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Ahstract

Cross-diffision is necessary [of schieving spatial pattern {patcliness} in a twomspecies Lotka—Volierra Jiffusive system,
Cross-diffusive instability is less likely o occur with time varying than with constant cross-diffusivity.
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1. Introduction

Reaction-diffusion systems have been proposed as mechanisms for biological pattern formation in embry-
vlogical and ecological context. All such works are based on the pioneering work of Turing (1952). Segel and
Jackson (1972} were the first to call attention to the fact that Turing’s idea would be applicable in ecological
sitmation also. They conjectured that the nature of the equations which describe chemnical interaction does nol
seemn fundamentally different fiom the nature of those which describe ecological interaction among the species.
Again, the idea that dispersal could pive rise to instabilities and hence to spatial patiern was due to a number of
authors (see Okubo, 1980, for review).

Self-diffusion mechanisms form is the most widely studied class of models for ecological pattern formation
and in these cases, the system parameters gre usually treated as independent of time. The literature shows thar in
some situations self diffusion alone cannor generate o maintain spatial pattern (for example, see, McLauoghlin
and Roughgarden, 1992; Chatopadhyay et al., [994) and hence, necessity for other mechanisms, for example,
cross-diffusion arises. The idea of cross-diffusive instability has been examined by several anthors (Gurtin,
1974; Gkubo, 1980}, Moreover, in real situations, diffusivitics can vary in time and oceanic diffusion may serve
as an example. Recently Okubo and Timm (1992) have taken into account these important phenomena i an
ceological model by Levin and Segel (1976) for predator—prey planktonic species.

In this paper we have considered a two-species Lotka Volterra diffusive competitive system and observed
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that cross-diffusion is necessary for pattern forming instability. By considering the time-varying cross-diffusivity
in this system we have observed that time-varving cross-diffusivilies makes the system more stable in
comparison with the constant cross-diffusivity.

2. The mathematical model

The reaction diffusion Lotka—Volterra two-species competition mode! can be written as

ax, %X, @ ax,

“ar =X(r—a, X, —a; X} +D|1? + E{Du( XJ)?}

ax, 8'x, & ax, (1)
_:3'}_= 1{"1"‘32131_anxz]+Dzz_ﬂ'rT+E;{Dzl(x2=f}_a_;}

with r, >0, a,. > 0.

X,(r.1) and X,(r.1) denote populution densitics of two competing species ai time ¢, r is the spatial
co-ordinate, B, and D, are the constant self-diffusion coefficients of two competing species, D,(X,) is the
density-dependent cross-diffusion coefficient of X, and D,,{X;,1) is the density and time-dependent cross-dif-
fusion coefficient of X, such that D (X)) = G as X, = 0and D, (X, ) —0as X, —0

The systern {Eq. 1} has 1o be analysed with the following initial and boundary conditions:

X(r.0)>0 (2)
X, X, o ieis \
E:- r-ﬂ_ ' dr r=R e { }

The meaning of zero-flux boundary condition is that no external input is imposed from outside (Murray, 1990).
We shall now investigate Eq. 1 with initial condition as in Eq. 2 and the zero flux boundary conditions as in
Eq. 3. Note that when X, =0 and X, # 0 for all r, 83X, /8r = 0. Similarly, when X, =0and X, = 0 for all r,
X, /ir=10.
As a special case, we assume that cross-diffusion coefficients are given by

D,(X) =D, ( t
12{ 'I} I I Er +X; (4}
; X,
Dy X,.0) = D(t) R
where €, and e, are very small so that
Dyp( X)) = Dy for X, = ¢, (3)
D (X,,0)=D4(t) forX,=>e,

We then restrict our analysis lo the population domain given by

w={(X,X) | X, 2 €, and X, > e, (6)
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where we may consider the cross-diffusion coefficients as density independent. Then Eq. 1 corresponding to the
repgion w is given by

?X, szr r ‘_EEX?
3_!'=X1':r3_anx.' ~ a2 X)) + D5 ar? P dr?

