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Inference for Likelihood Ratio Ordering 

in the Two-Sample Problem 

Richard DYKSTRA, Subhash KOCHAR, and Tim ROBERTSON* 

We obtain the maximum likelihood estimators of two multinomial probability vectors under the constraint that they are likelihood 
ratio ordered. We extend this estimation approach to the case of two univariate distributions and show strong consistency of the 
estimators. We also derive and study the asymptotic distribution of the likelihood ratio statistic for testing the equality of two discrete 
probability distributions against the alternative that one distribution is greater than the other in the likelihood ratio ordering sense. 
Finally, we examine a data set pertaining to average daily insulin dose from the Boston Collaborative Drug Surveillance Program 
and compare our testing procedure to testing procedures for other stochastic orderings. 

KEY WORDS: Chi-bar square distribution; Hazard rate ordering; Isotonic regression; Multinomial distribution; Stochastic ordering; 
Strong consistency; Uniform stochastic ordering. 

1. INTRODUCTION 

Stochastic ordering of distributions is an important con- 
cept in the theory of statistical inference. Many different types 
of stochastic ordering have been defined in the literature, 
and in fact a comprehensive volume from Academic Press 
on this topic (Shaked, Shanthikumar, and collaborators 
1994) is now available. 

One of the earliest definitions of stochastic ordering was 
given by Lehmann ( 1955): A random variable X with dis- 
tribution function F is said to be stochastically greater than 
a random variable Y with distribution function G if 

F(x) ? G(x) for every x. (1) 

This is called (usual) stochastic ordering and is typically de- 
noted by X > Y. 

In some cases a pair of distributions may satisfy a stronger 
condition called likelihood ratio ordering. If distributions F 
and G possess densities (or probability mass functions) f 
and g, then the condition required for likelihood ratio or- 
dering is given by 

f(x ) s nondecreasing in x. (2) 

LR 
This ordering is denoted by X > Y and has the interpre- 

tation that (2) holds if and only if for every a < b, the con- 
ditional distribution of X given X E [a, b] is stochastically 
greater than that of Ygiven Y E [ a, b]. Keilson and Sumita 
(1982) called this ordering local uniform ordering and dis- 
cussed many of its properties. They also gave many examples 
of stochastic processes where the underlying distributions 
are likelihood ratio ordered. Ross ( 1983 ) and Shanthikumar 
and Yao ( 1991 ) have observed the usefulness of this ordering 
in some stochastic scheduling, closed queueing network, and 
reliability problems. It is known that X > Y implies that 
F(x)/ G(x) is nondecreasing in x. This latter condition de- 
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fines uniform stochastic ordering (or hazard rate ordering), 
and this in turn implies stochastic ordering. LR 

Although Ross (1983, p. 268) has shown that X > Y im- 
plies that 2X + Y > X + 2 Y for independent random vari- 
ables X and Y, this conclusion will not be implied by the 

St 
lesser condition X> Y. Shanthikumar and Yao (1991) have 
generalized this result and have given some bivariate func- 
tional characterizations of these stochastic order relations. 

XLR In particular, they have shown that X> Y if and only if 
Eg(X, Y) > Eg(Y, X) for all g E lr = {g(x, y): g(x, y) 
> g(y, x), for all x > y }. (Some other important references 
on likelihood ratio ordering are Karlin and Rubin 1956, 
Lehmann 1955, and Whitt 1980.) 

There has been a considerable amount of work done on 
inference problems concerning (usual) stochastic ordering. 
Brunk, Frank, Hanson, and Hogg (1966) obtained non- 
parametric maximum likelihood estimates (MLE's) of two 
stochastically ordered distribution functions and studied their 
properties. Testing procedures based on MLE's of two sto- 
chastically ordered distribution functions have been discussed 
by Robertson and Wright (1981), Lee and Wolfe (1976), 
Franck (1984), and Dykstra, Madsen, and Fairbanks (1983). 
Of course, the literature contains several distribution-free 
tests for testing the equality of distributions against stochast- 
ically ordered alternatives. 

