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Abstract

The development of immunity in the susceptible class by a continuous low level of infection is & commonly
observed phenomnenon in many infections diseases, This imporgant Feature has Deen incorporaled o an SIRS
epidemiological model with both the rates of incidence and increase of immunity being nonlinear in nature, instead
al being bilinear, of the form @, 7°% and ﬁl.f-""S {0=pt<ip o p=land p' = 1) cspectively. The Iogal and glabal

bhehaviour of the dyvnamics of the maodel have becn investigated.
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1. Introduction

In the standard SIRS model where &, £ and R
stand for the fractions of susceptible, infective
and immoune (recovered) class respectively, the
incidence rate is bilincar of the form gf% where
g is the transmission rate {Bailey, 1975). By drop-
ping the restriction to bilincar incidence rates,
the system can have a much wider rapee of dy-
namical behaviour (for details see Capasso and
Serio, 197%; Wang, 197%; Cunningham, 1979,
Saunders, 1980: Hethcote et al., 1981; Liu et al,,

19861987 Hetheote and van den  Driessche,
19437,

The development of immuanity in the suscepti-
ble class by o low level exposure Lo infection is an
important and commonly observed phenomenon
in many infectious diseases. Low level exposure
to infection. in fact. acts as vaccinarion and devel-
ops immunity against the disease. In an endamic
area of infectious diseases like malaria, kala-azar,
sleeping sickness etc., people who use mosguito
nets in the night are not generally infected by the
discasc, since the small number of mosguilo bites
they receive when they are outside the nets is not
sufficient 10 cause the discase. On the other
hand, they are subject to a small exposure to
infection which gives them immunity.

But little attention has so far been paid on this
commaonly observed phenomenon. Hecently
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Ghosh and Tapaswi (1995) have imeorporated this
highly important qualitative feature of epidemc
discases, namely, the increase of immunity by low
level of infection, in the generally discussed SIRS
model. They have assumed that the incidence
rate of the disease is nonlinear of the form g /78
{ p = 1) whereas the rate of increase of immuonity
is bilincar of the form [, /% Bul in reality, the
rate of increase of immunity should also be non-
lincar, In this paper, we have considered the rate
of increase of immunity by the form 8,f#S (0 <
p<p, p#land p'# 1) in the generally dis-
cussed SIRS model. The giobal behaviour of
non-zer equilibruim is also an open question in
their paper. The plobal stability properties of this
madified form have been discussed in this paper.
If we take 8, =0, our model is similar with Tiu et
al. (19877 by sewting ¢ =1 in their model. We
have not considered the incidence rate of the
form BI759, because choosing a g value different
from 1 has by itself no major difference in dynam-
ical behaviour (see, Liu ot al, 1987

2. The mathematical model

Let the fraction of the population that are
susceptibles, infectives and immunes be denoled
by S, [ and R respectively. Those who are recoy-
cred from infection as weil as the susceptibles
who are sobject to a low level of exposure to
infection constitute the immune class R. Let 8,,
B,. ¥ and § denote the transmission rate, rate of
increase of Immunity by low level of exposorc to
infection, rate of immunity loss and rate of recov-
ery respectively, The birth and dcath rutes are
assumed to be equal and denoted by p so that
the populaton s in equilibrinm. New-horm indi-
viduals belong to the susceptible group.

Our hypolhesis i this paper is Lhat the inei-
dence rate of the disease is nonlinear of the form
B, 175 whercas the rate of incrcase of immunity is
non-lingar of the form B,I7§ (where, 0 <p’ <p,
p#1and p'+# 1), that is to say, a higher level of

exposure during a certain interval of time is es-
sential for infecting an individual whercas a lower
level of exposure during that interval causes im-
munity in that individual, For viral /bacterial dis-
eases p 5 the threshold concentration of
viruses Sbacteria which is to be reached in the
environment to infect the susceptibles. A suscep-
tible individual sulyect to a concentration of
viruses Sbacteria below this threshold value for a
certaln period will acquire immunity agasinst the
disease. For vectored diseases, p is the average
number of infective mosquito bites which a sus-
ceptible individual has to receive to become in-
fective o1, p is the average number of infective
individuals which the vector must attack to ac-
quire a level of pathogens sutficient to make its
next attack effective in transmitting the disease
(Liu et al., 1956). High level exposure or multiple
exposure does not necessarily imply contact of a
spsceptible with mote than one infective, it may
come through a high level of intimate contact
with the infective and thus high exposure may
oceur even when a susceptible is subject to a high
level of intimate contact with only one infective.
In fact, p is a measure of the level of exposure to
infection or effective cooperativity amonyg infec-
tives., Considering the above, p i1s the number of
attacks of an infection of a certain strength dor-
ing a certain interval of time required to infect an
individual with the disease whereas, p’ {<p) is
the number of attacks of an infection of the same
strength during the same interval of time insuffi-
cient to cause the disease but rather giving immu-
nity against the disease.

