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Abstract—An adaptive smoothing alporithm has been described which is capable of performing various
tasks, such as removing salt and pepper noise, preserving roof edges, stretching (cubaneing) step edges and
reducing variations in low intensity varied regions. While iteration advances, iLapproximates both isotropic
and amsotrapic heat diffusion processes in performing these tasks. A region topography index has heen
defined for guiding the algorithm wnder different silualions. Further. an imapge quality index is proposed
which provides a criterion for automatic termination of the algerithm, This criterion can also be used with
atheriterative smocthing alporitims. The supetiorily of the method sver some other sitailar techeigues has

been catablished for both synthetic and real images,

Adaplive smoothing
Cruality index.

1. INTRODUCTION

Smuoeothing is an importanl image processing opet-
ation. Smoothing operation is necessary to reduce
noizes and to blur the false/stray contour fragments in
order to enhance the overall visval quality of the
degraded image. [n order to ¢lean an image and en-
hance its features. cither spatial or frequency domain
techniques can be used. The frequency domain
smoolhing uses filtering in the Founer domain. Spatial
domain techniques, on the other hand, normally em-
ploy linear or nonlinear spatial operations. Many
eficient techniques have been developed in spatial
domain. The simplest stoothing technigue uses {un-
weighled) averaging over a predefined neighborhood.
This reduces noise signilicantly, but at the same (ime it
blurs the edges of objects. Thus, the overall image
quality deteriorates. With the ingreasc of the neighbor-
hood size, blorring becomes more prominent, Some of
the weighted averaging technigues, which have been
proposed to reduce blurning, can be found in references
i1-3). Weights play a significant role in the smoothing
vperatien and hence their delerminalion is an imporl-
ant task. One of the technigues of selecting weights is
to use the lopcal mean and varignee % Wang ef of ™
have published a good survey on weighted averaging
and enhancement lecknigues, One of the drawbacks of
these fixed weighted methods is that they cannot re-
move toise 28 cfficiently as the unweighted averaping
schemes.

To make the smoothing schemes more cfficient,
iterative weighted techniques have been reported @
The weighting coefficients are proportional to the

* Aathor to whom correspondence should be addressed.

Isotrupic/anisolrapic diffusion

Fddge stirerching Topography index

gradient inverses belween the ceniral poinl aod its
neighbors. The convergence of these methods i3 not
known. Napgao and Matsuyama''™ used a simple tech-
nigue to smooth images, preserving edges. They ro-
lated a mask inside a 5 x 5 window aboul the center
pixel. For every position of the mask, two regions may
exist. They calculated the variances of all such regions
due to all possible rotations of the mask and replaced
the gray value of the center pizel by the average gray
valuc of the region having the minimum variance. The
process is repeated iteratively until all the gray levelsin
the image do not change much. Unfortunately, this
algorithm assumes the difference of the average gray
lewels of the lwo regions is large, which may not be
always truc. This may seriously damage the image,
particularly when roof edges are present in the imuage.

Recently, Marc et al''' have proposed an iterative
weighled averaging scheme, which both sharpens and
smooths. The method implements anisotropic diffo-
sion''*" and its iterative behavior has also been dis-
cussed, The algorithm considers only the step edpes,
preservation of roof edaes haz not been taken into
account. Since the weighling coeflicients are based on
the gradients at all 3 = 3 neighborhood poinis, the
averaging rcsult is influenced not only by the neighbor-
hood points, but also by some other points bevond it
This soelimes deleriorates the image guality. Fur-
thermore, the number of iterations required for differ-
cot opetalions, o cdee detection, is heuristic in
nature. Human intervention is also needed for termi-
nation of the algorithm and to judge the image quality.
Otherwise, the noise cleaning may become insuflicient
or there may be excessive useless iterations.

We have proposed here a smoothing algorithm
which implements hoth isotropic and anisotropic
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diffusion processes. The isotropic diffusion helps in
prescrving the roof cdges and romoving noiscs, while
the antsotropic diffusion takes care of sharpening of
step eqdges and reducing of low gray variations wirhin
regions. A region lopography index guides the diflu-
S10T Processes,

l'a kecp the influence of neighbors on the computa-
tion of weights restricted only within a size of 3 = 3 of
the central pixel, we consider the diffcrenec between
the central pixel and a neighboring pixel as the gradi-
ent al the lecation of the neighboring pixel. For Lhe
central point, we take the usual gradient, Each gradi-
cnt at a poinl detctmines the weight of the pixel at that
point using a polynomial function such as that for low
gradicnts, weighls are high and vice-versa, For aoto-
matic termination of the smoothing algorithm we have
defired an image guality index (TCH) which gives an
eslimate of the Average conlrast (with respect Lo back-
ground) per pixel in the image. The effcctivenazss of the
algorithm, alongwith its comparison with that of Murc
et gl and Guussian smoothing, has been demon-
straced on both synthetic and real images. The pet-
formance of mean and median filteeing as well as of
MNagdo and Malsuyama's edge proserving stnouthing
algorithm'' ™ has also been examined,

