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We consider the competing risks model with grouped data or with discrete failure
times where a unit is exposed to several risks, but its eventual failure is due to
exactly one of the causes. Nonparametric maximum likelihood estimates of the
cause specific hazard rates are obtained under the restriction that these risks are
uniformly ordered. We allow for random censoring. Unlike most papers on this
topic, no assumption is made about the independence of the various risks, although
we do assume that the censoring mechanism is acting independently of the life dis-
tribution. We derive the likelihood ratio statistic for testing the null hypothesis of
equality of cause specific hazard rates against ordered alternatives. The asymptotic
null distribution of the test statistic is seen to be of the chi-bar squared (77) type.
The procedures developed here are illustrated with the help of an example involving
survival rates for mice exposed to radiation. ¥ 1995 Academic Press, Inc.

1. INTRODUCTION

In the standard competing risks model, an experimental unit or subject
is exposed to several risks but the actual failure (or death) is attributed to
exactly one cause. In this paper, we let 7 denote the time of failure of an
experimental unit and C denote the cause of failure. For convenience, we
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label the causes of failure 1, 2, ..., k. Thus, the observed data is in the form
of (T, C) for each observed item.

The ordinary concept of hazard (failure) rate has been generalized in the
competing risks model to the notion of cause specific hazard rates. In the
continuous case the ith cause specific hazard rate is defined as

1
h()=lim —pr{t<T<t+4t, C=i|T=t], (1.1)
a0 At

i=1,2,..,k If Tis discrete, the ith cause specific hazard rate is given by
pr[T=t, C=i|T>=1t]. In either case the overall hazard rate for time to
failure is then given by

In models where the various causes of failure are independent, 4,(t) reduces
to the (ordinary) hazard rate corresponding to the marginal distribution of
failure from the ith cause.

In some problems the investigator may wish to confirm or deny a
hypothesis that some causes of failure are more serious than others. One
way to do this is to consider the problem of testing the null hypotheis,

Hy: hy(ty=h(t)=--- =h, (1) for all ¢ (1.2)

against the alternative H, — H, (H, but not H,), where H, imposes an
appropriate order restriction on the values A,(z), A,(t), ..., A, (1). In order to
be specific, we consider the case where

Hy: hy()<hy(t)-- <hg(t) forall 1. (1.3)

Note that there may be no reason to expect a priori that the cause specific
hazard rates are equal (except, say, when they represent identical com-
ponents in a series system), but this is a natural choice of null hypothesis
for the ordered alternative H,. Other partial orders on the hazard rates in
the alternative hypothesis would lead to similar results. After the linear
order restriction given in (1.3), the most extensively studied partial order
restriction is the simple tree, A,(1) <h,(t), i=2,3, .., k.

Besides applications in the health sciences, our procedure has applica-
tions in industrial accelerated life tests. When comparing the quality of &
different brands of a component, several components may be tested in
series. The components are functioning in the same environment and their
times to failure are generally dependent. The system fails as soon as one
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of the components fails. This experimental design identifies weak com-
ponents early in the experiment thus saving valuable time. On the basis of
such data, one might like to test whether components supplied by different
suppliers are of the same quality against an ordered alternative. This type
of testing gives rise to the above type of data.

It is common in the literature to assume that the various competing risks
are acting independently. However, as noted by Gail [7], among others,
this assumption is often unrealistic since the risks usually act under the
same environment. For example, the heart condition of a patient may very
well depend on the condition of his other organs. It is well known that
there are inherent identifiability problems when the competing risks are not
assumed to be independent. The problem is confounded by the fact that the
assumption of independent risks cannot be tested from competing risks
data. However, as emphasized by Prentice et al. [ 13], only those quantities
which are expressible in terms of the cause specific hazard rates are
estimable and can be estimated from the competing risks data even if the
nisks are dependent. In this paper, our hypotheses are phrased in terms of
the cause specific hazard rates and hence identifiability is not a problem.