Dykstra, Kochar, and Robertson (1991) obtained MLE's 
of the survival functions of k distributions under uniform 
stochastic ordering (i.e., with ordered hazard rates). They 
also derived the asymptotic null distribution of the likelihood 
ratio statistic for testing the equality of distributions against 
the alternative that their hazard rates are uniformly sto- 
chastically ordered in a discrete setting. Park (1992) studied 
the likelihood ratio test for testing uniform stochastic or- 
dering as a null hypothesis. 

It is surprising that very little attention has been given to 
the problem of developing inference procedures for likeli- 
hood ratio-ordered distributions. But because this ordering 
has many important theoretical implications (see Sec. 6 for 
the relevance of this ordering in comparing nonhomogeneous 
Poisson processes), we feel that it is a topic worthy of ad- 
ditional study. We are not aware of any tests in the literature 
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specifically designed for testing the equality of two probability 
distributions against the alternative of likelihood ratio or- 
dering. In this article we consider this testing problem for 
the discrete case. 

We assume that a random sample of size m is taken from 
a multinomial distribution with probability vector p = (Pl, 
... , Pk) and denote the corresponding vector of observed 
frequencies by m = (ml, .. . , mk). Similarly, we let n = (nI, 
... . nk) be the observed frequencies of an independent ran- 
dom sample of size n from another multinomial distribution 
with probability vector q = (ql, ..., qk) (m = ml + * * - 
+ mk and n = nl + * * * + nk). We derive the nonparametric 
MLE's of the probability vectors p and q under the hy- 
potheses 

Ho: p = q (3) 

and 
LR 

H1: p > q (4) 

(i.e., pi /qi is nondecreasing in i, for i = 1, . .. , k, ) and use 
these estimates to construct a likelihood ratio test. 

These MLE's are obtained in Section 2 and are derived 
in the discrete setting. But they provide generalized MLE's, 
in the sense of Kiefer and Wolfowitz (1956), under the as- 
sumption that the family of interest is the collection of all 
pairs of univariate distributions. In Section 3 these estimates 
are shown to be strongly consistent. This result is particularly 
interesting, because the MLE's under the assumption of uni- 
form stochastic ordering are not consistent (cf. Rojo and 
Samaniego 1991). 

In Section 4 we derive the asymptotic distribution of the 
likelihood ratio statistic for testing Ho against HI in the dis- 
crete setting. The asymptotic null distribution is shown to 
be of the chi-bar-squared type. In Section 5 we illustrate 
these estimation and testing procedures using a data set con- 
cerning the mean daily dose of insulin for patients with and 
without hypoglycemia. In Section 6 we discuss how the pro- 
cedures developed in this article can be used to make infer- 
ences about two nonhomogeneous Poisson processes. 

2. MAXIMUM LIKELIHOOD ESTIMATION 

In this section we obtain the MLE's of p and q under Ho 
and H1. We begin by expressing the likelihood function of 
(p, q) as 

k 

L oc II pmi qni 
i=l1 

We reparameterize by letting 

6i=mpi/(mpi+nqi), ki=mpi+nqi, (5) 

to obtain 

Pi = Oi 4/m, qi = i( l - 6i)/n, (6) 

fori= ,..., k. 
The basic restrictions on p and q are 

(a) Pi 2O, qi?O, for i= 1, . ..,k, and 
(b) >Jk=lPi = Li= = 1. 

It is easy to see that (a) and (b) are equivalent to 
(c) 0 < i ! 1, ?i 2 O, for i = 1,.. k 
(d) 0 i = m + n, and 
(e) E 0iOi = m . 