L DERCRIPTION OF THE ALGORITHM

The proposed algerithm is based on an iterative
welghled averaging techmaue, As mentioned before, it
is intended not only to remove the sall-and-pepper-type
novise, bt also to preserve roof edges, stretch step edges
and to reduce the gray varations in bow inlensity varied
regions. In other words, we keop our atlention to the
following major tasks while formulating the algorithm;

# Removing salt and pepper noisc

o Preserving roof edges

¢ REoducing varialions in low intensily varied re-
gions and enhancing step edges

In our subscguent discussiens, the term smoothing
will refer to any of these effects, In order to achieve this
our weighled averaging scheme employs hree diller-
ent types of weights, depending on the surface topogra-
phy within 2 small window.

Let the digital image be defined as F[fAx v ...
where fx, ¥1e{1. 2,... L} is the set of gray levels. Ll
us consider a 3 x 3 neighborhood, N[5 ), of 2 pixel at
the position (I fp. At the (r + 1)th iteration the pixel
intensity at the (i, fith location in the smooth image is
given hy:

gttt
. 1 -1 Acky e g Al .
_Eu_ P [ o o L N
Lo (Xio  WHituf+0)

i
where ¢"™(x. 3} is the same as fix, y). The weights w'™

under the aforcsaid threc different sitwations arc as
followrs:

For cleaning noise

i i O when (u,s)=000
Wi, j )= : 2
1 otherwise.

For preserving roof edges

tirni=a=dy Lo @
0 otherwise,

Il is seen that w, [equalion (2} helps o cleaning
sult-und-pepper  noiscs by averaging with  onity
weights, whereas w, [equation{3¥] ignores the effect of
neighhorhond in mamiaining roof edges; in other
words, equation [ 3}docs not have any lillering effcct. In
the next seetion we will be explaining how the weight
w,, which can take care of both stretching of step edges
and reducing varianee of low intensity varied regons,
can be determined. Here, we will be explaining, first of
all, how w, can be selected. Then we will explain the
behuvior of the irerative algorithm in the light of
aniselropic diffusion process in order to show that the
same w, can also perform enbancemeant of step edges,

E WEK:HT FOR SMOOTHING LOW INTENSITY VARIED
REGIONS

In crder to obtain the weights w, for smoothing we
consider that the weight is inversely proportional ro
Lhe image gradient =, i.e [or higher values {magnitudes)
of & w, should be low. while for smaller x values, w,
should be high. However, 2 can have hoth positive and
negative values. Therefore, the weight function should
bt symmetric with respect to @ As a simple casc, the
function may be of the foem shown in Fig. 1. In terms
of pelynomial lunclion, we may wrile:

w, = (A + B + {37, (4)

where p = (Vis a constant,

More that when =0, the weight should dllain ils
maximum vilue of unity, e w, = 1, Thisimplies C = 1.
Further, for 2 — 0 we must have dw/dp =0, e

plds® — Bz 4+ 1P~ Y24z + B =11

From this we obtain B =0. S0, w, ={4d2" — 1",
Now we want [as mentioned before) w, = 0 when
o atlains 1he maximum value z, (3ay). This means

= 0l

—U-m Fi] a.

Fig. 1. Typical behavior of the weighting function with res-
pcet to gradients.



Smoothing digital images

A = —(1/2). Therelore:
g NI .
W, = 1—{---) . ()
.y
30, Criteria for compuring o

Consider a neighborhood N[0, /) of a pixel at (1, ).
The ventral pixel has its gradient o, Jirecled along the
line with an ungle f equal t tan™ '{ f,; f,), where f, and
£, are the derivatives along the x and y directions,
respegiively, Al the (4, fth point.

