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0. Introduction and summary. In sampling from a finite population, the non-
existence of a uniformly minj variance unbiased estimator for the mean »
baa been demonstrated by Godambe [3], and the inadmissibility of the sample
mean as an estimator for g, when ling i3 with repl and equa! proba-
bilities, has been proved by Des Raj and Khamis 2] and by Basu [}].

In this paper, the problem of unbiased linear estimation of 4 with misimum
variance i3 considered for a very general scheme of sampling. An admissble
estimator is obtained, together with a complete class of estimators. It is shosn
further that, for a somewhat restricted sampling scheme, amongst estimators
with variance proportional to o*, there docs exist a best estimator which, in the
case of sampling with replacement and equal probubilities, is the sare as that
considered in (1] and (2].

1. Sampling scheme and method of estimation. Consider a population con.

sisting of a finite ber N of distinguishable el ary units u, with aso-
ciated real numbers (variate-values) y., ¢ = 1,2, --- | ¥. The mean sod the
variance of the population will be denoted respectively by
N N
(L) D=N—I§V« and U‘=N_"z;(y|'—u)’.
Let |U} denote a countable collection of finite or infinite sequences U(r),
z = 1,2, .-+, of the elementary units, repetitions being allowed. We shall cal)

each U(z) a “sampling unit'. Let n,(z) denote the number of times u, occurs
in U(z) and let

(1.2) vi(x) = 0(1) if ni(z) = 0(>0).

To avoid triviality, it will be assumed that there is no sampling unit which eon
tains all the N different elementary units.

The sampling scheme to be considered is as follows: Only one of the sampling
units is to be selected, the probability of selecting U(z) being p(z) so tha
3" p(z) = 1 (summation being over all sampling units), and the variate-values
for all the elementary units in the selected sampling unit are to be determned.
The total number of elementary units in U(z), counting repetitions, is thus
n(z) = X iwny(z), and the number of distinct elementary unis in U(s) is

L]
(13) Hz) = 3 wn(z).
The serial number of the selected sampling unit is thus a random variable ¥
with probability distribution given by
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(14) Prob (X = z) = p(a), T=1,2 -0 ...

1t is to be noted that the samphng scheme considered is of & very general
1spe, n(z) and »(z) need not be independent of z, and n(z) may not even be
finite. Thig kind of formulation is uscful b it cover cases of sequential
ampling. Consider, for instance, the following scheme of sampling: Draw
elementary units, cne by one, with replacement, until two different elementary
uaits are obtained, where the probability of getting a particular unit may vary
from draw to draw. The sample size counting repetitions may be infinite, though
the effecuve sample size i8 only two. Our cumplete class Theorem 2.2 shows that
1o this case, 10 estimate the mean, one may dieregard the multiplicities and the
order of drawing of thé two elementary units.

If [i(z) bappens to be selected, a linear function, call it {(z), of the variate-
values for all the elementary units in U(z), will be taken as the estimate for u.
In genern), 1(z) can be written 88 (z) = 2 i y.0:(z), where a(z) (i = 1,
2 e  N;z2=1,2,-+ -~ ) are pre-determined real numbers with the
restriction that a;(z) = 0 whenever n,(z) = 0. The estimator js thus the random
varisble

(15) T=YX)= ?__‘,‘ pad X).

In order that the expectation of T msy be equal %o s for all values of y = (1,
, Y») & necessary and sufficient condition is that

(18) Ela(X)} = N7, i=1,2 N

The further restriction Ela(X)]' < w,i = 1,2, +++, N,is imposed so that the

variance of T may be finite for all finite values of y. A random variable T eatiafy-

ing these conditions will be called a linear unbiased estimator of u.

Ubviously (1.6) cannot hold unless for every 1 (+ = 1,2, --+ , N') there exista
st least one z for which both n,(z} > 0 and p(z) > 0; henceforth this will be
tacitly assumed. (Any u.s for which n(z)p(z) = 0 for all z are effectively
outside of the sampled population.)

The variance of A linear unbiased estimator T of u is obvioualy given by

» N
(1.7} =% L vads,

shere &, = Cov [a,(X), 6,(X)] = Eloy(X)a;(X)] — N*.

2. A admissible estimator and & complete class of estimators. Of two dif-
frent linear unbissed estimators T and 7" of i, 7 will be said to be af leadt ar
o T
(1) V(T) s V(TY)

I 'dsfor all y; T will be said to be belter than T" if (2.1) holds for all valuea of
4 with strict inequality for at least one value of y. In & given class of linear un-
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binsed estimators of s, T will be eaid to be best if it belongs to the class and s
better than any other member of the class; it will be said to be admussible f the
class does not contain a better meraber. A class € of lincar unhiased estimatery
of i will be called complete, if given any linear unbiased estimator of 4 not bty
longing to the class € it is possible to find a member of € which is better.