It is straightforward to show that under the null hypothesis 
Ho, the MLE's of pi = qi are given by 

pq = (mi + ni)/(.m + n). (7) 

Therefore, the MLE's, 09 and /7, of 0i and i are given by 

6? = mp9/(mp9 + nq9) = m/(m + n) 

and 

,09= mp1 + nq9 = mi + ni, 

for i 1,...,k. 
We note that the unconstrained MLE of 0i is given by 0i 
mi / (mi + ni). It is easily shown that the MLE of 0 under 

Ho is equivalent to the least squares projection of the vector 
0 onto the cone @ = {(0, . . ,Ok); 01 =0 2 O = k} of 
constant vectors with weights w = (wl, . ., Wk), where wj 

- mi + ni. We express this fact by writing 

0 = Ew(ICD). (8) 

We next consider the problem of finding the MLE's of the 
parameters under H1. Observe that H1 will hold if and only 
if (c), (d), and (e) are true together with the condition that 
the Oi's are nondecreasing in i for i = 1, . . . , k. 

Rewriting L in terms of the 0's and O's, we obtain 

L oc n7 ( pi Xi )(- 4i( 1-- 0i) (9) 

/1m/1n k k 
= (-) (-) IIomi(1 - 0)ni JI /imi+ni (10) 

Thus the likelihood function factors into two parts, one in- 
volving only 6i's and the other only 0i's. First, consider max- 
imizing L subject to (c), (d), and nondecreasing 6i's. The 
first factor is a bioassay problem as discussed by Robertson, 
Wright, and Dykstra ( 1988, ex 1.5 ). The second factor is a 
straightforward multinomial MLE problem. The maximums 
are achieved at 

f *=mi + ni, i=1,., k, 

and 

O*(1* , I k), (12) 

the isotonic regression of the unconstrained MLE, 0 = (6k, 
* k) with weights w = (wl, ..., wk) onto the cone 5 

= {(01, * * k*,); 01 02 . . . < 6k of nondecreasing 
vectors, where wi = mi + ni and 0i = mi /(mi + nie). In our 
earlier notation, we can write 0* = Ew ( 1J). 

Moreover, 
k k k 

z *i*i = z E.(0YJ)i(mi +ni) = 6iwi =m, 
i=l i=l i=l 

using Theorem 1.3.3 of Robertson et al. ( 1988 ), so that (e ) 
is also satisfied. Thus 0* and 4+* are the MLE's of 0 and 4 
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under HI. Observe that the MLE of 4 is the same under 
both Ho and HI. Using (7), ( 11), and (12), we obtain the 
MLE's of p and q under HI, as reported in the following 
theorem. 

Theorem 2.1. If (mi + ni )> O, i = 1, . .. , k, then the 
MLE of (p, q) subject to HI: p > q is given by (p*, q*), 
where 

Pi mi nim E(m+n) m + (13) 

and 

q (mi+ 
ni)E(m+)(n 

n ) (14) 

fori= 1,. . .,k, where A = {(O1, .. ., k);1 02 

> Ok } is the cone of nonincreasing vectors. 
The similarities between (p*, q*) and the MLE of (p, q) 

under (usual) stochastic order p > q( j=I Pi < ? j=l qi, 
j = 1,..., k-1, I k Pi = z k qi ) is rather surprising. In par- 
ticular, Robertson et al. (1988, pp. 252-253) showed that 
these MLE's are given by 

Pi= PiED((7 ,) (15) 

and 

i 
(mP + nq ) (16) 

This similarity is even more apparent when the respective 
MLE's are expressed as 

Pi E(mi)m+n(mnY) (17) 

and 

A = P _i 
m 

mnEm+n ) (18) 

(with similar expressions for q" and qij) 
For the MLE of(p, q) under the restriction that p is greater 

than q according to uniform stochastic ordering (hazard rate 
ordering), see the work of Dykstra et al. ( 1991). 

