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The linear stabilivy ol ihe plane [ree surlace of a viscous liquid on a horizontal plaie
wrler verlical sinwsoidal oscillation s analysed cheoretically, The ree surfaee of 4
lagerally unbounded lquid of any depth & may always be excited to stancding waves
il ihe exlernal acceleralion lx ramed above a crilleal value . Tor a lixed exlernal
freguency w, solutions are possible only within cortain bands of wave numbors b for
a given loreing amplilede alwove a,, thal 15, within tongue-like stability zones in the
a—f plane. The analysi= for s shallow layer of viscoos laids shows new gualitalive
hohavicurs eomparcel to the nearly inviseid theory. It predicts s serics of bicriical
polnis, where bolh harmonie awd subharmonic solullons exisi lor Lhe same foreing
amplivude and forcing freguency. This makes harmonic solubions possible at the
onsei in a lalerally large coniainer. which is qualilatively different from the resulis
of mearly viseid theovss Foroa lose viscosity fledd of soeal]l depiles, the damplag
cocficient may be considered proportional to (pw /R In contrast to #67 predictod
Twv the pearly Inviscid cheory, An approximalke soalyviic expression is derived [or 1he
lower part of the lowest marginal curve in cases when the dopth of the liguid i moch
larger Lhan the Lhickoess of the vizeouws bonondary layer formed al the boliom plate,
T'his approximate threshold sgrees woell with that of recent experiments with viscoos
liguids.

I. Introduetion

The gereration of skhanding waves ai bhe plane free suclace of a ligdd sobjected o
veortieal oscillation has been known sinee the observations of Faraday (18:31). Faraday
also noded Lhal the resoluing waves had [indamenial frequency half the cxcitation
froquency, i.c. the response was subharnmonic. Lord Ragyleigh (1883) also pecformed
his own experiments and confirmerd the cxperimental obsorvations of Faraday, Hovent
cxporiments with viseous Nguids show stripes (Edwards & Faove 1993), regular 1ri-
angular paitern (Miiller 1993), compoting hexagons and eouilateral triangles [(Knmar
& Bajaj 1994} at the frec surface in contrast to the carlior cxperiments with low wis-
cosity floids (see, for inslance, Beerskil ef ol 1986; Tuflilaro of al, 1989: Ciliberto afl.
9911 showing square pattorns at the onset, These experlmenlal oservalions suggest
the importance of viscosity in pattern formation under paramerric exeilatioo,

(i Lhe theoretical ronl (see [or a review Miles & Henderson 1990), Benjamin &
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Ursell (19541 analwsed the lingar problem for ideal liguids enclosed in a conlainer,
vibraring sinuseidally in the vertical planc, and showoed that the flnid dynamical
equations can Be reduced io a syslem ol Malhiew equations, which allow harmonic
a3 woll as sabharmaonie responses. The free surface can bo destabilized only in the
tongue-like zones in the plane of the [orcing amplitude a and the aclected wave nom-
Lor & The tonanes correspond alternately to subharmonic and baroonie responses,
For ideal lignids, the lowest points of all these tongues oceur for vanishing forcing
amplitude o and, therofore, hoth lkind of responses are possible al the onset. TTow-
ever, in presence of amall viscons dissipation, all tongues move away from the b-axis
leading to finite o fov ihe onset of standing waves. Ie furna ol thar ihe st Longne,
which is subharmonic, moves least, Therefare, the first instability is alveays subhar-
monic in g container of large lateral dimensions according io Lhe nearly nviseid
theary. Harmonic responscs cannot occur at ansct in this sisnation. This result may
or may not apply o shallow layers of viscous [nids. In addition, the experimenial
results for the critieal sceeleration o, even for small viseosicies do not comnpare well
with the prediction of the nearly inviscid theory. This further cmphasizes the need
Lo nnderstand the role of viscosiky.