For a pixel in the neighborbood N (i ), i we use
a sinlar expression for its gradicnt computation then
the smoothing operation 5 also influenced by the
pixels beyomd Lhe 3 = 3 neighborhood and this may
rcsult in sometimes undesirable blurring of the imape.
To keep (he effect restricted only within a 3 x 3 neigh-
borhood Tor computing the gradient of a neighbor-
hood pixel, we consider # to he cqual to the difference
hetween ils inensity and that of the central pixel, The
dircetion of the gradient will be along the line joining
the concerned pixel and the central pixel. Thus, we
WL

| Gt f? for k=1 ie. for
2= u=0 =0 [eeniral pixcl)

I’_f{e' ba,j+er—fIL0, for k=239

i {for neighboring pixls),

i6)
where
Fo=Tflij+ D —fii.j— 1112

and

Jy= LA+ L) =fii— 1,012

Nole that the parameler p plays a significunt role in
smoathing images. Its importance with respect (o
smoothing as well as enhancing step edges has been
described in Seclion 3.3,

3.2 Behavior of the algoviths: isotropic and eniset ropic
properi y

In order 10 explain the isotropic and anisolropic
behavier of the algorithm as iteration advances, we
consider [equation (177, ie. the smoothed intensily at
the (. fith point. Equation (1) ¢an be written as;

v ox

giijl="2 3 mituwjtolfli+ui4e (7
u—-1lr I
B '+ ; [
where il i+ 5 - % and ¥ V'm =

1. The contribution of each pixel in &, (7, ] in smooth-
ing @{7, i} is, therefore:
Brivwitv=mi+uj+elfii+wivol (8
We now show that the proposed smoothing pro-
cedure, when iteratively applied, implements an an-

isotropic diffusion process''?! for points where the
seoothing weights w vary with respect Lo time (1o w,
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for reducing variation in low varied regions and en-
hancing step edges) and isotropic dilfusion process [or
the points where the smoothing weights do not vary
with reapect 1o lime (ie. w, and w_[or removing salt
and pepper noise and preserving roof edges).

Considering the points where w, [equanion (5] is
applicable, the iterated value at time 4+ | can be
WrILlen as:

g M= L Lgti— 10— Dk i 1,097 — 1000
1?_9"([,__[ Li
g+ Li—11 (9]

+mli 4 gl = L= i+ L+ Tg'li= L+ 1)

— T =1+ Ng'i— L+ 1+ i
+ i~ g~ L+ m'li + 1,

+ wi'li, fhaii
Therafore:
@) = g )
= {mi4+ 1+ D0+ 1+ 1= gl )]
Vg fp =it~ L= 1]
+ i — Lj+ 1ghi— Lj -+ 10— o (i 1
(i 4+ 1 N — '+ L — 1]}

— w1,

('l + Vg0 1= gL )1 (10)
= i, f = Vg fy— dii i — 1]}
+ (i + LAyt + 1,7 — ']
=i = 1 iy —g'li - 1]
aince
Py om=1
Equation {100 is the discrete approximation of:
LoV g VT,

where ¥, and V, are the spatial operators with rospect
to a rectangular Mrame of axes and its rotated frame
[rotated by 457, respectively, The weights vary both in
spatial location and in lime. Pherefore, il implemenls
an anisotropic wave diffusion process. !

On the other hund. in the vicinity of paints where w,
and w, [cquations (2) and [3)] are applicable (e where
weightsdo not vary atall with respect Lo lme) we have:

g i) =~ @'l j)
=gt L4 1) 2490 b+t~ L= 1]
4w g — L4+ =20+ g+ 1.0 - 1]
+ e [t j - 1= 2ghi i1+ g' (i i — 1]
b L 2 g— 1] (1)
This is nothing but the discrete approximation of the

following isotropic heal diffusiun cquation with re-
spect 1o the aloresaid lwo frames of axes:

4 ;
--;J;=rrr{'!?fy +Vig). whorem=1. 113)
é £

33 Relarion between critical gradient and parameter p

To determine the effect of the parameter p on the
gradicnis of step edges and for the regions ol low gray
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variations, we restrct curselves to the one-dimen-
sional case. From cquation (1) we obtain:

g~ L) — gL =m0+ DS+ 1= gt
—wi'lf i — ULg'th i — 'l — 1,

which implements the anisotropic diffusion equarion
{in onc dimension;

d
vy

di 9

&N
MNow #Vyg can be written as[l - (—‘) :| -

Thus:

do' _4 (], ﬂ“"r)
dr dx r.cJ i

H;;p[ 1 G—;)T l ( —z(ﬂj““)

2
(L
2

T (5 ()

Now for 1 =0, g, = f, = 2,. Since g° is a differentiable
function, the order of differentiation (with respect to
x and #] can be inlerchanged. Therelore, we can wrile:

i) s
s )
G =
:g.m[]u('i‘)“}" { o

ﬁnl[r—lll[| (

J1—(i) (1+2p,‘l"