The differential equations for the SIRS model
can be written as

ds ;
E = —ﬁ1fPS—ﬁszS—;LS+|I'.I-+'}‘R

df
a P (a el (1)

dR
Tk B 1S + 81 -(y+u)R

where S +1+R =L 0<p <p, p#1and p’+ 1.
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System 1 can be rednced to the 2-dimensional
system

df
=B (1~1-R) = (§+u)

A (2)
—— =B 0" (1—1-R) +8I —(y +a)R

dr
Introducing
Ki=pB/(3+u), Ky=B/8 r=8/(d+u)
h={y+nu}/3s (3}
and rescaling system 2 by setting
T=(5+u) (4)
We have
df
E]':=K'FS_I ”
dr : :
i =r[ K178 + 7~ hR]
3. Existence of equilibria
Let z=p—1and ' =p' — 1. System 5 always

has a zero equilibrium {which is called the dis-
case-free equilibrium, in this case S=1, =0
and R ={). Any non-zero equilibrivm (when dis-
ease is present) must satisfy

S.=1-1/G(1} (6}
= [(1+ k(1 - LIV (B + KN (D)

1/K, =E(1-1/G(1}) (8)

where

G(L)=(h+K, 45" /(1 +h+ KT (9)

The basic assumption in our model s p=>p’,
since otherwise, the model will be unrealistic.
Since #ll the parameters are positive, every root
i, of Eq. 8 will be positive if (1 -~ { /G N =
Thls implies that {, <1 ... where I =h/(1+
k) If 1, is specifi u:l 5, and R_ are determined
bw Eqgs. 6 and 7, respecrivel}r,

Using the same method as m Lin et al
(1986,1987), we can determine the number of

nom-zero equilibria. Let f(7.) =121 -1 /G(10).
Since 1./G(4,) is an increasing [unction of f,,
Le (1 -1 AGULN s a decreasing function of [,
when £, = [0L{f,,.] We can see that when —1 <=
<0, L, 0<p<1, there s alwavs 3 unique non-
zero equilibrinom since, I7 is a decreasing func-
tion of 7, on (L1, 1ie, f1,)is a monotonically
decreaamg function of [, on 0./, ], and f{(N =
e, When z>1{, Le, p>=1, [I is an increasing
function of £, in {0,/ ), where f0)=1) and
fll,,)= 0. Therefore, f{{_)has a unique interior
maximum at §, = £, (say). In this case, there arc
by, onte or 1o non-zero equilibria according to
whether & is larger tham, egual w, or smaller
than K", where

iz [F{I | “” 5 r]
2(G(1,)Y

.

When & | > K[, the two non-zero equilibria can
be ranked as smaller if O <4, <1 and larger if
f.<I <I . If K, =K from the asbove, then
both two non-zero equilibria approach the nomn-
zero cquilibriom £,

1/K =f1,) =

and
8,=1-1./[G(1,)]
1 Pk
.l’m[f.l{-rm) |d;L_
2(G( 1)

4. Loval stability analysis

In this section we shall study the local be-
havioer of zero and nun-—z.:.tu equitibria respec-
tively. The case z <0 and 2’ <0 ic, p <1 und
g < 1. For this case, let =777, U&lng this sub-
slitution, we can transforo system 5 (o the follow-
ing form:

at7 >
F= —Z{RIE—U}
i’: r[ KU T g+ /3 — hR]
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where

S=1-y-us= R,

We observe that I7 =R =0 is not even an equilib-
rium, we conclode that the zero equilibrium in
svstermn 5 must be unstable, Thus, solutions which
start near (0,0} in system 5 can not tend to it
asymptolically, The casc z =0 and ' >0, e,
p=1and p'> 1. In this case, the Jacobian matrix
Jpat f=R=1is

o= )

Thus, the eigenvalues of J; are all negative (real).
Hence, the zero equilibrium is locally asymptoti-
cally stable (LAS).