This work iz rotivated to provide o guantitative lincar theory of viscous liguids,
which iz a necessay step o undersiand lhe basic mechanizsms ol paltern seleclion,
The purposes of this paper arve twofold. The first 3= to provide o linear theory for
the stability of the planc free surlace of a liguid of arbitrary viseosity and depih
under verlical vibration. Tt will be shown Lhai e stabilily problen can be redoced
to finding cigenvalues and cigenveetors of o banded square matrix with non-zera
elements only in Lwo sulkliagonals. Tor ligquids of depeh & moch larger ihan Lhe sie
of viscous boundary lavers 8= «/2v/w) due to the bottom plate, the lower pert of
the lowest marginal curve alk} can be predicled analyviically, It is then sullicienl. o
compuie Lhe stabilily vhreshudd a. aod ibe critical wave munber & by iinimizing
all) with respect to k.

The second purpose is 10 explore the poasililily of harmonic response al the onsei.
For the slinations when the sise of the vizeous houndary laver & becomes comnparable
with the depth i of the liguid layer, the harmonie ag well as subharmonic responses
can soexish (see §471 al the onset leading to o series of hieritical points.

2. Hydrodynamic system

We consider an incompressible liguid of uniform density p and dyvnamic viscosiiy
i resting oo horiwontbal plaie, which s sabjeceed to o vertical simsoidal oscilliation
o winplitude o and frequency w. Inoa frame of reference fixed with the oscillating
Hiate. the froe surface is inftially flar and siationary and the oscillation s equivaleni
to a temporally modulated gravitational acceleration,

(F(t) = g — acos (wh). (2.1

Linearizing about the bhasic state of rost, which has time dependent prossure [eld
Pitl = Py — p3it)iz, the cquations {or the perturbation fields 4., g in the the Jiguid
risaid:

POy = ~Vp + NV u, (2.2)
Vau=0 (2.3

v 1. Soe. Lomgd, & f|!}[ﬂj:l
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Taking curl vwice of equation (2.2%, we obiain for Lhe verlical velocivy
(& wFAVhe =1, {2.4)

where # (= 5/ p) I8 the kinematic viscosity of the liguid.
The fluie rests on a rieid place at which all three comnponents of the selocity ficld
must vanish,

w—0 al 22— -h (2.5

ug=0=> -Vy-ug=dw=0 at z=-k {2.6)

d

and A is the depth of the lgnid. Tn derivalion of (2.4 the equation of continuily (2.3}
is tmedd,

The froe surface is initislly flac, stationary, wnd coincident. with Lhe 2 — 4 plane by
choice of the coondinaie syslem. As soon as the instability seta in, Lhe froc surface is
located at 2z = (e ], where s == (2, ¢), and oheys the kinetnatic houndary condilion
(Lamb 1932, 49),

[+ (g - FI)E == w0 [amcy {2.7)
which slaies that the free swrface is advected by the fluid motion.

Since we are interesled o Lhe linear suabilily ol a [ree and Han surface, we may
Tavlor-cxpand the ficlds and thoeir s-derivatives around 2 — 0 and retiain only Lhe
lovwesl-order berms. In i then sufficient to compute vhe fields and their sertical deriva-
tives at z = 0. T'he kinematic condition (2.7, after linearization, simplifies 1o

i = 1w oo (2.8]

Thi boundury conditions sl the free surface sre derermined by considering vhe stress
tensor gihven by

T = — P il + dpe) — pGTEIS 6 by (2.9

The last term above i the stross doe to the surlace delovmalion o 1he elleclive

gravitational acecleration. As there arc no angential stress components ar the free
anrface. we have

Tae = Ty =0 (2.10)

Since these stress components vanish evervwhere oo Lhe lree siolface, we mayv wrive
I : X

T ) =18, 7.l =10 (2,117

Tnserting vhe definition (2.9) in (2,11} and nsing the equalion of continwity (2.3} Jead
to
NN o = 0 (212

On the other hand the normal component of Lhe stress tensor ab Lhe roe surfiace
mst be equated to the surface tension 0 times the curvature of the [ree surface, For
small curvarure, which s the case for the lincar theory, this leads (o

I W $2.15)

Subslituting the definition {2.9) of Lhe swress Llensor into (2.18). we oblain che ox-
pression [or Lhe pressure al dhe [ree surlace,

il = i), o+ pGR)C — oV {214}

Moo, @ Hoe. Tosad, A [ T996)
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Anolher expression [or the pressure can be derived by taking the korizontal diver-
acnee of the cquations (2,21 and applying (2.3

Vip= (V' pl )V ug
= {pih -~y {2.158)
Lliminating p [rom {2.14) and (2,15}, we obtain at the free surface
(o — 0w, o — 2l gilarh, o+ pGLIVE — a5, {2.16]
which serves as an additions] boundary eondition for {2.1), and is the only cquation
in which the external forsing Gl appoars expliviily.