R 3

i gL
e | 1- :) 2 —4p—Zgt L
w1 (B | {2 G-l

In the neighborhood of step r.'dgq.:s . 15 logally maxi-
g or minimom. Therelore, g, 15 aiways Pero,
... < O when g, Is maximum and g, =0 when g, is
minimutn. Therefore, we have two conditions, g, =0,
g, =0andg,, <0 Also, g, <04, =0andg,, =0
For cdge sharpening due to the first condition

d /dg 2
d—(d—g) must always be greater than zero. Now

f
LR

dy g
=0 implies {1— -*)naz -0, be-
d?(iix) implies { (.:t ? p]}-ch

wTom

Py 2T e L
cause [1 — (9—“] ] is always positve. For:
"

.-"QI I fﬂl X
1 L—”) (142t =<0, we must have (—’)

ﬂmz :M
i1+ 2=

or, g ‘:i—m (15}

'\.U“‘ 2p)

MNote that we obtain the same equaton for p doe 1o the
second condition because lor edge sharpening, here

d 4
—(—g) must always be less than zcro. Now
di dx

dg'®
}ﬁ 0 also implics '| - [I +2p) =
di A

Thn is boowuse g, 15 positive In thk, case. Henoe,
stretching occurs in the neighborhood of step edges

when ! = — i - we obtain

W1+ 2p) = A+ 29
the smoothing effcet in the regions of low varied
intensity. The process is an approximation because for
real images g, may nol be exactly equal o zero due to
the guantization error, However, the lerms involving
By are very small since p is reasonahly large cven [or
a 32 level gray image and can therefore be assumed to
he zarn.

It may be mentionad that the same effect also holds
good when g 15 4 function in iwo dimensions, The effect
of p is similar oo that of the smoothing parameter
described in reference (11).

- When q'

4. REGION TOPOGRAFPHY [NDEX

Since the algorithm performs different processes
(isutropic und anisoiropiv) {or poinls over noisy, edgy
and low intensity regions, it is. therefore, nocessary o
detect the nature of points {whether noisy or cdey)
before we selecl the weight for oblaining pixel's
smoothed value, To discriminate belwesn nosy re-
gions and regions with roof and step edges, we defing
a reghon lopography indes (RT) in teems of its bound-
ary and wilhin region characierstics,

Consider & small region 0 about the (F, jjthe pixcl
consisting of ils neighboring pixels in N (7, {1 The sum
of the magoitudes of gradients = k-2 3.9, Le
SG,{=¥%|x,|) can be used (o indicale the degree of
flatness of the region £1. As G, increases (say, for edgy
and noisy regions}, the homogencity of £ decreases.

Let us now consider the boundury pixeis of £, 1f 546G,
is the sum of the magnitudes of G, ix gradicnt) and G,
(¥ gradient) of boundary pixcls, then:

E{.-+|(;

(60} being the boundary of () indicates the degrec of
Natness of the boundary of O For example, $G; =10
implies 32 is a far boundary. Note that neither 56
nor 86, can distinguish between noisy and edgy re-

8Gy=
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gions In order to discriminate between them we intro-
duce the concept of the region lwpography index (RTH
of £ as:

5

5Gy
The discriminating characleristics of RTT will now be
explained. For a perfectly homogeneous region we
have hoth 86, = 0 and 8¢ ; =0. Therclon:

0]
RTI = 6 =} {lel us assumc).

R =

Ler us consider two tvpes of siep edpe withina 3 » 3

mask {as shown below),

L, H, H, H L L,

L, H, H, H, L; I,

Ly H, H, H, L; L,
Hg and Ls represent almost equal high and low
values, respectively, Assuming |[H, — H | = | L — L] =!
foralliand jand |fI, — L |=h for all { und J. we oblain
for either type:

Nig = 210G+ 3 |G| =2k ¢+ 6f

N e
el
G, =3k 4+ 31
Therelors:
_ §G, M+
K r”:—uv wlge = e Eﬁ_- oL
5G, hi o
s Faz ()

For a salt-and-pepper lvpe noisy patlerns (as shown
below):
IR P H, H, H
L. H L, H, L H,
fo Lo Ly H, H

3G, = B Thus:

[RT“niliar slepedye

L1
& B_; = 1.5, ie. {R'I'I]m“ w [KHT

Let us now consider roof cdges (as shown below):

A R A
L, H, L, H, L, H,.
by Ho Ly H, L, H,

In cach case 5(, = dh + 4 and 5G, = 6k + 2, There-

3G, N th — 2
oledze g0 4R+ 4
(T roage SIOCEARTT) s seen to be reasonably
larger than those of step and roof edges, it can be used
as a yunhlitive jodex for discriminating noisy and
edgy regions,

RTI cannet discriminate betwecn rool and step
edges, However, since 3Gy [or roof edges is approxi-
tnately twice the value for step edges. 56 alone can be
wsed 1o distinguish them,

To dllustrate the diseriminating characteristics of

fore, (RTT) =15} [RTI)

noize =

RT L, we consider the following two sets of two image
blocks and a noisy (spol noise] block, Each sel de-
scribes a step edge and a root edge.

