) 15 ()1
Let us define:
@do)
5 =l
mr[;{ih na? dm

where g, (x) is the density of k.

Assumption 3 U7 —asp— e,
Assumptiond. Supld:n=12_]<M;=< .

Theorem 2. (Theorem of consistency)

E[fx)— E[f 4] —0as i — oo

1 2z X 1: & x—
- L 7)o 2
1

=_J |: E :ul:x:] ot Z Yinfx} ]iln[x}:|

Progf.
ELfx)— ELS,ix1]*

)]

=;E[ YL+ U, 19)
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Fromn Assumption 3, equation (9) becomes:

EL£0x)— ELf,x)1]?

IE[;4K1(";1N H——Eg[f,.{xn (10)

As r— oo the second term of equation (10} will be
zero, because E*[§(x)] is finite. Now taking limit as
#— oo on both sides of equation (F3) then we have:

ﬁn_a ELf,x)— E[£(x)]1?

el 1 i A X—X
‘"".’.inE[h:K( 3 ﬂ
= 1 x—4&
= tin § ] (22,

n—+m 0 #
1 —&
= lim . [Q_LEKJ( )nuia{d‘f 1}]dﬁal:1:]

v 0
e
= lim J L6 4.#1:!["’1# I:II:] "1] dﬁn{'x}
m=ro A
= lim [ ——22M, dfi (2} ¥r=M,

m—-:\nt}lﬁ 4'

M, 1 i
il ] e

M, T
= lim —
I Lﬁ[!

H—+

Thus from Assumption 4, egoation (11) becomes:

g th(xhde f w;ﬂ'[ﬁﬁ'dﬁ} {11

bl

lim E[f,(x)— E[f(x1]]°

H—# o0

.M 1
= i e o | e fam s gtz

{becanse 0= M, <oc and v, —0 and mison as
F— o), n

3.2, Generalization to kigher dimension (g > 3

Let f, 4, .=, %, be now defined on #7 g = 3 ander
the same conditions as in Section 3.1,

Let x, im 1, 0 be now g-dimensional vectors with
density [,

Again, J, amd &, are defined by equations {2)
and (3 Let us define A7 o) = {¥ =(r, ¥o--0 bl
% —pl =2l ¥i= 12, .,q}, where x = (¥;,%;,....x].
Also, ler 5 (% « S(H) —[0 1] be such that
SR, CI=Pix, =B,k =" YBe &A@ and Ce(R).
Let py (B, 2] = P{x, 2 B/h = @) ¥z amd 9w = 2. Fet e he
a small posittve real nuenber, Let the sequence of sets
A, be such that Pihedd=1—¢ ¥ Let v (4 )=
Fih,eA,/x, = ). Let bih= v 04} In addition, let:

1 X—X% Tl ik X —
%[x}:EEK( . I)_E[nhu_z K(Jh, ﬂ

and U, = (1jn?) E[T, . ¥,y %) ¥, dx) ]
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Aldsn, 1ot

Sup P2 _
el o g ,mu-
where g, () ig the density of k,.
Tn this case also, the assumptions required are ident-
ical to Assumptions !-4 under the above symbolic
definitions. Then, we have the following theorsm

Theorem 3, E[£{x]]—f{x) and E[f{x)—E[f,(x)]]* =
{has p— oo for every continuity point x of fin #7

The proof is identical to that of Theorens 1 and
2 and has becn omitied for brevity.

the

Note. In this paper, we have always considersd g = 2.
Mote that, when g = 1, {, converges io a finite quaniity
since A is bounded, 8o {, cannot go to o Thos, the
conditions of Parzen’s theorem are not valid here, Due
to this reason, we did nol consider the case g = 1.

4. EXPERIMENTAL RESULTS

The density estimation scheme desceribed above has
been implermented on various randomly generated
data scts in space #°, [n each case, ai first, the set
A represcnting the regiom where the density is defined
has been chosen. Using a finite number i of samples
and equations (2}+4), the density function fix) is
estitnated. We have found MST with a simple atgo-
rithm whose computationsl complexity is &(r7), al-
though the tXnlogrp algorthm'® is also availahle.
The rest of the calenlation for finding densities needs
oegligible computation.