By Eq. &, the Jacobian matrix of system 5 at
the non-zero equilibrium (f,.R,) can be written
as
i I

- 13 '

“

i = 3 5

v e -

P[E I (2 + 108, = 1) +1]  —r(h+ Ky05 )
Therefore, the characteristic equation of the oa-
trix J, 15
.;ll.2 -+ ﬂ'-lj;ll. 1 'Tl = U

where

"

. I,
o = —[(z—hr} - (Kzrfj gy g_}

&

and

[+

my = r[{.ﬁ + Ky i2 )z = ((z'+ 1K, 81

+{1+4 ks
{1 +H#) 5.:J .
Since [ /5. is an increasing function of 1,
I/S, — a8 I =hAL+HR)L Thus, it is
clear that o) and «; are two increasing funetions
of I, in (0,f,,) It is obvicus that o, =0 at
I,=1I_. Thus, o5 <O when I, =(0,I_)and o> 0
when £, e (f 0.0
When z < (). The unique non-zero equilibrium
is LAS. When z > {0, In this case, when &K, = K",

we have two nom-zero eguilibria, one which is
smaller is always unstable saddle and the other
which is larger is LAS for 2 < hr. When z = Ar.
Let o) = BOL)/Th - (1 + R, where

B{LY=K,[{1—-ry— b1+ K hr 7!
+{+(l+hNz—hr) I, —h(z—ht)

{using Egs. & and 9). Therelore, B, =)=
—#(z —Ar) <0 and B(I,, =h/(1+00) =12 [
+ R+ K1 =)+ hr( = PR which
is greater thun zero. Since o) is an increasing
function of [, im (0,1 ). we can find a unique
pasitive root f, (say) of the equation ey(£,) = in
(0.7, ) Thus, o, =0 0F £ =11 ). Hence, the
larger equilibrium is always LAS if f, <7, when
z=hr, ic. p>1+hr, where 1 s the unique
positive root of the equation df(f.}/df, =0 in
{0.f

i'IJI.I'I‘.-}'

5. Gilobal stahility analysis

First, we shall study the global stability of the
zern equilibrium and then the stubility of the
non-zero equilibria,

If i=0, then from system 3, we see Lhat
R0 as T—w Let us comsider the Lyapunov
function, L = 1. 5o,

&——I[K’,F[‘I—I—R} -l} (1
a7

We have

K PF(1-1-Ry=K, I'{1-1 (1

Let glfy=17{1— ). So, g(J) attains a maximum
value 1 /K| (say) at I=2z/(z + 1), where

Fa

1 [ z_) z
P ey B

Therefore, K| ={(z+ 137" ' /z°. Thus, Eg. 1! can
be expressed as

K
K, I*{(1—I-R) £K,F(l—f]5"§~1{,
|
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when K, < KL In this case, from Eq. 10 we get
dL/dT = 0. It is obvious from Eq. 1} that /=R
=) iy the largest invariant subsel in the set
where dL /dT =10. 50 by a Lasalle extension of
the Lyapunov theorem (see, ep., Hale, 1909;
Miller and Michel, 1982, p. 2270, the zero equilib-
rium (when K, <X 1) is globally asymptotically
stable ((3AS). Hence, we conjecture that the wero
equilibrium is GAS when K, < K.

We shall now find out the crterion {or the
plobal stability of the non-zera  eguilibrium
(£ .R.). We define the following positive definite
function F{f R} as:

I
V(LR) =11~ los— +{iR~ R.)

where (I_,R,} is the non-zero equilibrium. Note
that KSR} is a positive definite function for all
(I.RY= (IR, The derivative along the solu-
tions of system 5 is

di LS df
F={I—I¢}TH+{R—R¢)E
=K(I-t)[te =1 - 1P R - p2!
HHERI R R R
% [ K 07 — K, 17 — RK, 17 — K, 1¥
+K TP+ R IP + (1- 1)
—h(R-R.)}]
= Ky( 1= B)[{I= L)1) = (F= 1) ()
~R(I=1)f{ 1) -7 (R-R,)]
+r(R=R)[ KoL~ L)f:(1)
~Ko (1= L)l Y KA (R-R,)
Ky R(F=1,)f5(1) + (I~ L)
—h(R- Rf}]
=K (I =) [/ = 1M1~ R)A(T)
—(F=1)fol £) = 127 (R~ R,)]
+r(R R KA £ = LWL -R)[o( 1)
— KT = L) fal 7

~(R=R)(XK, 1 +h) + (1~ L}]