Assuming that the underlying risks are independent and the lifetimes are
continuous, various authors have proposed nonparametric tests for testing
the equality of two or more hazard rates against ordered alternatives.
Bagai, Deshpandé, and Kochar [3,4] developed distribution-free rank
tests for testing the equality of two hazard rates against stochastic ordering
and hazard rate ordering alternatives. Neuhaus [12] has proposed
asymptotically optimal rank tests for comparing several independent com-
peting risks differing in their location or scale parameters. Yip and Lam
[16] suggested a class of weighted logrank type statistics. Gray [8],
generalizing the approach of Harrington and Fleming [9], has proposed a
class of c-sample tests for comparing the crude incidence function, S,(¢) =
prIT<t, C=1] of the first risk over ¢ different populations. The case of
two dependent risks has been considered only recently by Aras and
Deshpandé [2] and by Aly, Kochar, and McKeague [1]. Whereas Aras
and Deshpandé [2] derived locally most powerful rank tests of H, against
various parametric alternatives, Aly, Kochar, and McKeague [ 1] proposed
Kolmogrov-Smirnov type tests for testing the equality of two competing
risks.

In this paper we assume a discrete time framework and allow for inde-
pendent random censoring on the right. We obtain maximum likelihood
estimates (MLEs) of the cause specific hazard rates under the various alter-
natives. The restricted maximum likelihood estimators of the cause specific
hazard rates under H, can be computed by finding the isotonic regression
of the usual estimates across risks. This will be discussed in Section 2. In
Section 3 we derive a likelihood ratio test for testing H, versus H, — H,
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and obtain the asymptotic null distribution of the test statistic. This
asymptotic test is distribution-free and its null distribution is found to be
of the chi-bar squared type (see Robertson, Wright, and Dykstra [14];
henceforth abbreviated RWD). Finally, in the last section, the procedures
developed in this article are illustrated with the help of a data set involving
survival rates for mice exposed to radiation.

2. MaxiMuM LIKELIHOOD ESTIMATION

Suppose that we have n individuals exposed to & competing risks and
assume that the times and causes of failure represent a random sample
from (7, C). As noted earlier, we make no assumptions about the inde-
pendence of the nominal lifetimes associated with the various risks. We
allow the observations to be right censored but assume that the censoring
mechanism is independent of actual time to failure.

In this section, we obtain nonparametric maximum likelihood estimates
of the cause specific hazard functions in preparation towards constructing
the likelihood ratio statistic for testing H, against H,. The maximum
likelihood estimates of the cause specific hazard rates under the order
restriction imposed by H, are of particular interest.

We assume that times to failure have discrete distributions and for con-
venience we assume that the support points are known. If the failure times
are continuous, we assume that the data has been grouped and that ¢, is
representative of the ith interval. Thus we assume that failures occur on a
subset of the times t,<t,< - - <t,, (to=~—0o,t,,, =) For i=1,
2,k j=1,2, ..., m, we let

p;= probability of failure from cause i at time ¢,

p =X py=pr[T=1]

n = total number of items on test (sample size)

d,;=number of failures from cause i at time ¢,

{;=number of observations censored between times ¢, and 1, |
n=%" {(¥X* | d,)+1} =number of items at risk just before time 4

r=j i=1

d ;=%%_| d;=total number of failures at time ¢,.

Since we assume the discrete case, the cause specific hazard rate due to
the ith cause at time ¢, is

hiltyy=pr[T=1, C=i|T=21]=p,/X7 P, (2.1)

Assuming that the censoring mechanism is acting independently of the
failure mechanism, it follows from Davies and Lawrence [5] that the
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likelthood function can be expressed entirely in terms of the cause specific
hazard rates as

” k k ni—d.;
Lo [] {n h;.'u(t,)[1- 5 h,(tj)] } (22)

j=1 4i=1 =1

From this it is easy to see that the unrestricted MLE of h,(z,) is

Under H,, the MLE of the common cause specific hazard rate is

h?(zj)=z—n'f_, i=1,2, ., kij=1,2 . m. (24)

