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The present paper deals with the time variations of some characteristics of the
Newtonian flow of blood through a stenosed artery. Considering the arterial vessel
to be a circular cylindrical tube, the non-uniform suspension viscosity of blood to
obey an approximate model and prescribing a volume flux, series solutions are
obtained for the distributions of axial velocity and pressure gradient. Effects of the
Womersley parameter and a parameter depicting the hematocrit distribution in the
blood on these characteristics of the flow field are discussed.

1. INTRODUCTION

The study of the time variation of various characteristics of viscous
incompressible fluid flows through cylindrical tubes is quite relevant to the
construction of more realistic models for blood flows through arteries and veins.
Young! presented an excellent analysis of flow through an occluded tube under a
pulsatile pressure gradient. After the publication of Young’s poineering work,
investigations were carried out by authors e.g., Forrester and Young?, Young and
Tsai®, Back et al* on various aspects of blood flow through partially occluded tube.
Ahmed and Giddens® and Ojha er al.® considered sophisticated measurements using,
repectively Laser Doppler Anemometry (LDA) and Photocromic Tracer Method to
study mainly the changes in pulsatile flow velocity profiles through consrticted tubes.
Construction of mathematical-numerical models, incorporating hydrodynamical aspects,
for blood flow in stenosed artery also received much attention. Lee and Fung’
obtained solution to the steady axisymmetric flow of a viscous incompressible fluid
through a locally constricted circular cylindrical tube at low Reynolds numbers by
conformal mapping technique. The numerical results presented by them for the
streamlines and distributions of velocity, pressure, vorticity, and shear stress were



1138 H. P. MAZUMDAR et al.

used for analysing the blood flow in a circular cylindrical tube with a local
constriction. Ling and Atabek® carried out nonlinear analysis of pulsatile flow in
arteries. They presented an approximate numerical method for calculating flow
profiles in arteries. The computed theoretical results on the velocity distribution and
wall shear at a given location in terms of pressure, pressure gradient and
pressure-radius relation agreed well with the corresponding measured data. As relevant
to velocity profiles within the arterial system, Blick and Stein® derived simple solution
for pulsatile flow in rigid tubes by applying variational method. Rao'® presented a
complete and correct solution for the unsteady flow in an uniform elliptical pipe in
terms of Mathieu functions. Rao and Padmavathi!! investigated the pulsatile flow of
an incompressible viscous fluid also in an elliptical pipe but of slowly varying
cross-section. They obtained asymptotic series solutions for the velocity distribution
and pressure gradient in terms of Mathieu functions for a low Reynolds number flow
in which the volume flux is prescribed.

In this paper, we investigate the axial velocity distributions and the pressure
gradients of the Newtonian flow of blood through a constricted circular cylindrical
arterial tube for various values of hematocrit and the Womersley parameter.

2. SHAPE OF THE CONSTRICTION

Blood, may approximately be treated as a Newtonian fluid when flowing through
large arteries (Rodkiewicz!?). Again, large arteries are prone to atherosclerotic
development (Padmanabhan!®). Several models have been proposed to define the
geometry of the constriction. Most commonly used shape of the constriction is
represented by a cosine curve e.g.,

a-8{l+cosn—z)for ~270€2° <2z . (D

R(Z) 2

a otherwise

where a is the radius of the arterial tube outside the stenotic region, 4z, the length
of stenois and 2§ the maximum height of the stenosis. The form (1) was originally
suggested by Young!. Lee and Fung' specified the geometry of the constriction as
a bell-shaped curve while Schneck and Ostrach'® modelled the stenosed artery by a
channel having a small exponential divergence. The geometry of the bell-shaped curve
of Lee and Fung'* is, given by

R _ cz? o 2)
p —l-bexp(- 2 ]

where a is the radius of the tube far away from the origin, b the amplitude of the
local constriction (b > 0), and ¢ the sharpness factor. It is to be mentioned that the
role of the stars, as in (1), (2) and throughout the analysis is to denote dimensional
variables, such that when these same variables are written without stars they are
dimensionless.
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In the present analysis, we consider the form (2) for the shape of the constriction
with choices of b and c, respectively as 0.25 and 1.