Next, a set B ol test points bas been chosen where the
estimated densities are evaluated. The test points be-
long to the interior, border and owtside, but not very
far fram the border of A. Poinls outside the border are
chosan to se how the estimated densily behaves in the
vieinity outsicde A. The points with a distance greater
thano A, away from the border of A will have zero
cetimated density singe contribution of K(x) 1§ zero
there,

Two ervor [onciions are defined. One is the average
of the swn of squares of the differences between the
actual and estdmuled densiries for the test set B, given
by

E =2 ¥ (s —fT,
h ek

where ¥ is the number of peinls in B, The other ervor
fonction is the maximum absolute difference betwean
the actval and estimated densities for the test points of
B, given by,

E, = Max | fol=) — fFl.

For any good density estimation procedurs we ex-
pect that £, and E, will decrease with increase in
sample size, irrespective of underlving density,

We have successfully made many experiments with
data sets having different densities.
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Fig. l. Thz random sample af size 700 for Experiment 1.

Tahle 1. The decrease of exror B, and the value of iy for alt

data sive of Expreriments 1 and 2

Cxperiment 1 Expetinent 2

n i, E, h, By
140 47077 0860255 12885 (02BET2
M GE1D (824602 12851 093308
KLY L7215 (LF23908 13001 0093230
K] LAk {LE0F2%3 1.2918 ({EE1R0
HW 724 a05152 L2901 {LETTR2
Gl (L T558 [LRO49%T 1.23689 0ET623
T 0.7323 [.304782 1.2530 DLOEI6GT
Bl (.72 DEN4T5E 12461 MOBI123
am 06938 0804632 1.2372 (LOE3H G
141K} 0.6534 0.5M534 L1311 D.O52959
130K} 00,5438 1.2431 (.OB0AET

084251

Experiment 1 [uniform distribution over a
sguare). For various values of the sample size n, the
daty hus been generated randomly from [0,1] = [0,1]
with wmiform disteibution. Thuos, 4= [{,1] = [0,1]
and

(1 wxsA
<U:J otharwise.

flxy=

Figure 1 shows a random sample of size F)0 {romn the
above density, Table 1 shows ki, and £, for vadous
values of r showing that the error E, decrease with
increase in n. Figore 2 shows that the decrease in E;
with # is faster than he linear rate,

An image-like description of the results has been
provided in Fig 3(ajA{dp These figures give the gray-
value representation of the densly, where lesser den-
sity appears whiter. Figure 3{a) shows the original
density (which is 1 in thiz case) in darkest (black)
colonr, Zero density, on the other hand, appears
whiteat, The difference between the actual density and
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Fig 2. The decreese af the error £ for Experimant 1.

{a)

(b}

{ec)

(d}

Fig. 3, The pgrav value representation of the density, (a) The original density with gray value L6, {b) The
eatimated denaity far 300 deta. (o) The estimated density for W0 data. {d) Theestimated density for 1500 data.

the estimated density has been scaled to 16 gray values,

which are shown in Fig, 3(b)—d] for v = 300, 700 and

1500, respectively. Mote that the arca of the black
portion 18 Incredsing 48 the sampls size noingreases,
Observe ulso that in Fig, 3(d] (e # = 1500 the black
partion occuples almost the entre areq of the sguare.

It is undeestood that the kemel approach estimates

non-zero density outside the defingd space 4, bug it s

desirable that the estinated value decreases sharply

away from the border of A, To test the rate of decrease
wi considered the uniform density estimated by 10060
data aml computed the average densily onlside the
border of 4, The size of the ser s [(L1] = [0, 1]. Table
2 shows the estimated value against normal distance
away bor the border, Also, the estimated valueis zero as
the distance exceeds the window width. This table

reflects the expected pattern of the estimated density
away from the border.
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Tabla 2, The estimated density away from the bordar

Distanca i 2 03 0.4 0.5 0.6 0.7
Fstimaled average densiiy n.183 n.124 (07R L1565 {02 k(16 DOEL
el g R i
P . : - L
S gal £ e
- 1
r "
N '-,1'. .
; i s
B . .. :'_'I " b
5 -
- £

Fig. 4. The randotm sample of siee W0 for Bxperimaong 2,

Experiment 2 [multimodal density on a space with 4
hole). Here A =4, wd; o 0dy, where