Becanse ol vhe infinite extension of the fluid in the horizontal direction we can
express Lhe fields in the normal modes of the horrzonial plane, Le, sinfk - 2], whers
the horizontal wave number k& {87 = &7 - &} can take any real and positive value. We
now replace w2, 0 by wdz, Gsinlk-2), gl £ by S0t sin(k-). and ibe diflerencial
operator Wi by a mumber &7 The relevant cguadions hen read:

|, (@, &0, khe=10, (2.17)
{00 | k2w, o =0, (218}

e (2,197

(fhaed.. » =1, (220

pdy — 0, | 3k idac

o= = pGE Akt R (2.21)
e = wlz o {2.22)
The above sot of equations {2,171 {2.22) constitute the complote lincar stability

problem lor laierally nobounded viscons liguid, of arbilrary deplh, ander paramslvic
osillation.

4. Linear stability analysis
(o) Lapeids af finite depth
The stability problem (217 (2,22} iz analyscd by applying Floquet theory. Be-
canse (0, Ahe effeciive gravilationa] acecleration in Lhe moving ltame, is & periodic

foniction, the solutions to (2.17) (2.22) are assumed of Floguet form (sce also Kumar
& Tuckerman 1994). The surfuce deformation § is ihen expressed as

City = et mod 2w {4.1]
Toe Floguet ceponent g can be cxprossoed as
=5 - 10ag, [3.2)
where & and e can take any real and finile value, The funetion 2 s poriodic in time
with poeriod 2 /w. and may therelore be expanded in Lhe Vourier series
o

Z(f mod 27 /w) = Z e, (3.3

- -

Tae reality eondition for che [ald & implies |l
A S 1YV (R g (3.1

Miee, 12 Sue, Lomd A (1890
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Cuppimite ¢ BE W11 (3.3
For 0 < o =2 1/2, the complex conyugale of the righi-hand side o equaiion {3.1]
st be added o forrm a vead {0t) However, all non-zero integer values of o can be
abeorbed ingo the poriodic function 2. In addition, lor any o between 0 amd 172,
the complex conjugale lermns are egqnivaleni o considering o betwoeen 172 and 1
T'herefore, it is sufficicns to consider only the renge 0 £ o = 172, The solutions {it)
corresponding o o = 0 ane o =2 172 are relerred Lo as havmonic aod subharmaonic
solutions respectively, Now from (2,22)

]
£ L A = . . '
wiz =10, =" L w,(z = et (3.6
n=—m
whore
(2 — 07— [ | inie ), (3.7

The vertical welocivy muss reduce to this form ot 5 = 0 for all £, We therefore assame
thal wiz, £ may be expressed as
o
w{r’_‘t; = C.'-*'I: Z u:h[‘z)cluwc Lﬂ.fﬁw‘:'

==

with the same reality condition on e, (2) as for & The choice of trial funetions {(¢)
asin (10 (330 and oz, 1) a2 in (3.8) reprodueces ihe resulls for unforced (o - 0]
surface waves in viseous fluids (Chandraseldiar 19617 by setting no= 1L

Inzerting (3.8) into (2,177 we obtain for cach Fourier componsnt 7, a fourlh-order
ordinary dilferential equakion in o

