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ON THE GAUGE FOR THE NEUMANN PROBLEM 

IN THE HALF SPACE 

By S. RAMASUBBAMANIAN 

Indian Statistical Institute 

SUMMARY. We consider the gauge function G for the Neumann problem for J4-f g 

in the half space D ? 
{(a, x) 6 Rd : a > 0}, where q is independent of a and is periodic in X. It 

is shown that if G j? oo, then G is a bounded continuous function on Cl(D). If H(x) 
= 

00 

J G(<x, x)d<z # oo, it is shown that the corresponding Feynman-Kac semi-group decays 
0 

exponentially. 

The gauge function plays a central role in studying the Neumann problem 
for the Schr?dinger operator, \ &+q, in a bounded domain. The gauge func 

tion for th3 Neumann problem is defined in terms of the reflected Brownian 

motion. If the gauge function is not identically infinite, then the so called 

gauge theorem states that it is a bounded continuous function and that the 

corresponding Feynman-Kac semigroup exponentially decays ; (and in such 

a case the existence of a unique solution to the Neumann problem is guaran 

teed). A crucial ingredient of the proof of the gauge theorem is that the 

transition probability density function of the reflected Brownian motion in 

a bounded region is bounded away from zero ; see Chung and Hsu [2], Chung 
and Rao [3], and Hsu [4]. 

In this note we consider the gauge function in the half space D = 

{(a, x2, ..., xa) ; a > 0}. Clearly the transition probability density function 

of the reflected Brownian motion in Gl(D) is not bounded away from zero. 

We have been able to deal effectively with only the case when the potential 

q is independent of a (which is the normal direction) and is a periodic function 

of (#2, ..., x?) ; in this case it becomes essentially a problem on [0, oo)xTa~1, 

where T^"1 is the (d?1) dimensional tarns. Since Td~x is compact, and as 

explicit computation can be done concerning the a-coordinate because of 

our assumption, the analysis can be carried through, though it is not 

quite trivial. 

Even with these assumptions, it differs from the case of a bounded domain. 

As in the case of a bounded domain, if the gauge function is not identically 
infinite then it is a bounded continuous function. However, an additional 
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assumption regarding integrability of the gauge function in the a-variable is 

needed to establish the exponential decay of the corresponding Feynman-Kao 

semigroup. 

Let {P(cc,x) : (a, x) e Gl(D)} denote the reflecting Brownian motion with 

state space Gl(D) and with normal reflection at the boundary. Each P(?,x) 
is a probability measure on Q, = 

O([0, oo) : Gl(D)) ; let X(t, w) 
= 

(X-tf, a)), 

Xz(t> *>)> > Xd{t> w)) = 
c?(?), ? > 0, cu e ?2. Note that for each (a, #) e Gl(D), 

under P(a,x) the process {X(t) : ? > 0} is a reflected Brownian motion in 

Gl(D) starting at (a, x). Let ? denote tlie local time of the process at the 

boundary. Note that we may write P(a, x> 
= 

PaxPx, where {Pa : a> 0} is 

the one dimensional reflected Brownian motion on [0, oo) and {Px : x ?= 

(#2> > #<&) e R*'1} is the (cZ?1) dimensional Brownian motion. Also observe 

that ? depends only on the process {X?(t)} ; that is, | is the same as the local 

time of the one dimensional reflected Brownian motion at 0. 

We can now define tne Brownian motion on T^""1 by 

X(t) 
= 

(X2(t) mod 1, ..., Xd(t) mod 1). ... (1) 

Note tDat {X(t) : t > 0} is a strong Markov, strong Feller process with state 

space T**1 and transition probability density function 

p(t,x,z)^=(27Tt)-^'1^2 S exp {- L \x-z+k\2) 
... (2) 

keZ*-1 l> 2? / 

for t > 0, X, z e T^"1 ; (cf. see Bhattacharya [1]). Let Px denote the distri 

bution of the process {X(t)} under Px, x e T*-1. 

Let q be a measurable function on Rd such tnat 

(i) g is a function of (x2, ...,xa) only and is periodic with period one in 

each variable ; 

(ii) qeKd. 

See Simon [6] or Hsu [4] for the definition of K&. Under the hypothesis 
(i) note that q e K& if and only if 

lim sup Ex( ? \q(X(r))\dr) 
= 0 ... (3) 

t?o xeT*-1 > 0 / 

where Ex denotes expectation with respect to Px. 

