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SUMMARY 
This paper considers, in the multiparameter case, perturbed ellipsoidal and highest pos- 
terior density regions with both Bayesian and frequentist validity up to o (n-I). 
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1. INTRODUCTION AND PRELIMINARIES 

In recent years there has been a revival of interest in the characterization of priors 
ensuring approximate frequentist validity of posterior credible sets -see Tibshirani 
(1989), Lee (1989), Severini (1991), Ghosh and Mukerjee (1992, 1993) and the 
references therein. A related problem of finding, for a given prior, Bayesian credible 
sets with both Bayesian and frequentist validity up to o(n-1), where n is the 
sample size, has recently been considered by Severini (1993) in the one-parameter 
case. As he discussed, this problem can be of interest if one believes that both the 
Bayesian and the frequentist points of view are important. Here we consider the 
same problem in the multiparameter case and give two sets of solutions based on 
perturbed ellipsoidal and highest posterior density (HPD) regions. Our method of 
solution, however, is different from that in Severini (1993). In particular, in the 
multiparameter case, an approach based on inversion of approximate posterior 
characteristic functions is seen to be helpful; see, for example, Ghosh and Mukerjee 
(1993). Also, unlike Severini (1993), who considered conditional frequentist validity, 
we do not require the specification of an ancillary or an approximately ancillary 
statistic. 

Let {Xi}, i > 1, be a sequence of independent and identically distributed possibly 
vector-valued random variables each with density f(x; 0) where 0= (01,=... 
OPY E 0, an open subset of i?'. We make the assumptions in Johnson (1970), 
section 2, with K = 2 in his notation. Let 0 have a prior density 7r( ) which is 
positive and thrice continuously differentiable at all 0. If 7r( ) is not proper, we shall 
require that there is an no (>0) such that, for all X1, . . ., X0, the posterior of 0 
given X1,. . ., X,0 is proper. Let X = (X1,. . ., X")', where n is the sample size, 
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n 

1(6) = n- logf(Xi; 6) 

and 0 be the maximum likelihood estimator of 6 based on X. Define * = ir(O) and, 
for 1 i,j, r, s p, let 

ri (6) =Di Dr(6), rij () = DiDjr(6), , = 7(O), #ij = =ij (0) 

aij = {DiDj l(6)} 6 = &, aijr = {DiDjDr l(6)}) = g, aijrs = {DiDjDrDs l(6)}6 6, 

Ci= -aij, Vi =Di logf(X1; 6), Vij = DiDjlogf(X1; 6), 

Vijr = DiDjDrlogf(XI; 6), 

Iij = EO(Vi Vj) I L ii,r = EO (Vii Vr), Lijr = EO(Vijr), 
where Di -/8ki. Note that Iij, Lij,r and Lijr are functions of 0 and that the per 
observation information matrix at 6 is given by I -I() = (Iij) which is assumed 
to be positive definite at each 0. All formal expansions for the posterior, as used 
here, are valid for sample points in a set S, which may be defined along the 
lines of Bickel and Ghosh (1990), with Po-probability 1 + o(n-1) uniformly over 
compact sets of 6. The p x p matrix C = (cij) is positive definite over S. Let 
C-I = (cii) and I-I = (Ii') 

Throughout, unless otherwise stated, the summation convention will be followed, 
i.e. summation will be implied over repeated subscripts or superscripts. For exam- 
ple, aijrhjhr and c'1*ij will stand for ?y 12r aijrhjhr and ,i Ejc 1*ij respectively. For 
subsequent use, we note from Ghosh and Mukerjee (1993) that the posterior density 
of h(0) h = (h1,..., hp)' = n1l2(6 - 0) under the prior 7r( ) is given by 

*(hjX) = k(h; C-1) (l + n-112{T1j(r, h) + 6 T12(h)} + n1 [{T21(ir, h) - Gl(ix)} 

+ 1{ T22(h) - G2} + 6 { T1 I(7r, h) T12(h) - G3 (701 

+ 72 {TI22(h) - G4 + o(n1), (1.la) 

where c( ; C-1) is the p-variate normal density with null mean vector and dis- 
persion matrix C-1, and, with c!(r) = cicTs + circIs + cisc1r, 