[ — b0 — g, (2) - 0, (3.9

wlere
|& 4 ifee | njw

=k 4+ (3.1
I
wilh Lhe convention that o, is the root of {3.1() with positive real part.
The general solution of (3.9] is
w2 = P, cosh (k2) - Qarsinh (k) + By cosh(gnz) + Shsinhiigaz) {3111
Inserting (B.11) in (218)-[2.200 and using [(2.22) leads to
P. -- v(igs — §°)n, (3.12)
R.'.- - _gykg':r.': ':3.].3)
¢ = . [k~ B {kcoshig.h)coshikh) — g, sinh(guh) sinh{kh)}] .,
BT s coshl o ) sinh (kL) — ksinb{g, ) coah(kh ) i
e — [ sinhig. A cosh{kR) — E coshig b)) coshi AR
=S, [g. coshig, ) cosh{kA) - k<inh{g, A)sinh(kf)]. (5.15;

Ingerving {3,117 into (2,210 and nsing (3121 (3.15) we arrive al the following re-
cursion relation:

) o s Y

Anle = lls - = Canh (3-16;

Proe, [ Soe. Lowd, A [1880G)
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2 (flqn.fﬁ (g2 + & — ) cosh{g, ) coshi{ AR - D.xainh!:qrﬂ_uf_t]lii‘rj hikh) )] (3.17)

|
)

o coshig hsinh(kR] & sinhig, h) cosh{kh

wilh ) o .
o — dnii + 2g0k” + 5k, EREY
Dho kgl + 6t 1 &N, (4,19
The eondition (3.7) implies that wa(z = 0} = 0 when [ + ivew] — 0, which, uo-

gether with the boundary and continuiyy condilions, nsures that welz) = 0 for all

z. Therelore,

p - ; w2 @ e

Aplp—linw =0 = A5 = 5 (_qu — —J.i'.: ) : (3200
: f

v

Tn aleence of the external forcing {d.c. @ = (1], there s wo conpling ol Lemporal

gl IL

modes, We ean then set v — 0in {316) (3170 and the resulting couazion,
ey o kgl - &7 Coyroshigeh cosh{ kR + D sinhigah) sinb (&R
ik — =k - | — L i T R -
: o g coshigph) sinh{ kA — & sinh{gafel coshikh]]
— 1, (3217

is the dispersion relation for the surface waves in viscous liguids of Inite depil {lor &
historical Teforores, see Tassel 133, £5237, The cxponent wf= s | i} i then simply
Lhe complex cdecay rate of the surface waves,

The external Greing couples different temporal modes making the exact stability
analysis for arbitrary viscosities ditfien]l. owever, the atability of Lhe frec surface can
be delermined wich any preassimmed accuracy by converting the recursion relalion
CLEY o oo malmix enualion:

/ \ WA
A 000w (s
noA, 0 0 0 |
0 oAy o0 L
o0 oA 0 - 1
0 { 0 Ao o

o1 a0 no--- G_a
T01 00 e
=0 L T T n . i3.2:m
ao || <)
I I O B T2

Henre, AL o, Lo A TTHUEH]
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which can be wrillen symbolically asg
AL — aBL Ry

A s a disgonal square matrlx with complex elements and 8 2 a banded square
matTix with with two sub-ciagonals. An ovdinary cigenealue problem can suily be
coustrncled [rom {3,231 by inverting A

; 1 :
{AT'BIC — E.;'_ {3.24)

The eigenvalines of A7E are luverse ol Lhe loreing amplitndes. Tor o usoal stabilivy
analysis, the waee number & and the foroing amplitude ¢ wree fived for given Huid
paramelers, and the Floguel exponent g — s — o 15 computed such thal the corre-
spaneing arowth rate g 3= che Targest. Uhe warginal stability honndaries are defined
by the curves In o & plane on which sie, &) = 0, In the present method, g is Hsed
istead, wymally a s — 0 and at o — D or e — 1720 We Lhen solve [ur the eigen-
values | /e, Only real and positive values of 1o are meaningful as compley walues
of o do not corespond Looa real forcing Tor given paramelers, The largesi, or several
largest, real positive eigenvalues of 1/a s sclected for s = 0 and a6 = 1/2 ar a0 =100,
These pive Lhe marginal stabilivy coeves alk, s — 0,00 — 172) or subharmonie aned
aik.s = 0o = 0 for harmonic instability without any interpoladiorn. Any non-soero
real eigenvalue of A~LE implies a linile [orcing amplitucde a. The largest cigenvalucs
of this matrix are the inverse of the lowesl foreing amplitndes o lor o presssigoned &
and given [luid parametcrs. The matrix 4 '8 is o banded matrix and its struceture
i girnilie Lo thal of Lhe i 5 bul willy, in general, complex elemenus, For vhe
harmonic case it is ghven by

