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Repairs to GLVQ:

A New Family of

Competitive Learning Schemes

Nicolans . Karaviannis, Member, (EEE, James C, Bezdek, Felfow, JEEE. Wikhil B, Pal, M.-_e‘n:l,her. fEEE,
Richurd 1. Hathaway, Member, (80E, and Pin-1 Pai

- Abgtraci—Wirst, we identify an algorithmic defect of the pence-
alized learnivg vector gquantzalion ((GLYQ) scheme that caudes
it t hehave irratically For a certain sealing of the inpul daly, We
show it GLYQ cim behave incorreely becawse ils Jerning rules
are reviprocally dependent on the sum of squares of distances
from an input vector to the mede weight vectors. Finally, we
propose 1 new. family of models—the GLVQ-F family—that
rerredies the prablem. We derive eompetitive Tearning aleoricho
for each member of the GLYOQ-P model and prove that they
are invariant tn all scalings of the data. We show thal GLY()-
F offers a wide vange of learning models since it - veduces to
L¥() as ils weighting eiponent {a pavameter of the slgovitdomg
approaches one from shove, As this parameler increases, GLYQ)-
F theri tramsitions fo a miodel in which either all nodes niay be
exciled according (o theie (inveese) distanecs from an input or
in which the winuer is excited while losers are penalized. And
as this parameter ncreases without lmit, GLYQ-F wpdates all

nides equally. ¥We illosfrate the faflure of GLVQ and specess of

LYY with the IRIS data.

L INIRODUCTION

BEOTOTYPE pgenctaling clustering algorithms dllempt (o
DI uilabeled feaurs vecfors inle nalursl groups

and represeol (hem compactly with one or more prololypes
fendeverion, paradigring, lempla fesn, vechor suantivers, #lc.)
for ench cluster. Treatments of many clpssical approachas o
this privbleny are given in the w2xls by Kobhonen [1], Beedek
{2]. Duda and Marl [3], Tou and Gonzaler [4], Hatigan [5],
and Jatn znd Dubes 6], Kohonen's work on leaming vecion
nanlizalion (LY Q0 Tor urlabeled data has l'.u,anL par ucuilarl'.-'
timely recoat vears [71

Ler X — {.-51..5_;, -y 2. b BT denote the unlabeled dara,
and ¢ denote the number of nodes in the cempetitive layer. The
LYQ model is shown in Fig. I, The fopul laver is comected
directly we the competiiion or :lll[]n-i layer, The #fih node in
the cnptpul layer is associuted with a welght (or protoipe)
vector v, The p compenents iy b oof o are often regarded
az weights or connection Atwengths of the edges that connoeet
the pn inpots to node 4
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The pj'dm[}'pcs V= I:iu;-_,'l?-_;, e ;T.I,-_._j_,tr;- ST for 1 =i
v, arc the (anknown) vector guantizers we aegel. In this context
fearning refors 1o finding values for the {v;:h When un nput
vector o is submitted o chiz network. distances are compted
beeween x and each wy. The outpite nodes “compete,” &
Cminimnogn distanee) winner noca, sy w13 found. and 1k 1
then updaled vsing one of scveral updste ruln:,s. Fig, 2 gives &
hriet specificution of the LV algorithm (wome wrilers call i
sirnre |_'1_1'r|[_1-:|.i|;;i1.-';: Tearuing) that is uzed in Secion TV,

The updale scheme in (27, shorwn in Tig. 2, has the simple
Zeomemic interpretation shown in Fig. 3. The winning proto-
tvpe e s—; i# simply rotated toward the corrent data point =y
by moving along the vector (x5, — w; ;) which connects it
e Ep.

The amounl by whivh w18 shalled o oaprive at v,
depends an the walne of the lrarning roie parameter o, -,
which varies {ton zero to vnc. Thera is no update if ey =0,
and when ey = 1,0y, bécomes [-'1.1.,-.1 i5 jUsC A convex
combination of &y and ;.14 This process continties uniil
rrmdnation vis LV (o by itecate Limie T, a0 which time
the temminal prototypes ean be wsed, for example, o find the
ncarcst prototype hard o partition of X via LVG35,

LY} nrd'[m rilv uses the Fuclidean distance in (13, shown
in Fig. 2. This choice correaponds soughly to lhe wpdate fule
shown in {27, sinee Vil - vl|?) = —2{x —v). The ungn of
this leaming rule comes about by assuming that e"u,h ol i
discributed according 10 ai nakuown me-Tnvariani T.'lUbe]lil}' ;
dengity Funclion f{x). LVQ's objective is (o find a Sct of v;'s

Canch that the cxpectad value of the square of the discretizadon

ity

Ll — w: )

A flemitpzia )
A7

is minimized. In tis expression w, is the winning prototype
Ter cach @, and will of course vary as x orangss over Y.
A sample funciion of the oplimization problem dofined by
minimizetion of & aver B s 0 = |2 - ) An optimal set
of 11,78 can he approximated by applving local :-"IMHLII.[ descend
10 = lw—og|? Torevery datg point & deawn [rom F. Kehonen
has .~.htm11 {H] that wnder cerlain assumpeions an ELE. learning
rales, slecpist descent optimizstion of B s also possible, and
boeth strptepfes (sinchastic approximation und \lu,pml descent)
lead o upsdale Tude {29,

LWV atlerapls w minhmize an objective function that places
il of its comphasiz on the winning prowalype Tor sach data
point. This is reflected in (2), which aliers only the winner



AR AYTANNIS of al: REPAIRS T GLVD

Input Layer
(Fanout)

Es 3{”

2

Fig. I, The T¥(} conmpetitive leaming necworh.

