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ABSTRACT 

It is shown how to estimate the norms of the derivatives (of all orders) of the map 
that takes an invertible Operator to the positive part in its polar decomposition. Using 
this, perturbation bounds of any Order tan be obtained for this map. 

Let A be a bounded linear Operator on a Hilbert space Z. Let 1 Al = 
(A*A)‘/’ be the positive part or the absolute value of A. In this note we 
show how to derive inequalities of the type 

11 lAl - IBI II < f a,llA - Bll” + O(llA - BllLv+l), 
r,= 1 

(1) 

where A is an invertible Operator, B is an Operator close to it, N is any 
positive integer, and a, are coefficients which tan be explicitly determined. 
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For N = 2, this was done in [l] and the approach used in that Paper is 
developed further here. Let B’(m denote the space of all linear Operators on 
X’ and let s&‘~,,(*, SS@?), and B+(a denote its subsets consisting of the 
invertible, the self-adjoint, and the positive Operators, respectively. Let 
CP: BiinV(a -+ S+(Z? be the map p(A) = 1 A]. Let D’@(A) denote the nth 
Order (Frech&) derivative of cp . Let 

an = 11 D’b( A) 11. (2) 

Then by Taylor’s theorem [3, Chap. S] we have the inequality (11, so our 
Problem is reduced to estimating ]ID”p(A)I] for all n. 

I 

Now q =f 0 g, where g(A) = A*A and f(A) = Al/’ is the positive 
Square root of a positive Operator A. We will study f and g separately and 
then combine the information obtained. More generally, let f be any 
function mapping (0,~) into itself. This induces a map on 9 + (Z?, which, for 
convenience, is again denoted by f. Let f (n) be the (ordinary) nth derivative 
of f when it is viewed as a map on (0, a) and let D"f( A> be its nth Order 
Frechet derivative at A when f is viewed as a map on B’+ (S?). If 

IlD”f( A)l] = Il f(“)( A)ll, ford A Eg+(di4d), (3) 

we will say that f is in the class g,,. The following proposition is crucial for 
our analysis. L 

PROPOSITION 1. Let f be an operator monotone function. Then f E 
fl;=, gn. 

Proof. In [l, equations (10) and (13)] we showed that an Operator 
monotone function satisfies (3) for n = 1,2. The same argument will show a 
that this is the case for all n. First note that if h(A) = A-i, then 

D”h(A)(B,,B,,...,B,) 

= ( -l)"CA-lB,(l,A-l~,,,,~~l ..- A-1~,,,,~-1, (4) 
c7 

where u r-uns over all cyclic permutations on n Symbols. This gives 

lID”h( A)ll = n! IIK1ll”+‘. (5) 
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Next, use the fact that if f is Operator monotone, then it tan be expressed as 

m 

/( A 
f(t) = fl! + ßt + - - 

0 h2 + 1 & G(A)7 
1 

(6) 

where (Y E R, ß > 0, and p is a positive measure. From this one obtains, 
using (4), for n > 2, 

IID”f( A)ll < n! / ow~~(A + A)-'(In+' dp( A) = 11 f’“‘( A)ll. 

We skip the details because they are essentially the same as in [l]. 

COROLLARY 2. Let f( A) = A’12. Then 

lK’f( A)ll = +‘li, 

Il~“f( A)ll = 
1.3.5...(2n - 3) 

2” 
11 A- n+J/211, n > 2. 

PROPOSITION 3. Let g be the mup on B(Z’? defined us g(A) = A*A. 
Then 

llDg( A)ll = 211A11, 

IID”g( A)ll = 2, 

IID”g( A)ll = 0, for n 2 3. 

Proof. The first two equalities were derived in [l] from the relations 

Dg(A)(B) = A*B + B*A, 

D2g( A)( B,, B2) = B;B, + B;B,. 