A B coe LA D AR 0 - ] (3.25)

Als=| " % Tl (3,26

Noie vhal the complex conjugate of matrix A 'E, for harmonic and subharmonic
cases, cam be comsirucled by inerchanging s rows and columns even number of
titnes. Therctore, possible clgerralues for these lwo cases musl eicler e oreal or

Froe, A Sor. Do, & (29904
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Figure 1. Stability hounderies of glyveerine wuler mixtuee o = 102 x 100" w# 5

o o— GG 10 * K n ' ol thickuess 200 % 1077 meal the external frequeney w25 — 60 He,

Snbharmopic (3H) and hormenie [H} tongues alternste.

coronples confugete pairs, Tor uhe range 0 < o < 172, the matrix A "B is still a banded
marttix of sitnilar strocture, but none of Lhe elemenls s complex conjugale of other, T
iz then nov obwvious that there mighs be o real cigenvalue. Wmnerically we gee either
vero ot infinilesimally small real eigewvalues In vhis case when the real part s of the
Floguet cxponent g iz set to z2ero. The comresponding foreing wmplitnde arve inliuilely
Liwrge. This snggests Lhal Lhe solutions corresponding to these Floguet exponents may
never be made unstable an oany realizable Torciog amnplilndes, These cases Lhen sesm
Lo be drrelevant lor the linear theory, Ior an exact statcment about the solutions in
these coses, one needs to gel vhie complete apecirum of all possible sigenvalues, We
shall consicler in this paper only the harmonic and the subharmorde cases, wrhich are
the mast Televand ones, Tigenvalues of the maicix A~1B can be oblained numerically,
Thus cne can precdict the stability boundary as woell as the stabilicy chreshold. 1 the
orowlh rale ¢ s sel Lo s negalive (poagilive) value, the corresponding smallesl values
of a fall on curves below (abese) the marginal stability curves for the same fuid
parameters, Bo Lhe meaning ol these stabllity zoncs are procisely the same as in
snal atability analyais

In figure 1, wo show the inverse of the drst two largest cigenvalues (for o = 172
as owell as Tor e — () of the matrix A7 wich 5 — 0 Tor glyeerine waler mixlare,
subjected to vertical vibralion at oo loeed frequency, asa Dimelion of The wave nnmber
. There exist tongue-like zones in the -k plane, wichin which the solutions of the
bhydrodynamic svstem (3.9) with (3.10) arc unstable, Lo s is positive, As @ is raised
above a critical value o, the lowesl value ol o [or Lthe lowes. longue  the plane
free surface of Lhe Tiguid becomes wostable Lo standing waves. Tor a liguid of deplh
Bommeh larger than the typical sise b (- 20 fw) of the viseons bowndary Taver, the
lowrest, tongue corresponeds to the subhammonie solutions (o = 1/2]. Therefore, in
Lhese clreumatatces Lhe onsel of the inslability is always subharmonic,

Ax long s b 3 0, Lhe sl doogues, which also correspouds 1o che subhanmonic
response, is the lowest, Lo compute the stability threshold a, and the eritieal wave
number k., one need only know 1he lower parl of the first tongue. That is, only the