LVG1. Given unlabeled data set X = &y X

®P. Pick e, T = maximum number of updating
steps, and > 0.
LVQ2. Initialize Vi =1[v) 1, ... ¥, o) € AP

Inifialize learning rate ¢y € (1.0

For t=12,..T:
Fork=12, .. mn

. .
a. Find r,—Eu'g:-n[n{hx"r vrﬂ}. (1)
b, Update the winner by
: Vit = Vi1t oulme vye) - @
Nextk

LVQ3. Compute
B=E-= ﬂVt - vm“'—
Vo, I E; < = stop;
Else o — lxt[l -t/ Tk

o
kz=1 rg tet 1"rrlr..l:—]!'

Next {.
Labeling Phase [optional}
LVQ5. Find i= argmin{lxk —v ||] and mark
el e st

. i X with labcl i .

g 2.
phase.

The [Unlaheled Datay LVQ Algoeithm, TAVOI—4 are the lewrning .

tor each & submitied, This ignones global information about
the geomettic strelure of (he dawa thal is represented in

v :
1,i=1"

Fig. 3. Wpdating fhe winning TRV prodolype.

the remaining {c — 1) dislances from & to the nonwinner
prototypes. In thiz sense TVQ updating is somewhat like
using the sup norm, £ — of|.. = max} {|z; - ]} to
measure distance In ®*. The extreme value in the absolute
difference botwean pairs of conrdinates dorminates all others,
aod the distince produced simply ignores them. @ the same
way, LV wpdating is a vory harsh local steategy that isnores
global relationships berwaen the input daum and nenwinner
prototypes.

Ulsing on inner product nom on \Y ameliorates the harsh-
ncss of the sup nerm by counting contributions from each pair
of coordinate differenees in the overall distance calculation.
In the same way, we think that nonwinner nodes in an Ly'Q
network should be allowed to influende the update of the
wintner, anid perhaps, be updated themselves. This presents two
questions. First, which- nodes should be accounted for {wit
ix the ppdate meighborhood)? Second, how much influence
should each nonwinner node exert (what fs B learning rate
distribution’? Modifications of LV are usually muodivated hy
a desive to answer one or both ol hese quesiions, Yarlalions of
LV that update all ¢ guantizers simultuneously during each
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npdating epoch include: the soft competition scheme £50C5) of
air ef al. [9]; the My leaming vector quantizaion TFLVO)
mcthod of Tead of el [10; and the generalized learning vector
guantzatdon (GLVD alparichm of Pal er al [11].

The ohjectives of this paper are 10 demonstrate, analyze
and remedy o detecr of GLY() that nconrs for a particnlar
sealing of the input data, Independentdy and st the ronghly
the zame time a8 this smdyv, Gonzalex er al performed a
somcewhal different analvais and presented forther eramples of
the erratic behavicor of GLY () [12]. Their resule: are different
than the ones given in this amticls in several respects. Fist,
the datz wsed in thelr examples thar showed sensitivicy to
data sealing were randomly generaled subsels of 0%, They
alse demonstrated compulationally Bl QLY gould exlobil
degcent, ascent and evan limit ovcle behavior with respect to
its loss function, and that the alporithm was sensitive to the
number (o) of proiolypes being soughi, On lhe other hund,
no replacement for or correction to GTYD as siven hare was
iflered by Gooewlee e gl Nonelheloss, their paper is owell
worth reading as a companion paper to this one, and readers
are encourigesd 1o sludy beth.

Section H reviews GLY (), demonsleates (he problem wilh a
numencal example and identidies e covse o the problemn.
Section U delines, illnstrales, and analyees o mew inlindle
family of competitive learning models that overcomes the
defect, We prove thal algotithons wsed o oplimize members of
this new family are imvariant fo positive scalings of the data;
and give a mmgh analysis of the limit |'1g hehavior of thase
algorithms as one of thelr paramoters approdaches s Heoals
[tom ubove and below, Scodon IV contains our conclusions
and some deas for further research.

M. GENERALIZED LVQ

Lerx & ¥ he a stochastic tnpur veclor distributed according
to a time invariant prohability disteiborion fixe], and let ¢ be
the best matehing node 25 in {2). Let Bg he a loss tunction
which mensures the locally weighted mismodch (emror) of =
with respect to the winner

(=)
P =iz, -xvr_‘.:z del@ — | ®, where w43
=]
1 ifé=arg min {|l& —w. |}
; S e
4 - ctherwise . R

= =T
e
> e =2
i

Muotice especially that (dh) specifies only o valugs oo the
el welghts {eg. b the weight g; — L lor the winner, and &
different hut equal weighe g for all {r 1} nonwinners, When
X ={m, - &~ 158 80l of samples Tom Fle) dosn
ar times = 1,2, - -, m, - -+, the objective of GLVO is w find
asef of ¢ w.'s, say ¥ o= {w.}, such lhal the Jocally weighted
error functional Ly defined sith respect to the winner v, is
minimized over X, In other words, we seek a solution for the

IBEE TRANSACTIONS DN NEUFEAL NELUWURKS, VOL, 7, a0 5, SEFTERBLE 19%

aptimization problem

- .o
minimize d 17FS = // e / Z.ﬁ'-- | — v | fla) d
Y SR i : — : &

Vern Hr e .