3. CONSISTENCY 

If k is held fixed while letting m, n -* oo, then it is easy 
to show that p* pi and q* - qi if pi /qi A in i by using 
properties of isotonic regression. If one interprets maximum 
likelihood in the generalized sense (Kiefer and Wolfowitz 
1956), which puts probability only on observed values, then 
the MLE's given in Section 2 yield MLE's when the family 
of interest consists of all pairs of univariate distributions that 
are likelihood ratio ordered. By this we mean that there exist 
probability density functions fand g with respect to a dom- 
inating measure ,u such thatf( x)/g(x) A in x. Thus many 
pairs of continuous and mixed distributions will be in our 
family. A natural question to ask is whether these MLE's 

are consistent in the sense that the associated cdf's converge 
pointwise to the true cdf's when m, n -* oo and the likelihood 
ratio order holds. 

This question is especially pertinent' in light of the fact 
that the MLE's under uniform stochastic ordering (which is 
implied by likelihood ratio ordering) are not consistent, as 
was shown in a special case by Rojo and Samaniego ( 1991 ). 
(But MLE's under usual stochastic ordering are at least 
weakly consistent [Dykstra 19821.) Because the condition 
of uniform stochastic order (FIG A ) is similar in concept 
to likelihood ratio order (f/g A), it is difficult to anticipate 
the answer. We now show that the answer is in the 
affirmative. 

We let F(G) denote the cdf corresponding to the density 
f( g) and assume that we have independent random samples 
of size m and n. We initially assume that n/rnm - X, (O < X 
< oo ). We let Fm,n( * ) denote the likelihood ratio-ordered 
MLE of F derived in Section 2 and let Fm( * ) denote the 
usual empirical cdf for the first sample. (We consider only 
Fm,n( ); similar results hold for Gm,n( ).) 

We fix X (arbitrarily in a set of probability 1) such that 
Fm(X,W) >- F(x) and Gn(x, w) -w G(x) uniformly in x. It 
will suffice to show for a fixed e > 0 and t, there exists 
m(e, w) and n(e, w) such that 

Fm,n(t, w) - Fm(t, w) I < e 

for m 2 m(e, w), n 2 n(e, w) 

(we henceforth suppress the Xv). 
We let si, S2, . . . , Sk(n,m) denote the collection of distinct 

values from the combined random samples and assume that 
a,, a2, . .. , a, denote the upper end points of the level sets 
of Em+n[ m/( m + n) I 5 ] (see Robertson et al. 1988, chap. 2, 
for details). The level sets are those subsets of the si where 
the least squares projection has constant value. Of course, 
v, the number of distinct level sets, will be a random variable 
(as will the ai) depending on the random samples. We assume 
that ar,I < t < a, (and ao =-oo). 

Then we can write 

Fm,n(t) 

mi + ni E m___ 

irs?-5t m m+~(~ n ) 

2: 2 (min + ni)[ 3a1sa n) m j= I aj_1<sj<aj [ :aj_1<sisaj (mi + ni) ] 

Za+_l<4 (mi + ni) 
Zar_l<si-ar 

Mi 

:ar_I<Si<t Mi 23ar_<si?ar ( mi + ni) 

X- z mi (19) 
m ar1<Si?t 

= Fm(ar-1) + A(Fm(t) - Fm(ar-1)) (20) 

= Fm(t) - (1 - A)(Fm(t) - Fm(ar-)), (21) 

where A is the last entry in brackets. 
By the minimum lower sets algorithm (Robertson et al. 

1988, p. 24), 0 ? A ? 1 so that Fm,n(t) ? F,,(t). Moreover, 
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because the empirical cdf's converge uniformly to the true 
cdf's, we can say there exist positive integers no and mo such 
that 

F(t) - F(ar-1) + X[G(t) - G(ar-1)] 
F(t)-F(arl) 

F(ar) - F(ar-l) 

F(ar) - F(ar-1) + X[G(ar) - G(ar-i)] ( 

is less than e if F(t) - F(arl) ? e/2 (because then the 
denominator is bounded away from zero) for n ? nO and m 
? mO. 