Ay =[0,17 % [0.17, Ay =10,1]=[1.2],
A, =[] = [23] Ay =11.2]=[2.3]
As =[2,31 % [2,7], Ag=[23] = [1.2].
A:=[23] = [01] and 4,=[12]x[0 1]
We chose:
| wedwd, cdgs Ay
_f(xJ={D_I+"-Fl{x;}"}"2(x1} Fxed Ay wdssdsg,
1] otherwise
where x = {x . x,),
_ fix if = x =03
u‘ij_{_}i(l—x] ros=zx=l

and ¥, (xd=v,(x, —a) if x;ela,a—1] ¥Yac# and

Palxab= vz, - a) i xpelaa+1] Yae# Noto
that f is a mixture of uniform and trisngular distri-
butions.

Figure 4 shows a random sample of size 700 from the
above density, Table 1 shows b, and £, for sach r,
while Fig. 3 shows the decrease of E, with n.

Experimern: 3 (data from Gaussian distribution), The
experimental results stated earlier deal with distriku-
tiens on bounded sets, To test how the approach work
on unbounded set we comsidered dala pooled from
Cranssian distobution.
In the experimerii the sample size r takes the
values 1000 2KY..., [0 aod 1500, Three sets of
data with zero smean und dispersion matrices
i1

EE=(&J lﬂ_l) for i=1, 2, 3 are generated.
U

Tahle 3 shows b and £, for different cases.
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Fig, 5. The decrense of the error B, for Experimene 2,

Table 3. The decrease of error £; and the value of b, for all dala size Fom Ganasian disceibution with mean
(0,00 and dispersion matrices ¥, 3. and ¥, respectively

Experiment 3 (5,0 Experiment 3 {T;) Experiment 3 {¥,]

B h, Eg k, E, n, [
10K) 19737 161128 1.6387 0143397 13050 0.1 16685
L] 1.7%64 158522 1.3106 0.138732 12702 0, 105429
MK 15999 0.138363 13970 0138438 1.3434 0.105345
(K] 18144 (157828 15257 0.13584% 12830 010487
K 18344 1157368 1.5425 0.135830 12971 0,1 04660
Gl 1.B66% 0,157333 LAn5H 0135308 1.3200 0.104632
T 1, 8460 [1.15502% 1.5387 0.1353a7 1.3314 01,1 (ke
E0 1.B132 0,156332 1.537T4 (.134864 1.3043 0104031
K 1.831a (136308 13421 0134541 13150 - 0103633

100K] 1.7897 [.153075 1.531a 0133237 12070 0102353

15061 1.7323 0132898 14480 (.133525a 1.2633

0. 10021

Fig fi. The random sample of size 700 fer Experiment 3,

Figure 6 show a eandom sample of size 700 from
the above density with zero mean and dispersion
matrices 3. Figure 7 gives the graphical description
of the docrcase in the error value £, for different
Ganssian  distrdbutions and for  different sample
sizes. Different markers [0, #, o] are used to denotethe
ervar for different Gauvssian distributions, MNote that
as { increases, the variances decrease and intuitvely
the density estimates should be more accurate.
Figure 7 provides a demonstration of this con-
VETZETIOE,

£ SOMLAPPLICATIONS

The proposed density estimation method is useful
and importantin a large class of problems of statistical
patiern ¢lassification, clustering and interpretation of
del parterns. Flere we present some newer applications
inyolving dot patterns and data scts.
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Fig. 7. The deerease of the error £, for different Ganssian distributions and for different sample siges,

5.1. Estimation of represeniative points

Caonsider a set of objects represented as point datain
A featurespace. Given a set § of v data, we address the
problemn of selectingasmall subsel ¥ = § ol « rdata
that faithfilly represents the spatial orgamzation of
original data, The solution to this problem can find

applications in data compression, data clustering, pat-
tern classification as well as statistical parameter esti-
matien, For example, in clustering, many algorithms
start with a few seed points, where each seed poing
represenis the core of ooe dluster. The minonum dis-
tunoe classifier or the k-nearest neighbour classifier
considers the seed points as the best patterns represen-

Fig 8 Synthelic dala showing two clusters and almeat 10% representative paints,
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ting the class. Quite often, a single best representotive
point is assumed to be the mode of the pattern set,
Density and mode estimation are two classical prob-
lems in statistics, Tn many situations, the problem of
linding best representative points may be considered
as a generalization of mode estimation and seed point
detection problein,

The algorithm for obtaining lecal Best representia-
tiow points from § = {x, %,,...,x,} = &7 iz described
below,

Algorithm RPD. Let the problem be that of choos-
ing one representative out of k& data onils, Here we
propose a density based method with the following
gleps,

Srep 1. Compute the density for sach datum x from the
number of other data vnits within an open disc of
radins h, with x as the centre. At the point X3 1=
Lo

Let ¥, =iv: x;—¥| =h.ys8) i=L2...m

The density is defined as:

L
.