1 1 7
i, iy X,

2 v
—= = X,(ry—ay X, —ay X;) + Dyy—— + Dy (1) —
ar 2y = ay X, —ay X;) P () ar? |
As we are mainly interested to investigate the behaviour of the system around the interior equilibrium point,
so we shall put emphasis on (X', X.' ), where X" and X.' are the interior equilibrium, given by
Frllsy = Fadlyg

XJ‘ == {3}

iy — @y th)2

X, = Fadly — g (9)
ey Ty = iby)ctia
Now, (X", X, } are feasible if

¢ PR SRR ¢ 79
} AR

s s 1}
dy) P dla (19)
o,
Y " tha
= (11)
U Fi Ean

The community matrix of Eq. 7 without diffusion with elements A, (i.j = 1,2) evaluated at the equilibrium
X." is given by,
‘411 — _I‘.’r|'||.X'|,L {ﬂ
A= —a. X" <0
. . (12)
Ay = —a, X, <0
Ay = —ay X' <0,

For local stability without diffusion, we require

A+ A, <l (13)
e, —a;. X" —da;; X < 0 which is obvious, and
Ay = A dy, (14)

8., ) sy & tailas.

If @, a, >a,,a,, the model is said to describe a tolerant competition. In case of severe competition the
model witheut diffusion is locally unstable if it admits a positive equilibium. Hence it can not achieve spatial
pattern according to the Turing concept. So we shall only consider the case of Eq. 10,

3, Cross-diffusive instability

To examine the stability of the uniform steady state to spatial and temporul perturbations in the presence of
self-diffusion and cross-diffusion terms we write

X{ra) =X +x{r.n), (i= 1.2} {15)
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where x, are assumed to be small. Then the linearized version of Bg. | is

ix, ﬂl_ﬁ . E!?xz
= =A1I-’:1+*’112’“:+U11_ﬁr1 +J[J'lz———w1 (16)
and
fx, 32,1'2 ) r?':x1
‘E‘=f"!.2].x1+A:EXE+D:2F+DH(I}F. {]’."}
Now we consider the case without cross-diffusion, then Eq. 16 and Eq. 17 take the form
4x, &x,
'Inﬂuxl"'"‘lux:-"‘pn_ﬂrf' (18)
ax, #tx,
Y =A.; 0 + A, JCJZ'—DE?. (19]
Now we define Lthe dimensionless fime by wr = (w > (), and we express the solution in the form
Lo (20)
Xy = dy(r)e™.
Then we obtain the equations for &, as
deb 5
d_;=["1n_K'Du}*ﬁl""'_]"'ﬂ]zd’ﬂw I (21)
de, : .
i =Ayow ' + {""112 = KzDzz}‘Pz“" % (22)
Eq. 21 and Eq. 22 can be written as
dey . "
Tjr-]=“111=f’1+‘411‘5’2 (23)
deg, . i
F=f"'31¢1+‘*22¢21 (24)
where
-‘fn = (A]I == KID]L}W_l
*{11 =AW (25)
Ay = Agw™!
*‘;21 u {‘“’112 - KzD:z]W_ =
For the equilibrivm to be stahle without cross-diffusion ( DY, = D}, = (), we require,
Ay +A, <0 26)

Al'l A‘J‘E = A'IZ Ail'
Now

-‘in +£22 = _(H]!XI‘ + ﬂz;axz']w— ' _KEW_J{DH +D;,) <0,
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while 4, A, > A, A,, implies
(ap ;- aza,) X X, +“JLK2L]22 X +”22K?D:|X2* +K£D1|D:z =0

which follows from Eg. 14
Hence the Eq. 7 is locally stable without cross-diffusion. It we introduce cross-diffusion terms, then Eq. 21

and Eq. 22 take the form

e (A — KD, Yow™ = (A — KD Yyw ! (27

de, } .

-F=[AZL—KJ'U?,{T}jd:|w '+ (A — KDy )dw (28)
Eq. 27 and Eq. 28 can be written as

%= 1,0, +A,,d, {29)

ST D S (30)
where

Ay =(A, - KD )w

{2={a,1—ﬁ:?ﬂ;2}u-' 1)

In order to mvestigate cross-diffusive instability with time-varying 1¥,,, we now specify £, in the form

DLty =D.{a+hsint) > [32)

witha>1, a>|h. [33)
Then Eg. 29 and Eg. 30 can be wntten as

de¢, = -

= =Aud + A, (34)

degp. = = -

Ty n® +And,, {35)
where

Az = = (ay X, + KD )w ™' —k*w ™ 'Di,bsinr =A% — k2w D), bsinT, {36)

L

The amplitude Eq. 34 and Eq. 35 will be used to find the stability of system Eq. 16 and Eq. 17,
As g reference state we take o case of b =0, Le., constant A, If 4, is constant, cross-diffusive instability
sets in when at least one of the following conditions is violated subject to Eq. 26.