Now 

f/g is nondecreasing 

f is nondecreasing, 
f+ Xg 

from which it follows that 

F(ar) - F(t) F(ar) - F(t) + X[G(ar) - G(t)] 
F(t) - F(ari1) F(t) - F(ar-1) + X[G(t) - G(ari1)] 

or, equivalently, 
1 F(t) - F(ari1) + X[G(t) - G(ar-i)] 

F(t) - F(arl) 

F(ar) - F(ar-i) 
F(ar) - F(ar-1) + X[G(ar) - G(ar-1)] 

Thus 

A>l-e ifn?no,imn m io 

and F(t) - F(ar ) 2 e/2. 

Finally, if we select ml > mo such that 

(Fm(t) - Fm(ar- ))-(F(t) - F(ar-l))I < 2 

if m 2 ml, 

then it follows that 

IFm,n(t) -Fm(t)I <e 

for miniml,n?no by(21). (23) 

Careful scrutiny will reveal that this result also holds when 
X = 0 or oo. Now suppose that m n-i- oo arbitrarily. Then it 
suffices to show that every subsequence (Mk, nk)Wk=I contains 
a sub-subsequence that converges correctly. But it is always 
possible to choose a sub-subsequence of (Mk, nk)k=l whose 
ratio converges (possibly to 0 or oo), so that the general 
result holds. It easily follows that Fm,n( * ) converges uniformly 
to F(*) a.s., as long as m -* cc (regardless of the behavior 
of n). Additional work will show that the convergence is of 
order m-i/2 which is the best that we could hope for. 

4. THE LIKELIHOOD RATIO TEST 

We now consider the problem of testing the null hypothesis 
H0 against the alternative H1. In our asymptotic theory, k, 
the number of support points, is fixed. We initially assume 

that the sample sizes n and m increase to xo in such a way 
that n/m X, 0 < X < 1, and (m + n)112(n/m - X) - 0. 

The likelihood ratio statistic is 

SUP(p,q),EH0 L((p, q)) L(pO, q?) 
4f = - i 

SUP(p,q)EHI L((p, q)) L(p*, q*) 

()m)(n)fl U'=k (0?)mi(l -0)ni Ilk- (40O)m&+ni 

Ik (0* )mi( 1 - i )i nIk ( k )mi+ni 

k/ 10 
\mil I -q \ni 

1(0i*)(1 -I 0 ) (24) 

because 'k? - 4Q . Our test rejects Ho for large values of T 
=-2 ln 'f; that is, for large values of 

k 

T = 2 z {rmiln O" + niln(l - O") 
i=l1 

- rnln 0? - niln(l - 0?)}. (25) 

If we expand ln 0" and ln 0? about 0i and expand ln( 1 
- 0") and ln( 1 - 0?) about ( I- ) and use properties of 
isotonic regression, then we find that the linear terms in the 
expansion drop out. On simplification, T reduces to 

T = z ((ei - ai?* )2( mi + ni) 

- (6, - oi )2(2 + ?)}, (26) 

where 

max{fli -il, li -(1 - i)l} < 1I0- il (27) 

and 

max{jaia- il, Jyiy-(I- i)l} 10' b-il. (28) 

When we assume that Ho is true, the right sides of (27) and 
(28) go to zero, which implies that T is asymptotically 
equivalent ( ) to 

k 

[(9 - 0)2-(6 - 9*)2I(m1 + n.) m+nim + ni m, 
i=l 1 mi mi ni 

k 

[ b - 26i0O + 092 -_6 + 2i0 _- 0i*2] 
i=l1 

X (mi + ni)(X + 1)2/X 
k k 

= _ (9* 90)2(Mi+n)(X+1)2/X (29) 
i=l i=l 

(because Ek= 610??(rn + ni) = 1k= 0*0O?(mi + n1) and 
1k= 60"' (min + n1) = Sk= 0"2(rn, + n1)). Expression (29) 

can be written as 
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k 

z [Ew (JY) -Ew ( Ie)1]2(mi + ni)(X + 1)2/X 
i=l1 

k 

I [EW(OIY), - Ew(OI6) I]2 
i= 1 

X (m + n)pi(X + 1)2/X 

-EW( Vn + ~m(- + - )I@) 

X p1(X + 1)2/X. 