= [ KW= LY (D) = (1 = RYF(D))
+{R—R)
X (=YK 227 = rKo(1 = RYf5(1)
+rkL (1) —F)
+r(R=RY (K10 + )]

Clearly £,0F), £A40), f.06) and fo. 1) are pusi-
tive, Eq. 12 can be written as

ar XTIX

d7

which is negative definite if the matrix J is posi-
tive definite, where X=(I—L,R—R,), X" de-
notes the transpose of the matrix X, and

B ful =il Rafyii)] DK
+ (K fat T}
f= KAl RYf10- 1)
RS T T o S T
— K. 1—Fif -1 (KLY + k)

Since F{ K, 1¥ + h} =), the malrix f will be posi-
tive definite if der(J} = 0.

To show det{S = 0, Tor simplicity, we assume
that p =p"+ 1. Then we have

sy =) (1 - R}fi(1)
=fuli) (1= R)f(1).
Noww, expanding der(JS ), we obtain
det(J) = 2] =au( £ D)) +a 1) —a,
where
ay = K3r®
a,=2r[K,r+ K2k + K,17)]
ay= (K1 =r)".

det(F) is a quadratic in f5(7) having two roots F,
and F; at =7 and F=1" (say) respectively for
some p'(=p—1), where 0< I <" < 1. There-
fore, def(d) > 0when f=(f, I")

Henee, the non-zero equilibrivm is GAS for all
initial vialues of fe {7, f"and p=p'+ L
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6. Discussion

The main idea behind this paper is that small
doses of infection during a certain interval of
time do not infeet the susceptibles, but on the
other hand, give immunity to them whereas when
the level of infeetion during that interval of time
crosses a certain threshold valuc, the individuals
become infected. Exploring this commonly ob-
served phenomenon we have proposed a modi-
fied S5IRS model incorporating nonlinear rates of
ingidenee and increase of immunity of the form
B,I°S and B, I"S (0<p' <p, p=1 and p'=1)
respectively, There are certainly abundant exam-
ples of such types of disease spread. It has been
observed that people living in a certain region
where a particular disease is endemic get gener-
ally accustomed to the disease in the sense that
some of them acquire immunity against the dis-
case by a long exposure to a low level of infeetion
(below a certain threshold value) whereas suscep-
tible persons from ouiside the region who come
to wisit may become infected with the disease by
being suddenly exposed to a high dose of infee-
tion (above the threshold value),

We have assumed that p doses of infection in
4 certain interval of time are required to infect a
susceptible whereas p' (< p) number of expo-
sures of the infection during the same interval of
timme: 18 not sufficient to couse the disease Dot
rather it gives immunity against the disease.

We have shown that, whatever is Lthe value of
p (= 0), there always exists zero (disease-free)
equilibrium. When p < 1, there is a unique non-
zero {disease-present) equilibrium which is LAS
for any valuc of p’ (< p), It is also observed that
when po= 1 and ¢ = 1, there are two, one or no
non-zero equilibria according to whether K s
larger than, equal to, or smaller than K. In this
case, the zero equilibrivm is LAY whercas this
cquilibrium is also GAS if K, <K, andif &, >
K" (ie, when two non-zero cquilibria exist) the
smaller non-zero equilibrium 1% always an unsta-
ble saddle whereas the larger non-zero equilib-
rivm is LAS if p=1+#r and if p=1+hr, the
larger equilibrium is always LAS when £ <1 {({,
and [, are the positive roots of the eguations
o) =0und df{f)/dI, =1, respectivelyl.

Another remarkable point i the global stabil-
ity of the non-zero equilibrium. By constructing a
suitable Lyapunov function, we have observed
that the non-zero equilibrivm is GAS under some
parametric conditions for all initial values of f =
(I, M and p=p' + 1.

Finally, we may conclude that our findings also
corroborate the results of Ghosh and Tapaswi
(1995), Liv et al. {19587) and Mukheree ¢t al
{1993). By selting p' = 1, the results of Ghash
and Tapaswi (1995) follow. Alsa the results of Liu
et al. (1987) follow when B,=0 in our model
case and setting ¢ =1 in the model of Tiu et al.
{1987). Mukherjee et al. (1993) demonstrated the
global Tesults of the model of Liv et al. (1987).
These findings also follow from our global results
by setting 8, =0 in our model and g =1 in their
model,

The stability of the non-zero equilibriuvm for
7 < p implying endemicily of the diseasc depends
upon the values of p and p'. Thus, control of the
disease may he achieved by controlling the value
of p and p'.
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