{5

Pl er al derived update tules for solving (33 hased on
minimization of Ly, via the method of stzepest descant [ F11
Thesz Tules are

TELT [|lwe — wog e 2
Wiy =11 T e -
Fipaot
oy —w—1) Tor the winner hode 4, and (&6}
P
!—”-!- s 'u&_.-!-—] " . v L
Wyr —Tie s — LEg - j':):" — [l — Wy 0y
e et
Tir.d=1
for § =12, 771 i)

whare £y is the currsnt input vector, and

© ’
= Z Ty — My 1”":.

vr=1

The GLVOQ algorithin is defined by replacing update (2} in
LV by (8). To wvoid possible oscillations of the solution, the
recomimendation n [ 11] for learning rage . was that it should
salsly two condilions: as L — ooy — 0 oand oy, = oo
For exsmple, the learning rite oy — ogll — /77 5t LVQ is
finz—note that it depends anly on Land T, the iteration counler
and limit, respectively. The averall learning rates in {6} thns
become products of two factors; for the winner, o - H 2 1
and for the nonwinners, ge_q Gk e—1. where 0 and -5 are a8
shown in (8u) and (6h). Tt i Impovtant to observe that [ and
~ bulh conliin 22 in their denominamors, :

Tigom (Bh) i [olows thal when e match o the winner is
perfect o — o ,q|* = 0], nomvwinner nodes are ot opdatad
and GLVO) reduces o IV In [11] 91 was alwo asserizd thal
as the match hetwean o oand the winnet nocs e decmeases],
the: apdating impact on nonwinner nodes wercased. In view
of (4h), this impact was always thought to prodoce nonwinner
updates that were less than the updale applied Lo the wioner.
Homever, such is not always the case. Karayianmis and Pai
[13], [14] discovered that nsing GLYO) ou the IRIS dats aller
scaling it with Loy — & 10 produced far dalkerent results
thar those repocted in (11

To appreciate this, we again Dse Anderson’s IRIS dala as -
an experimental data sel [15] TRIS comiping 30 {physically
labeled) vectors in 3 for eweh of & — 3 classes of IRIS
subspocios, and il iy ﬁ'ﬂ]:lurlmu for fhis cxample to know that
the minimmm and maxienm featore valoes in IRES are 0.1 and
77 IRIS hus been wsed o many papers to illusorate varions
clusrering umsuﬁarvisc.d) and «lassifier Gsupervisisd) designs
Typical {resubstitotion) emor tawes Tor supervised designs are
rero—five msrakes; and [or unsupervised designs, around. 16
“mistakes” on classifiers thal are subsequently designed wiih

clusmeting calpuls fusually prototypesh.
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TABRLL 1
GLYD on LRES sk [RISA10 for T = 500 axp aq == (L&

Tieithal prutolypes : Terminal % on [R15/ 10 Phyaical Clazs Means 10
or 1143 LI [k [ CHY ] Na38H 0.320 1343 01117 (1 Sk 0.342 0.146 024
L {1610 0,320 11385 130 586 (321 11344 0113 11303 237 0424 a.132
s 117754} (radiy 1680 0250 0588 1321 1547 0.112 1654 k217 R e
Terminal ¥V on RIS Ehysial Class Meuns
1 4301y 2.8 100 0100 00 3403 1472 0,350 5.4008 3478 1462 0346 |
L fi. 100 5.200) 2,85 §. 0 SRR 2,742 4267 1433 54936 2370 4264 1326
3 TS0 4.40K) .54 25y 6,847 3078 58 2.038 6.568 23474 5.55% et Al

Mearest protulype classifier design based on (any) unsuper-
vised prototype generating algorithm is done gs folkows, Fist,
the prololypes are found by cxercising the training phase on
all of the wilabeled datg ot rernination. At this poinl, the
lerminal prototypes Vo= {ee: 1 < kb < o) have numerical
{not physical} labels, Onee the protorypes are relabeled (10
needed) using a relabeling algorithm such as the one discussed
in [11], they arc used w define u crisp nearest prototype (L.
NI} classifier, This classifier is simple to implement, needing,
hosides V', only a definidon of how to interpret (compute) the
concegt of nearest. The usual choice is o measere distances
using 1 norm on ®B7; and among the nomns, the moest common
choice is an innor produet norm. This 1s the classitier we will
use o compars sets of prototypes,

P Crispr Nearest Protorype £ 8-NP) Taner Product Clossifier:
Given prototypes ¥ = {op|l < k& < ¢} and z £ B7