L=M x#Vb

i=1L4....m

{#4 iz the number of points in the set 4 and g is the
dimenzion of the space).

D CHAUDHURIT & i

Siep 2. Rearrange iy, My,...,m, in decreasing order.
Letl L be the ordered list, Let 1.

Jtep 3. Choosethe datum that tops the list L as the ith
represenlative datnm. 1 7 == n, go to Step 6.

Siep 4. Counl the number of data in the current S If
the nomber is less than & — 1 then go to Step 6. Blse,
from the current 5 find the & — 1 nearest neighbours of
the danum x which has becn chosen n Step 3. Delete
x and these k — 1 neighbours from L and § to obtuin
the list of L and § for the next iteration.

Siep 5. Make i+—i<-1 and go to Step 3.

Step 6. Stop,

The representative point detection (RPLY) algo-
rithm, using the proposed density estimaton method,
can he applied for selecting o small subsel (representa-
tive set) of the original data.

Figure & contains two prominent clusters where
euch clusier iz compaet and round in shape. We con-
sidered the problemn of choosing nearly 10% represen-
tative points in & synthetic data of aize 322 by vsing
RPD algorithm. Tho result is shown in Fig, § and the
representative points arc marked by dark square,

The RPI} algorithm is tested on point paiterns of
non-convex shapes as well. Figure %(a) shows a O-
shaped duta of size 412 with = 0L6334. Almost 10%
reproscntative poinls are shown in Fig. 9(h).

{a)

Fig, 5. An example of (-shaped aynthetic data. {8) A @-shaped synthetic data of size 412, (b) Almost 11144
representative points, {g) Almost 50% repeesentative points. (d) Skeleton by rejecting 80% data, (o} Bovder
points abtained by retaining 15% low density data
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5.2, Border point derection and dot pattern thinning

[n addition to representative points detection and
seed point evaluation, the RPD can be applied for data
reduclion and outlier rejection, Detection of border
points of a dol pattern as well as finding a thinred
version of the dot pattem can also be carried out hy
guch an algorithm. The basic idea is that the low
density points are usually horder points and the high
density points are the skeleton of the dot pattern. So
the border and thinned version of a dot pattern are
mosty dependent on the value of the estimated den-
gity. The better results for border and thinned version
af a dol patlerm can be found by betier approximation
of the estimated density, In this paper we employed the
RPD algorithm, using the proposed density estimation
method. to find the border and thinned version of a dot
pattern. Consider, for example, Fig. !a). By using the
RP13 algoeithm, 30% of the data are rejecred. Tt can be
seen from Fig, 9ich that the nature of data distribotion
appears identical and the shape of the data is retained,
i 1he olher hand, il 30% of the data are rejected, then
we obtain a thinned version of the shape as in Fig. 9(d),
Similarly, if we retain 15% of the data from the low
density side through the RPI algoritho, we obtain the
horder points of the shape as Fig. %(e) and all these
results reflect the wtiliey of the proposed density esti-
mmation mechod,

However, density alone cannot captore the notion of
horder points, because if the interior poriion of any
partern is sparsely populated, then the intenor points
ara alse detected as border points. We have a percep-
tual netion about the peoints lying on the border
compared with those of the interior of the data set.
Border points are not surronnded by other poings in all
divections while the interior points are. The present
approach of border point derection is based on this
observation,'* 4%

Befinition 1. A point x% is said {o be an opposie
point of ¥ 8 with respect to 26 8 il x,  and ¥ almaost le
in a steaight line, L.e, if

L dixy)
I{x.}];—mﬁ =

where dix, ¥) is the Euclidean distance between two
points x and y.