3. MODEL+ FOR VISCOSITY

It is known that blood is a complex fluid with formed elements (red cells, white
cells and platelets) suspended in plasma. The percent volume concentration of red
cells in the whole blood is called the hematocrit. For an adult it is approximately
40-45% (Oka'”). Viscosity of blood, and thus the velocity distribution depend on the
concentration of cells. Lih!” postulated a model for the nonuniform suspension
viscosity for blood, flowing through an arterial tube of uniform cross section e.g.,

n )= {1 + k{1 - (r*ayl} v (3)

where k& = Bh,, B is a constant having the value 2.5 and 4, the maximum hematocrit
at the centre. |, the viscosity of the plasma is assumed constant. n is a parameter
determining the shape of the cell distribution in blood flow. In the present analysis,
we shall consider the case n = 2 for which the shape of the profile is parabolic.
Formula (3) indicates that viscosity increases as we move from the wall towards the
centre where it is maximum. Also, it may be imagined that near the wall there is
a thin layer dominated by plasma. In the cases of axisymmetric mild constrictions
represented by (1) and (2), as we move from the beginning of the stenosis along
the wall, it is expected that the plasma layer will be thinner and thinner till we
reach the peak of the stenosis where it is thinnest. Recently, Haldar and Andersson'®
have shown that the plasma layer thickness varies along the length of the tube of
stenosis and attains its minimum value at the throat of the stenosis. Presumably,
changes in viscosity by little amounts along the stenosis are not out of question. It
appears that the model (3) for nonuniform viscosity can cope with this situation.
Further, we shall be concerned here with the case of mild stenosis [the form (2)
with b = 0.25, ¢ = 1] and as possibly there may occur no serious error, we shall
apply also the model (3) for viscosity to characterise the flow in the stenotic region.

4. BASIC EQUATIONS
When there is no variation of viscosity p*, the unsteady, axisymmetric

incompressible Newtonian fluid flow through the region 0 < r* < a, 0<0<2x,
~oo < 7* <o of a circular cylindrical tube is governed by the equations
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where v; is the radial velocity, v; the axial velocity, p* the pressure and p* the
constant density. The equation of continuity is given by
ovy . v; + oVl _
o' r o
On the inner wall of the be r* = a and r* = R*(z*) the no-slip condition requires
that

0. .. (6)

vy=vi=0 at r* = a and r* = R*(z*).

If variation of viscosity be taken into account according to the formula (3), eqns.
(4) and (5) are to be replaced by
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We shall consider £=% , where L is the characteristic length of the tube, as a
perturbation parameter. We introduce the nondimensional quantities as follows :

LA N A —or
"a'z‘L’p'p'U:,Z/Ree"“”"
. U‘ 2 y* » -
Re= o'a’ =2V ,v.=p_l: 9
v a? p
v
and v, v)=| =, -%
[Uz U:) -

where p* is the density of the fluid, U the characteristic velocity, @ the frequency
of the pulsatile flow, Re the Reynolds number and o the well known Womersley
parameter.

In view of the relations (9), egns. (7), (8) and the continuity relation (6) are
expressible in terms of nondimensional quantities as

dv, 1dp d® o, ... (10)
21 = hid
o a'M:ReA.v, 2 or +®[A2v, ]+2 ar ar
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ov, 0 a® ov, dv
2 %2 =_9o9 a P
o 3 +€ReA v,= aZ+®(‘szz)+dr{s az+ar} . (1D
A7/
art v s - (12)
_ 0 _ 9 19 a2
where A,—v,;+vz_a—z, Az‘a_ﬁ+7$+"‘2a_zz-

The boundary conditions are now read as
v,v)=0 at r =R, R2) = B‘i—g). . (13)

The nondimensional flux across any cross-section is prescribed by
R(2)
v. rdr=m(l + €"). ... (14)

5. AXIAL VELOCITY : PRESSURE GRADIENT

Let us assume a solution in the form

... (15)
(v Vo P) = Z em (vmv Vims pm)
0

Substituting (15) in eqns. (10)-(12), we obtain (remembering that p,, p, etc. are
independent of r) equating like powers of €

av,o dp; azv,o 1 av,o Vo d® av,o ... (16)
2 W0 _ 4P Vo 1 O0V0 VYo ay dvo
o T dr+® ar2+r ar r +2dr ar
aV.O dpo azv,o 1 avzo d® 3v20 (17)
2 & 22 = 2= 2
T T dz+®[ ar * ¥ or dr or

av,o Vo +av_zo aee (18)

o Tt 70

-szl @ % _1_avz, @ avzl

o 5t +ReAjgvpo=— dz+ I +r 3 +dr' 3 .. (19)
etc.
where

A,o=v,0§+vﬂ5—z‘.