J

The constraints under H, do not constrain #,(¢;) and h;.(¢;) for j#j’ so
that the products inside the parentheses in (2.2) can be maximized
individually. Each such problem is a version of the multinomial problem
discussed in RWD [14]. The solution vector, h*(¢;) = (h{(¢)), hF(¢), ...,
h¥(t;)), is the equal weights isotonic regression of the unconstrained
maximum likelihood estimator E(tj)=(ﬁl(tj), ﬁz(tj), s /fk(tj)). If we let
(7,-j-=d,j/d,j and 8*=(0%,60%,..,0%), be the equal weights isotonic

regression of éj:(() f)zj, vy ()kj), it can be seen that

155
h¥(t,)=0%d ;/n;. (2.5)

We will later find it convenient to write ﬂj*=P(§j | £) since its com-
ponents are 6} = P(8, | £),, where P(y | C) denotes the qual weights least
squares projection of y onto the convex cone C. In our setting, .# denotes
the set of nondecreasing vectors. If H, imposes an order restriction other
than the linear order restriction given in (1.3) then the estimates under H,
can be found by selecting the appropriate set . For example, if H,
imposes the tree order restriction then £ ={(x,,Xx,, .., X;); X;<X;;
i=1, .., k}.

3. HypOTHESIS TESTING

We now consider the problem of testing the null hypthesis H, against the
alternative H,. In our asymptotic theory, the number, m, of support points
for T is fixed and the sample size » increases to oo.



168 DYKSTRA, KOCHAR, AND ROBERTSON

The likelihood ratio statistic is given as

_SUPn s, L(h)  L(R%)

T Supy. s, L(h) L(h¥)

T AT AT — B0 A1)
UL RTINS SRISTO S

j=1

f=1nj~1 /kn
leﬂ}":l if j/"j )%
-t ,_1(1/k “

- o J Chik

The LRT is equivalent to a test that rejects H, in favor of H, — H,, for large
values of

(3.1)

Expand In(#%) and In(1/k) about ln(é,—,) in a second degree Taylor’s expan-
sion. The linear terms add to zero using Theorem 1.3.3 of RWD, so that T

can be rewritten as
k 1 2 n
IS
Z

i [nﬂ,,{f@'j_%)}z
A o

where the «;’s and f,’s come from Taylor’s expansion, «; is between £} and
9,, and B8, lS between 9 and 1/k. The factor \/;-1 and the term 1/k can be
brought inside the 1sotonic regression operator by the corollary to
Theorem 8.2.4 and Corollary C to Theorem 8.2.7 of RWD.

By the central limit theorem for multinomial variables, the random
matrix f P—P) has a limiting normal distribution, where P is the
(k x m) matrix of p,’s and the (ij)th element of Pis Py =d;/n Then, using
the multivariate delta method (cf. Serfling [ 15, p. 122]), it follows that the
random matrix whose entry in the ith row and jth column is \/_ (0 —1/k)
has an asymptotic normal distribution with mean zero under H0 The

T:

HMs
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variance-covariance matrix of the asymptotic distribution is found by com-
puting a tedious but straightforward matrix product. The asymptotic
variance corresponding to /n(8,— 1/k) is p,(ZF_, p /(X% . p,)>. The
asymptotic covariance of \/ﬁ(é,j— 1/k) and \/ﬁ(é,-,j.—- 1/k) is zero if j#j'
and is —p,p. (X5 py) if j=j buti#i'

Suppose now that U is a & xm matrix of random variables having a
multivariate normal distribution with mean zero and the above dispersion
matrix. Then, under H,, T must converge in law to

m k

T'=3% Y Upy/00) Us~(py/0){ P(U; | £),— Uy}?1.

j=1i=1

If we let

V"j=(\/p—ij/8ij) Uy,

we may use H, and the corollary to Theorem 8.2.4 of RWD to write 7' as

m k
T'=Y Y {VI-[P(V,| £),—V,]*}. (3.3)

j=1i=1

The matrix V has a multivariate normal distribution with mean matrix 0.
The common variance of V; is (k—1)/k. If j# j', the covariance between
V;and V. is zero and if j=j' but i #i’, the covariance between V; and
V. is —(1/k).