T1 1(7r, h) = *1 hi#i, (I. lb) 

T12(h) = aijrhihjhr,, 

T21(ir, h) = *-Ihjhj#ij, (1.lc) 

T22(h) = aijrshihjhrhs, 

G1(7r) = *-lci7*ij 

G2 =aijrsc,rs, 1.d) 

#^-a11,.#5cA(l(lld G3(= a = 7rs laij(9 +clrs), 

G4 = ajjras,,,(9cijcrscII + 6cisCjuCrv)I 
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each of the implicit summations being over the range from 1 to p. In what follows, 
for positive integral v, K, ( ) and kp ( ) denote respectively the cumulative distri- 
bution function and the probability density function of a central x2-variate with v 
degrees of freedom. Also, z2 denotes the upper a-point of a central X2-variate with 
p degrees of freedom. 

2. PERTURBED ELLIPSOIDAL AND HIGHEST POSTERIOR DENSITY 
REGIONS 

By equations (1. la), up to the first order of approximation, h -h () has a null 
mean vector and a dispersion matrix C-1 in the posterior set-up. This motivates 
us to consider a perturbed ellipsoidal region for 6 of the form 

R1(a, ir, X) = (6: (h(6) - 012d(8))fC(h(6) - n-12dw(6)) < An(a, (( X'}, 
(2.1) 

where d,,(0) = (dl(6), ..., dp,, ())' and Al,(a, 7r, X) are to be so chosen that 
the region has both posterior and frequentist coverage probability 1 - oa + o(n- 1 ), 
and 0 < ca < 1. It should be made explicit here that, for each j, dj,, (0) is a smooth 
function with a functional form possibly dependent on 7r( ) and a but not on n. Let 

F1(r) = Gl(ir) + (d,(0)) 'C(d,,(O)) - *7 dp,.(0), + - dr,(6)aijrcJ, 

F(r + ~GA(T) - ~drir(O)aG c",~ 
F2(70) = T4 G2 + 6 G3(T)-2- dr(8)aijrciis 1 (2.2) 

F3 = G 

Fo (r) = -F1(ir) - F(r) - F 
Then, as discussed in Appendix A, with 

2 

A1n(a, XK, X) = Z2 - {n kp(z2)} 1{Z Fj (r)Kp + 2,(Z2) + F3Kp + 6(Z2), (2.3) 

the relationships 
PT{6e R1(a, 7r, X)fX} = 1 - a + o(n-1) (2.4) 

and 
P6{ ER1(Ia, 7r, X)} = 1 - a + 2 {n 7r()}l -1kp + 2(Z2) A1 (a, r, d,(0), 6} + o(n-') 

(2.5) 
hold, where Pr{ I X} is the posterior probability measure for 6 under 7r( ) and 

Al Ice, r, dr(6), 6} = D[ I {1 + (p + 2) lz2}IZJIrsL1jFr(6) + 'DPIir7r(6) 

- r(6)DiPr - drr() r(6)] . (2.6) 

By equations (2.4) and (2.5), the perturbed ellipsoidal region (2.1) will have 
both frequentist and posterior coverage probability 1 - a + o(n-1) provided that 
d.,(6) satisfies the partial differential equation 
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Al lat, 7r, dr(O) I } = 0, (2.7) 
and Al, (a, r, X) is chosen as in equation (2.3). In particular, by equation (2.6), 
d, (0) = c4(0), where c,4(0) = (dl(0), ..., dp,,(0))' and 

d,r(6) = I{l + (p + 2)-z2 }I1JIisLijs + i(O)-lDIlrD 7r(O) - DPIir 1 6 r 6 p, 
(2.8) 

satisfies condition (2.7). 
Considering now the HPD region, as noted in Ghosh and Mukerjee (1993), 

up to o(n1), this is approximable as R2(CY 7r, X)={O: W{7r, X, h(O)} 6 
A2n(a, ir, X)}, where, with h _ h(O), 

W{Ir, X, h(G)} = h'Ch - n- 1/ 2 T11(r, h) + 3 T12(h) + n-l {#2#1Cj1 

- T21(r, h) - y2 T22(h) + T 1(7r, h)J, (2.9) 

and A2n (a, ir, X) is such that R2 (a, 7r, X) has posterior coverage probability 
1 - a + o(n-1). In the present context, the above motivates us to consider a 
perturbed HPD region of the form 