But under our earlier assumptions, 

[m + n P I + X 
_ _ x 

TI)XP ?0 
MVN 

0 x ~~~~~~(30) 

where 

Ip =(ii - pi pi), I1 i, j< k, 

and 

Zq(=q(b -qiqj), ?<i,j<k, 

are standard multinomial covariance matrices (where bij is 
the Kronecker delta; i.e., bij = 0 when i 1 j and bij = 1 if 
1 =J). 

Straightforward but tedious application of the delta 
method (cf. Serfling 1980) will show that if Ho is true, then 

(m + )- 1 2 MVN(O, A), 

where 

/--1 -1l - -1\ 
/ P 

A ( + X)2 .(31) 

-1~~~~~~~~~~ 
Pk 

Upon observing that this is the distribution of 

(Xl -X, X2-X,.. .*,Xk-X), (32) 

where X1, . . . , Xk are independent N(O, X/((l + X)2p1)), 
1 c i < k, random variables with X = 1 ik=I piXi, we may 
use continuity properties (both in the argument and the 
weights) of a least squares projection to say that T is asymp- 
totically distributed as 

k 

[Ep(X-X iEp(X-X1@), 2p (X + 1)2/ 
i= 1 

k 

- z [EP(X I Y), -EP(X I @ ), 2[var(Xi)]-'. (33) 
1=1 

But the exact distribution of (33), as obtained by Rob- 
ertson et al. (1988, pp. 68-74), is a chi-bar-squared distri- 
bution, which is a mixture of chi-squared distributions, mixed 
over the degrees of freedom. Note that this distribution is 
free of X. Additional work will show that the same asymptotic 
distribution holds under Ho as long as both m and n go to 
infinity. We spare the reader the unpleasant details. A precise 
statement of the asymptotic distribution of T is given in the 
following theorem. 

Theorem 3.1. If pi = qi > O, i = 1, . . ., k, and m and 
n go to oo, then for all t > 0, 

k 

lim pr[T> t] = z P(l, k; p)pr(xl1l > t) (34) 
m,n-oo 1=1 

where x2 denotes a chi-squared random variable with v de- 
grees of freedom and P(l, k; p) is the probability that 
Ep(X I .7) takes on ldistinct values, where X = (X1, . . . , Xk) 

consists of independent random variables and Xi is 
N(0, lPi). 

We recommend that the quantity pr[ T > t] be approxi- 
mated by 

k 

P(1, k; ;p)pr( X2I_ > t), ( 35 ) 

where A = (mi + ni )/(m + n). This expression has the same 
asymptotic distribution as T and generally provides a very 
good approximation to the distribution of T. Expressions 
for P(l, k; p) have been given by Robertson et al. (1988, 
pp. 77-79) for k up to 5. Numerical simulations (or some 
other approximation, such as those discussed in chapter III 
of Robertson et al. 1988) are typically needed to approximate 
P(l,k;p)fork> 5. 

If the pi's are of roughly the same magnitude (as evidenced 
by the values of pi), then the equal weights P( 1, k) give an 
extremely robust approximation to the distribution of T. 
This approximation is remarkably good, as evidenced by the 
example in Section 5. Robertson and Wright (1983) rec- 
ommended the equal weights approximation as long as 
supij,pi/pj ' 4. Robertson et al. (1988, chap. 2) gave a re- 
cursive formula (as well as tables for k up to 20 in appendix, 
table A. 10) for these P(l, k). Critical points for the accom- 
panying distribution were also given in tables at the back of 
that book. A Fortran program for implementing a recom- 
mended pattern approximation was given by Pillers, Rob- 
ertson, and Wright ( 1984). 
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Although the asymptotic least favorable distribution of T 
under Ho is given by 

sup lim pr[T? t] 
p=q n,m-oo 

k (k _I) )k-l = ~ (~. 
:)~i)kpr(X 

I 
?t,(36) 

this tends to be a very conservative bound and is not rec- 
ommended except as a crude guideline. 