It has been shown (3] that a best estimator in the ciass of all Lincar unbiasd
estimators does not exist for any sampling acheme An admissible estimator 14
a complete class of estinators are obtained in this section.

Let a(z) be defined by

. _wlx)
(22) al(z) = Vo

where »,(z) is defined by (1.2) and g. stands for the probability that the ¢
mentary unit u, ocoure in the selected sampling unit, that is ¢, = E[»(X)|
Congider

(23) T = 2 yal(X),

which is easily verified to be a linear unbiased estimator of u. The variagce of I
is given by

N »
(24) T =% .Z. Yol

where N3 = (g.,/g.4,) — 1 where g,; stands for the probability that b
u; and u; occur in the selected sampling unit; that is, g, = E[»,(X)s(}.
@ = Qi
Teeoreym 2.1 T* defined by (2.3) ts admismble tn the class of ali linear unbamy
estimalors of u.

Proor. If not, there exists a better Lnear unhiased estimator of 4, sy T pree
by (1.5). Then, from (1.7) and (2.4) one gets

(23) V(T - ¥v(T) = éi V-.’I)(n) - &y)

which must be at fegat positi‘ve-eemideﬁnjte, But it is easy to verify that ¢’ -
s = —Ela,(X) — ai(X)] is 1 jtive: thi i
U Leller.) (X)]' 18 not positive: this contradicts the ABSUmPL
To obtain a complets class of estimates proceed o8 follows. Let J = (5.
A, t-+, Ja) denote a non-empty proper subset of the set of integers (1, 2,
«+-, N). There are thus 2” — 2 such subsets. Let S, stand lor the set of the
Serial numbers z of those sampling units {(z) which contain the elemesisn
units uj, , Uy, oo, uy, and these only, thus ’

(2.8) S;={zin(z) = 1 (0) for seJ(ieJ)).
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Let & denote the clasa of linear unbiased estimators T of 4 for which the coeffi-
oents o,(z) are equal for all z £ S, and for every subset J, that is, they are of
tbe form: a:(z) = bi; for all z £ S, and for every subset J. Thus, & is the clasa
of linear unbiased estimators of i, whose coefficients depend only on whioh
tlementary units are in the sampling unit, and not on their multiplicities or
ordering.

We theo bave the following:

Tazores 2.2 The class o 1s complete.

Paoor. Let T = 3.0 310:(X) be  linear unbiased estimate of u. Let v, =
Prob (X £ 8,) and define

2n by = e, 02)p(z)/es if % >0, by = 0 otherwise
1d further let 6,(z) = b,, for all z £ S, and for every subset J. It is easy to see
tbs) the estimator T = J_7—) y.6:(X) belongs to the class & . Also,

(28) V(T) = V(T) + ?_:; '_z; Viyihis,

shere ), = Ella.(X) — (X)) {a;(X) — 6,(X)}). Since the matrix ((Ay))
@ it least positive-semidefinite, 7 is better than T unless T itself belongs to
¢. Thus completes the proof.

3. Best estimator in e restricted class. Since there does not exist a best mem-
ter 1o be class of all unbiased linear estimators we proceed to examine whether
& best estimator exists if the class js suitably restricted.

A Linear unbiased estimator T = {(X) will be called linearly invariont if the
inadormation y§ = ey, + B(i = 1,2, -+ , N) of the variate values transforms
fiz)101*(z) where 1*(z) = at(z) + 8 for all z for which p(z) > 0. Obviously, a
reeesary and sufficient condition for T to be linearly invariant is that

L4

a1 ?:.“‘(’) =1, forall z for which p(z) > 0.
We now show by & counter-example that, even in the class of livearly invariant
wiliased estimators, in general there does not exist a best estimator.

(‘ouidcr a population of N = 4 elementary units u; with variate-values

wii=1,2 3 4). Let the Mmphng units be U(1) = {uy, vy, uy), U(2) =
o, wlh UG3) = {us, w, ugl and U(4) = [y, uy, u), and let the prob-
Aty of selection be the same, viz. } for all the sampling units. This corre-
1yands 10 taking 3 upits with equal probabilities without replacement from a
wpalstion of 4 units. 1¢ follows from Theorem 2.1 that the sampie mean T°
1 in sdmissible estimator m this casc. Obvmunly T® i8 linearly invariant and
it vanance 16 o'/9 where o' = X1, (3 — u)"/4. Consider now an alternative
e, T = 370, ya.(X), whose coefficient-matrix [a.(z)] (i,z = 1,2, 3,4)
& gven oo the following page.
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1 t+e t-¢ t i 0
2 }—0 t+0 0 \
3 ] [ H |
[} 0 ] ¥ ‘ \

It is eaay to verify that T is linearly invariant and unbiased, and that ity -
ance, §¢' + 4(yi — 1)’ + §6(w — 1) (ys — i), can be made smaller thas
variance of T by a proper choice of 8 if y; # ya. Thercfore a best invpne
estimator does not exist in this case.