R2*( r, X) = {0: W*{wr, X, h(O)} 6 A* (a, r, X)}, (2.10) 
where 
W*{7r, X, h(6)} = W{7r, X, h(Q)} - h'Ch + (h - n-2 b.,())'C(h - n b(O)) 

(2.11) 
is obtained by perturbing the leading term in equation (2.9) in a manner similar to 
equation (2.1). Here b,(O) = (bl,(6), ..., bp, (O))' and, for each j, bj, (O) is a 
smooth function with a functional form that is possibly dependent on w( ) and a 
but not on n; actually, as we shall see later, the appropriate choice of b, (6) does 
not depend even on a. 

Let 

= G2 + G4 + -(bi(O))'C(bi(6)) - -brx(6)ajjrcJ. 

Then with 
A2*n(a!7r, X) = z2-_ {n kp(z2)}F(7r){Kp + 2(z2) -Kp(z2)} - 2n - brw(O)r/#, 

(2.12) 
as indicated in Appendix A, we obtain 

PT{6 e R2*(a, 7r, X) I X} = 1 - a + o(n1), (2.13) 
P { 0 e R2*(a, x, X)} = 1 - a - 2 {np r(6)} -z2 kp(z2) A2 {r, b,(6), 0} + o(n - 1), 

(2.14) 
where 

A2 {7r, b,(6), O} = Dr{ br,(6) ir(O) + 1 1 iirisL 7rw(f) (2.15) 
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By equations (2.13) and (2.14), the perturbed HPD region (2.10) will have both 
frequentist and posterior coverage probability 1 - a + o(n-') provided that 
b,, (0) satisfies 

A2{7, b1(0), 0} = 0, (2.16) 

and A*" (a, 7r, X) is chosen as in equation (2.12). Note that the partial differential 
equation (2.16) does not involve a. In particular, by equation (2.15), be,(0) = 
b,r(0), where 

br(0) = (bl(0), b.., (O)) 

and 

br( =- 1 7-(0) lIlrD r(0), 1 < r <?p, (2.17) 

satisfies condition (2.16). 

Remark 1. The margins of error in equations (2.4), (2.13) and also in the 
approximations for the posterior characteristic functions used in Appendix A are 
at most of the order 0(n - 3/2); see theorem 2.1 in Johnson (1970). The same holds 
for the frequentist approximations (2.5) and (2.14) as well under appropriate 
Edgeworth assumptions (see Bhattacharya and Ghosh (1978)). In fact, if we work 
under the assumptions of Johnson (1970) (with K = 3 in his notation) together with 
suitable Edgeworth assumptions, then it should be possible to show that these 
errors are of the order 0 (n -2); see Barndorff-Nielsen and Hall (1988). 

Remark 2. The solutions for dT (0) and be, (0), as shown in equations (2.8) and 
(2.17) respectively, can be interpreted in terms of the first-order biases of estimators 
given by 

(a) the maximum likelihood estimator, 
(b) the posterior mean of 0 under 7r( ) and 
(c) the posterior mode of 0 under ir( ), 

Denoting the first-order biases of these estimators by n' f3,(0), i = 1, 2, 3 respec- 
tively, these solutions can be expressed as 

dr(0) = 2 02 (0) - 1 (0) + {z2/ + 2)}{12(0) - 3(0)}, (2.18) 
be(8) = 2+ 02(0) - 03 (0). 