Since D2g( A) is a constant map, we have D”g( A) = 0, for n > 3. ??
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Our next task is to combine the information provided by the above two 
propositions. For this we first need expressions for the nth Frech& derivative 
of a composite map 50 =f 0 g. We will write these down in a general setup. 
Let X, Y, 2 be Banach spaces and let g be a smooth map from X to Y and f 
a smooth map from Y to 2. Let q =f 0 g. If X = Y = 2 = [w we have the 
following formulae for the derivatives (pc”): 

qqx) =f”‘(g(~))g”‘(-q> 

qJ3)(x) =f’3’(g(X))[g’1’(x)]3 + 3f'2'(g(x))g(1)(x)g(2)(x) 

c#~)(x) =f’4’(g(x))[g’1’(x)]4 + 6~‘3’(g(x))[g”‘(~)]2g’2’(x) 

+ 3f.‘2’(g(X))[gyX)]2 + 4f’2’(g(x))gyx)g(3)(x) 

etc. When X, Y, Z are general Banach spaces, analogues of these formulae 
are more complicated. Recall that D(“‘g(-u) is a symmetric n-linear map 
from X X .** X X to Y, etc. 

To write our expressions for D”p compactly, let us adopt the following 
convention. A summation x, will indicate summation over permutations u 
on 72 Symbols. Since the higher Frech& derivatives are symmetric in their 
variables, several summands in the sum C, will be identically equal. If we 
retain only one representative from each of these identically equal terms and 
sum them, the resulting sum will be written as Zz. Thus, for example, we 
have, for the first two derivatives of q = f 0 g, the expressions 

D<p( x) = Df( g( x))Dg( x) (chain rule), 

D2<p(x) = D”f(g(x))(Dg(x)(x,),Dg(x)(xn)) 

+ Qfk(X))(D2d~)h xz))* 
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With our notation we could also write 

Since the second derivative is a symmetric bilinear map, from each of the 
sums C,, only one of the two summands is retained when we go to Cz . Of 
course, in this case there is no advantage in going to this notation. However, 
for higher derivatives it is helpful to use this notation and write 

= D”f( g(4) 

(%W(~A QW(4~ %+)(~3)~ QeNx4)) 
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The reader may check that in the three starred sums occurring here, the 
summation involves six, three, and four summands, respectively, and that 
when X = Y = Z = Iw, this reduces to the expression for (P(~)(X) written 
earlier. 

Now return to the special Situation g(A) = A*A, f(A) = A112, and cp( A) 
= g(f( A)) = 1 Al. Th en using the above expressions for D(“)q and the results 
of Corollary 2 and Proposition 3, one obtains the following bounds: 

IIDq( A)ll Q IIA-‘11 IIAII, 

llD%$ A)ll < llA-1ll3 IM2 + IIA-lll, 
(7) 

IlD%( A)ll Q 311A-‘115 IIA113 + 3llA-Ill3 Il All, 

llD4q( A)ll < 1511A-i117 IIAl14 + 1811A-‘115 ilAl12 + 311A-r113. 

The first two inequalities in (7) were derived in [l]. 
Bounds for derivatives of all orders tan be calculated using this proce- 

dure. A simple rule which tan be skimmed from the above analysis is the 
following. For the composite function p(x) = f(g(x)> of a real variable, 
write down the expression for its derivative cp(“)(x). This will be a sum of 
terms each of which is a product of factors f’Q+x)), 
f(2)(g(x)), . . . , f’“Yg(x>) and g(‘)(x), gc2)(x), . . . , g(“)(x). In this expression 
replace f(l’(g(x)) bq I( A-l 11 
(2n - 3)11A-‘j/2”- . 

and for n > 2, replace f(“)( g( x)) by 1 * 3 . *** - 5 
Replace g(‘)(x) by llAl1, g(2)(x) by 1, and, for n > 3, 

replace g(“)(x) by 0. The resulting expression will be a bound for the norm 
II WC AN where V(A) = 1 Al. 

The reader tan check that this rule is a consequence of the above analysis, 
that the inequalities (7) conform to this, and that this gives, for instance, 

llD&( A)ll < 105((A-‘11’ (jA/15 + 15011A-1117 IlAl13 + 45llK’115 IlAll. 

We tan thus obtain perturbation bounds like (1) to any desired Order. 
It seems a diffcult Problem to characterize the classes ~9~ of functions 

that satisfy the relation (3). When n = 1, this is already quite intricate [2]. 

This work was done at the University of Toronto with the support of 
NSERC (Canao?a) and at the University of Bielefeld with the suppoti of 
Sonde$orschungsbereich 343. 
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