Favee, AL Ao, Lo, A 090
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largest elgenvalue of the matrix A '8 for the subhamonic case is required. Tu is
then sufficient to truncate the mastrix st + = |, which mecans consicering a 4 = 4
subdiagonal matrix only, The elgenvalues are then

ik, iy Mo, R

s : : : 2 e
- ;"1].2 o |::z"1.:“-'1] -} r::...l:,l:: + I:'I .|.-'1-||2 a :.’ﬂ'.ll.'f'd"]-] gl f'.ﬂ.‘,.l‘jh- £ B J__ )
i 2|-‘1.U|2 _,—1 |2 . \lrll El.'q-:_] 2|.4_| |'2 J |4rj g ‘._11..2

where Ags are ghven by (17 Note that, beesuse of the sovere truncation of the
Tourier cxpansion, the above formula is valid only for smaller ks, As the wave nunher
& becomes Targer, the secomd minimuam waloe of @ diverges. This indicages that the
lowest value of @ iz no longer acourate and one needs to include more terms in 1he
expatsion. 10 S bowhich s Lhe case Inomost experitnents, the above lorrmnla givos
the first tongue, up to the first twning point after the Grst minimum, within 1'% of
Lhe exact numerical resudn, Mindmizing aik, w) with regpecl w & vields erilical valne
feg ol amal, sherefore, e (e for given values of the fluid parameters. Figure 2 shows o,
comparison of the prediction of the above formula to experimental resills oblained
with a glycerine—water mixture [Filwards, personal commmmication THE) of thiclkness
i =29 % 10 *m. The mixure had kinematic viscosity » = 10 * m® s~ - and surface
tengion 7~ 65 3 107F N m~! To uhis experiment, 1he Ires surlace was pinned using
brimtul technigue to avoid the offest due to variation of contact angles. The fluid
colainer wag coverad Lo minimieo evaporation of water as well as comamination of
the froo surface. 'The stabiliny threshold oo as well ws the eritical wivslenoth Ao are
in good agreement for entire range of forcing frequency. The dispersion relation for
shiallow lageers of dden] Auid is given by

i N

wh —wd gk 4 (e ik tanhi R, (3,28

] —

and g prediction does not agree at all with the exporimental results (zen dashed
lines in [igare 2]

Onee the critical amplitnde a. and eritical wase number &. are known, the crisical
modes can easily be compoled. Again lor cases when B 2 B, we can express 1he
deformation ¢ from the flat surface approximately by tso tormporad modes J. ) wnd
Lheir eomplex conjugales,

e »
_|.. (

L e, (3.297

fofl) = (e

where &) i3 relaved to £ by

1 1 1 2
= A £3.30]
- (:'5:-1:)(a2 z.*;.»-la‘) & '

Al oand A7 noche above expression are to be computed at the critical point, ‘T'he
vortical velocity wedz, #) can be evaluated by Inserting (3.29) (330 oo (3110
i3.18),
(b1 Liguids of infinite depth
For Lhe esase of lignids of infinile depoh, the velooliy field w(z, ) and its s-clerivative

st vanish at 2z — —ac. The solulion of (L91-(3.100 can be expressed as
w2 = T eap kel | HY cxp (gaa) (3.31]

Do, . Soce fandd, A -:_|'§§|!'-:'I3:l
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Fignre 2, Cuoparizon of the theoretical prediction (solid e} for e digpersion velalinn with e
coporimental resules (filled civeles) weith plyeering walor misbure of thickness fo= 24 1w~ e,
The ideal Huid resulls Foe lnive deplh fdashed line) do ool agree with the experimental obser-

valivng, losel: Slability threshold o as o fmetion of the external frequency w27, The Nhuid
parameters for the taeoretical curve are a= ‘o Aognre 2.

Following the sarne procedure as before, we have

I =gl | k)G, (3.32)
ff:" = 2]2#_#\12(‘?_._ l~5|1.i'

The cquation (2,217 for the pressure ab Lhe free sorface leads wo Lhe recursion reladion

‘:1::{_:'“. = ul:'{h-'fl+]. Cn __::'\- (3.34 :'
where A% iz defined as:
= 2 o 3 2 1 ¢y, 21,7 5 4 Fay epp
A= i ak k7l 2k — dgn it — R (3.350
: e

In absence ol external foreing, there is no coupling of the termporal modes and {5.54]-
(30 leadd Lo the koown dispersion relation (Chandrasekbar 1961, 594de) lor the
surface waves in viscous liguids of infinite depth:

gk - Eﬂ PPgh - 202kt Ak 1KY =0 {3,361

In the case of o liquid of infinite deprh, the first tongue, which alwayys corresporneds
Lo the subharmonic responsc, is che lowest, The first instability is thereforo aheays
subharmonic and Lhe slanility Threshold can be evaluated, within less than 1%, oy
wrirdrnizing thoe expression (3270 with respect Lo b Toothe sbove A s are deiined Dy