Remark 3. To make a choice between rival solutions of equation (2.7) or (2.16), 
we propose a principle of minimal perturbation which seems to be sensible from 
a Bayesian point of view. This is discussed with reference to equation (2.16). Thus, 
given ir( ), we should first check whether br (0) = 0 satisfies equation (2.16). If 
not, then using I I(0) as a Riemannian metric a solution with a smaller value of 

| (bv(0)) 'I(0)(b,(0)) 7r(0) dO 
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will be preferred to another with a larger value of the same quantity. For p > 1, 
it is difficult to characterize all the solutions of equation (2.16) and we suggest the 
use of a solution which at least satisfies 

|(b,,(6))'I(6)(b,(6)) 7r(6)d6 < oo. (2.19) 

3. EXAMPLES AND DISCUSSION 

3.1. Example I 
Consider the multiparameter location model withf (x; 6) of the form f (x; 6) = 

f*(x(l) - 01, ..., x"P) - Op), where 6 = (61, ..., p)'E MP and x= (x=l), 
x(PY. Here for 1 6 i, j, s <P, Ip , I'I, Li,,j and Lij, are all constants, independent 
of 0, provided that they exist. Hence, if 'r (6) = constant, then d, (6) = 0 and 
b, (6) = 0 satisfy equations (2.7) and (2.16) respectively, i.e. no perturbation is 
required at all to achieve our aim with ellipsoidal and HPD regions. However, this 
does not happen under a p-variate normal prior but then, by equations (2.17) and 
(2.8), both the solutions b5,(6) and dJ,(6) are linear in 6 and satisfy respectively 
condition (2.19) and the analogous condition for d,,(6). In fact, most of the 
location models arising in practice (e.g. the multivariate normal or Cauchy location 
models) are sufficiently symmetric to ensure that Li,,j = Lij, 0, 1 6 i, j, s 6 p. For 
such models, equations (2.18) can be simplified further to d1, (6) = - b, (6) = 
12 (6) = . f3(6) and, specifically, under a p-variate normal prior with mean 

vector i and a positive definite dispersion matrix Q, equations (2.8) and (2.17) yield 
d x ( 6) = -b,(f) = _l(OI) - 

3.2. Example 2 
Consider the location-scale model with f(x; 6) of the form f(x; 6) = 

I0I l*{ (x - 62)/61}, with 01 > 0 and 62e _1. Herep = 2 and, for each i, j and s, 
Iij is proportional to 0T2 whereas Lis, and L, - are proportional to 063 provided 
that they exist. Hence the solutions shown in equations (2.8) and (2.17) are of 
the forms 

r()= 1*1rJ1 (0) - 1 2g 

brdr(6) = T2rli - 17r I iDir(O), 

where I- 1 = (02gir) and gir, Tlr and T2r are constants (i, r = 1, 2). These solutions 
satisfy condition (2.19) and the analogous condition for d (6) under commonly 
used priors like that given by the product of a gamma density in 01 and a univar- 
iate normal density in 02. 

Combining our techniques with those in Mukerjee and Dey (1993), the present 
results can, in principle, be extended to models involving nuisance parameters. This 
is because then the marginal posterior density of h(l)'- h(l) ('(1) = n 12( (1) - 
0(1)), where 6(1) = (6k, . . ., Oq)' is the parameter of interest ( 1 < q < p) and 
0(1) is the maximum likelihood estimator of 0(1), is expressible in a form similar 
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to equation (1. la). For example, analogously to equation (2.1), we may consider 
a perturbed ellipsoidal region 
{0(1): (h(1)(01)) - n-1/2 d(0)) - (C11)-(h(1)(0(1)) - n- 12dr(0)) < An(a, w, X} 

where C11 is the principal submatrix of C-1 given by its first q rows and columns 
and d,,(0) = (dl,(0), ..., dqw (0))', the functional form of dj, (0) being inde- 
pendent of n (1 < j < q). After considerable algebra, it can be shown that to meet 
the twin objectives regarding correct posterior and frequentist coverage, up to 
o(n-1), d,,(0) must satisfy the partial differential equation 
Ii {DiDj r (0) + 2evjDiDv r (0) + evieewjDvDw r(0)} - 7r(0)(DiDjIi' + 2DiDvevjI'j 

+ DvDweviewjIii) + DiIi'Mj r(0) + DvIiMjevi 7r(0) + DvIi'Qijv 7r(0) 

+ 3 {1 + (q + 2)-1W2 } {DI(1r) Bsjr 7r(0) + DvI.( / B5jrevi 7r(0)} 

- 2 {Didilr(0) 7r(0) + Dvdilr(0)evi w(0)} = 0, (3.1) 

where co2 is the upper a-point of a central X2-variate with q degrees of freedom, 
I- rs) IijIrs + IirIjs + IisIjr, 