5. EXAMPLE 

To illustrate the estimation and testing procedures dis- 
cussed in earlier sections, here we examine a data set dis- 
cussed in a report from the Boston Collaborative Drug Sur- 
veillance Program ( 1974). The data set consists of observed 
values for the mean daily insulin dose from 80 subjects cat- 
egorized as "hypoglycemia present" and 245 subjects from 
the population "hypoglycemia absent." The measurements 
are grouped into five ordered categories and are shown in 
Table 1. 

One would expect that hypoglycemia (low blood sugar) 
would occur when large amounts of glucose are metabolized 
and hence would be consistent with higher levels of insulin 

LR 
dosage. This would suggest the hypothesis F ? G. 

The computed value of the likelihood ratio statistic T 
=-2 ln A is 9.703. We computed the estimated chi-bar- 
squared weights P(l, k; pR ) from the formulas of Robertson 
et al. (1988, pp. 77-79). These weights are given by P(5, 5; 
pj) = .010, P(4, 5; ) = .096, P(3, 5; p ) .308, P(2, 5; p ) 
= .404, and P( 1, 5; p) = .182. Despite the variability in p, 
(supi7j Pi/Plj = 2.32), these weights are remarkably similar 
to the equal weights P(1, k) tabled by Robertson et al.: (P(5, 
5) = .0081, P(4, 5) = .083, P(3, 5) = .292, P(2, 5) = .417, 
and P( 1, 5) = .200). The p values are .006 for the first set 
of weights and .005 for the P(1, k) approximation. Clearly 
there is strong evidence supporting the likelihood ratio or- 
dering hypothesis over equality of distributions. 

For comparison sake, we also computed the MLE's and 
likelihood ratio statistics for testing equality of distributions 
versus uniform stochastic ordering (implied by likelihood 
ratio ordering; see Dykstra et al. 1991) as well as the MLE's 
and likelihood ratio statistics for stochastic ordering (implied 
by uniform stochastic ordering; see Robertson and Wright 
1981). Finally, we ran the standard likelihood ratio test for 
testing equality of distributions against all alternatives. 

Rather surprisingly, the MLE's under uniform stochastic 
ordering are identical to the MLE's for likelihood ratio or- 
dering and hence give the same test statistic value of 9.703. 
Because there are only two populations, the asymptotic chi- 
bar-squared weights can be expressed as binomial (4, 1/2) 

Table 1. Mean Daily Insulin Dose and Maximum Likelihood Estimates Under Stochastic Orderings 

Insulin 
level 1 2 3 4 5 

<.25 .25-49 .50-.74 .75-.99 ?1.0 

Pop. I (F)-Hypoglycemia present 4 21 28 15 12 
Pop. Il (G)-Hypoglycemia absent 40 74 59 26 46 

LR 
MLE's F 2 Ga likelihood ratio order 

A 
= 

4, 
= 

4, = W ~ ~~~~~~~~~~~~0,0 
m 

m n m + n m' +n, 07 pI q7 m +n 

1 .050 .163 .135 .091 .091 .050 .163 .246 
2 .262 .302 .292 .221 .221 .262 .302 .246 
3 .350 .241 .268 .322 .296 .322 .250 .246 
4 .188 .106 .126 .366 .296 .152 .118 .246 
5 .150 .188 .178 .207 .296 .215 .167 .246 