I o34 12 14 i
315 11 13 3
T [V el b]
16 9 1 2

302 23 21 W2
23 23 23l 23 w9
1

T
3 8
4 7
3 1% 7
7 W 23 22
£ &8 7|7

9 10 8 7 25122 20 2 2
8 & 7] 10 8 W 2212
T 30 o]k, 3
312 2|2 4
22 1] 2
11 24 2

Consider the 3 = 3 windows s indiciled in the Lirst
two hlocks. They indicate step and roof edges. In the
first block, S, - 20 and SG, - 27, Therelore,
Sir, -
(R T”;—.evudur = ‘.f; moatial il
In the second block, $G,; = 58 and 5G, = 45, which
means (RTI) o =146, Now, lor noisy block

8Gy=0. §G,=7% and so0 (RTT) _ =1316 Thus,
(RTH) e = ARTEY, o and also (RTT) s
IR Tf}rmmc. Therelore, BTT can discriminate be-

Lween step or reof edge and noise.

Furthermore, (3Gg) o ASGg) o =29 This
helps o distinguish berween step and roof edges. Simi-
lar discriminalion is also seen in the third and fourth

Mock, For thess blocks, '-RT‘Tiqu,.e.:pe =1531 and
(BTI), gt cge = 1-20- ‘Therefare, {RTN,,..*
(RTT), e and (RTH) . »{RTI) o Also
(SGgl, . MH_-TSGB‘.IH” s s}

5 IMAGE QUALITY INDEX {10)
AMND STOPPING CRITERIGN

One of the major problems of iterative smoothing
algorithms s “when o stop the algorithm™, e, 1o
determine the approximate time for its lemminalion.
Marc g al'! hyve discussed the convergence prop-
erty and the iterative behavior of their algorithm. The
convergency of their algorithny takes a fairly bong wime
and il has been found that the smooching as required
for different applications (edge delcction, segmenta-
tion, etc.} reaches Lhe desired level long before the
algorithm converges, This makes many iterations use-
less and henee a wastage of compuling time. They ulso
conducted an experiment in which the termination of
the alporichm afler a satislaclory resell was done
arbitearily, keeping the number of ilerations small.
However, this rgquires humano inlervenlion to judpe
the putput image quality,

In our method we have proposed an image quality
index (1) which reflects the averuge contrasl (with
respect to backprownd) per pisel in the image for
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termination of the algorithm. The IQL does neither
depend on the size of objects nor on the number of
ohjects in the image. It 15 also independent of the
dimension of the image.

To determine IQL we find, fest of all, the total
contrast K of the image. Foran m » rimage K may be
defined as:

K= ¥ wp (16)
i=1 =1

wherg Ty i the contrast of the (, fith pixel. Using the

concept of human psvchovisual perception, the con-

trast c;; of a gray level image at the point {i, j} can be

written as: ¥

|B_ Hal
E‘IJT—B L

ABy
=" {17)

where B is the immediate surcounding luminance of
the (i, jith pixel with intensity By,

From cquations (16) and (17} we note that the
conirast of pixels in a perfectly homogensous region
1s zero everywhere except near the boundary paints.
The cootribution to K of the image, thercfore, comes
mainly from its noisy pixels and contrast regions.

B BISWAS et ol

Therefore, average contrast per pixel may be defined
s

K
Igf=—,
iy

where n, =mn —n,, n, =wtal pumber of significant
contrast points, a, = total number of significant hormo-
geneoys poiats and mu = number of pixels in the im-
age. The average is 1aken over only those pixels which
contribute mainly to contrast measure; the pizels of
homogeneouws regions being least contributory have
bren discarded.

To find ny, we define the homogencity by; of the
(£, f)th pixel as:

e r-1%p — 1B, _P£|1 (1%)
8

where B indicates the intensity of a background
{neighboring) pixel in Ny(i, §) of By, From equation
{18}it is secn thatl when cach background pinel 1s equal
10 the central pixel then the tiny region £ arpund the
ceniral pinel is perfectly homogencons and the homo-
geneity moasure at the central pixel is cqual e unily.
For athercases, the homaogeneity value of a pixel drops
down cxponcntially with its difference [rom the back-
ground intensity.