Drecide 2 & 6 (e, luhel 2 ay class @)

S lg-wms<lz-wlaslsi<eidi {7

In {7 A is any posifive definite p % p weight matriz—it
renders the norm in (73 an inner product nerm, ||z - vl =
iz —v:)T Alz — . Equation (7) defines a crisp classifier
lhat has piecewise-linear devision boundaries, even though
is parameters (V) may come from a fozey or probabilistic
algorilhm, Our cadowlations use A = I, the p » p dentily
mafrix, which gives the Ruclidean norm, Ties in (7) are
resolved arbitrarily. Note that (7) is the same operatiom as
LvQs,

Hiow do we pse 1-NP machines to compare unsupervised
learning algorithms? The method emptoyed bere is to derive
prototypes ¥ from Jabeled dats withoot using the Jabels ((hat
1%, we prelend there arc no labels) during the raining phase,
Then, the datay are subniitted 2 1-NP design based on ¥ oand
crigp lubels are wssigned o each datum vin (7 Fuoally, we
corunt the number of crrors by comparing the compuied labels
o the target Qeiven) labely. Ermor eounls are conveniently
tabulated vsing the confusion matrix C that can be constructed
during this process. The observed resubstinwion error rate {in
percent) i%

'] b1 e ) N ?Il‘l'ﬂ-a]u . . N = 1 — If ; 1'I'I'II
EX.Vi—100+ (1 [# m‘m)) = 100 = (L = (tr{€})
(%)

where O is the (¢ x o) confiesion meatrix

7 = [y, = 3¢ labeled class fjbut were veally class 4. (D)

Tn the examples below where X — TRIS, errors made by
(73 vsing any ¥ are aggrecated by tesubmilling IRIS w the
nearest prototype rale and comparing the label assigned by (7)
1o the phyvsical lubel of cach vector In the dula,

Ciond initialization of cempetitive learning schemes that
find weclor gusntizers from vnlabeled data is very impertant
[T1]. A typical choice for the initial protodypes 5 o make
random draws [rom the uniform distribation on [0, 17 for cach
coordinate of cach prototype. This might work well when the
data have values in (his range, and tandom draws can always
be scaled to the general range of the data. Another popmiar
method is to simply draw (r} distinct vectors from data set X,
and vse them as the inibal protolypes.

Random initialization or < draws from X do not generally
allecale protobypes sniformly over the input space of the
data. An initialization method that goarantezs this follows.
For data set X = {x),--,x,} © #HP, lor daa poiml &

and imitial prototype ¢ be T = [Tip, T, Fpe) and
v, = {ug, Uyse= o, Ty }-T. respeclively. Compute the Teature
ranges

Minimmurn of featurs j:

my = min{retii=1L2, -, and {10
&
Maximum of featurs j§: )
M= mas{zel:f=1.2, - {11}

&k

With these, compue the 7 component of the ith initial

prototype as

: o My =y
i =y + 1= J._] (T)
i=13-e f=12--p (12}

Formula (12) disperscs mitial protogype vilues wnilommily
along each feamre range ;. .-W_,-_‘. For example, #; = m =
(miy,omg, - map)ove = M = (M, My, -, M}, and so
o,

Tablc 1 shows the results of T = M iteraions of GLYQ)
using the mitafizatiom in (12), with an ihitial Jeaching rale
oy - A on [RIS and IRISS10, where the latter data set
is produced from IRIS by the scaling {x; +— a3/10). You
can sec that the prototypes produced by GEVOQ on RIS ae
very pood estimates of the physically labeled subclass mean
vectors, while the estimates produced by the same ﬁlgnrithm 01
IRIS/1O are: 1) oearly equsl w each other; and 2) not close oo
any subclass centroid. This will have an obyvious (disastrous!)



106

TABLE 11
Laar, Fagzs aoan Covmssiow Mearricss TR GT0Q an TRLE Ak TRISS1L0

RIS/ 10 IRIE

Cuoanlusion 0O O B0 0 0 ]
1143 o 47 3

Matri
o [0 149 0 14 35
Error cule ERIS/L0, V] =33.300 ETRIS, Vi=11.3%

cllect on any nearest” prototype classifier designed with the
tz2rminal quantizers for TRIS/LO. shown in Table [
Falde M shoews the confusion matrices and crmor rates pro

duced by the nearest prototype mule {7} after the centoids -

abtained by GLVO in these two cases were relabeled as needed
by lhe relubeling algporittun in [11]. Simply dividing each
dutni by 10 wiples the error rage!