_ _ | _ _ - - ll b st- 
-_ 

MLE's F > Gb F GC 

F > G uniform stochastic order s >od 

_n,,-_d,, n2,- d2, _ n,,+ n2,_ - di-_d2 01, = ~~~02, =- 

nl, n2, nji + n2, 81v A2 cj q AI 4 ~~~~~~~~~n, +, n, . . , 02 

1 .950 .837 .865 .950 .837 .050 .163 .048 .165 
2 .724 .639 .662 .724 .639 .262 .302 .254 .306 
3 .401 .550 .532 .532 .532 .322 .250 .338 .244 
4 .444 .639 .586 .586 .586 .152 .118 .181 .107 
5 0 0 0 0 0 .215 .167 .178 .178 

p,/q, increasing in i 
5 5 

b pi/,2 q, increasing in i 

5 5 

/ q, for all i 
1-1 1= 
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probabilities giving a p value of .0 12. Moreover, this implies 
that the likelihood ratio statistic for testing likelihood ratio 
order against uniform stochastic order is zero and hence pro- 
vides no support for choosing (less restrictive) uniform sto- 
chastic order over (more restrictive) likelihood ratio order. 

The MLE's under stochastic order (st) and uniform sto- 
chastic order (ust) are also given in Table 1. The likelihood 
ratio statistic value for testing equality versus stochastic order 
is 12.742, and the asymptotic chi-bar-squared weights are 
expressible from the likelihood ratio ordering weights as Pt(1 
k; p) = PLR(k + I-1, k; p), = 1, ... ., k. In this case the 
p values are again .005 for the equal weights approximation 
(P(l, k)) and .006 when p is estimated byp5. The conservative 
binomial bound (36) gives ap value of .0 12 for the likelihood 
ratio ordering case. A least favorable bound gives .009 for 
stochastic ordering. The likelihood ratio test statistic value 
for testing equality of distributions against all alternatives is 
13.268, which gives a p value of .010 from the chi-squared 
(4) distribution. 

6. POISSON PROCESSES 

The methods developed in this article can also be used to 
compare trends in Poisson processes (cf. Boyett and Saw 
1980; Lee 1982, 1982). Let N1 (t) and N2(t) be two nonho- 
mogeneous Poisson processes with mean value functions 
A1 (t) and A2(t) and let Xi (t) = dA (t)/dt denote the intensity 
function corresponding to Ni (t); i = 1, 2. 

Suppose that we observe these two processes up to a pre- 
determined time To, and that we let 0 < ti,I < ti,2 < ... ti,n(i) 
< To, i = 1, 2 be the observed times of occurrence for these 
two processes. Then it is well known that conditional on 
Ni(TO) = n(i), the observation times tl, t2, . .. tn(i) have 
the same distribution as the order statistics of a random sam- 
ple of size n(i) from a distribution with density,f(t) = Xi (t)/ 
Ai( To), i = 1, 2. Because X1/X2 is proportional tof1 /f2, the 
procedures developed here can be adapted to make inferences 
about X1 / X2 based on the foregoing data when collected in 
group form. Specifically, we can estimate the intensity func- 
tions (and thus the mean functions) subject to the restriction 
that their ratio is monotone in t using the methods developed 
here. We can also test the null hypothesis that this ratio is a 
constant against the alternative that it is monotone in t, using 
an adapted version of our likelihood ratio test in Section 4. 
Obviously, the resulting test will be conditional on Ni( To) 
- n(i), i = 1, 2. 

7. CONCLUSION 

It is shown in this article that MLE's for distributions that 
are likelihood ratio ordered can be obtained in a form that 
is similar to MLE's under (usual) stochastic ordering con- 
straints. These MLE's can be neatly characterized in terms 
of least squares projections onto isotonic cones. It is also 
shown that these MLE's are strongly consistent in a general 
setting and that they converge at the rate n -2 . 

The asymptotic distribution of the likelihood ratio statistic 
for testing equality of distributions against the alternative 

that the distributions are likelihood ratio ordered is also de- 
rived and shown to be of the chi-bar-squared type. Moreover, 
this chi-bar-squared distribution involves the same weighting 
coefficients (reversed in order) as the likelihood ratio test for 
(usual) stochastic order. 

[Received September 1993. Revised December 1994.] 
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