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In this paper, we investigate some characteristics of the flow of a viscous incom-
pressible Newtonian fluid through a circular tube under a transverse magnetic field.
The problem is of high interest from the view point that externally imposed magnetic
field has considerable influence on the biological system of human life. Moreover,
flows in channels and tubes are often studied keeping in view their applications in
physiological flow problems, for example, blood flow through artery. Assuming the
magnetic field constant and the viscosity of the fluid dependent on temperature, we
determine the distributions of axial velocity and temperature in terms of the Hartman
number and a parameter, respectively arising from the imposed magnetic field and
the associated temperature field. The results are computed numerically and discussed.

1. INTRODUCTION

A variety of fluid flows in channels and tubes are investigated owing to their
applications in physiological and engineering problems. Based on Navier-Stokes
equations, many researchers have developed mathematical models for transportation
of blood through arteries. Shah! has reviewed the fully developed and developing
solutions for blood flowing in a tube, channel and annular duct. Weisman and
Mockros? solved the mass conservation equation for straight and coiled permeable
tube flows utilizing an empirical relation for oxygen—hemoglobin dissociation curve,
a constant effective diffusivity and a Newtonian parabolic velocity profile. Attempts
have also been made to study the influence of magnetic field on physiological fluid
flows. It is well known that externally imposed magnetic field plays an important
role in stimulating the functions of various biological systems of the body. For
example, it helps in regenerating tissues of the body (Bansal’). McMichael and
Deutsch* studied the magneto-hydrodynamics of laminar flow in slowly varying tubes
in an axial magnetic field. Subsequently, Desikachar and Rao’ analysed the influence
of a magnetic field on the blood oxygenation process. Krishna and Rac® investigated
the motion of a viscous incompressible flow through a nonuniform channel under a
transverse magnetic field. The results obtained by them are found useful in analysing
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some biomedical problems. In the cases of blood oxygenation and hemodialysis blood
is removed from the body for processing and returned to the body. In situations like
these, it is important to control the temperature of the blood when it is out of the
body in order to prevent damage. Shah! studied the effects of temperature on' the
transport phenomena of blood.

In the present paper, we consider the problem of flow of a viscous
incompressible Newtonian fluid through a circular tube under a transverse magnetic
field. As such, this may serve as a simple model for physiological flow e.g., blood
flow through a straight artery of large diameter. Rodkiewicz? discussed that blood
may be considered a Newtonian fluid when flowing through conduits of a large
diameter. Assuming the viscosity of the fluid to be dependent on the temperature,
we determine the distributions of velocity field and associated temperature field in
terms of the appropriate parameters.

2. FORMATION OF THE PROBLEM

Let us consider the steady laminar flow of an electrically conducting Newtonian
fluid through a circular tube of radius R. We use cylindrical polar coordinates (r,
0, z), with z-axis lying along the axis of the tube and the origin on the axis of the
tube. A constant magnetic field of strength B, is originally imposed perpendicular to
the axis of the tube.

The fluid is assumed to be flowing parallel to the axis of the tube with velocity
v under the influence of a constant pressure gradient and the Lorenz force. Due to
symmetry of the problem the flow will be independent of 8. The velocity components
in the r, 8 and z directions are, respectively given by

v, =0, vg=0, v,=v/(r). .. (1)

The effects of the induced magnetic field and the electric field are assumed negli-
gible. No external electric field is applied and the Joule heating is negligible in
comparison with viscous heating. The equations for the momentum and energy can
be written now in simple forms
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where dap is the pressure gradient, o the electrical conductivity, & the coefficient of

dz
thermal conductivity, T the fluid temperature and p the coefficient of viscosity. r is
the measure of the distance along the radial direction.

We now introduce the following nondimensional quantities
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where p, is the coefficient viscosity at temperature 7 = T, (on the axis) and C, is

the specific heat at constant pressure.
Equations (2) and (3) are reducible now to dimensionless forms

dv. .
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dE? E(d&) 3 (d&)
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where L = 4:0 is- the Hartman number

The boundary conditions are given by

G v:=0 at E=1,

v
) Zz_.9 a &=0,

3
(i) =0 aa E=0,
. dar
v) —— =0 at = 0.
(v) & §

We now put

1
I"=—6°

B

where B is the measure of variation of viscosity with temperature, and
pe=e®.
Taking (7) and (8) into account in (4) and (5) we obtain, respectively

®v, 1 dv,
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and

e 148" (@Y

=t EE-N(" (gé) =0 .. (10)
where N=BE,P.

The boundary conditions (6) are transformed to

@ v;=0 at E=1,

(i) —Za.0 a E=0,

(i) 6°=0 at E=0,

(iv) ‘fg-o at E =0 - (1)

Treating L and N as parameters we seek solutions of eqns. (9) and (10), subject to
boundary conditions (11), in the next section.

3. NUMERICAL SOLUTIONS AND DISCUSSIONS

The system of eqns. (9) and (10) with the condition (11) are treated here as
two-point boundary value problem. To solve these equations, we apply a shooting
method (Hall and Watt®). First we guess an arbitrary value for v, at € = 0 and
integrate the equations from & = 0 to & = 1, utilizing the conditions (ii), (jii) and
(iv) of (11), by Runge-Kutta method. The value of v, obtained at € = 1 either
overshoots or undershoots the prescribed value v; = 0 at £ = 1. The process is
repeated every time reguessing the value of v} at E = 0 until v} obtained at & = 1

matches with its prescribed value within admissible tolerance. The solutions for v,
and 0* thus obtained are plotted, respectively in Figs. 1-2 and Figs. 3-4.

These figures demonstrate the variations of the velocity and temperature profiles,
respectively due to choices of the Hartman number L = 0, 0.1, 0.2, 0.3, 04 (N =

0.2, 0.4) and the parameter N (corresponding to temperature field) = 0.1, 0.2, 0.3,
0.4, 0.5 (L = 0.1, 0.3). After examining them we reach the following conclusions :

() v} is maximum at the centre of the tube and decreases with the increase

of § and finally becomes zero at the wall (E = 1) in all the individual
cases.

() For a fixed value of N, v, is found to decrease with the increase of L.

Core-like character (Gold®) of the velocity distribution is less apparent in
the cases under consideration.
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(i)  gor a fixed value of L, v} is found to increase with the increase of N at
any E(= 1).

(iv) In al the individual cases, 0* is found to increase from its zero value at
the centre with the increase of £ and becomes maximum at the wall.

(V)  For a fixed value of L, 6* is found to increase with the increase of N
at any &(= 0).
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Fi6. 1. Axial velocity component v; for FIG. 2. Axial velocity component v; for
values of the Hartman number L = 0, 0.1, 0.2, values of the Hartman number L = 0, 0.1, 0.2,
0.3, 0.4 (N = 0.2). 0.3, 0.4 (N = 04).
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FiG. 3. Distribution of temperature 8* for FiG. 4. Distribution of temperature 8° for
values of the parameter N = 0.1, 0.2, 0.3, values of the parameter N = 0.1, 0.2, 0.3,

04, 0.5 (L = 0.1). 04, 05 (L = 0.3).
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(vi) For a fixed value of N, 6* is found to decrease with the increase of L
at any E(= 0).

The results obtained here are not only of interest in hydrodynamics but also
useful for better understanding of the problem of controlling blood flow through
arteries and veins, by the application of external magnetic field.
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