Table 11 shows that GLYVQ is very sensitive o simple scaling
of the data. To see why, let Aw, = o — v, L for e = | o
e, and recalk that . = oy wi— 1?77 in (6B Wilh
these conventions equadons (bap and (6h) become

A, g [".";J-,-..: ==

L= %J E I R

for the winner node +,  and {ha"y
i"n‘".--:[ =—] "r:ai-.f—l{-'l'if; - ‘UM—i}
fl‘--’r';'ﬂ__.I.'-.-):-'"-."::'iﬁj—";""'- rﬁh.’}

It 15 easy in see that if

(=
Lty [
=3 llos — ]

r=1

|
["_rsk.f.-l +1 D‘} = Vikg -1

Since oy 13 the same for winpers and ponwinpers, the
tpercent) changs in the winner node veelor may be less than
changes that are mude 1o e other (¢ — LY node veclors in this
case, Since he mintinum and maximum valves in [RES0

< 1

are (LT aod 077, this has apparendy hagpened doring tha

application of GLVO to IRIS/ 0 More generwdly, there may
bes a scaling of way dala ser which produces feature vector
fagnimdes that make Lhis happen. In this casc, GLYQ may
terininate oo very wnidasirable or mislewding, set of vector
guanlizers of elusler strocre in X becousc the nonwinner
nodes will be pulled 1o the dara more steongly than the: winner
node ig, This results in all node vectors migrating to the saime
poinL in RY as thoy did for TRTSA0 in Teble T

. A Furzy MooiFicaTos oF GEVO

The failore of GLYO on IRISE0 leads back (o the ub]wlu C
funcrion shovm in (4, Subsiitation of

0= Z”.‘Eg—ﬂhv g2

i q4h} shows the pr DNL.TI juat exposed

1 il = arg mini |z —v.i|}
Qe p—

1A
[Fa

F=4q - ;1
'E, othoriise

[’y

IEEE TRANSACTIONS ON NTURAL NOTWORES, VoL, 7, %0
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T this form, it is easy to see that when D < 1 GLVQ be
hives exaerly cpposite 10 what was desired,! Thus, we are lad
o propoge 4 new model and algorithnn that is related to GLVG
in that it iz defined by the same oplimizaion problem —viz,
(51, The modification arises (as do others proposed by varions
authors) by changing the definition of the weights {g..] at (dh).

Here are the propertizs we want the {g.} 1o have: 1) the
magnitede al g, shonkd be fnversely propertioiel to e, -,
¥ cach g- should be in [0, 1]; and 3) the sum of the {g.]
should be one, There are many chedces for the {g.} that
satisfy 11 3% For example, Yair ez ol [9] proposed in thedr 5C%
scheme learning rales that vse posterior probabilities (shich
satisfy these constrain(s) as one of their lzarning rate factors.

Many  authors, begimming with Hunrtsherger and  Ajji-
marangses [16], have felt that a vatural cholce [or g whick
satises 11 33 s (some funetion of) the membership value
oblained from the [eeey c-teans (BOM) formula [2] for any
st = 1. The basic formuly for the memberships of an mpul
over the ¢ nodes is (assuming ||z — wy!] = 09 and w = 1)

1
|| = tr |3 T

Z‘{ﬂﬂ' J.") . re=1,2

wy|[Prime L )
(13}

Warious nvestigalors have used funefions of s fonmola in
differcot ways: ez, e TLINVG (or TECN; [L0], GRECKM [17]
and LIPCL [18] algorittums ave all based on (13} in ane way
or another. The vse of C13) is intdtively appesling because
FCM s a successful god robust batch clustering algorithm,
and wo may hope that parl of its etility can be ransfemed o
competitive leaming schemes via the formula itself. Using M3
as wi have here is difficoll o jusaly mathematically (exoept
us 1t does satisfy -3 above), so this modification iz best
viewed a5 o heuristically based idea, Substituting the weiphts
i (137 in (day vields

Ly =Limw ., 0= Ltl E: - i
=1
4 w =2
o ,Urlll."-"r-\.—l] ; ,
—}_, L( ~ T [P il B

Assutning Ml ||& —wy | > 0¥F ald e 3= L the grudivot of

Lz with respect to vy 1 (see Appendix A)

Vo, L = Vi, (Zﬁmllz - v.-n*)

=1 /

-2
= - B )
we— |

r

iy
ay |5 2T
r gt |J_T’f- e %
e 2 =
— |54
£

{152}

And lor the importanl special case mn — 2, (L3a) reduces Lo

(L5b)

'In faer, thare ars values of I for which [vap e + 1 — 200D =0, fand for
I3 e 1, GLVCY el e L)

Ny, L= —Er:w.i.% -y
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TABLE II1
GLYQ-F fmn = 2) an IRLS AkD IRIS L0 moR T = S0 Ao ap = 06

Inicil prototypes 10 Terrpipal ¥ on RIS Physical Cluss Means/10 __:l
™m 1420 .20 1. 1060 LD DA 0241 0148 {.0ds {1.5¢K) (0.342 (B4 1.0024
ey L&k 1,524 10,3408 0,150 [.538% 0270 0435 N3 0.593 0277 426 1,112
L5 n.ran 0440 .6 0,250 L6760 0305 0563 0. 203 Less 0,297 (3555 0.2402
Iniizl Prowmoypes e Termingl % on LR1S Phyaical Class deans i e
T 4N L L0 G0 5002 3412 14ER  f.6d S006 5428 L4562 0.2
2o £, 1] 1,200 L5 L300 5.584 2762 4338 L3593 036 2770 4260 1326
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TABLE 1V
Frror Rates ann Cowrrsior MaTrices Uscis GLYO-L (m = 2) on IR1S akD LRISSA0O
IRIS/ 10 RIS
i
CGLVG -F Confusion 5o 0 0 50 0 0
4 0 47 3 O 47 3
Matrix - !
{ L0158 47 L oo13 a7
ErTor rafe 1 ElRS/ 10, V)= 10.7%] ERIS V)= 10.7%