If we let X be a kK xm matrix of independent standard normal variables
and we let

K
Yyo=X,—(l/k) Y X,

I=1

then Y is distributed as V. Thus, 7’ has the same distribution (under H)
as

m

)

j=1i=1

M =

1 k 2
[{Y,j—— Z Y,]} —{P(le,?),-—Y,-j}z]
k1=l

o]

i
NN
ek
R

[P(Y, | 2~

Jj=1i=1 !

I
NSE

>

1 k 2
[HX,-IS’),-—,; 5 X],] : (34)
=1

j=1i=1
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the first equality follows as in (2.2.3) and (2.2.4) of RWD. Now by
Theorem 2.3.1 of RWD, the sum

k 2

1 k
2 [P(X,-lfn—; XX, (3.5)
f I=1

§=

has a 72 distribution. Since these sums for different values of j in (3.4) are
independent, it follows as in Dykstra, Kochar, and Robertson [6] that the
distribution of —21n A4 will have a y? distribution. The results are sum-
marized in the following theorem.

THEOREM 3.1. Under H,, the test statistic ~21In A converges in law to

] k 1 k 2
=2 2 [P(X,»Iﬂ’),»—; ) X/,-] (36)
j=1i=1 =1
as the sample size, n, goes to infinity where X =(X;) is a k xm matrix of
independent standard normal variables. For every j, the distribution of

k 2

1 k
TF=Y [P(Xf'"(f)’_lz Y X,J} (3.7)
=1

i=1

is a chi-bar squared distribution and its survival function is given by

k
priTr=e1= 3 pllk)prix? =11, (3.8)
I=1

Jor any t>0, where the p(l k) are the equal weight level probabilities
discussed in Section 24 of RWD. It follows that T* has a §° distribution of
the form

km

priT*=1]1= 3% CU k,m)prix} . =21], (3.9)

I=m

mk

where the sequence { C(I, k, m)} 7, is the m-fold convolution of the sequence
{pth o).

One can use the fact that the p(/, k) satisfy the recurrence relation

1 k—1
p(l,k)z;p([—1,k—l)+Tp(l,k—l)

(Miles [11]) to establish that the C(/, k, m) satisfy the recurrence relation,

U komy=3 (’7)(%)’ <k—;—l>mﬂ Cll—jk—1,m), (3.10)