Figure 10 shows that (x,¥) are nearly opposice
points with respect to 2.

—
.4,;3&%17-" z df?;yjh$.
x ¥

k‘ ______ bl

Fig. 1k Maarly opposite paine with respect oo a fixed poin,

171

Mote that il x 15 an oppostée peint of y, then y s also
an opposite point of x with respect to & Iix, ¥, may be
terined the degree of oppositeness of x and ¥ with
respect fo x

Consider a neighbourheod D aroound 2 Let T be the
average of fix, vh; x. ¥yl I T is not approximately
egual to 1, then z should be a corner point in the
neighboarhood.

Definition 2. A point xe8 15 said to be a border point il
the value of the degree of oppositeness of x of k-
neighbonr s k2
Definition 3. A point X2 5 i5 said oo be an interior point
if the value of the degree of oppositeness of x of k-
neighbonr = k2.

Text, the border point detection algorithr of a data
set 8 =X, %, ... X} = @5 given below,

Algeithm BRI,

Step 1. Commpute the density for each dafum x from the
number of other data vnits within an open disc of
radins i, with x as the centre. At the point xg
i=12....n
Let ¥, = {¥.Ix,—¥ <h,¥es}h i=12..m
The density is defined as:

1

m,=mx#V

. i=1,1....n
Step 2, Rearrange my,mig,..., m, in decreasing order.
Lzt B be the erdered list,

Step 3. Delete [w. % x n] =ry data from the top of
the list L, where 4]’ is the largest integer < q. Let L.
be the set after deleting &, number of points feom L and
letp,=n—u,

Step 4 Compuie my, = [w, % = 1;].

Step 3. Find the vatue of the degree of oppositeness of
each point of L. from the criginal data set § with
F-neighbour,

Srep 6. Rearrange the points accerding to the increas-
ing order of their value of the degree of oppositeness.
Step 7. Dectare the first m, ranking points as m;, bor-

der points.

Ta test che efficiency of the boeder point detection
(BPI¥ algorithm, several 2-D data were generaled,
Figure 11(a} shows a non-convex shape data. The
border points of this datla are marked by dark small
square [Fig. 11(b}].

Step 3 s used [or deleling those data whose densitics
arernost significant, beeause the data with most sipnifi-
cant density will be the interior point. In our case we
chose w, =40,

The BPD algonithm is also useful for the basic idea
about the shape of the dou patiern. If the dot pattern 1s
of hvperspherical shape then the maxirnum and mini-
mum of pairwise distances between the border points
are almostegual Tf the dot pattern is elongated or non-
convex, then the difference between the maximun and
minimum of pairwise distances is usually greater than
soame ehreshold value,
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(b}

Fig, 11, Nan-conves sheped data. {a) A non-convex shaped data of size 570, [b) Berder points abtaiced by
applying the BPD algorichm, : ]
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6. DISCTSEIONS

A data-driven procedure of densicy estimation has
been sugsested in this paper. It is theoretically shown
that under cortain assumptions, densities on bounded
seis can be consistently estmated using a kernel-based
approach, where the width of window (ie. b)) is ob-
tained from the minimal spanning tree of the observa-
ucns, In addition to the results presented here we
verified our estimation procedure on bounded sets
with/without holes where the discributions are nni-
formm, triangular {onimedal) or mixed ([multimeodal),
Another experimental resull suppaorts the kdea that the
same procedure can be vsed for esimating Gaussian
density alsa.

Some of the theoretical assaumptions made in
Section 3 can be probably relaxed giving rise to
simmilar results, For example, aven for enbounded
sots, simibar theoretical resulis may  be shown,
Motz that many distributions {such as normal) [ollow
the condition xf(x) =0 us [x — 3. v will be interest-
ing to investigate whether the proposed estimator is
consistent and asymptotically unbiased under this
corndition.