Mi = WV(Ljwv + L WVV' ev'j) 

Qijv = orwv(Lijw + 2Liwv,ev'j + Lwv'v,ev'iev,j)~ 

Bsjr = Lsjr + 3Lsjwewr + 3Lswv ewjevr + Lwvv ewsevjev',r 

and the implicit sums range over 1 to q for i, j, r and s and over q + 1 to p for 
w, v, v' and v". In the above, with the submatrix of I I(0) given by its last p - q 
rows partitioned as (I(21) I(22)) where I(22) is square of order p - q, awv is the 
(w, v)th element of I(-) and evi is the (v, i)th element of -I(-22I(21). It is not 
difficult to see that equation (3.1) is in agreement with equations (2.6) and (2.7). 

To illustrate an application of equation (3.1), we consider the univariate normal 
or Cauchy location-scale model where the scale parameter 01 is of interest and 
the location parameter 02 is the nuisance parameter. Then q = 1, d,,(0) is a 
scalar and it can be shown that equation (3.1) admits a solution of the form 
d,, (0) = Yl 01 + Y2 102 {7r(0) }J1D1 7r(0), where Yi and Y2 are suitable constants. 
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APPENDIX A: PROOFS OF CERTAIN RELATIONSHIPS 

A.1. Proofs of Equations (2.4) and (2.13) 
Let 

W** {7r, X, h(9)} = W* {7r, X, h(9) } + 2n1 brv(9)rr /7r. 
From equations (1.1) it can be shown that the approximate posterior characteristic functions 
of (h - n1 d,,(0))'C(h - n12 d,(0)) and W**{7r, X, h(0)}, under 7r( ), are 
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(I - 2V) P/2[1 + n [ Fj (7r)(1 - 2f) 
- 

+ F3(1 - 20) -3] + o(n-1) (A.1) 

and 

(1 - 24)-P/2II1 + n-{(1 - 24)- 1}F(7r)] + o(n-l) (A.2) 

respectively, where t = (j1)1/2t, F(7r)(j = 0, 1, 2) and F3 are as in equations (2.2) and 
F( 7r) is as in the context of equation (2.12); see Ghosh and Mukerjee (1993) for more details 
on similar results. Inversion of equations (A.1) and (A.2), which can be justified as in 
Chandra and Ghosh (1979), yields equations (2.4) and (2.13). Incidentally, equation (A.2) 
implies posterior Bartlett adjustability of W* {ir, X, h (8)} (see DiCiccio and Stern (1993)) 
and, in a sense, explains why equation (2.16) does not involve a. 

A.2. Proof of Equation (2.5) 
Proceeding as in Ghosh and Mukerjee (1993), we take an auxiliary prior ir( ) satisfying 

the regularity conditions in Bickel and Ghosh (1990), section 2, with m = 3, which are slightly 
stronger than those in Johnson (1970), and make Edgeworth assumptions as in Bickel and 
Ghosh (1990), p. 1078. Then, as in the derivation of equation (2.4), invertin's the approx- 
imate posterior characteristic function of (h - n12 d,, ())'C (h - n"2 d ()) under -( ) 
and using equations (2.1)-(2.3), 

P*{9eR1(aj, T, X)JX}= 1 - a + n- I[{KP(Z2) -Kp+4(z2)}{G3(r) - G3(i)r} 

+ {K(z2) - Kp +2(Z2)}{GI(7r) - GI(T) - dri(O)( 

T + o(n 1 (A.3) 

where Xi = ir() and xr = 7rr(0), with -,(8) = Dr Tr(9), I < r < p. 
We now choose 7r( ) such that 7r( ) and its first-order partial derivatives vanish on 

the boundaries of a rectangle containing 0 as an interior point. We then integrate 
E,[PT{OeRI (a, w, X) IX}], which can be obtained from equations (l.ld) and (A.3) up 
to o(n-1), with respect to such a 7r( ) and finally allow ir( ) to converge weakly to the 
degenerate measure at 9. After some simplification, this yields equation (2.5); see Ghosh 
and Mukerjee (1991) for more details on this technique. 

The proof of equation (2.14) is similar. 
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