(3.351,

4, Bicritical points

A the depth boof the Toguid layer beoomes compariahle wills the sive b of the
boundary layer formed duc to the presence of the rigid plate, one expects distortion

From K. Soc. Lond, A (LAGBR]
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Figure 3. Stability boundaries of glyrering water for o /2 = 6 e All eber parsinelers sre
s as in Gepuee 3

ol the critleal modes, The approximate cxpression for a in {3.27) s no longer aceurate
and one needs fo vetain more teros in e Foorer expansion of vhe felds, We then
find out the cigenwlues of the matric (A4 '8! mumerically, Fignre 3 shows the firsl
[ vongues lor the case when che thickness af the louid laver is 2 mm and che forcing
freguency i3 6 He, Comparing it wich [gure 1, we see Lhat Lhe allowed haods of 1he
wave number & are much narrower and all the tongnes are shifred wowards loweer &
ax Lhe exeitalion fregnency is decreased. The wmosl mportant difference between the
two cages are at lower &3 The first tonpgue, which used to be the lowest 22 oo longer
sor ax thie [requency is lowersd because vhe size o the boundary layer is now roughly
the same a3 that of the thickness of the ligmid laver. The [ira longie & poshed op
while all edher tongues are pushed down, This leads to bieritical points, where the
wnbharmonie as well a5 the harmonic responses are possible for uhe same value of 1he
eritical forcing smplituce a,.. The firse two bicritical points are shown in figure 40 As
the cxcitation frequeney s lowered, the lowes) poines of all the tongoes (see lizure da,
lor the first tonpgue this happens at larger exeitarion fregquencies awd is mi shown
here) ax well ax (he corresponding wave numbers &2 (ligure 1) decrease first, When
the sclected wavclongth AL (= 27:'_,-"1:;_:1 becornes cowparable Lo Lhe depih B ol Lhe
ligguidd Laver, the ellec) of the botlom plate becomes strong and, congequently, the the
stahility throshold rises. The lowest poinls of other tongues at relatively higher &3 suill
decrense becanse vhe excitation frequency deercascs, 'This leads to a bicrivical poine,
As fregmency is furthor lowersd, the effect of the boluom plale becomes sironger. The
second wongues is pushed up while the third and higher tongnes are still coming dow,
Deiween the [irse and the second bicritical points, the first instabilly is larmonie. In
principle, Lhers could be a series of bicritical points, 'This offcet is purely doe to the
vizeosity of the lgnid.

A qualitarively similar phenomenon ocenrs as the thickness & ol Lhe liguid is
decreased or Lhe viseosity of the liquid is increased wrhile other paramelers are kep,
eomstant. Tederestingly, Lord Raylelsh (18830 conducted his oxperiinests with thin
[luicl lavers and noted the strong influence of Lhe lower plate. He used low-viscosity
[uid, for which the lirst instability is alwayvs subharmoenic as he observed,

Prog. &§, See, Lonel A I:|FE'!:5'I'i':
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Fignre 4 The liesl Two Bleeitical poinks {onelosoed by boxes in Ggoee 4l Az Lhe Dregqueney is
decreased, the first subharmonic (511} and the first harmonic (H1) response ocour at the same
walue a-. At these pointe the critical wave nwmber b juops (Hgare A6 1o higher valuey.