Using (L 5uad, the learning rule obiained by applying gradient
descent to Ly at iterate & for inpul vecior £ becomes, under
the assumptions just stated
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For i —= 2 gradicnt (151 yiclds the much simpler form
T T n_'Zm?'][ﬂ; - -1 i=12" -,
(160}

Since U w2 1 — X owe and w € oy 5 i —
wi|l = ||z —w,|, the overall learning rate gy (2en?) for node
v {at m = 2} is mversely propartional o its distance from the
data poing—that is, the closer the node vector, the larger the
updare, This vpdate rule does nol huve the problem of GLVQ
that was illustrated in Section 1TL Using (10a) instead of (2 in
our specification of LVQ resulls in un infinite fumily {une for
each ) of competitive leaming schemes we shall call GLY()-
F. (Pethaps GLVQL is a more ndturdl name, but we wish to
avidd possible confusion with Kohonen’s LVOQ1, which iz a
learning algorithm that wses fafeded dats) We mention that the
factor (2c) in the learming rale e {2eu) is uninmporiant. The
calculations discussed below used the simpter and equivalent
BXPression vl as the: overall leaming rale for node 7 al
ilerate £ in {16b). The owverall learning rates in (16a} at any
valpg of mr do nol salisty the desirable properiies atipulated
for the weights {g, |+ rather, these properties are hudlt into the
rates as parl of one [elor,

We rcmark that learning rule [16h) was proposed explicitly
by Park and 12azher in [17], and implicidy by Chung and Lee
in [18] pthey used any v = | bur for w &£ 2 they Gid not
artive ab {15a0]. However, ncither of Uese awhors jostified
the usge of (16b; vig the well-defined optimizaion problem af
(53 and neivher vsed (16b) a5 the updale rule he way we do,
Instend. they mistakenly tdentified (160} as part of a schome to

oplimize Lhe kih term of the fuzey e-theuns objective Tunclion,
LE.,

1Iiin
]

LR
= E['“"J";'ml'z"' 1‘1.5!|i; m = 1}_.
i=1

A peneralized lorin of (16b), dilferent [tom (b6u), wsed in the
UFCL method proposed in [18] is very unstable to values of
the FCM parameler (m) [or s less or greater tham m = 2,
We shall retum o this point later.

Tor soe thul GLVQ-F overcomes the problem of scaling that
GLNVQ suffers from, consider Tables 111 and 1V, which contain
the resulls of upplying GLVQ-F {with m = 2] lo IRIS and
TIRIS/ 10 using cxactly the same initializations as in ‘tdble L

The terminal prototypes found by GLVQ-F on bath [R1S and
IRISAM) agree well with the physical class means, DilTerences
in the second and thind prototypes with the second and thind
class means indicate thal the physicdl labels of the sccond
and third subscts of IRIS do not correspond exactly with the
igeoihelric) struciire of the date thar represent the flowears,
This is a problem of good dala representation, not bad terminal
profotypes,

The fact that GEY O F makes 16 classification emrors on TRIS
and IRTS/10 instead of 17 is nol important, becsvse changes
In T and v can affect its owtputs. CApplying the T-NP rule to
TRIS wsing the physical vlass means for V oresolts in 1] ermors.)
What is important is that these resalts show that GLVQ-F does
not sufler [rom the scaling problem that plagaes GLVQ.

Table 1 suggests that GLV-H is alleced very litile by the
soale of the data, We can show (lhe prowl is in Appendiz B)
that GLVO-T7 15 scule invariant in the scnse of the following
proposition, which assurcs vs that GLY()-F cannot sutfer friom
the scaling problem that GLVEG docs.

Iy Proposiion: Let X = {»,Tu, - 2, © B and let
= (M pa¥on, oLttt © R, be a set of initial

{Ja.-;,.lv- e, V- XD

¥
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protobypes. Lat o+ he g fised positive number and define ses
of sealed data and inital prototypes by

Y =iw.d oWl

Wi = lwy s wan, - w,0)

TX v, vre, -, T b and

=7V = [Te g Tren, -tk

Then applying GEYQ F o X, mitalized by ¥y, 18 cquiva-
lent t applying GLVQRD (o 1), initialized by W, in the sensc
that

j=1,-- ¢ and t=01,---. (17

o

by e = TUG

We reavnaek that whevever g, [ra] and T are the same
for the X and 77 problems in this proposition, and when the
termination critcrion for the two problems satisfies sy = v ey,
that the wermingd protolypes satisfy W . 7V,

SBince. UYL 15 well delived Doe amy oo {7,000, wsers
mual chonse & value for this parameter belowe the algoritlun
can he implermented. Computational cxporiments we have done
supeeat that v — 2 may he the most rehable value. T
imvesiigate this further, we can lake limits of the pradient in
(15u) as m approaches its upper and lower limits. Here are the
results. Lirst (see Appendiz ), we have that

e 4 2ika - .- "
.h Taf =m0+ ( = TR P
PR w\ o &
F =370 eer p a8y

Tliis estadlishes that all ¢ prototyvpes arc adjeited cqually in
the sense that the learming rote is the same Lor all ¢ weighl
voetors in (16) as parametor m grows without hoand. At the
other exreme, when e approaches one from abose, we fdd
thzt {of. Appendis 1) '