1t will ow be shown that, if consideration is limited Lo a atill smaller cian
what we propose to call regular estimators, there does exist a best sy,
provided that the sampling scheme ia somewhal restricted.

A linear unbiased estimator T of u will be called a regular estimato 4
variance is of the form

(32) V(T) = ko',

where k is & constant indepeudent of y. Suppose that T ia of the form (13,
that its variance is given by (1.7). Since (3.2) can be written as

(3.3) V(T) = k(N = DN gl - aN” Z;,_Z‘ ils,
by equating coefficients in (1.7) and (3.3) we pet
34) oo = [ T ET DN iy
k (X)e; =
“ —(k - DN iz,

Consequently, writing a(X) = 27 5,(X), one gets from (3.4), Via(X)} -

Therefore
N

(3.5) Z‘( a(z) =1  forall z for which p(z) >3
We thus have

TaeoReM 3.1. A regular estimalor is linearly invariani.

Let us now compute M = E2 w]afX) — w(X)/%(X))". By vinw 4
(3.5), we get Yo [afX) — w(X)(X)] = Yol = ywix.
Using (3.4) we then have
(3.8) M = k(N — DN + N = Elt/»(X)].

Since M is non-negative, we obtain the following:
Lesaua. For the variance of any reqular estimalor T of w, there exish o leer
dound V(T) Z Ko' where

@7 K = (N/(N = 1)EQ/v(X)] = (1/(N = 1)).
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This lower bound can be attained if and only if M = 0. But this requirea that,

o evary x for which p(z) > 0, ai(z) = A(X), where

38) Ai(z) = wi(z)/v(z).

In order that the linear statistic

N
39) L= X
ms¥ be an unbiased estimator of u, & y and suffici dition is that
\3.10) Elyi(X)/v(X)} = N2 fori=1,2 - N

A sampling scheme will be called balanced if (3.10) holds.

We thus have proved the following:

Throren 3.2. In order thal the lower bound for the variance of & reqular estimator
of w may be allained, a necessary and sufficient condition is that the sampling scheme
should dr balanced. If the sampling scheme is balanced, the estimator L defined by
130) ia best in the class of all regular estimalors and its variance is given by V(L) =
Ke' where K 18 defined by (3.7).

4. Application to specific sampling schemes. The usefulness of the theorems
derived in Sections 2 and 3 will be d trated by idering several well
knosn gumpling schemes.

1.1 Simple Random Sampling: In this case, a sample of n elementary units
is drawn one by one with equal probabilities and with replacement. There are
thus ¥+ sampling units, each consisting of n of the N elementary units, repeti-
tuns being allowed. The probability of selecting any one sampling unit 18 N,
That the sample mean 7' = 31y yni( X )/n is an inadmissible estimator follows
from the complete class Theorem 2.2. This result was obtained earlier in (1] and
1) by proving that the estimator To = D.icy yini( X)/5(X) is better. From
Theorem 3.2 we have the stronger result that Ty is the best regulator estimator,
Au admiseible estimator in this case is

e
SN = - (/M)

w obtained {rom Theorem 2.1. This estimator was used in {3] to prove that the
sample mean T is 1ot better than T*. However, T* is not even a linearly in-
\arant estimator.

19 Rendom Sampling Withou! Replacement. In this case a sample of n elo-
wenlary units 18 drawn one by one with equal probabilities but without replace-
went There are thus N1/(N — n)! sampling units, each conmeting of 2 com-
Woation of » of the N elementary units, and each such sampling unit has the
pobability (¥ — n}1/N! ol selection. It ia easily seen from Theorems 2.1 and
321that the sample mean in this case is admissible and best in the regular class.

IR
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The counter-example in Section 3 ho demonstrates that a best invinu:
estimator does not exist in general.

4.3 Sampling for v Distinct Units. In this case elementary units are drawa <t
by one with equal probabilities and with replacement, until v distinct elemeaur;
units are drawn, the total sample size being thus & random variable. It v se:
from Theorem 2.2 that the sample mean T = i ya,(N)/n(X) s
misaible. This was proved in [l] by showing that the estimator I* =
Xy X)/v is better. It follows from Theorems 2.1 and 3.1 that T* yi.
missible and best in the regular class.
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