We attempt here to determine the zeroth order solution for the axial velocity
and the corresponding pressure gradient. This is analogous to the treatment of one
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dimensional model for blood flow through the artery under pulsatile pressure gradient.
Modification of the flow field due to assumed dependence of viscosity on the
distribution of red cells would be of high interest in this work.

For this purpose, we write

. d )
Vo= Vs + Vor e", szo = Pos + Por e . (20)

Substituting (20) in (17) and comparing the coefficient of ¢™, n = 0, 1 we obtain

@ 19 A _ . 2D)
®[aﬂ Vogs + " arv:OS:I-Zkr 3 —pgs = 0
9?2 19 ov (22
®I:5—r:2.v:07+7'é;V:OT]"Zkr'_a:)_T_pOT’a% vor = 0 (22)
where of =io?.

The boundary condition v, = 0 at r = R(z) is now read as
vas=0, vor = 0 at r = R(2). .. (23)

Relation (14) can now be expressed as

R(2) R(@) (24)
Vs rdr=m, I vorrdr=m.
0 0

Solution of (21) with the conditions that velocity should not be infinite on the tube
axis and vy, = 0 at r = R(z), is obtained easily as

vﬂ,=i—‘;:[1og {1 + kK[1-RE@?) - log {1 + k(1 -} . (25)
In order to solve eqn. (22), we put
P
Vier = vor+—g. .. (26)
*51
In view of the relation (26), eqn. (22) reduces to
o2 10 0
[5;2—v:07-+-;-a~;v:07-:|—2kr§;v:07—a%vzor = 0. - (2T)

We seek solution of (27) in the form
vor=y, cprb. . (28)

Substituting (28) in (27), we obtain after some calculations
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BB-2)k+a; . (29)
CB=W Cp-2 B2

and i =ci=¢s=..=0. ... (30)
Taking the relations (28)-(30) into account in (26), we obtain

CH
» 1+C—“r3+%r“+...
oT 4]
Vor=g 2 1. - (3D

o Ca 5 Ca
1 +—=R(Z)P+— R+ ...
Co o

Substituting (25) into the first relation of (24), we obtain aftef effecting integration

4kn ' .. (32)
llog | 1 +k—kR(z)? | -log (1 +k)]

Pos= gy TS
2 2k
Substituting (31) into the second relation of (24), we obtain after some calculations

_Ej ... (33)
Por= S

where

52 4 6
R@) Q2 RG@N ¢ ©2RE@S

+ .
2 c 4 cog Co 6
S= 0 00 . . (34)

c cy C
1+2 R+ 2 R+ ...
Co Co Co

From (25), (31), (32), (33) and (34), we calculate vy, + K (vyre”) and p, +
R (p,; €") for different values of the hematocrit parameter k and the Womersley
parameter a.. K ( ) stands for the real part of the quantity in the parenthesis.

6. DISCUSSIONS OF RESULTS

The shape of the constriction considered for numerical computation, is described
by R(z) = R*(")/a=1 ~0.25¢=". Clearly z = 0 is the point of maximum constriction.
Also the constriction is symmetric about z = 0. We compute the axial velocity v,
and the pressure gradient dpy/dz at different times with various choices of the
Womersley parameter o0 and the hematocrit parameter k. The results are presented
graphically. In Fig. 1, dpy/dz is plotted against z at t = O for different values of
aeg. o =05, 2, 4. The value of k being chosen as 0.25. It is clear that magnitude
of the pressure gradient attains maximum at the point of maximum constiction. In
Fig. 2, dpy/dz is plotted against z at t = 2.5 for different choices of k,-e.g., k =
0.25, 0.50, 0.75, 1. @ being chosen equal to 4. The pressure gradient is found to
decrease with the increase of k.
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In Figs. 3, 4 and 5, the pressure gradient curves for different values of ¢ are
shown, respectively for the cases (i) o = 2, k = 0.25, (ii)) a = 2, k = 0.75 (jii) o
= 3, k = 0.50. Careful observation indicates that the curve for ¢t = 2.5 of case (ii)
has got more than one extremum point. In Fig. 6, the axial velocity vy is plotted
against r for values of r e.g., t = 0, 0.5, 1, 1.5, 2, 2.5 at the throat z = 0. The
values of o and k are being chosen, respectively as 2 and 0.25. It is noticable that
Z,0 decreases at any r(< 0.75) as r advances. v, is maximum for all ¢ at the point
of maximum constriction and decreases with the increases of r. All the curves merge
at r = 0.75 where v assumes zero value. Variations of v., with time, at the throat
z = 0 are also demonstrated for two other cases e.g., (i) o = 3, k = 0.25 (ii)) o0 =
4, k = 0.25. (Figs. 7 and 8). Qualitative features remain similar to the case of
Fig. 6.