7=0
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k
m 2 3 4 5 6 7 8 9 10
5.41 6.82 7.7 8.36 8.87 9.28 9.64 9.95 10.22
2 2.71 3.82 4.53 5.05 5.46 5.80 6.09 6.34 6.56
1.64 2.58 3.19 3.64 3.99 4.29 4.54 4.76 4.96
7.29 9.30 10.61 11.59 12.38 13.03 13.58 14.07 14.50
3 4.23 5.86 6.94 7.76 8.41 8.95 9.42 9.83 10.19
2.95 4.37 5.33 6.05 6.63 7.12 7.53 7.90 8.22
8.75 11.31 13.02 14.31 15.35 16.22 16.95 17.60 18.18
4 5.44 7.55 8.99 10.08 10.96 11.69 1232 12.88 13.37
4.01 5.88 7.17 8.15 8.94 9.61 10.18 10.69 11.14
10.02 13.11 15.20 16.79 18.07 19.14 20.06 20.86 21.57
5 6.50 9.08 10.86 12.21 13.31 14.23 15.03 15.72 16.34
4.96 7.27 8.87 10.10 11.10 11.94 12.67 13.31 13.8 8
11.19 14.78 17.24 19.11 20.62 21.89 22.98 23.93 24.78
6 7.48 10.52 12.63 14.24 15.55 16.65 17.61 18.44 19.19
5.84 8.57 10.48 11.97 13.17 14.18 15.06 15.84 16.53
12.27 16.37 19.18 21.33 23.07 24.53 25.78 26.88 27.86
7 8.41 11.90 14.32 16.19 17.71 18.99 20.10 21.07 21.94
6.67 9.83 12.05 13.77 15.17 16.36 17.39 18.29 19.10
13.31 17.89 21.05 23.47 25.43 27.08 28.49 29.74 30.85
8 9.30 13.22 15.97 18.09 19.81 21.27 22.52 23.63 24.62
7.48 11.05 13.57 15.53 17.13 18.48 19.66 20.69 21.61
14.31 19.36 22.86 25.55 27.73 29.56 34 32.53 33.76
9 10.15 14.51 17.57 19.94 21.86 23.49 24.90 26.14 27.24
8.26 12.24 15.06 17.26 19.05 20,57 21.89 23.05 24.09
15.27 20.79 24.63 27.57 29.97 31.99 33.73 35.25 36.61
10 10.99 15.77 19.14 21.75 23.88 25.68 27.23 28.60 29.83
9.02 13.41 16.53 18.96 20.94 22.63 24.09 25.37 26.53
16.21 22.19 26.36 29.57 3217 34.37 36.26 37.93 39.41
11 11.80 17.01 20.68 23.53 25.86 27.83 29.53 31.03 32.38
9.76 14.56 17.97 20.63 22.81 24.66 26.26 27.67 28.94
17.13 23.56 28.05 31.52 34.33 36.71 38.76 40.57 42.17
12 12.60 18.22 22.20 25.29 27.82 29.95 31.80 33.43 34.89
10.50 15.69 19.39 22.28 24.66 26.67 28.41 29.95 31.33
18.02 24.90 29.72 33.44 36.46 39.01 41.22 43.16 44.89
13 13.38 19.42 23.70 27.03 29.75 32.05 34.05 35.81 37.38
11.22 16.80 20.80 23.92 26.48 28.65 30.54 32.20 33.69
18.90 26.22 31.36 35.33 38.57 41.29 43.65 45.72 47.57
14 14.15 20.60 25.18 28.74 31.66 34.13 36.27 38.16 39.85
11.93 17.91 22.19 25.54 28.29 30.63 32.65 34.44 36.04
19.76 27.53 32.98 37.21 40.65 43.55 46.05 48.26 50.24
15 14.91 21.77 26.64 30.45 33.56 36.19 38.48 140.49 42.29
12.63 19.00 23.58 27.15 30.09 32.58 34.75 36.66 38.37
20.61 28.81 34.58 39.05 12.70 45.77 48.44 50.77 52.87
16 15.66 22.92 28.10 32.13 35.44 38.24 40.66 42.81 44.72
13.33 20.09 24.95 28.75 31.88 34.53 36.83 38.87 40.69
21.45 30.08 36.17 40.98 44.73 47.98 50.79 53.27 55.48
17 16.40 24.07 29.54 33.80 37.30 40.27 42.83 -45.10 47.13
14.02 21.16 26.31 30.34 33.65 36.46 38.90 11.06 42.99
22.27 31.34 37.74 42.70 46.75 50.17 53.13 55.73 58.06
18 17.13 25.20 30.96 35.46 39.15 42.28 44.99 47.39 49.53
14.70 22.23 27.66 31.91 35.41 38.38 40.96 43.25 45.29
23.09 32.58 39.29 44.50 48.75 52.34 55.44 58.19 60.63
19 17.86 26.32 32.38 3711 10.99 44.28 47.14 49.65 51.91
15.37 23,29 29.00 33.48 37.17 40.29 43.01 45.41 47.57
23.90 33.81 140.84 16.28 50.73 54.49 57.75 60.62 63.18
20 18.57 27.44 33.79 38.75 42.82 46.27 49.27 51.91 54.28
16.05 24.35 30.34 35.04 38.91 42.20 45.05 47.58 49.84
Note. “k” denotes the number of risks and “m” denotes the number of support points.
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for [=m, ..., km. Elsewhere, C(/, k, m)=0. Since C(m, 1, m)=1form=1, it
is reasonably easy to compute C(/, k, m} by our recurrence relationship for
all values of /, k, and m. If k=2, 1t easily follows that the C(/, 2, m) are
binomial probabilities with parameters m and 3.