Ay + Ay, <D (37}
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and

‘;1522_‘412‘45! >0 (38)
Note that Eq. 37 is met when Eq. 26 holds. Hence only violation of Eq. 38 will give rise to instability.
Reversal of the inequality vields,

H{K?) =§_-11A=2.2_f’-=12*“=51 <0
H(KE-} —=K4[D“Dzz -"aD"éj - Kz{ Ap Dy + A0 =D\ Ay _aﬂliﬁll} TA Ay —ApAy, <O

The minimum of H{K*) occurs at K> =K? where

gy {Azzﬂu + A Dy — DAy —alp Ay ol

Ko 2Dy Py, ~ abl ) (22)
Hence,

Ap D+ A Dy = Ay Dy —al AL, =0
and

D, Dy —aD}, >0 (As H(K?) is mininum at K2 =K3) {40)

A sufficient criterion for instability is that H(K?) is negative. This condition, in combination with Eq. 14
and Eq. 39, leads to the following criterion for cross-diffusive instability:

}1;2

2 i/2
Ay Dll+A11D22_AZJDJE_“D12 Aiz}z{DuDzz —alb, (‘411""22”*‘1!1 “"za) =0 {41:'

The critical value of «, i.e., a_, for the instability is obtained when the first inequality of Eq. 41 becomes an
equality.

The corresponding critical wave number K, for the first perlurbations to grow is found by evaluating X,
from Eqg. 39,

We now return to the amplimde equations Eq. 34 and Eq. 35 with Eq. 36 and will examine the problem of
time-varying cross-diffusive instability. We are interested to see whether the cross-diffusive instability can occur
more likely or less likely in the systern with vanable cross-diffusivities, in comparison to the reference system
with constant cross-diffusivides.

We apply the Floquet theory (see Okubo and Timm. 1992) to second-order dilferential equations, From Eq.
34 and Eq. 35 we get,

) R
g T oy

The transformation:

‘J'-u "'i'-zz_"ql'-lzﬁ-m{f} ¢, =0 (42)

I, = =
I =e1p[— E(AH +.422)1-]¢r]
leads Eq. 42 to the equation for &,

dy
7 AT =0 )
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where

Q{T)=_%{_f?u'i-'f:z]:"'{ﬂu’d'z:_"1*:12;1{7”' {44)

¥

It will be seen that Eq. 43 is the standard form of Hill's equation.
To this end, substiition of A,;, 4,,. 45, A, (7)in Eg. 44 results in

Qf7)=&+¢sinT, {45)
Where

l - 2 o1 M b3 a2
5= —m[u“_f,"+a?2x; + KDy, + KDy |+ {a, X" + KD )(ay, X, + KPDy ™

—{ay, X" + K7D, Way X)' + KlaD jw* (46)
and
€= —{an X" + KD ) K20 bw™! {47)
{where X" and X, are given by Eq. 10 and Eq. 11}, Then Eq. 43 takes the form
4, ;
3 + (& + esinT )y, =0 (48)

We can wrile,

> (49)
1
?, mtlp{_'"_{ﬂllxi‘ +tapX, +K°Dy, +KED.:2)T}I&|

2w ’
where \r, 1s the solution of Eq. 42.

Now we shall carry out stability apalysis of the system in the vicinity of the critical value a_, for small &, to
see the effect of varving diffusivity on the system stability,

When the amplitede £ of variability in %, is small, it can be shown that the solutions of Eq. 34 and Eq. 35
are asymptoiically stable undee the condition thal the reference state, ic., b =0, is marginally stable. To (his
end, we first set a=a_ and K =K, for margipal stability in the reference state and analyze the linear
stability of the system when a small variution in [0, is introduced. In this case Eq. 43 is reduced to

dr,

57 H(8tesinr)y =0 (30)
where
]- = = 2
&= "‘4'{-1 1 '-L*'lzz)
for crtical value A:H .-i__n — ""'-::z r-._.'_, = {51}
and

e=4, KD, ,bw *, (52)
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Let

Wy = exp( p7) 2aexp(rri), (53)

where the sum runs from — o 0 o,
Subsututing Eq. 53 into Eq. 48 and comparing the terms of explr1i), with » heing fixed, we oblain