Vinol + 100 B — w1 )

f=arzwinf||s — e
i g’

lim o) 119

.k
PFE

L 0y

The right sile of (190 15 ap to the scale factor 2 fwbach
can be diopped withoat 1oess), idenical o (2. Thus, GLV-F
reduces W LVQ when e approaches 1 hom above,

In some cases we caumined, pradient {1330 hecomes
PmYie - ) (positive mumber) for the winngr prototype bt
f—2 e — ) (newdtve npmber) for the loser prototypes. This
corresponds to rewarding the losers (excitation) and penalizing
the winners {inl'uil'.uil:inn']. Combining this obsarvation with (L8)
and (19 sogaests that the parameter o contels the ovesall
lesmang rates spplicd o the opdates inosn interesting way,
Evidently, s can be used o mansition the model fromn strict
excilaiion of the winner [y overy closs 1o ong) w omized
excilgtion-inhibiden (for m closc to one) fo uncquil excitation
ud ull nedes (as e wets lurger), to equal cxettation of all nodes
fs e goes Lo infinity)l, Thus, oar helief is thit the CGILVIO-F
madel can repessenl a wide range of biologically inspived
lesmning puradigms through adjostments to a simple weizhting
parameter. At presenl, however, lhe sxact mechanism ot the
transition [Tom one state o another s uoknown o o {and
may be g dalz-dependent cventy- This aspect of the mogel
cdeserves a careful sludy before [unther asseriions aboul i1 can
b made wilh much conidence.
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1V, CONCLUSINS

An experimental investigation with the well known 1R15
data wsing the GLYQ algorittun given in [L1] shows hal
GLVQ produves good rosulls on TRIS, but torrible results
an TRIS/H0. Combining our reanlts with those reporeed by
Gorcelos af ol | 12] lewds (0 ae inescapable conclusion: GLY ()
is hest regarded as a faltered step on the way o heser
competitive learning models,

An infinitc family of compertive leaming schemes called
GLVQ-F are given that overcomes the fala scaling problem.
We have shown that GLVQ-E iy invariant to scaling, Mom
importantly, GIV(-F offors users a wide range of neural-
like responsas, We have shown that GLVOQ-1 tedices o LV
a5 ils weighting cxpiment approsches one from above. As
TR ineredses, 1L then transitons w2 model mowhich either

b nodes may be excited invarsely pooportionally too their

dislatiess [om an lapul or in widch the winner 1s penalized
wlile losers ame cxciled, Amd as w incredses withoul Hmil,
CHNMO-D upedates sl nodes equally, This behavior is prisfustily
relacecl o epochs o asceny, descent and lhnie eyeling, ol
the aptimization heing perfarmed, - aod needs o be caefully
stuclied before stronger conglosions are warksmled, A small
by-product of ds investigation is 8 very goud initalizalion
slralegy for ilerstive algorithms that produce estimares. of
pratotypes from unlabeled data,

A genaral charactetistic of Ly(-like schemes is their se-
quential natore, which essenlially vpdates one or more quan-
neers after cach look at a datom (this nciudes the GLVOQ-F
mindel). There are batch versions of these schemes that attempe
o overcome this limitation—most of them simply average the
updates and apply thom aller a pass throwgh X, This stzhilizes
the movement of the prototypes somewhar, but it 15 still che
case that each term in the update equation iz determinsd
enlizely by [ocal inlomoadion (al g single dua point), We
bieliove that bawli models such s hard dnd lWwry c-medns
[2] and deseendiny FLVO [10], whose algorithms alempt o
oninirnize & plobal lunction of all e dala points. have a better
chance of producing usefizl veclor quantzers in mest i ool
dll application domains, We plan an investipation that shows
(s Lo be the case.

A impertant pomr bronght up by Conealez e ol [12] thal
was nol stodied here deserves special menton. It is that the
fuality of the prototypes mey importandy depend on ¢, the
number of them. Tf ¢ is low, the scheme we have oudiped
here, a5 well us that proposed by Yair ef ol [9] may insalare
the model [rum local mstability by dismibuting the updates
afrogs wll e prololypes, Bul since the overall leaming rates i
these schemes satisty the consfrainis 1 < 25 os = 1,
it the update for any prototype (the winner) is large, the
constraimts foree the other updates to boecome minute, Thns,
4% © incToascs (say, 8.0, s i the case in intage comprassion,
where o = 256 is net uncommond. i may well be thal the
original LY {winner take all) stralegy or some less siringent
variation than GLYQ-F bocomes more and more relishle (and
artcactive). This impontunt possibility will by the subjecr of 4
furmne investigulion. . ;
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ATPENDIY A show it must hold for & By (16af, for y = 1,---,¢
COMPUTATION OF (13a) B i oy |
; 5 L By e |y | bl
See (15a) shown at the bottom of the page. Wy =Wy e ;1 ( g — wy| 2 0m =10
APTENDIX B + (m '33}[:: — ;s 1)
PROGFE OF (1T ;
1) Praposition: et X = {xy,@4,- . 2,) < R7 and g duserty
et ¥o = (wiovioc ool & B, be a sel of TR T - ]_)
initial prototypes. Ler 5 be a fixed positive number and < vz — 7w, |2 tm—1 Aeiim
define sels of scaled data and indial protowvpes by Y . {H_,. Z ('._ — _}J +im - 3,"}
Iy ¥t} = 78 = [7@, 782,75, and Wy = b Az — Fo 2y
g wag e = TVWo = {Tip Tan, - TV {rE—Tvi)
Then applying GLVQ-F to X, intislized by Vi, 15 equivalent ) LA
to upplying GLVQ F to ¥, inidulized by Wy, in the sensc that E=fig [‘U_J'I:_l + (-.ru "_ ;)