See Dykstra, Kochar, and Robertson [ 6] for more details regarding the
convolution of independent 32 distributions. Critical points for the linear
order case, at levels 0.01, 0.05, and 0.10 are given in Table I for £ < 10 and
m < 20.

As noted in Section 1, similar results may be obtained for order restric-
tions other than the linear order restriction specified by (1.3). For example,
for the tree order restriction, #,(¢)<h,(t), i=2,3,..,k, as noted in
Section 2, the form of the test statistic would change through the set ¥
assoctated with the projection 8* The asymptotic distribution given in
Theorem 3.1 would be chi-bar-squared, where the level probabilities p(/, k)
would be the ones associated with the tree order (cf. Section 2.4 of RWD).

We note that the asymptotic null distribution of our test statistic is inde-
pendent of the p ; (as long as they are not zero) and, hence, the test will
fortuitously be an asymptotically similar test. Many testing problems
involving inequality constraints do not have this desirable property.

4. EXAMPLES

We consider some mortality data provided by Dr. H. E. Walburg, Jr. of
the Oak Ridge National Laboratory (see Hoel [10]). The data was

TABLE 11

Ages at Death for 99 RFM Conventional Male Mice Which Received a Radiation Dose of
300r at the Age 5-6 Weeks Due to Cancer and Due to All Other Causes

Other causes

40 42 51 62 163 179 206 222 228 249
252 282 324 333 341 366 385 407 420 43]
441 461 462 482 517 517 524 564 567 586
619 620 621 622 647 651 686 761 763

Cancer
159 189 191 198 200 207 220 235 245
250 256 261 265 266 280 317 318 343
356 383 399 403 414 428 432 495 525
536 549 552 554 557 558 571 586 594
596 605 612 621 628 631 636 643 647
648 649 661 663 666 670 695 697 700

705 712 713 738 748 753
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TABLE 111

No. Interval dy; dy; é”» 93,— o 03

1 40.0-160.5 4 1 4/5 1/5 0.500 0.500
2 160.5-281.0 7 13 7/21 14/21 0.333 0.667
3 281.0-401.5 6 6 6/12 6/12 0.500 0.500
4 401.5-522.0 9 5 9/14 5/14 0.500 0.500
5 522.0-642.5 8 17 8/25 17/25 0.320 0.680
6 642.5-763.0 5 17 5/22 17/22 0.228 0.772

obtained from a laboratory experiment on RFM strain male mice which
had received a radiation dose of 300r at an age of 5-6 weeks and were then
kept in a conventional environment. We consider only two major risks of
death—the first risk is cancer and the second risk is the combination of all
other risks. Table II gives autopsy data for 99 such mice.

Let A,(t) and A,(r) denote the cause specific hazard rates of death due to
other causes and cancer, respectively. We grouped the data based on six
equal length intervals. The details are given in Table III. When we compute
the value of T= —21In A as defined in (3.1), we obtain 12.60 which gives
a p-value of 0.0087.

These data would appear to strongly support the conclusion that the
cause specific hazard rate is larger for the risk of cancer than for all other
risks when that hypothesis is compared to equality of cause specific hazard
rates.

We are grateful to the Editor and the referees for their thoughtful com-
ments and suggestions which have greatly improved the presentation of the

paper.
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