There exist mamerous applications of density esti-
maiion technigue. A& wide variery of pattern recogni-
liont approaches employ density at some stage. We
have considersd some new problems where our pro-
posed density estmation Lechnigue is uselul,

T BUMMARY

This paper concerns the estimation of probahbility
density from s finite set of data points, One of the
popular approaches of cstimating density is due to
Parzen and Cacoullos, where the density estimate at
a point x is obtained by accumulating evidence from
a windes around %, Tt can be proved that the density
estimare converges to the true density for window of
any siee provided the data is vnhmited, However, 1he
user finds & problem with finite dula set, becavse there
cxist no guidelines of choosing the window size in such
asituation. Arbicrary choice of window size can laad to
a pracrically useless estimate of density. For exam ple, if
the size 13 too small the estimate will suffer from oo
moch of variability while a large window size will
smocthen the density o an unacceplable limil,

In thiz paper we proposs o kernel-based method
whers the window size is derivad rom the given sel of
data. T s undersioed thal the window size should
depand on {17 the number of data 7 ad 220 their spatial
arrangerient, These pwo factors are combined by find-
ing the minimal spamming tree of the data sct and
normalizing its length by the number of data e Wore
specifically  the window width s proposed  as
b= (00 Since By is a random variable as opposed
to constanc &, io the original approach, the argements
for the proof of convergence due to Parzen and
Cacoullos do not hefd here, 5o, we have to prove the
consistency and aswnptotic unbiascdness of the es-
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timator with our proposed &, The theoretical develop-
ment initially carried out on 2-T3 has been extended to
apace of arhirrary dimensions, & few assumptions were
uzed to amive at the proof of convergenes. The main
assumypion involves boundedness and path conmec-
tedness of the set,

The density estimation scheme described hers
has been experimentally tested on various data sets.
The data are drawn from a source of known disori-
bution or mixture of distribuiions, The results show
the expectad behaviour of the estimared dznsity, An
image-like description of the resules is also presented
for one sct of data to obtuin & visual effect of the
estimated density,

Since these data are on bounded sets, an ideal
estimation procedure should show zaro density our-
side the set houndary, However, any practical es-
timator will have a spiti-oeer effect, This effect is small
for the window size chosen by our approasch.

Although the appreach is theorctically cstablished
for boundad sers, we took data from an unbounded
diatribution, such as a Gawssian distribution, and ex-
perimentally found thar our estimarion procadure
works well for them also, These results led s 1o believe
that the approach could also he wselul [or densily
eslimanon over unboundad sels,

The representative point detection algorithm, vsing
the proposed density cstimation procedure, is also
applied for data reduction and outlier rejection. Detac-
tion of border points of a dot pattern and a thinned
version of the dot pattern are also be fownd By such an
algorithm,
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Fig. 12, Seven cpen discs of diameter 5a,

AFPENDIX

Praofaf Loanma ]

Tt %y, %y, -, %, b independent and identically distibatod
random vastars with density Fix), where fix) = 0¥xc Tnd),
Henoe Ine(d) £ Z5.

Let 4= A and % s an apen disc of diamerer 5, @ =1
Draw H, H,....Hd, in g as shown in Fig 12
Pixpe H e H @ L )— b as a— oo sinoe PO =0,
LP(H )= {g fx)0 %) dx = 0 since f{x) =0 ¥xeH, ]

S Pi=n such that x,e 3o 1 a8 n-» oo

Similarly P{An,, 0., ..., %, such that x, s =1 asn— =,
La, Pl = 6] —+ 1 as i— oo,

Similarly P(i, = 6o+ 704} =1 a8 n— 2 [by drawing
7 dises in cach one of H,, K., H-].

Apain, applying the above process:

P('!u}ﬁﬂ+3'.|5'§—71'|5'5%)—~1us.n—o-m.
Maote that
gt 2
g E &, .E_ e _T _'] .
L 1+5*[\5; L

Thus, P{l, = Mi—+1 as n— oo for every M =10,
Therefore, nk? — = in probubilily as n - oo,
Proaf af Lapmmg 2

It is known that 4 is a class. Henos, fnel4) s G
Lt m, be the maximmm of the{n — 1) cdgeweights of MMET,

! sy 1
N{!WE=—FKH =, % < My,
n on—1 n
It suffices to shaw that Pim, <& p—+1 a5 n—oe for every
£y = 0

Let gy = 0, Cover the set 4 with open squaces of size (5,75}
s that union of these syuvares = A, Mole Lhat (nitely many
squarss ane sufficient to cover A sinoe ALA] =< o0 aml A 15
bounded |« is the Lebosgus measurs] [a8 Fig. 136a)].