Wiy — TU g=1,--,e and [=0, -, r17) w L Ziime 1)y 2
{E(u ) Hm_gj,}

Froof: We use induction, Result ¢17) holds for ¢ = 0 by bl T wy [
hypothesiz, Wa now assume it holds Tor arbitary £ - 1, and
F —fuJ.l_ij T 0

{ |& — w2yt

Vo, L=V, (Z iy |2 — ?:,.|'3) =

=1

=¥
g D Sy

; ; n - 2 S 2 N : T
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=V & _ Tl
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2
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i
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To complete the prool, observe thar the membership values
Pae } Tor X and ¥ are identical, because they involve ratios of
norm values. s¢ that the scaling factor + cancels out, just as in

|7z — v || 2 i1}

| o TU*_”E_.'I_I:TTI—..::I
‘. ,.I._ﬂ..":_u.-.- “”.‘E _uril'z;"fm i

[l = 02/ 0n—1)

Y| E)

TR — T

R i

|$—'!J|. |2 [ 1)

n
AProrDrx

COMPUTATION OF {1 Y
Eewrile the gradient equation {153)

i, 2
f\."‘w., L= ('.fl-!, —I) (v — w3

':r e ~ |!1,- i ﬂk".‘_.-'m...l G ,
. \‘-__-r.rt = 2_.' L — (l_. (ml i
: {15a}
. _'If 2;”.-'-' = !I;.:I

Z(llz —.-T_I,-,EI )I'-i By ) f (=17 | ;
bLru = | —_ — |
llee — wel], g

-

Lol

2y
we—1

= {2z — e fug - Flk,m)] (152"

Evaluating the limit in (132" .25 1 +— m or m — oo is
complicated by the fact that w;, depends on w in a fairly messy
wity. To simplify the arzument in the following unalysis, it is
assurned that |z - | = 0 for # = 1,---, ¢ with no ties
in daturn to prototype distances, We first consider the cuse
wio— o, where i 1s well known that

Jrm, (e} = 1

I

for all & [2]. The numersior of F{k el is casily seen 1o
L ;

approach the number
3= I
L |w — vl b
= 3
as 1 - o, while the denominaer (m — 11 -+ oo. This
shows that

limn {#4k rats 0

TR A

Lor all &, which, combined with

Jim Tuet =1/e

B BT

for all &, cstablishes that all ¢ protolypes are “dju-‘-l.cd cegually
by {16} in the limit, fe.,
ey
i L tr 1) Z— :|
a

F=d e

Lm {wied =i,
Im {v5.} =y,
TR—r0.

i 18)

AppoNnry [
COMPIITATION OF (19)

We consider evaluating (152 as 1« e 12

El.;':ll. 2] f(llil? - “-I}ﬂ) and -'.:'Hn = ma'x-{t;-.is.l! n o a‘k:f :._ .

N

Mote thal cither Ay = 1 or A,
written as

= L MNow, Fik el cun be

L Ii-._l ;-’I’m—-l:l
i o 1i(m—1)
I E:P“
zae) |

v —1

() (zem- 5_)
) )

We now drgue that the lanit ol {D.13 5 zero for buih possible
vases ithatis, lor lhe winner and nonwinner nodes}, I Ay = 1
then the denominator of (D.1) cquals 1 as | +— w1, while
the sumuaiion in the numerator has nonzero terms onby for
Sk, <2 1. An application of 1" Hopital 4 rule in this cuse will
eisily establish thal the numeracor gocs o zema. On the oiher
hand, il Ay = 1, then if is casy to show that

|‘_]
\ T __m

e

(Z |._"h_l: -1 Hl""" 1')

L S V)

(Z 5;_.-:511.—1;)

30 in hoth possible cascs, we have

Bre <Fik i) =0,
e N )

I+ m

(0.1

ancl

It 1 well known bl

lim fupp=1
..I.

L= m
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for the winning index and 0 otherwise '[2]. This meuns that in
the limit 1 +— e, GLVQ-F becames 1LVQ; that is (16a) does
not update loser protolypes, and wpdates the winner protorype

by
Hm, et =t 1+ (2o )@ —vieay ) {19
T 11y
]
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