Define the semigroups {T^} and {R^} by 

(TPf~)(x) 
= Ex[es(t)f(X(t)l xeT*~i ... (4) 

(B?tif)(a,x) 
= E{a,x)lea(t)f(X(t))l (a,x)eCl(D) ... (5) 
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where /,/ respectively are functions on Td~\ Gl(D), and 

e0(t)=exp([?q(X(r))dr)j) 
... (6) 

whenever the r.h.s. of (4), (5) make sense. 

Lemma 1. Let q satisfy (i), (ii). 

(a) For t > 0, T?q) (resp. RM) is a bounded operator from L^T^^resp. 
I?(Ol(D))) into Co (T^)(resp. Gb (Gl(D))). 

(b) For t > 0, there exists a constant G(t) such that for any nonnegative 
measurable function f on Td'\ 

J M?*<0(t)(Tpf)(x), ... (7) 
rpd-l 

for any x e T*-1. 

Proof, (a) The proof is as in the case of bounded domains. Using 
Khasminskii's lemma (see p. 461 of Simon [6]) and Schwartz inequality, it 

can be shown that R[q) is a bounded operator from L2 (Gl(D)) into ???(07(I))). 
By self-adjointness it is now clear that R^ is a bounded operator from 

Lx(Gl(D)) into L2(Ol(D)). Consequently by the semigroups property it follows 
that Up is a bounded operator from L\Gl(D)) into L?>(Gl(D)). As {#<*>} is 

strong Feller, once again by the semigroup property it follows that R?q) maps 

L\Gl(D)) into G0(Gl(D)). The assertion concerning T[q) can also be proved 
similarly. See Hsu [4] and Simon [6]. 

(b) Next, as T^"1 is compact and p giveu by (2) is continuous, for any 
t > 0, there exist constants cx(t), c?(t) such that 

0 < cx(t) < p(t, x, z) < c2(t) < oo, ... (8) 
for all av^e-T*"1. Consequently, assertion (b) can be proved like Lemma 2 

of Chung and Hsu [2]. 

The gauge function for the Neumann problem is defined by 

G(a,x)^E^x)[ J eq(t)d?(t)) 
... (9) 

where ea is defined by (6). Since | and X are independent and as q depends 
only on x, using the occupation density formula (or otherwise), we get 

G(a,x)= lim EA] Ex(eq(t))] 

= 
4- 1?Q ? \?x(et(t))](2nt)-1'2exp{-a,2l2t)dt. 

... (10) 
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Theorem 1. Let q satisfy (i), (ii). If G f? oo, then G is a bounded conti 

nuous function on Gl(D). 

Proof. By (10), G(ot, x) < G(0, x). Consequently we may assume without 

loss of generality that G(ct, x) < oo, for some a > 0, xe Td~x. 

Let r = inf{? > 0 : X(t) e 3D} 
= 

inf{? > 0 : Xx(t) ?= 0}. Since ? inoreases 

only when X(t) e dD, by tue strong Markov property we have 

oo > G(oc, x) - E(a,x) [eq(r) G(X(r))]. 

As a > 0, note that the flitting measure P(a,x) X~x on d D is equivalent 

tothe(d-l) dimensional Lebesgue measure ; (see Karatzas and Shreve [5], 

Chap. 4). Hence the above implies that G(0, z) < oo for a.a. (0, z) edD ; 

(and hence G(?, z) < oo for a.a. (?, z) e Cl(D)). 

Put g(z) 
= 0(0, z), z e T*-1. Then as t is independent of X, we get 

oo > G(a, x) - E{a,x)[g(X(T)exip ( J q(X(s))ds)] \ o 

= 
?(TMg)(x)dPaT-\t). o 

As & > 0, Pa f-1 is equivalent to the Lebesgue measure on [0, oo); (see Kafatza? 

tb??d Shreve [5], Chap. 2). Hence from the above (T?9) g) (x) < oo for some 

t > 0. Therefore by (7), we obtain g e L1 (T*-1). 

Since M?9) G < T\9) g, by the semigroup property and Lemma 1(a), it 

now follows that M{tQ) G is a bounded continuous function on Gl(D) for any 

t> 0. 