{b)

(d)

Fig. 2. Muise-free syntheic image with grid and lines:{apinput.{bj output abtained by the proposed method,
(&) pukput obtained by Marc e al and (d] ourput by Gavssian smoathing (s = 17,
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(b}

td)

|

Fig. 3. Nodsy (sabt-and-pepper} synthetic image with grid and lines: {a) inpul, (b} autput obitained by the
proposed methad, {c) cutput ablained by Mare ot @, (d} output by Gaussian smoothing (o - 1), je] output
chtgined by mean fltering, (N outpet obtained by median filtering and [g) cutpul ohtained by Nagao aod

Marsuyama's algorithm,
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Fig. 4. Moisy (Gaossian, ¢ = 3) synthetic image with gnd and lines: (a) input, (b} outpuet oblained by the

proposed method, {¢) outpur obtained by Mare e al, (d) output by Gawssian smoothing (o = 5). (g} cutput

nheaincd by mean flkering, (0 ourput obined by medizn filtering and (g) output obtpined by Nagan and
Matsuyama’s algarithm.
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Equation {15} is a choice for homogeneity. The
visual response cueve (AB — B Y can be well approxi-
mated by the exponential function. Since homogeneity
can be considered as the inverse ol contrast, it is
reasenable to assume an exponential function for fr; of
the background intensity, B.

Therefore. il we compuie total homogeneity of an
Hge 15

H=7% ¥ {19)
1=l

then the major contribution to J comes only from the
pixels which lic in perfectly homogeneous egions.
Thus, r, can be considered to be approximately equal
to If and we have

1g1 = 2121 ABY/B

mie— 3 3y

As the iteration advances. the noisy points are cleaned
up and hence their contribution to ¢, decreases. Con-
sequently, the numerator in the expression of QI
decreases. Also, when homogeneily inercases with iter-
ation the denominator of TQI decreases. However, the

(201

[al

M5

rate of deerease of the numerator is more than that of
the denonunator, As a resalt, 1QT decreases with iter-
ation. Therefore, for the termination of the algorithm
one ¢an check if the change in 1O (A ), B less Than
a pre-assigned positive number & To avodd arbilrary
(heurnstic) sclection of £ ene may consider « be cyual to
the theorstically possible minimom chaonge in con-
trasl/pixel, ie {Ac,,,) in an umage o other words,
lerminale he algorilhm when Ay atlains Ac ;. The
minimum change in contrast/pixcl, &c,,. in an L-level
imags is (17001 — 1)) {proof is given in Appendix 1.

6. RESLILTS AND DISCUSSION

To examine the performance of the proposed alpn-
rithrm. we have used a set of svolhelic images and 4 sel
of real irmages, The synthetic images have been used to
check the behavior of the algorithm under a known
entviromment, while the application of the algenthm on
rcal images shows its performance under an anknown
cnvieonment. The synthetic images are of size
128 = 128 while Lhe real images are 64 = 64, Each
image is of level 32 The crtical pradient [or these

thi

———

Fig. 5 Lincaln image: (a) input, (b) outpul oblained by the propossd method, (o) cotput obiained by Masc
et al. and {d)] output by Gaussian smoothing (s = 1.
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images was chosen to be 3 so that the value of p is
almost 53 [eguations (15)]. For the purpose of com-
parison of the proposed method we have also imple-
mented the algorithm of Mare et ol 'Y and Gaussian
smocthing. The smoothing parameler for the algo-
rithm 1n reference (117 was taken to be 3. As & result,
critical gradient about which stretching occurs re-
mains (he same in both cases.

Iigure 2(a) displays s nodse-free synihetic input
image with step and roof (gnd and line structures)
edges. The output obtained by the proposcd method
[Fig. 2(b}] is seen to preserve the grid and line strue-
tures very well. Oo the ether hand, the method of hare
et al. maintains the step edges but affects the grid and
line struciures [Lig 2(cy|. The Guussian smoothing
cven with a low sigma valuc (o = 1}18 not very effective
[Fig. 2(d)]. because it hlurs both the grid and line
structures as well as the step edges present in the inpul.