. Ie
{(u.+n} +a}a,v—2—[a,_l—a,+]}={]. (54)
Now, let
(ptn) +8=8—(r—iu) =9 (55)
assume ¢, + 0, i.e, & #(r — ip)". Then Eq. 50 becomes,
1€ )
ar—?qﬁr:J{a,_l*—ar,_,}=ﬂ, —a < rm. {36}
Giving r the values —c,...,— L}1,...,+ & in succession, we obtain the following set of equations:;
Ba=0. (57)
In Eg. 57. B is an infinite malrix, the rows of which consisl of only three elements, ie., b,_ | = —{ie/2)¢ !
(diagonal clement), and &, , , =(ie/2); ' (r= —a, ..., —1.0.1,...,+ e, and a is an infinite column vector,
the elements of which are a, (r= —a,....— 1,0.1,...,+ a). For Eq. 57 to be satisficd by & non-xero column
vector a, we require that the following determinant of the matrix vanish,
I ! b, 141 6 i
siwy=| b 1 b (= (%)
0 - S 1 (B I|
This resuls in (see Okubo and Timm, 1992):
1 1
sinz(?‘prr] =d{[]}sin7[iwﬁ”1]. {59)
If € is sufficiently small, we have:
Er -
d(ﬁ]slh?{ﬁ{ﬁ-—l}} ; (60}

Eq. 60 results from Eq. 58 wsing &, =& — r” {(see the part of the determinant which is in square brackets),
101 I, e’ =1] .2 ] 1,52
sin’| Siper =1~ E—{ﬁ{ﬁ— 1)} " |sin 773 (61)
or

sin[%imr] = [1 - %I{E(ﬁ— 1)) “’]msm[%ﬂam) (62)
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Since & < 0, Eq. 62 becomes [using Eq. 45 for Q(1)]:

172

& €’ - i i
smh{—m); to— 8= 1™ sinh[—frl&l”ll {63)
2 2 2 !
Ly= =317 1= =
-'-I-L'f-lﬁl]“:{z{ﬂ“-i_*’d‘z?}} =;|"1||+’122i- (64)
Remembering the transformation between r, and &, (see after BEq. 42):
I- = 1
& =EKP{_ El‘q!l "‘-‘1'zz|’r}"r’1 {ata-a,}r—a. (65)
From Eq. 53 and Hy. 62 we have:
[ J. = = -
@, = exp-l'll( m- sl +A33|]r} Youexplrri). {66)
Since
Y aesp(rri) = Y laexp(rridl s Yla,l. (67)
¥ r ¥

the behaviour of &, as T -» = depends upon

]T}

!
!. - L —
uxp{‘ = Elﬁ.“ + A,

and from Eq. 64 we conclude that the solutions of the system are asymptotically stable (since ¢ — 0) for
a=a, and small b. In other words, varigble cross-diffusivity tends to meke the system more stable in
comparison o constant cross-diffusivity as long as the variability of cross-diffusivity remains small.

4. Discussion

In this paper we have considered a two-species Lotka—Volterza diffusive competitive system and studied the

dynamnical behavipur of the systemn in the following cases:
1. when diffusion parameters are independent of time;
2. when one of the cross-diffusion coefficient is time dependent.

It has been observed that in the case of severe competition the sysiem is locally unstable without diffusion, so
the system does not undergo pattern forming instability in the Turing sense. In the case of tolerant competition,
the system is locally sizble in the absence of diffusion snd hence its spatial pattern can be achieved. But we
have observed that in this case also the system is locally stable in the presence of seli~diffusion. Hence we may
conclude that self-diffusion is not sufficient for pattem forming instability in this particular sysiem. But in the
presence of positive cross-diffusion, ie, where one species tends o diffuse in the direction of lower
concentration of another species, it is possible that variation of the parameter will bring about or breakdown the
uniform steady state and form the spatial pattemn for a certain well-defined critical wave number.

Another investigated feature is the lime-varying cross-diffusivity, We have shown that time variation in the
second species tends to stabilize the competitive system. It has been also observed that in general stabilizing
tendeney mcreases with the amplitude of ame-varying cross-diffusivity of the second species.

Throughout the entire analysis we have only considered a population domain (Eq. 6) defining the Jower
bound of the populations X, and X, and considered D, and D,,, the two cross-diffusion coefficients, to be
constant in this domain. It would be interesting to extend this study outside this domain where D), and D, are
sinctly density dependent,
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