It is easy to verify that for any t0 > 0, there exists c > 0 suoh that 

sup {%,s)?2(?) : (?, z) e Gl(D)} < et (11) 

for ail t ̂  tQ. As in Chung and Hsu [2], using the Markov property and (11) 

it can now be shown that JRj*> #-? G uniformly over Gl(D) as ?-? 0, whence 

the theorem follows. 

Theorem 2. Let q satisfy (i), (ii), and G be given by (9). For x e T*"1 

define 

H(x)^?$ G(oc,x)da. ... (12) 
o 

2/ H j? oo, then there exist constants a,b > 0 such that 

sup{E(a,x)(e?t)} 
: (oc, x) e Gl(D)} < be~?K ... (13) 
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Proof. By (10) and Fubini's theorem note that 

H(x) = 
\ fEx(eQ(t))dt. 

Consequently by our hypothesis and the Markov property of the process 

X, for some x e T^"1, 

co > H(x) - ~ 
Ex[ I eq(s)ds} 

+(T(PH) (x). ... (14) 

By (14) and (7), note that H e L1 (T^-1), and hence T$> HeCb (I7**-1) for 

any t > 0. As qeKd, by Khasminskii's lemma and (14), it follows that 

Tp H^> H uniformly as ?-? 0. Thus H is a bounded continuous function on 

T^-1, and hence there is a constant c such that H(z) > c> 0 for all z e T*"1. 

As Td~x is compact, from (14) it follows that T\q) H converges uniformly 
to 0 as t-> oo. Therefore 

l.h.s. of (13) = sup {& (<fc (t)) :xe T*-1} 

< c-1 sup {T<?> H(x) : x e T^1} 

->0, as ?-> oo. ... 
(15) 

Now (13) follows from (15). 

Remark 1. Consider the Neumann problem 

1 
Au(oc, x)+q(a, x) u(<x, x) 

~ 0, (a, x) e D, 

*\ 

----- u(0, x) 
= 

?<?>{x), (0, x) e dB, (16) 

where ci is a bounded measurable function on 3D and A = 
d2jdot2-\ 

d 
2 d2jdxf. A bounded measurable function u on Gl(D) is said to be a 
t'-2 

stochastic solution to (16) if for each (a, x) e 01(D), 

u(X(t))~u(X(0))+ J q(X(s))u(X(s))ds+ J <f>(X(s))d$(s) 
0 0 

is a continuous P(a,a?)-?iartingale w.r.t. the natural filtration. 

Define, for (a, x) e Gl(D), 

u(a,x) = E^x) [ J 
eq(s)<j>(X 

(s))d?(s)*j. 
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Suppose q satisfies (i), (ii). If G & oo, where G is defined by (9), then u is 
a stochastio solution to (16) ; also u is a bounded continuous function on 

Gl(D). In addition, if H & oo with H defined by (12). then u is the unique 
bounded stochastic solution to the problem (16). In view of Tneorems 1 

and 2, these assertions can be proved as in Hsu [4] with the necessary 

modifications ; so we omit the details. 

Note. Even with our seemingly strong assumptions on q, the problem 

(16) does not reduce to the case of a bounded domain or to a lower dimension. 

To see this, take q ^ constant, <j) 
= 1 and suppose there is a solution of the 

form u(oc, x) 
= 

%(a)w2(ae). Then the boundary condition implies that 

u2(x) 
== 

(m?(O))-1. Consequently ux should satisfy u[ (oc)-}-q(x)u1(a) 
= 0 for 

a > 0 and all values of x. This is not possible for nonconstant q unless 

ux 
= 0 ; but this would contradict u[ (0) ̂  0. 

Remark 2. It is possible to extend the analysis to diffusions of the form 

Q\<x,x) 
= 

QaxQx> where {Qa} is a reflecting Brownia.n motion on [0, oo) and 

{Qa} is a (c? ?1)-dimensional diffusion process with periodic drift and diffu 

sion coefficients. In this case also X defined by (1) gives a strong Markov, 

strong Feller process with state space Td~x ; (see Bhattaoharya [1]). Hence 

the problem gets shifted to [0, oo) X Td~x. However to prove the analogue 
of Lemma 1 one has to consider also the adjoint of the semigroups T[q), R^. 

Acknowledgement. Thanks are due to a referee for some helpful comments. 
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