Figure 3{a)is 4 noisy version of Fig 2(u4), the noise is

1nput biplane 1waage

ich

of salt-and-pepper type. Cutputs [Fig. 3(bid)] show
the performance of all three algorithms. In the case
of Gaussian smoothing noise is reduced with some
hlurring, while the algorithm of Marg e al, removes
salt-and-pepper noise completely, bul it damages the
grid-and-line structures. On the other band, the pro-
posed algorithm removes the salt-and-pepper noise
and maintains the grid-and-line stractures, In this
conteal, we also examing Lhe resulls of mean amd
median filteting, and Nogao and Malsuyama’s edge
preserving smoothing algorithm '™ Figure 3(e) {g)
denote the respective outputs, Following reference
(10, we iterated the edge-prescrving smoothing pro-
cess until all the pixels do not change much. Nagao
and Matsovama’s ™ algorithm fully removes the salr-
and-pepper noisc, but it damages grid-and-linc strue-
tures. All the step edges are maintained. This is because
the gricd-and-line structures are basically the roof
edpes, Le. the regons oo lwoe sides of the vdge have

smoothed image

1de

Fig. 6 Biplane image: (al input, {b) output obtained by the proposed methad, {ch autput obtained by Marc
et ai. and {d) surput hy Craussian smoothing (g = 1],
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Fig, 7. Moisy {structurcd noise) synthetic image with grid and lines! (a) input, (b oulpul ablained by the

proposed method, {c) ourput oblained by Marc et of., (d) oulput by Gausisan smoothing 1r = 1), (2 output

obtained by mean filtering, (T) cutput ebtained by median fltering and (g1 output chtained by Nagao und
Matzuyama’s algotithan
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Table 1. Change in AJQT for different images

Input

Fatal Me. Output

images of iteratons ANQTL AL, images
Fig 3ial 3 1L.E4E-02 293E-05 i Mbo
Proposed Fig. #a) 10 497E-02 TI5E-04 Fie diby)
algornithm Fig. 53} u 345E402 956E03  Fig b
Fig. 6ia) f 273E02 6 TIE-M  Fig. 6[b]
Fig. Tia) 7 3.56E-A1 9.5RE-0G  Fig Th)
Fig 3ia) Hp 1LLITEAN O07BE-M  Fig Mo)
Algarithm Fig. 4(a) 14 2.65E-D1 913E-4  Fig Hc)
of Marc af al. Fig. 5ia) 12 GATEAQD 999E-M  Fig Ho
Fig. Hia) 4 4.9E-02 LL1SE-04  Fig. Hc)
Tig. Tia) 15 S.A0EA1 995F-  Fig W)

almosl equal mean values, Median filtering removes
the sali-and-pepper nolse and the ling structures, The
grid stroctures arc also affected. Mean filtering blors
the edges and structural details providing smeared
piclurcs.

Figure #a} is a noisy input, generated with additive
Giaussian noise on Fig. 2(a). All three algorithms are
found to be capable of reducing the Gavssian noise
[Fig dbi-d}], bul except for pur algorithm, the line
and grid structures are distorted, This distortion is
highly noticeable in Marc ef al’s algorithm. Figure
He-g) indicate the outputs of mean, median lltering
and Nagao and Matsuyama’s algorithm, Mean filler-
ing blurs the sharp edpes and redoces noise in the
background to some extent. Median filtering also
damages the linc-and-grid structures. The back ground
noise is not as reduced as by the mean filtering algo-
rithm. MNagao and Matsuvama's algorithm, on the
other hand, nicely maintains all the step edges and
cleans the background noise, but it destroys the roof
edges to some extent,  Figure 5(a}is the input Lincoln
imape, while Fig. S{bHd} depict, respectively, the out-
puts by the proposed method, the method of Marc
el ul. and the Ganssian smoothing rechnigue. A com-
parison  of the oulputs shows that both in
Fig. 5(cy and (d) the nose and some porlion of the
lips and ear are distorted. while those are well preser-
ved in Fig. 5(b). In Fig. 3ic}, although most of the
[eatures are clean and sharp, the nose, lips and part
of the ear are found to be seriously affected. This
may be attributed to the presence of reofl edges and
the fact that the central pixel is influenced not only
by irs 3 » 3 neighborhood, but also by pixels beyond
that,

Fur the Biplune image [Fig. 6{a}], the prapeller is
nicely preserved by our method [Fig. 6(b)], while it
disappears for the other two methods [Fig 6(c)
and (d}].