5. Limit of small viscous dissipation

Tior ph™ « w, the exprossion for A, in {3,167 can be cxpended in the powers of
fii g to compute the effec) of viscosily perlorbatively. The recursion relalion (316]
then can, up to sccond order in &g, be written as

2 T s P a4 2 k
ke Lamh [ Rf) [(t}' Irjll:; ) EranbiRa) = {l | sinch [ 28R (q,.,)

; . By 2 §
+ (1 + coth® (kA0 (q—) } Gty a), ol

which can ba further simplificd to

Hmi(kh} [(q | ‘;ss:z) kranhiki) + s | il - n)?
212 i ; a :
+ m[ﬁ — i+ JJ.]I;.,']"'""; + vk [ 4+ couh® (Fde)|[# = e + 2] | G
=ally 1+l {5.2]

It the lisin ol o — 0, Lhe above recursion relation s eguivalend Lo ideal (onid resoles
[see Appendix A) However, the lowest cortection to the ideal fluid resule is propor-
tional to (wrd' 24/ sin(2&6AR rather than &%, which is generally used in the nearly
inviseid models to dake accounl of dle wiscons damping. For small & as well a5 &, the
cotroction is propartional to {ra0)' R Sinee [5 1 i(n+ 2] is equivalent 1o & and Lhe
[irsl correclion involves an exponenl egqual Lo 372, one finds fractional derivative of ¢
with respoct to time, The recursion relacion (5,20, therefors, is no longer equivalent
to the Mathion cguetion with a traditional linear damping term. Only in the limin
of indinite deplh (kA 2 L), does Lhe [irst viseous correclion become proportional to
wk? and the resulling equalion tnay be considerad equivalent o a traditional linear
viscous damping lerm (- del70) in the Mathion equation for ¢ for a given mode of
Fave mumber f.

B. Conclusions

The linear theory of the alabilily of the plane froe surface of o viscous liguid of sar-
bitrary viscosity and depth ander parametric cxcitation is presented, ¥We showed] b
g viscous liguid lever vields qualitatively differenl resulls when ila depeh becomnes

Froc, B, Soe, Lovad, A (LBER]
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comparahle with the thickposs of the visecons honndary laver ereated at the bhottom
plare, Only in the limit of small viscosity and infinite deplh, the Malhlew equation
with a linear damping torm may reprosent paramettie instability oo wiseous lguid.
Tew wiscons liguids, vhe theory predicts the possibility of series of bicritical points
at the instability onset (fipnres 3 and 4} For ligoids of deplh Targe compared will
the size of viscous boundary layer, the lower part of the lowest marginal curve can
by prodictod analstically wilhin ressonable acenrsey and che prediclion of 1his ap-
prosimate formula compares well guantitetively with the cxperimental data for the
gtahility thresholds as well as lor che wavelengl hs observed experimentally, The vis-
cous boundary conditions are cssential to got correct stability throsholds as well as,
vt omr opinion, o nonderstand vhe mechanizm of pactern formation in parametrically
excited viscous fluids from the first principles. The theory can easily be exrended
{or the study of the slability of the inverface(s) of vwo (or more) Huids (Kumar &
Tuckerman 19847 under paramelvic excitalion,

The: wubhor @9 Lhankid o S0 Paoee, Lo 5. Tuclermoan, H. W, Miiller and W, 5, Edwards for
having feaitfl discussions with them, This work has been supported b the CNES (Centre

National d'Etudes Spatiales] under Contrart, No. 9270328, The recent experimeantal obserations
of Bechhoaler el ol (19937 T viscous Diids agooe well with the prediction of this theory

Appendix A. Recursion relation for the Mathien cquation

Benjamin & Urscll {1934) showed that the hydrodynamie souasions for inviseid
[Inids can be wrilten [or every wave number & as

£ — Wil — aeos(wt) £ — 0, (A1)

wheTo
wd =gk | ok¥ip, (A2
= ak/uws, (AS)

In the nearly inviscid theory, o linear damping Is wdded fo che Mathieo squation,
Fellowwring Lhe argmment of Landan & Lifshitz {1987, § 25}, the damping cocfficiont s
found ta be v = 2ek*. Therofore, the relevant equalion now becomes

C4 27¢ +wi 1 — deosiut)]¢ — 0. (A1)
Subslituling the Flaguer form for ¢ (3.7 in (A 42, and nging (A 21-(A 34} we find the

roquited Tecursion relation

A'rl.c:r.' o ul:':n—l | CTI.-'-].:IH {_"1'" '51

2 iy Y s
Ap = = [{a—i(n+ e} —dok*{s +i(n | ok} | gk | ':ch . [AS)
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