Lat (g, (s, .., 03, D gguares of size (2,55) auch that;

. .
)G, odand Guoed &5 ¥i=1L2. L

=1

Ason— oo, Py such that 520y — L
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!-I—Bt.lli—ﬁ'
e
I g5
o :
‘..‘_‘ - £ f5 —=
c,
\ g /5
| l
b el
C!
b

Fig, 13, [a) The se1 A with open squaes of size (5,73}, (B Twa
conyecuteve squarss C. und O

Similarly  Pdag,n.,.. 0, such  that  x, =7,
Wi=1,2,....k0—+1 as p—oz, That maans Pix, < &,)—F as
n—on gince [of iwo consecotive squares O, and O, [as
Fig F3(b1}

Max dixy)i= 2— “2{:31
el el

Proof of Lema 3

; ] X—X;
ELf %3] = E|: HEK( - >i|

g 1 _{x—x,
"EE_E[EK{k i H

Mote that ks 0 symmetric function in x, x,, %, Motz alao
that Pih e xeli= P =0 xe B YO8 and Yij<a,
where C is a borel subset of # 2nd B s a bogel subset of #2411t
is trie becavse by, is symmetoic in %, %, %, and x and x; are
identically distributad b

[ Tt A R RN S T -
Thus,E[h:KL 3 JJ'Ii|—E|:h:K{k 5 H i

1 -0
E[f.x] = E[th( i ]}

=

Thus,
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Caxstruction

Sreele™™ proved the follewing theorem which is given
bzl o,

Steele’s theorem, Suppose X, 1 =5 oo, are independent
rangdom varables with distibution g having compact sup-
poet in @ gz 2 IF the monotone fungtion ‘P aatisfies
Wixy~x"as x —Dlorzome 0 < % < g, than with probability |

i A, K X = el g) [ R
-

nha
Hare § denotes the densicy of the absohitely cantinuous part
of pand efx, g3 denotes 4 steictly posidve constant which
depends only on the powsr z and the dimension g
AKX, o X )i the length of the minimal spanning tree.
In our cass MILXL.K,. X=1l, =2 a=1, Therefore,
litn ., 0, = #17 %, where ic1 is @ positive constant,
Let us define tu.u sequancas 4, wnd o, for svery n such that
a, =" —n ", and 4:,,=[?‘a'f h]lh Therefors, for
every &= 0, 35 = 0 such thai

Pla, =l =cl=1l—5 ¥az=M,

Moz thar (g0, —+ 1 a8 B — 0,
Ohserve that a, — oo und o, — 20 @4 i — oo Apain (o0 — 0
and (g ml—0as n— o,

i i,
Lety,=_1=— and t.= (=
YoH oK
Now Plg, <! <cbt=1—iasn—oo,
! "'ﬂ_n 'E I':l:
So P == 2 =1—casn—a
x“-'l n w\ul

Thus_.P([,,:gh"‘.3?,,]-1—3.'15:4-*::-.

Now i, -+ 0 as # - o0 since (e /a =1,

Similarly 3, —{bas # — x since (@, 71— L

Mow wrf—onand myd - as A— 7 since o — = and
it~ oo, respactivel . Now (g0 — L as e — o since (o e, — 1
a5 H— ok,

Pronf of Lesma 3

. o1 o
[ otroidds, = | (<k{ u)ds,
M a0 oas X W 2
ki

MR S T LS
e e K| —— di. 274
g RI: aﬂ [\, X )} 'ulﬂl 5 xj:l ﬁs{m}

1
= Elll 1 iyl )] dfls)

w1 3 M. ;
= | EM R = My =P, )
bz 4

L

M
st wam

Similarly it can be shown that:

2 Af
| y{x.,k,;:ldsnﬂ—lﬁ Yoz,
fe 3
Proofof Lemmic &
Now
. l
§ i
331:4.-
1 ;
—2 1';;.{I=l1} 11de

!
i :Kl: —)1'«{4;}1“1:1‘— [ B0 16,1512
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Yow Similary it can bo shown that:
5 S 5 . 1 R
§ B8 xib 86 — [ byl wd ISR 2 sz s et + 8
B £ E=aFr 0y e g
= [ B S Riby (e — 1dE = § by fE,xiads Wrz M, v = MoxiM, M.
Ed £

i | By 5 0AE S K — ) Wn= Max{M,, M),
£
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