In order to caiamine the effect of the proposed
algonthm on structured noise, Fig. 2(a) has been cor-
rupred with strpctured noise of one pixel, two pixels
and three pixels. The results of different algorithms are
shown in Fig. 7. It is noted that the algonthm of Marc

el al. cleans the noise, but due 1o the interaction of the
background pinels and those on the roofl edges the
linc-and-grid structurcs arc highly distortcd. The el-
lipse in the figure is also distorted, bat it is free from
tionse. Median filtering produoces excellent resulls [Tom
the viewpeint of noise cleaning, Line structures are
completely absent, while the grid structures are af-
fected. Mean filtering does not clean the noise. More-
over, the cdges are drastically blurted, Nagao und
Matsuyama's algorithm removes the lincs and dam-
ages the grid structures. Background noise is not no-
ticeably removed. The proposed algorithm, on the
other hand, preserves the struclural mlormation.
Noise in the ellipse is cleaned. Some of the noisy pixels
in the hackground are removed. while some are very
promminent, This is due to the fact that three pixels of
structured noise may sometimes represent meaningful
regions and carry adequate information.

Finally, Table | indicates the wotal number of iter-
wtions required for aulomastic Rrmination of the ulgo-
rithm and the initial amt final values of the image
quality index.

The number of ilerations m the algonithm of Manc
et al. is large compared with that in the proposed
algorithm. This is due to the interaction between the
roof edge and backpground pixels. Ir causes AJGH o
ftuctuate a lilthe and damages the smoothed version of
the corresponding image. For the Biplane image, how-
cver, the iteration numbers for the two algonthms are
almaost equal. This investigation clearly establishes the
supertority of the proposed method over the other iwo
schemes. Mote that {or the other algorithms such as
Gaussian, mean and median, considered in the present
investipation, are not iterative in nature znd hence they
are ot inchided in Table 1.

T CONCLUSLOMS

An iterative smoothing algorithm capable of per-
lorming various tasks such as cleaning salt-and-pepper
noises, prescrving roof edges, stretching step edges and
reducing low intensity variations has bean developed.
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In order lo delerming the tvpe of operdlion 1o be
performed, an index characterizing the topography of
4 region has been defined. This index depends on the
conccpl of both within region and boundary gradients.
An explanation for critical gradient for the purpose of
erhancing weak edges has bean provided based on the
concepl f anisolropic difusion process

An index for image quality has been defined which
makes the termination of the algorithm fully awtn-
matic. This criterion s applicable for any other iter-
alive smoolhing ulgorithm,

The superiority of the method over Gaussian
smaothing and the method of Mare o al'''" has heen
estabrlished for different synthetic and real images.
Compurisor, in sone cyses, shows (hatl il 1s also per-
forms better relative (o mean, median and Nagao and
Matsuvama's  cdge-preserving  smoothing  algo-
rithm ¥ Further investigation is reguired for aulo-
matic sebection of the crilival gradient,
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AI'FENLDIX 1

I.et the confrast at the (i, fith pixel af iteration  and (r+ E
be o — o and ST xS Teywalion {171]. respective-
lv. Fordigitalimages, 1 < ¢, v, = Loand b v v, < L— L1
showld be noted that x5, ., vy arc all inlegers. Sioue we ane
interssted i Ac=[e' — "7 without loss of generality wo
canassume <= 70 We alae assume that Ac =0 ie. there is
a charge in condrast favedding the ddeal condition of Aq =k
This implics x;, =0 and x, =40 arc alse avoided, Thus, we
vhtain 1 = 2y, 25 = L 1 {gvondimg the weal condition). Then
the change in contrast of the pixel is given by:

X ¥a =¥ %
Yok

The minimuem of Ac, can be achieved by minimicng the
numerstor and maximizing the denominator. On a digital
grid, the minimuam of x, v, vy x5 should be unity and the
maximumafy, v, is LiL— 1) Therefore, Ac. . bacomes (1L
This is clear from the Bollowieg Lwo cuses.
Case 1. py = vo = visuyh
Then Ae, =iy, — =, ;L. Considering minimuem oumerater of
unity we oblain Ay, — [0
Case 2 p, £y,
Then the Barpest valoe for the denominator s vy, = L 1)
with 1oy = L—t and y, = L. Under this situation we obtain:

La. - {f—1)x,

Ay =-
¢ iL—1)

Lix, — a0+
ToHL—1

To alluin unity Tor the numerator we can conzsider x, =
vy=1 Thorefore, Acy,_, = 1ALIL 11 Compuaring chses
| and 2 we obtain:

ACain T 8 i
Henee, the minimun change in centrast of a pixel in a diglal
image is

A

min = 100
|
LL- 1)
Therefere, the termibation criterion reduves Lo:
1

- —_— 1A}
ML= 1}

-':"ugl

Mote that thes terminaring criterion can be used with any
iterative smoothing algonithm.
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