We plot vy at # = 2.5 and at the throat z = O for values of a0 = 2, 3, 4 in
the same Fig. 9. The value of k being chosen as same 0.25. It is clear that in the
core region v, increases with the increase of o. The curves cross in between
r = 04 and r = 0.45. Opposite feature is noticed after the cross over until all the
curves merge at r = 0.75.

In Fig. 10, the variations of v at ¢+ = 2.5 and at the throat z = 0 are shown
for values of k e.g., k = 0.25, 0.5, 1. The value of o is chosen as 2. In the core
region vy is found to decrease with the increase of k. The curves cross at about
r = 0.45. Opposite feature occurs after the cross over also in this case until all the
curves merge at r = 0.75.

7. CONCLUDING REMARKS

It is implied with the zeroth approximation that the nonlinear terms are not
important and the radial pressure gradient is negligible. Such simplifications may
however, be justified for the low Reynolds number flow and when the cross-section
of the tube varies slowly (MacDonald®). Even under this simplified situation both
Womersley parameter o and the hematocrit parameter k(= Bh,,) have been found to
influence the pulsatile Newtonian flow of blood through the circular cylindrical
arterial tube significantly. o is known to be the ratio of the viscous diffusion time
to the period of oscillation, or an unsteady Reynolds number (Berger?). In the human
arterial system, o takes numerical values between 1 and 4 (Padmanavan!?). In the
present analysis, we have used values upto 4 for a. During the flow, the amount of
internal friction is enhanced due to presence of red cells in plasma. Hence, hematocrit
is a major variable of blood viscosity. Under pathologic condition hematocrit may
vary from about 0.3 to 0.7 (Quemada?'). We have considered here low and moderate
values for the maximum hematocrit A,

The present investigation warrants higher order calculations and evaluations of
both axial and cross velocity components and as well as other physiologically
important factors, e.g., shear stress on the boundary and impedence to gain more
insight into the problem. The authors plan to carry out such calculations and report
the results in a future paper. '
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FiG. 1. Plot of dpo/dz vs. z for values of & = 0.5, 2, 4 (t = 0, k = 0.25).
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FiG. 2. Plot of dpyp/dz vs. z for values of k = 0.25, 0.50, 0.75, 1.0 (¢t = 2.5, & = 4).
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FG. 3. Plot of dpp/dz vs. z for values of t = 0, 0.5, 1, 1.5, 2, 2.5 (& = 2, k = 0.25).
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FiG. 4. Plot of dpo/dz vs. z for values of t = 0, 05, 1, 1.5, 2, 25 (& = 2, k = 0.75).
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FiG. 5. Plot of dpo/dz vs. z for values of 1 = 0, 0.5, 1, 1.5, 2, 25 (o = 3, k = 0.5).
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FiG. 6. Plot of vy vs. r for values of £ = 0, 05, 1, 15,2,25(z =0, a =2, k=025
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FiG. 7. Plot of -vp vs. r for values of t = 0, 0.5, 1, 1.5, 2,25 (z =0, o = 3, k = 0.25).
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FiG. 8. Plot of vy vs. r for valdes oft=0,05 1,15 2,25z =0, a=4 k=1025).
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FiG. 9. Plot of v, vs. r for values of @ = 2, 3, 4 (z = 0, k = 0.25, ¢ = 2.5).
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FiG. 10..Plot of v vs. r for values of k = 0.25, 05,1 (z =0, @ = 2, t = 2.5).
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